Field Investigation of Downdrag on Concrete Piles in Sandy Soil

GRIP 2023

Project Manager Larry Jones

Principal Investigator Gray Mullins

Graduate Researchers M. Araujo, T. Mee, R. Pendyala and A. Lewis

Civil & Environmental Engineering

Outline

- Background / Problem Statement
- Objectives / Approach
- Tasks
- Conclusions
- Recommendations
- Acknowledgments

Background / Problem Statement

- Piles in end bents are subjected to settlement induced surcharge loads in addition to structural bridge loads.
- Depending on the site-specific conditions it is conceivable that the additional loads may exceed the structural and/or geotechnical pile capacity.
- This study investigates these conditions.

Misconception: sandy soils settle immediately so there are no downdrag forces

Simple Embankment Model

Objective

• Determine the effects of downdrag on pile load from compressible sandy soils

Approach

 Instrument and monitor three bridge sites for pile forces and ground settlement

Project Tasks

- Task 1: Literature Review (not discussed today)
- Task 2: Instrumentation and Monitoring
- Task 3: Data Analysis and Scenario Evaluation
- Task 4: Model Simulations
- Task 5: Develop Recommendations

Task 2: Field Instrumentation and Monitoring

- Select sites with compressible sand beneath embankment
- Evaluate for potential downdrag
- Instrument piles for internal loads
- Instrument existing soils with settlement sensors
- Long-term monitoring

SR 23 Northbound over CR-739B Sandridge Road

- Clay County, District 2
- Bridge No. 710113
- (6) 18-inch square prestressed concrete piles
- End Bent 1, Pile 4

- Pile instrumented: 3/29/21
- Site instrumented:
 5/4/21 5/5/21

Paseo al Mar Boulevard I-75 Flyover

- Hillsborough County, District 7
- Bridge No. 104495
- (16) 24-inch square prestressed concrete piles
- End Bent 3, Pile 12

- Pile instrumented: 4/15/21
- Site instrumented: 5/1/21 and 5/3/21

SR 23 Southbound over CR-739 Henley Road

- Clay County, District 2
- Bridge No. 710120
- (5) 24-inch square prestressed concrete piles
- End Bent 1, Pile 3

- Pile instrumented: 1/28/21
- Site instrumented:
 9/6/21 9/8/21

Sandridge Road

Settlement Instrumentation

Settlement Instrumentation

Monitoring Systems

Sandridge Road Backfill

Sandridge Road Backfill

Sandridge Road Backfill

September 8, 2021

Sandridge Road (Raw Pile Force)

https://civildigital.com/concrete-creep-definition-creep-deformation-stages-design-strategies/

Sandridge Road (Corrected Pile Force)

- 1. 5/7 First of fill placement
- 2. 5/26 Last of fill placement
- 3. 6/1 Pile cutoff
- 6/25 Cap and pedestals poured
- 5. 7/1 Backwall and cheek walls poured

Gage 1

-Gage 2

Gage 3

Gage 4

Gage 5

Gage 6

-Gage 7

Gage 8

Sandridge Road (Corrected Pile Force)

- 1. 5/7 First of fill placement
- 2. 5/26 Last of fill placement
- 3. 6/1 Pile cutoff
- 6/25 Cap and pedestals poured
- 7/1 Backwall and cheek walls poured

Gage 1

-Gage 2

Gage 3

Gage 4

Gage 5

Gage 6

-Gage 7

Gage 8

Sandridge Road

(Top of Pile Gauges)

Apparent Pile Load from Solar Radiation Effects

5/24

Sandridge Road (Corrected Pile Force)

Sandridge Road

Not caused by change in pile temp

Sandridge Rd

243-251kip Service Load (DL/LL = 2 or 3, respectively)

Sandridge Rd Settlement Data

Paseo Al Mar Blvd

Paseo Al Mar Blvd Backfill

Paseo Al Mar Blvd Backfill

Paseo Al Mar Blvd Backfill

October 12, 2021

East End (EB 3) Looking West

East End (EB 3) Looking East Down Approach Embankment

Paseo Al Mar Milestones

5/12/21 1 Begin fill placement 2 6/2/21 Fill completed to pile cutoff elevation 6/8/21 3 Pile cutoff 6/21/21 Cap poured 4 6/23/21 5 Pedestal poured 6/26/21 6 Diurnal temperature induced forces begin 7/2/21 7 Stem/back wall poured 10/19/21 **Girder Placement** 8 9 12/8/21 **Bridge Deck Poured** 10 1/13/22 Barriers 2/7/22 11 Approach Slab

Paseo Al Mar Blvd Settlement Data

Henley Rd Instrumentation

Henley Rd.

- Additional instruments
- Rain gauge
- Air temperature
- Digital camera

Henley Rd Piles at Cutoff

Henley Rd Pile Force Evolution

Pile Force (daily and seasonal temperature effects)

3/25/2021 6/23/2021 9/21/2021 12/20/2021 3/20/2022 6/18/2022 9/16/2022 12/15/2022 3/15/2023 6/13/2023

Force Transfer

Effect of Truck Speed

Live Load vs Depth

Effect of New Load on Peak Pile Force

Additional structural load (DL or LL) does not decrease downdrag 1 for 1. Hence, 20 to 33% of new load is added to highest pile force at neutral plane.

Explicit Method

 Compute elastic shortening in pile between tip and neutral point

•
$$W_{np} = W_{tip} + \sum_{i=1}^{n} \frac{P_i L_i}{AE}$$

Compute soil settlement only to tip of pile

Explicit Method

- Compute w_{np} for all depths
- Q_p will be negative at shallow depths; elastic shortening will be very small w_{np} is below these depths; solution does not exist
- Q_p can exceed Q_{ult} at very deep depths; this solution does not exist

- Superimpose predicted settlement, but only including soil layers where the pile exists
- Intersection is NP where there is no relative movement

- Predicted settlement is more than measured settlement
- Subtle change in NP location
- Slightly conservative adding more DD

- Predicted settlement is more than measured settlement
- Subtle change in NP location
- Slightly conservative adding more DD
- Somewhat insensitive to settlement calculation method

- One-third predicted settlement very close to actual
- Full length pile movement profile also intersects true settlement curve at NP (by definition)

Settlement around piles

Neutral Plane Method (Force Balance w/o computing end bearing movement)

 Cumulate side shear from top down added to top of pile load

Neutral Plane Method

- Cumulate side shear from bottom up added to an assumed Q_p
- Range of possible neutral plane locations from

$$Q_p = 0$$
 to $Q_p = Q_{ult}$

- When $Q_p = 0$
 - NP at 34ft
 - Max pile force 280k

Neutral Plane Method

- When $Q_p = Q_{ult}$ (500k)
- NP at 52ft, 4ft above tip
- Max force 521k
- Top of pile force 164k
- NP at tip gives highest structural load in pile (worst case) but which may never exist
- Pile must pass this structural load

- True NP at 43ft from Briaud and Tucker method above
- $Q_p = 183k$
- Max structural load
 354k (not 521k)
- Top of pile force 164k

Pile Capacity

Computing Downdrag

Neutral Plane Method

- Assumes geotechnical strength limit state can use all side shear and end bearing to resist structure loads
- No consideration for the amount of pile movement for reversal to occur

Briaud and Tucker predicted neutral point (left)

Field measured neutral point (right)

SDG 2023

- Section 3.5.6 (Piles)
 - Downdrag = $(1.5 \text{ to } 2.0)R_{dd} LL \approx 1.75R_{dd} LL$
 - (Factored Design Load + Net Scour Resistance + Downdrag) / Ø < Rn
 - 1.25DL+ 1.75LL + scour + 1.75Rdd $LL \le \emptyset NBR$
 - $1.25DL+0.75LL + scour + 1.75Rdd \le \emptyset NBR$
- Section 3.6.3 (Shafts)
 - Downdrag = R_{dd} LL
 - Factored Design Load + Downdrag) / Ø < Rn

SFH 2021

- Appendix C
 - Downdrag = R_{dd} + (Driving Resistance to R_{dd})
 - Factored Design Load + Net Scour Resistance + Downdrag) / Ø < Rn

Conclusions

- Downdrag is significant and should be computed for most embankment designs; let the numbers in new load case decide if to ignore
- Live loads are not large enough to reverse side shear and offset downdrag; 21-33% of LL was shown to add to the total pile load
- AASHTO does not have a DD load factor for sand
- This project showed the measured to predicted ratio to be 1.26 to 1.5; Seigel suggested 1.25 which might be reasonable until enough case studies are identified.

Conclusions

- Settlement around piles is not the same as predicted by calculations at the edge of an embankment
- Presence of piles acts as soil reinforcement and alters settlement response
- It is not just a small amount of downward pile movement to reverse side shear direction. Rather, the effect of soil reinforcement suggests it could take inches not just fractions of an inch
- The piles in this study all failed current design equation but are likely to be ok given good bearing below the tip

Conclusions

 Neutral plane method is reasonable in concept, but actual reversal displacement should be verified and only plausible where there are no indications of weaker soils beneath

Danger Will Robinson

Computing ultimate capacity assuming side shear reversal may push pile into an unsafe condition

- - NBF

Recommendations

- The 0.5in relative movement criterion should be dropped; this study and others suggest less than 0.1in can develop full side shear. Downdrag is presently underestimated. Example:
 - Predicted $\rm R_{dd}$ was calculated to be 130k at Sandridge Rd
 - Applying the 0.5in criterion, R_{dd} drops to 30K
 - Measured R_{dd} was 200K
- Recommend Briaud and Tucker method to determine NP and DD forces
- Drop DD from present design equation with 1.25DL and 1.75LL
- Add 2^{nd} geotechnical load case $1.25DL + 0.5LL + 1.25DD + net scour \le \emptyset NBR$

Paseo Al Mar Blvd
Sandridge Rd

Acknowledgments

- CSD Manufacturing
- EXP U.S. Services Inc.
- FDOT District Engineers
- FDOT Project Manager and Reviewers
- FDOT SMO Drill Crew
- FGE, LLC
- GRL Engineers, Inc.
- HNTB Corporation
- Prince Construction
- SACYR Construccion
- Southern Concrete Products
- Graduate Research Team

Questions