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Project Background and Objectives

• FDOT has funded a multiphase research effort on the use of shallow 

foundations for bridge substructure on limestone.

• In Phase Ⅰ (BDV31-977-51), a bi-linear strength envelopes were assessed 

for FL limestone formations (Miami, Ft Thompson, Ocala, etc.). Bearing 

capacity equations for any footing width, shape, embedment depth and 

rock-over-sand scenario were developed.

• In Phase Ⅱ (BDV31-977-124), three full scale load tests performed to 

validate the bearing capacity equations and moduli by formation were 

developed for load-settlement predictions.

• In Phase Ⅲ (current phase), implement bearing capacity and load-

settlement prediction methods into FB-MultiPier; investigate and 

implement lateral resistance of embedded footings and effects of inclined 

and eccentric loadings on bearing capacity and load-settlement; document 

the feature sets developed in FB-MulitPier in the user manual .
Bell , FL
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• Task 1 – Implement Strength Envelopes (completed)

• Task 2 – Implement Load-settlement Analysis (completed)

• Task 3 – Implement Lateral Resistance (current)

• Task 4 – Investigate Effects of Inclined and Eccentric Loadings

• Task 5 – Develop Software Manual Documentation

• Task 6 – Draft Final and Closeout Teleconference

• Task 7 – Final Report

Project Tasks
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• Bi-linear strength envelopes based on Florida specific formations and bulk dry unit weights.

• Bearing capacities (Qu) based on the bi-linear strength parameters (c, φ, pp, ω), footing geometry and 

site conditions (homogeneous rock, rock over sand).

Task 1 – Implementation of strength envelopes and Florida bearing capacity analyses

Qu = min (Qu1, Qu2) ∗ ξ/NR       

         ξ = Shape factor; 
         NR = Rock over sand reduction factor;

Qu1 = n∗c∗Nc + q∗Nq

Qu2 = n∗ [c∗N’c + pp∗N ] + q∗Nq
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Rock-over-sand Subsurface

4. Using the bulk dry unit weight, formation, 

recovery and (SPT) estimated sand modulus on a 

site along with strength data from Phase Ⅰ & Ⅱ.

5. User supplied strength parameters and recoveries 

from triaxial, qu and BST testing along with 

mass modulus of sand layer on the site

6. Using a combination of (1) and (2) data

Homogeneous Subsurface

1. Using the bulk dry unit weight, formation, 

and recovery on a site along with strength 

data from Phase Ⅰ & Ⅱ.

2. User supplied strength parameters and 

recoveries from triaxial, qu and BST testing 

on a site

3. Using a combination of (1) and (2) data

For the Florida bearing capacity analyses, six approaches to define the strength envelope were considered:

*Carter and Kulhawy (1988) bearing analysis for rocks, derived using the curved Hoek-Brown strength envelope (Hoek and 

Brown, 1980) was implemented as an additional option in FB-MultiPier  for plane Strain condition (L/B >10).

Task 1 – Implementation of strength envelopes and Florida bearing capacity analyses
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• In general, Florida Limestone exhibits elastic-perfectly plastic stress-strain behavior which may be 

characterized with Ei or Es based on the strain level as shown below.

• In case of elastic-perfectly plastic rock behavior, the load-settlement response of homogeneous 

and rock over sand is shown below as function of Ei, Es, and Qu

• The Winkler spring model uses Ei up to Qu (i.e., distributed nonlinear springs)and Es subsequently 

(rock over sand)  in Finite element method to compute deformations and stresses.

Task 2 – Implement Load-settlement Analysis

Homogeneous Case Rock-over-sand Case



7 Bearing Spring Implementation

Shallow Foundation

FB-MultiPier (Element View 

With Vertical Springs)

Shallow Foundation

FB-MultiPier (Thick View)

Shallow Foundation

FB-MultiPier (Overlay View)



8 FB-MultiPier Shallow Foundation



9 FB-MultiPier Shallow Foundation



10 FB-MultiPier Shallow Foundation



11 FB-MultiPier Florida Limestone



12 FB-MultiPier Florida Limestone



13 Formation Data



14 Formation Data - Continued



15 Custom Rock Properties



16 FB-MultiPier Shallow Foundation



17 FB-MultiPier Shallow Foundation



18 FB-MultiPier Shallow Foundation Results



19 FB-MultiPier Shallow Foundation Results



20 FB-MultiPier Shallow Foundation Results



21 Nodal Displacement Plot



22 Nodal Displacement Plot



23 FB-MultiPier Shallow Foundation



24 FB-MultiPier Shallow Foundation

Vertical Loading



25 Florida Limestone Over Sand



26 Florida Limestone Over Sand



27 Strip Footing



28 Hoek Brown



29

• Vertical and lateral resistance for numerical stability of bridge foundation models.

• Lateral resistance of embedded footings in FL limerock and sand.

• FL limerock passive resistance (based on model in q-p space and base friction). 

• Sand passive resistance (Log-spiral).

• Validate formulations and conduct parametric study (footing geometry: B, L, Df; Rock properties: qu, qt, dt, 

REC, T; with and without backfilled annular).

Task 3 – Implement Lateral Resistance

Homogeneous Limerock

Limerock over Sand



30 Task 3 – Implement Lateral Resistance

• Stress path in extension space may be critical-SMO performing triaxial tests

• Extension strength influenced by porosity and sedimentary formation process

• Phase I research tested a few rock cores in extension space

• Extension strength, qe, at vertical stress = 0 ≥ qu

• Extension strength at vertical stress representative

      of overburden stress need to be tested

FEM
FB-Multipier 



31 Task 3 – Implement Lateral Resistance

Sand: Plaxis passive force model ( L=B=H= 5 m, Df = 2.5 m)

SOIL Soil Model
γsat 

(kN/m3)

γunsat 

(kN/m3)
E'ref (kN/m2) v (nu)

c'ref 

(kN/m2)

φ' 

(phi)

ψ'(psi

)

Footing
Linear-

elastic
21 - 200x106 0.2 - - -

Sand
Mohr-

coulomb
19 19 95.76x103 0.27 10 39 14

Interface
Mohr-

coulomb
19 19 95.76x103 0.27 6.6667 26.13 3

Tetrahedral elements
Fixed base nodes

Footing

Lateral load



32 Task 3 – Implement Lateral Resistance

Predicted passive and base friction force (L=B=H= 5 m, Df = 2.5 m)

RankineCoulomb

Passive earth force Base friction

γsat (kN/m3) 19  0.6

D (m) 2.5 c'ref (kN/m2) 6.8

B (m) 5 L = B (m) 5

 (degrees) 39 W (kN) 2625

Kp (Rankine) 4.395  (degrees) 26

Kp (Coulomb) 16.4
tan 0.49

Kpphi (Mokwa) 11.2168

Kpc (Mokwa) 4.3627

Base Friction (kN)

F = .c.L.B+W. tan
1380.2

Pult (Log-spiral method) (kN) 7060.12

Passive earth force (kN)

Pp = 0.5γD2KpB + cBDKp
0.5 5374.96142

where R3D is a correction factor to account for 3D 

effects given underlying use of log-spiral theory, Ep 

is the unit-length ultimate passive force from log-

spiral theory (Duncan and Mokwa, 2001), B is the 

horizontal footing width. 

𝑃𝑢𝑙𝑡 = 𝑅3𝐷 · 𝐸𝑝 · B ∙ Df

𝐸𝑝 =
1

2
𝛾𝐻2𝐾𝑝𝜙 + 2𝑐𝐻𝐾𝑝𝑐 + 𝑞𝐻𝐾𝑝𝑞 
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Plaxis and predicted force-displacements: Passive and base friction
( L=B=H= 5 m, Df = 2.5 m)

𝑝 =
𝑦

1
𝐾𝑚𝑎𝑥

+ 𝑅𝑓
𝑦

𝑃𝑢𝑙𝑡

𝑅𝑓 = 1 −
𝑃𝑢𝑙𝑡

𝐾𝑚𝑎𝑥 · 𝛥𝑚𝑎𝑥

Kmax is the initial stiffness

Passive Model

Base Friction Model

F = Kmax y    y ≤ yintersection with Pult

F = Fult         y > yintersection with Pult



34 Task 3 – Implement Lateral Resistance

Rock: Plaxis stress paths in passive state ( L=B=H= 2.5 m, Df = 2.5 m)
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35 Task 3 – Implement Lateral Resistance

Rock: Passive and base friction properties and predicted maximum force
( L=B=H= 2.5 m, Df = 2.5 m)

Passive earth force Base friction

γsat (kN/m3) 24  0.5

Df (m) 2.5 c'ref (kN/m2) 1400

B (m) 2.5
L = B (m) 2.5

Emass/Eintact 0.7

qu (kN/m2) 7700
W (kN) 656.3

Depth below rock surface, Zr (m) 2.5

Depth of embedment (m) 2.5

 (degrees) 29.5
Kp

5.5

Passive earth force (kN)

Pp = 0.5γD2KpB+ 2cDB(Kp)^1/2

42072.4
tan 0.57

Base Friction (kN)

F = .c.L.B+W. tan
4746.3Passive earth force Pp (kN)

 (Reese and Van Impe 2001)

Pp= (Emass/Eintact).qu. B.(1+1.4.(Zr/B))).(Df/2)

40425



36 Task 3 – Implement Lateral Resistance

Rock: Plaxis and predicted passive force-displacement 
(L=B=H= 2.5 m, Df = 2.5 m)
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𝑝 =
𝑦

1
𝐾𝑚𝑎𝑥

+ 𝑅𝑓
𝑦

𝑃𝑢𝑙𝑡

𝑅𝑓 = 1 −
𝑃𝑢𝑙𝑡

𝐾𝑚𝑎𝑥 · 𝛥𝑚𝑎𝑥

Kmax is the initial stiffness

𝑝 = 𝐾𝑚𝑎𝑥𝑦 𝑦 ≤ 𝑦𝐴

𝑝 = 𝑃𝑢𝑙𝑡

𝑦

𝑦𝑟𝑚

𝑛

𝑝 = 𝑃𝑢𝑙𝑡  𝑦 ≥ 15𝑦𝑟𝑚

𝑦𝑟𝑚 = 𝑘𝑟𝑚𝐵

Where 𝑘𝑟𝑚is a constant set to 0.05 for the footing model.



37 Task 3 – Implement Lateral Resistance

• Horizontal Passive Resistance Springs

• Horizontal Friction Resistance Springs



38 Task 3 – Implement Lateral Resistance

FEA and the BNWF force-displacement comparison 

Spring Model Validation
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Thank You!

Questions  & Answers

Closing Page 
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