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Presentation OQutline

* Background and Motivation
* Project Objectives and Tasks
* Research Findings

* Research Conclusions

e Recommendations
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Background: Geosynthetic Reinforced Soil (GRS)

 Reinforcement
* Provides tensile
strength
e Behavior
 Backfill properties

* Reinforcement
properties

* Vertical spacing
* Facing conditions

Deviator stress (lb/m2i
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Bridge abutment
https://www.forconstructionpros.co
m/concrete/article/22392879/belgard
-part-of-oldcastle-apg-how-grsibs-
and-anchor-diamond-pro-pin-
system-saved-concrete-bridge-
project#&qgid=1&pid=4

Triaxial compression test results of
reinforced and unreinforced dense
sands (Wu, 2019)
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Axial strain (%) Reinforced slope
https://geosyntheticsmagazine.com/2019/06/01/geoqrid-reinforced-soil-structures-reach-new-heights/
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Background: What is GRS-IBS?

* FHWA promoted its use to Geosynthetic Reinforced Soil Integrated

Bridge system (GRS-IBS):

* Saving time and cost, eliminates “bump at bridge” problem ﬂeX1ble design,

flexible design

Jointless
(Continuous pavement)

Integrated Approach
(Geotextile wrapped layers at beams
to form smooth transitions)

Beam Seat
(Supported directly on bearing bed)

Bearing Bed
Reinforcement
(Load shedding layers
spaced < 6 inches)

Facing Elements
(Frictionally connected top 3 courses
with a rebar and grout)

GRS Abutment

Scour Protection (Rip Rap) (Reinforcement spacing < 12 inches)

(If crossing a water way)

Reinforced Soil Foundation
(Encapsulated with geotextile)

Sectlonal view of GRS-IBS
https://ncma.org/updates/news/grs-ibs-solutions-to-bridge-construction-challenges/

Construction of U.S. 301
Trail Bridge with multi-
span GRS-IBS in
Zephyrhills, Florida
(Daniyarov et al., 2017)

Orange Avenue Bridge in
Tallahassee, Florida
https://ncma.org/updates/p
rojects/florida-manages-

orange-avenue-bridge-
with-grs-ibs/

| Single span <140 ft
Abutment height<30 ft
f Service limit pressure 4 ksf

>300 bridges with
~ GRS-IBSin USA
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Research Motivation

’0
‘0
*
‘0
*
*
*

Property # 57 Florida | #57 Virginia

LA Abrasion Loss (5)
Friction angle (deg)

Max Density
Min Density

Limestone
38
44.8 SDTX

96
82

Limestone
23
405 LDTX

108.7
95.4

Vertical Strain (%)
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Performa

nce testing

built

Material properties should be
_— similar to that of structure to be

/

~

_#"Performance o

f GRS piers

(experimental
I1BS) that utilize
Florida has not

proxy for GRS-
» materials in
been evaluated

=
L

SDTX based on small diameter (4”) triaxial test
LDTX based on large diameter (6”) triaxial test

10 1

5 20

Applied Vertical Load (ksf)

Design envelope (Adams et al., 2012)
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Project Objectives and Tasks

* Perform full-scale axial load-deformation tests on 8-GRS piers

constructed with FDOT approved aggregates, geosynthetics, and facing
blocks.

* [dentify service limits (&, = 1% and e = 2%) and vertical bearing
capacity.

* Measure aggregate strength properties with large diameter triaxial
tests.

* Compare findings to existing test results by FHWA.
* Add to existing FHWA vertical bearing capacity dataset for LRFD.
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Project Tasks

* Task-1: Review previous studies on GRS, design methods, material, and
construction practices

y

1aS

y
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k-2: Design experimental plan for performance tests
k-3: Performance tests — Axial load-deformation tests on GRS piers

[as]

k-4: Compare performance test results with previous results and

predictions and make recommendations for GRS design in Florida

* Task-5: Draft final report and closeout teleconference

e Task 6: Final report
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Task 1: Review previous studies on GRS, design methods, material,

and construction practices

* FDOT requires LRFD design of GRS-IBS according to “Geosynthetic Reinforced Soil
Integrated Bridge System Interim Implementation Guide” FHWA-HRT-11-026, except as
otherwise shown in the FDOT Structures Design Guidelines.

e Materials
» Backfill

* dpax = 2 inches, @, = 42°
* Poorly graded No. 57
» Well graded GAB
Reinforcement
* Woven polypropylene geotextiles: Tr y,;, = 4,800 Ib/ft
* S,min = lessor of 8 inches or height of facing blocks
Facing
* Segmental retaining blocks (SRB)
Approximately 20 GRS pier tests performed prior to this project
A few GRS-IBS built with lightweight foamed glass aggregate (FGA)
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Task 1: Review previous studies on GRS, design methods, material,

and construction practices
* A: Bearing Capacity
* Based on Pham (2009) and Wu et al. (2013) work
* Concept of apparent cohesion
* Concept of apparent confining pressure
* Doesn’t account
* Presence of bearing bed reinforcement

* Behavior at the soil and geosynthetic interface
* Particle size applicability??

A Wt
: | O3R= S,
Sy T
cd. ) 'f
Quit,an = ’O'c + 0.7(6dmax) _Sv Kpr + 2C1/Kpr

P
Ky, = tan? (45 + Tr)

Where gyt qn is the ultimate capacity, o, is the external confining pressure caused by the facing, S, is the reinforcement
spacing, dp,q, is the maximum aggregate size, Ty is the tensile strength of reinforcement,®,. is the internal friction angle of the

reinforced backfill, c is the cohesion of the backfill, y;, is the unit weight of facing block, § is the interface friction angle between

geosynthetic and the facing block, d is the depth of the facing block unit, and K, is the coefficient of passive earth pressure

74 b T (0}
~
~
7
=
7 N
- 7 Reinforced Soil
-~/ \
e
e 7 / Unreinforced Soil \
R  — .
T3¢ oy TR

Introduction of apparent cohesion due to reinforcement (Pham, 2009)

7 Ty ¢’
— AJgR ==
Sy
— — -
~
Reinforced Soil
/ Unreinforced Soil \\
L -
T3¢ 3R o %R

Increase in axial strength and confinement pressure (Pham, 2009)



ZRTE DN
& v @ -
0 ] » b4

W/ Engineering

Task 1: Review previous studies on GRS, design methods, material,

and construction practices
* B: Deformations

 Lateral Displacement, D;

* Horizontal strain limited to 2% FHWA-HRT-17-080 (2018)
 If vertical settlement is known

¢ D) = et FHWA-HRT-11-026 Adams et al. (2012)

e D, = qu’:IOlD”x% NCHRP No. 24-41 Zornberg et al. (2018)
 If vertical settlement is unknown

e D, = 55_5}1 for extensible reinf orcement FHWA Method

« D, = % X (1 + 1.251) Zornberg et al. (2018)

SOS—U.% Po

) —1181(11)4 4225(14)3+5716(L)2 3545(L)+9471
R— . H . H . H . H .

Where 65, is an empirically derived relative displacement coefficient (dimensionless), J is the
reinforcement tensile stiffness defined by the secant modulus at 2% strain, L is the reinforcement length, g
is the surcharge magnitude, and p, is the atmospheric pressure.
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Task 1: Review previous studies on GRS, design methods, material,
and construction practices

* C: Reinforcement Strength

¢ Troq = (“h‘(’(‘ij ’;“> S, Pham (2009)
0.7\6dmax
( > KarVHS, + AdyS, for S, > 16"
* Treqi = 9 % arYHS, + AoyS,, forS, < 8" Zornberg et al. (2018)
LKarySv [Zi + (16;5”) (g — Zi)] + AoyS, for8"<S, < 16"

Where K, is the active earth pressure coefficient, y is the backfill total unit weight, H is the total height of
GRS composite, z; is the depth of backfill at position i, and Agy is the change in the horizontal earth
pressure of the backfill due to the applied surcharge.



Task 2: Design experimental plan for performance tests

Type Maximum Dry ~ Compacted to Dry  Peak Friction Cohesion Type Ultimate Tensile S, B (ft) H/B
Unit weight (pcf)  Unit weight (pcf) angle (psi) Strength, T, (Ib/ft)  (inch)
(degrees) (MD X CD)
PT-01 #57 stone 96.2 96.85 44.08 0 Mirafi HP570 4,800 x 4,800 8 3 2
PT-02 #57 stone 96.2 97.59 44.08 0 Mirafi HP770 7,200 x 5,760 8 3 2
PT-03 #57 stone 96.2 96.55 44.08 0 TerraTex HPG57 4,800 x 4,800 8 3 2
PT-04 RCA-GAB 115.9 113.28 58.41 2.87 Mirafi HP570 4,800 x 4,800 8 3 2
PT-05 RCA-GAB 115.9 113.70 58.41 2.87 Mirafi HP770 7,200 x 5,760 8 3 2
PT-06 RCA-GAB 115.9 113.94 58.41 2.87 TerraTex HPG57 4,800 x 4,800 8 3 2
PT-07 FGA 16.75 18.20 54.0° 1.28P Mirafi HP770 7,200 x 5,760 8 3 2
ARl #57 stone 96.2 97.00 44.08 0 Mirafi HP570 4,800 x 4,800 8 3 2

** Block cells in the upper three courses of blocks contain concrete and rebar, ® based on a 12 in x 12 in direct shear box.



Task 2: Design experimental plan for performance tests

 Materials .
Aggregates Geotextile

Smoothface '




Task 2: Design experimental plan for performance tests

¥ e 32.75"

. { I‘*m. ’ o Cms et R ) ol
* Dlsplacement o ‘ o Footing. 1 & 0

e Vertical: Four at top of footing © L ot

* Lateral: Five on each wall 5 N

= - Instrumented  Layer-5 | ~"-'s

* Reinforcement strain

* Straln gauge: FlrSt teSt rtil displacement measurement = NNZ7 tay"':

. - . ayer-2 F-,:
* Fiber optic strain sensor i
* Five geotextiles instrumented (aper [0 |

* Earth pressure

e Vertical: At the bottom
* Lateral: At the middle of the pier

Sensors

y

* Applied load
e Load cell

Installation of strain gauges and fiber optic strain sensor
SG: Strain Gauge; FOP: Fiber optic cable



Tensile force (1b/ft)
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Tensile strength results
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Task 2: Design experimental plan for performance tests
* Geotex
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Dry unit weight (pcf)

(a) Sieve analysis results; (b) Dry unit weight during construction
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Task 2: Design experimental plan for performance tests

No 57 No 57
150 r r - 6 . -
* Aggregates S — ,
v =4 1n: 10 psi 4 in: 20 psi i
! 3 Il | \ ey < ak 4in: 30 psi = = 6in: 10 psi B
! / ' & e\J4 - = 6in:20psi = = 6in:30psi| .~
2 100} R
. 6 5
Nel 7 2
o o =
e 5 3
T = S0F E
1 5 =
< S = >
o E
= 0
E°3
g o Axial strain (%) Axial strain (%)
—_—
= = %
2 < i RCA-GAB_ . RCA G:A—B‘
g = s, S
TG - —~ " % ~5F - —
e 7 \ =) -
g~ &30 \ 2 i
T A ! \\ '%4 i
-C g ’\ s {_’;
= %200 23f
6” diameter triaxial test -2 bl T e E
Strength properties at peak a R St
Aggregate type c b v _ _ _ 0, _ _ _
R Interface properties between *
Friction Apparent prop 0 5 10 15 0 5 10 15

o ) Geotextile and Backfill Axial strain (%) Axial strain (%)
angle (°) Cohesion

() Geotextile Interface friction anale (° Interface properties between Geotextile and blocks
RS R No 57 RCA-GAB Geotextile Interface Friction angle (°
4521 0

e 0 HP570 42.23 40.39 HP570 21.86
RCA-GAB &inch specimen [T 14.91 HPG57 37.95 38.35 HPG57 22.75 16
RCA-GAB 6inch specimen RS JE] 2.87 HP770 37.66 37.33 HP770 21.84
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Task 2: Design experimental plan for performance tests

* Bottom-Up pier
construction
* Laying facing blocks

 Placing and
compacting backfill

* Laying down
geosynthetics

.
-

(a) Laying the face blocks, (b and c) Placing and compacting backfill, (d) Laying down geosynthetics, (e, f, and g) Repeat A-C to achieve final height

PT-08
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Task 2: Design experimental

v/

an for perfor

manc
=

g Vertical displacement
Sensors

e tests

pl

—

Jack and Load cell = e-f
¥
» =

/
[

Reaction Frame
W 14 X 90- Column
W 36 x 150- Beam

Lateral displacement
Sensors

Completed and instrumented pier before testing PT-01
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Task 3: Performance tests - axial load-deformation tests on GRS

70 T it ] T |
3 |== PT-01
. —4—PT-02
; : i : : | i PT-03

——PT-04]
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e
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Vertical applied stress (ksf)

3]
(e
T

10 1
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2\
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Ll

0 5 10 15 20
Vertical strain (%)
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Task 3: Performance tests - axial load-deformation tests on GRS

Geotextile: HP570 Geotextile: HP770_ Geotextile: HPG57

70 Y 70 170 :
——e— PT-01: No57 =—t—PT-02: No57 —a— PT-(3: No57
—t— PT-04: RCA-GAB PT-05: RCA-GAB g PT-06: RCA-GAB
b PT-07: FGA
60F 60F 60F

50F

(V)]
=m0
T

50

40 40f

30 30F

20 20F

Vertical applied stress (ksf)

10 10F

0 S 10 15 20
Vertical strain (%)

A plot of applied vertical stress versus average vertical strain



Task 3: Performance tests - reinforcement strength and stiffness

* Higher reinforcement
strength

* Higher vertical capacity

* Higher reinforcement

stiffness
» Stiffer load response

Vertical applied stress (ksf)

70

60F

50F

40t

30F

20F

(=]
T

~]
(=]

D
o
T

Backfill: No 57

70

Backfill: RCA-GAB

T
_._PT-01~TF=4,800 Ib/ft
—— PT-OZ.TF:7.200 Ib/ft
—.—PT-OS.TF:4.800 Ib/ft

60F

S50F

40t
30t

20F

! ! - 10F
(\E

(=R

5
Backfill: No 57

—w— PT-04,T =4,800 Ib/ft
PT-05,T =7,200 Ib/ft

~te—PT-06,T =4,800 Ib/ft

10 15 0

70

Backfill: RCA-GAB

—a— PT-01 .TF:4.800 Ib/ft
—_— PT-OB.TF:4.800 Ib/ft

60F

S50F

30F

— PT-()4.TFﬂt,800 Ib/ft

—— PT-O(),TFﬂt,S()() Ib/ft

0
15 0
Vertical strain (%)

Reinforcement Strength

Reinforcement Stiffness



Task 3: Performance tests - concrete fill

* Concrete fill
* Increases initial stiffness
of the global stress-
strain up to 7.25 ksf
* Reduces the vertical
capacity slightly
 More cracks on blocks

Vertical applied stress (ksf)

60

W
ja)

N
(]

(U]
]

)
(]

10

Up to Failure
—e— PT-01,T,=4,800 Ib/ft
—+— PT-08,T =4,800 Ib/ft

Up to 2 % Vertical strain

20

0 3 10 15
Vertical strain (%)

A plot of applied vertical stress versus average vertical strain



Task 3: Performance tests - lateral displacement

PT-01

Ilustration of lateral displacement after the test
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2ksf =258 ksf

—— 2 ksf ~fe 25.93 ksf

25.9 ksf|
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facing walls at different applied
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Task 3: Performance tests - lateral dlsplacement

* Higher stiffness of backfill

* Lower lateral displacement

* Lower geotextile stiffness (HPG 57)
* Larger lateral displacement

* Concrete fill (in PT-08)

* Reduces lateral displacement
* Changes lateral displacement profile

* Higher compressibility (FGA backfill)

* Changes the displacement profile

* Less displacement at the seventh block
layer at smaller applied vertical stress

* More compression at the top layer

Distance from the bottom of pier (in)

Inﬂuence of backﬁll snffness

70F

60p

50

40

_% °

—©—PT-02: No 57, 4 ksf

s |—8—PT-05: RCA-GAB, 4 ksf
= —O—PT-07: FGA, 4 ksf
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—o— PT 07: F(:A 18 ksl

0 .
0 0.05

0 1 0.15 ().2 ().25 0.3 035 04 045 05

Influence of reinforcement stiffness (Backfill: No 57)

70F

60F

—©—PT-01, 4 ksf
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L " L 1 "
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-
-
-
60 4
-
-
»

S0fF —©—PT-01, 4 ksf |4
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30F

20F

10F

0 : . : : : : . :
005 0 005 01 015 02 025 03 035 0.

Influence of reinforcement stiffness (Backfill: RCA-GAB)

—©—PT-04, 4 ksf

=G PT-04, 18 ksf]

—8—PT-06, 4 ksf |4

=3 PT-06, 18 ksf]

L 1 1
0.04 0.06 0.08 0.1 (

0 -
0 0.02
Lateral displacement (in)
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Task 3: Performance tests -
reinforcement strain

* Tensile strain H Applied
load ][

* Upper layers (Layer 6 & 7)

* Tensile strains were the
greatest near the facing blocks

* Layer 4 &5

e Maximum strains were
around the center of the
geotextile within the soil mass

e Backfill stiffness

 Affects the magnitude of
tensile strain

 Doesn't affect the nature of
strain distribution

T

Reinforcement strain, € (%)

W/ Engineering

Layer 7-MD Layer 7-CD

0.5
B o i PSR LG
0 s—————-—-——__ > = - =
15 -10 -5 0 5 10 15
15 Layer 4-MD
ol e e T e e
-15 -10 -5 0 5 10 15
L5 Layer 3-CD
- | 2.0ksf 40 ksf 7.3 ks
| 12.7 kst 18.1 kst |
L 1+ :
RIS s Ut et N e e N 0 T e
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15

Distance from center of geotextile (in)
Reinforcement strain distribution in geotextile at different applied vertical stress for PT-05



Task 3: Performance tests - tesnsion stram proﬁle

e Maximum

reinforcement
strain

« Within the top
half of the pier
height

* Initially appears
at the seventh
layer for lower
vertical stresses
but shifts to the
sixth or fifth
layer as more
load is applied
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20 20f /1 20}
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Progression of geotextile
rupture from PT-05 test




* Higher reinforcement stiffness
* Lower reinforcement strain

* Concrete fill (in PT-08)

» Reduces reinforcement strains

 Reduces the reinforcement strain at
the top

Distance from the top of pier (in)

15

* Higher backfill stiffness (RCA-GAB)

 Small reinforcement strain

* Lower backfill stiffness (No 57 &
FGA)

e Greater reinforcement strain

30F

30F
35f
40
asf

50
0.2

Task 3: Performance tests - reinforcement strain profile

Influence of backfill stiffness
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)7: FGA, 4.0 ksf
-02: No 57, 7.3 ksf

Influence of reinforcement stiffness

—O—PT-01,4.0 ksf
3 PT-08, 4.0 ksf
— 4@ PT-01,73 ksf
— % PT-08,7.3 ksf| ]

3= PT-04, 4.0 ksf- HP570
~afe— PT-06, 4.0 ksf- HPG57
— W PT-04,7.3 ksf- HP570
~y= PT-06, 7.3 ksf- HPG57
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I
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A profile of maximum
reinforcement strain at
different applied vertical stress
for different tests

Reinforcement strain, € (%)
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Task 4: Comparison with design methods: ultimate vertical capacity

(a) (b) ()
100 T T o T = 100 T T T ) - 100 T T ) =
Mean bias=1.1 Mean bias=1.3 , 8 No. 57 7
COV=0.339 COV=0.174 RCA-GAB
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) i 57 P
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% 60F 60F 1 60F
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y y
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(a) . (b) . . (c)
140 »1140F 21140 5 7
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;: 100} , £ 1100} O , 4 4100} Mean bias=0.99 , g
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8ot ’ 80t ’ 80 ’ 1
g y ’ o,
/7 /7 /7
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S 40} ;6 1 40} ;6 1 40 }9 ;
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y ’ y
20F P 1 20 ’ 20 7 1
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0 ; i 0 ; i 0 i i
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Measured Capacity (ksf)

FHWA Method

Sy \T
Quitan = |0c + 0.7(6mar) S—f Ky + 2¢/Kpy

v

)
Ky, = tan? (45 + Tr)

Where q,,;¢ on 1S the ultimate capacity, o, is the external confining pressure caused by the facing, S, is the
reinforcement spacing, dpq, is the maximum aggregate size, Ty is the tensile strength of reinforcement,®,. is the
internal friction angle of the reinforced backfill, c is the cohesion of the backfill, y,, is the unit weight of facing block,
4 is the interface friction angle between geosynthetic and the facing block, d is the depth of the facing block unit, and
K, is the coefficient of passive earth pressure

1 Comparison of the measured and predicted vertical capacities(FHWA Method).
(a) Based on peak friction angle; (b) Based on residual friction angle; (c) Based
on secant friction angle at failure of GRS pier. Backfill strength parameters
from a 6-in triaxial test were used in calculation

Hoffman’'s Method
Ty

Quit,an = S_Kpr
v

¢e=== Comparison of the measured and predicted vertical capacities(Hoffman Method)
(a) Based on peak friction angle; (b) Based on residual friction angle; (c) Based on
secant friction angle at failure of GRS pier. Backfill strength parameters from a 6-in
triaxial test were used in calculation
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Task 4: Comparison with design methods - Lateral Displacement

) _PT-ﬂl' . . PT-02 . | 4 . .PT-03'

1:5

1

0.5

0

0 50

2
g
=15
(=]
O
-
(0]
Q
=
'% 0.5
2

0

60
PT-07
. . :
O Measured
O Predicted
FHWA Method (Adam’s method)

Applied Vertical stress (ksf)

A comparison of measured and predicted maximum lateral displacement during loading.

2b D
2volPv . . . .
For abutment wall D, = ZTqrolTv Where D, is the maximum lateral deformation, D,, is the
H vertical settlement of GRS abutment, by ,,; is the width
. of the load along the top of the wall, and H is the height
For pier walls ZbQJUOZDv 1 of the abutment.

p, = —-avol?v , -
L H a2

4 . . ' -

(8]
(OS] ()]

2
W

—
N
L]

Measured displacement (in)
— (N0

0.5 O FHWA method, mean, . =1.407]
1as
7). 1inve
0 | 2 3 4

Predicted displacement (in)

A comparison of measured and predicted maximum lateral displacement (With outlier
removed from PT-07)
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Task 4: Comparison with design methods - vertical earth pressure

during construction of GRS pier

Measured earth pressure increment (ksf)

2:1 Approximate method i+ O 2o memui [
OUSSINESH .meanbm;_, < 7
Westergaard, mean, . =1.23 ’
Qv b + Z a bias s
Ao,= ———— Di=bs+z,forz<z _ 7 Ussasse
z 1 ’i ) A D,=——+4d,forz>z e %
Dl (L + Z) 1 2 ’ f 1 Comparison of vertical earth < =] 4
pressure during loading of £5r o il
B - h . GRS pier up to elastic range Z i 4 !
oussinesq theory Westergaard solution of the stress-strain response  =¢f Sielih
= : L £
AO- 0 5 —Z 3 B 7’ v
§ 2 4 2 0.5 2 4 2 q al (1 1 of 1 ' = £
q |/ 2mn(m*+n-+1)% m* +n° + 2 Ao,=——{cot™ [n°| —+—= | +7 > £l A @ 8
= — 21 m n mn B ° ‘i 8 9
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Comparison of vertical earth pressure during loading of GRS pier
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Task 4: Comparison with design methods - reinforcement strain

1400 T T T (a) T T T 3 |
AASHTO Method = P
= 7
2 1200F o
Tmax,i = 0u X Sy = ' _,f,
< 4
g
FHWA GRS-1BS Method 1000 ® .7 % ]
- /7
O-h - O-C Fg ,/
Treq i = S Sy = 800 P ]
’ (6aar) E I B,
07 6dmax QE) g FHWA-W, No 57
Q 2 “
Elton and Patawaran (2005) £ 6% ‘9| B FWArLNeST
B FHWA-2:1, RCA-GAB
T = K)x S..xSDF LE‘ A AASHTO-B, No 57
max,AU Oy XB)X opX ) A AASHTO-B, RCA-GAB
. .; 400 <l AASHTO-W, No 57
K-Stiffness Method (Allen o < AASHTO-W, RCA-GAB
5 AASHTO-2:1, No 57
and Bathurst (2003) B 565 AASHTO-2:1, RCA-GAB
() D K-Stiffness, No 57
1 > ; Kl-Stiffness, RCA-GAB
Tnax,i = EK Y(H + S)SyDemax ® 0 ! * El:gg IN{g/i:]GAB
800 1000 1200 1400

Where S,, is the vertical spacing of reinforcement, oy is the horizontal
soil stress at the reinforcement, T;..,; is the required reinforcement
strength in the direction perpendicular to the wall face, gy, is the total
lateral stress within the GRS composite at a given depth and location,
g is the external confining pressure, d,q, iS the maximum particle
size, ®. Is the influence factor, D4, 1S the load distribution factor, S
equivalent height of uniform surcharge pressure, y is unit weight of the
soil, H is height of the wall, K is lateral earth pressure coefficient, and
SDV is strain distribution factor from the strain distribution curve

1400

1200

1000

800

600

400

200

0
0

Predicted reinforcement load, TF (Ib/ft)
,Jmnax

A plot of measured versus predicted reinforcement load. (a) Based on backfill type; (b) All combined.

T T T (b) T T T |
C R &
il
4
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- , =
7
. - . .,
/7
A 4 0 '¢ P
‘ A A mA ., '
? BT R 2’
- Am ¢l ¢ s -
7/
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AR L |
_-x‘ - .‘ “ @ FHWA-B, meanhias=l.51
}l.{‘“ / @ FHWA-W, mean . =1.04
A bias
Vs % ’ B FHWA-2:1, meanbias=l.98
” - A AASHTO-Bmean, =2.22
: : « AASHTO-W,mean . =152
AASHTO-2:1 ,meanbm=2.90
A K-Stiffness,mean, . =181
A Elton,meanbias=l 48
200 400 600 800 1000 1200 1400

( FHWA-B is from reinforcement loads based on FHWA and Boussinesq method, FHWA-W is from reinforcement loads based on FHWA and Westergaard solution, FHWA-2:1 is from
reinforcement loads based on FHWA and approximate 2:1 method, AASHTO-B is from reinforcement loads based on AASHTO and Boussinesq method, AASHTO-W is from
reinforcement loads based on AASHTO and Westergaard solution, and AASHTO-2:1 is from reinforcement loads based on AASHTO and approximate 2:1 method).



After axial loading

Task 4: Comparison with design methods - measured and strain displ.

Fiber optic strain sensor

o

Lp

Before loading

Backfill Geotextile

Lo+ ALg
Lateral displacement from
reinforcement strain

AHintegrated= ALp= 0 &r dx

Where &, is the measured reinforcement strain,Ly is
the total length of section that fiber optic strain
sensor is being considered, and AHl.ntegmted is the
computed lateral displacement from measured
reinforcement strain.

Distance from the bottom of pier(in)
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Lateral displacement, AH (in)

Comparison of lateral displacement estimated from the integration of reinforcement strain with
measured lateral displacement at different applied vertical stresses




Task 4: Comparison with FHWA GRS pier test data

Parameter FDOT FHWA ((Nicks et al,
2013))

Height (in) 72 76.25
Inside width (in) 36 39.25
S, (in) 8 8
T (Ib/ft) 4,800 4,800
Facing block type SGR CMU
Block size 8x12x18
Block weight (Ib) 86 42
Backfill: Well graded
Friction angle (deg) 47.3° 542
Cohesion (psf) 2,148.6° 1152
Max dry unit weight (pcf) 115.9 148.9
Backfill: Open-graded
Friction angle (deg) 54.42 522
Cohesion (psf) 0 0
Max dry unit weight (pcf) 96.17 108.69

2 :pased on 12 x12 large direct shear test
b :based on 4-inch diameter triaxial tests

7.625 X 7.625 x 15.625

60

N
o

N
S
T

o
-
L]

Vertical applied stress (ksft)
S
S

10F

Backfill: Poorly graded, TF=4,800 Ib/ft

—e—PT-01

—s—PT-03

i PT-07
—+—PT-08

— = FHWA:DC-3

0 > 10 13 20

60

50F

40t

30F

20F

104

Backfill: Well-graded, TF=4,800 Ib/ft

—w— PT-04
/ e PT-06
— — FHWA: TF-6

0 5 10 15
Vertical strain (%)

Comparison of applied vertical stress versus average vertical strain



Task 4: LRFD resistance factor calibration

FDOT GRS-IBS design

Load and Resistance Factor Design (LRFD)

methodology

Also, LRFD for all bridges that receives federal

funding
Resistance factor calibration
FHWA capacity equation

Use data from this study and from literature

) T 25 T b) T
2F N=42 [ 2 N=41 o
sk Mean bias=0.98 5L+ Mean bias=0.99
SD=0.3 SD=0.28
N L L
s [ cov=03 [ cov=0.28
D e
-2 0.5 0.5
>
= ofF oF
g
S 05 0.5k
Z’ 5
=
b -1F =
g
w -1.5F L5F
2F 2F
O Measured bias values-Previous tests
2.5k 25k B Mcasured OT tests
- - ——— Predicted normal distribution
3 - : i i i : . : — Predicted lognormal distribution from LN of each data point
~o 0.6 0.8 1 1.2 1.4 1.6 1.8 ) 0.2 0.4 0.6 0.8 1 1:2 1.4 1.6 1.8
Bms,/\R

First order second moment (FOSM) approach

FHWA Guideline

Standard normal variable as a function of bias. (a) Before removing outlier (b) After removing outlier (MP-

B test from Adams et al. (2007)).

FHWA guidelines use resistance factor 0.45
With new data from this study - resistance factor

= 0.51-0.55 for target reliability of 2.5

1 4))

0.6

= Target reliability index=2.5
Target reliability index=3.0
Target reliability index=3.5

Qp

Qp + 0,

0p + VL

1_QD+QL

il /iiKREe(ﬁrjm[(1+vm(1+v02)])i
R Q

]

— \

0.5F

0.45 \

0.4f

2 0.25 0.3 0.35 0.4 0.45 0.5
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oW

A plot of resistance factors versus dead
to dead plus live load ratios for
different reliability indices using all
data from literature and current study
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Summary of Research Conclusions: FHWA Service Limits
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Stress and vertical strain at FHWA service limits

GRS piers performed well at service
limits

At 4 kst applied vertical stress Stress at Service Strain Limits
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Applied vertical stress (4.1-19 ksf)

Applied vertical stress (11-32 ksf) 35
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Summary of Research Conclusions

* Materials testing
» Large triaxial tests are appropriate for testing well graded RCA-GAB backfill materials
* Shear test strain levels should identify residual stress
» Shear test specimen size influenced aggregate volumetric deformation and shear mobilization

* Influence of aggregate and geotextile:

* GRS piers constructed with high strength geotextiles (HP 770(7,200 Ib/ft in MD and 5,760 Ib/ft in CD))
exhibited higher load capacity than those with low strength geotextiles (HP 570 and HPG 57(4,800 Ib/ft in
MD and CD). ).

* GRS piers constructed with well graded RCA-GAB exhibited higher load capacity, stiffness, and less lateral
displacement than those with poorly graded No 57.

* Reinforcement tension strain distribution independent of aggregate type.

* Less measured reinforcement tension strains in well graded RCA-GAB aggregate piers than poorly graded
No 57 aggregate piers.

* Concrete fill in top three courses of facing blocks provided additional confinement
increasing pier stiffness and strain performance to about twice service pressure.

* Fiber optic strain sensors capture the strain distribution in the geotextile

reinforcement and survive well into elastic range of pier response. e
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Summary of Research Conclusions

* The greatest strains generally developed around the center of the reinforcement
layers, except in the upper layers where there was high strains near the facing
blocks (highest lateral displacements before yielding).

* Integrated strain measurements can estimate lateral displacements.
 The FHWA method for lateral displacement is a good predictor for GRS piers.

* Based on the test results, the FHWA with Westergaard stress distribution
method is best predictor of reinforcement tension force.

* Accurate friction angle of aggregate is most influential in the prediction of
reinforcement loads.

 Resistance factor ranging from 0.51 to 0.55 for target reliability of 2.5.

* For FDOT SDG min friction angle of 42°, results suggest conservative estimation
of GRS-IBS ultimate capacity.
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Recommendations

Large diameter triaxial tests should be performed for aggregates to be use as
compacted backfill.

Based on the results, RCA-GAB aggregate backfill will result in good performance of
GRS-IBS structures, but factors like cost, availability and ease of construction is
important.

GRS with lightweight FGA backfill performed satisfactory against the FHWA service.
The results suggest additional bearing bed reinforcement, geogrid in the bearing bed,
and/or cement filling of the top 3 courses of facing blocks will reduce the lateral and
vertical deformations. Further tests should be conducted to explore this and the
performance of a composite FGA/aggregate GRS system.

The use of fiber optic as embedded strain sensing for long term monitoring of
deformations under service conditions is promising. Fiber optic provides high
resolution (10 cm) strain and temperature that is immune to electrical and chemical
interference.
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