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Background Information

* Pile driving may make enough noise to kill/injure fish and other
marine animals

* Florida does not have reliable local guidelines to predict
anthropogenic noise during pile driving and it has been using
CalTrans’ “Technical Guidance for Assessment and Mitigation of the
Hydroacoustic Effects of Pile Driving on Fish” (Buehler et al. 2015)

e California guidelines were based mostly upon percussion driving
steel piles. On Florida bridges, most drives are percussion drives
with concrete piles or vibratory drives with steel piles.
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Project Objectives

* Main Objective — Characterize underwater noise levels during
impact pile driving throughout the State of Florida using
Florida-specific conditions. In particular:

— Florida geotechnical conditions

— Understand the difference between concrete percussion drives, steel
percussion pile drives, and steel vibratory drives
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Task 1 — Kickoff Teleconference

e Completed in May 2018
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Tasks 2 — Field Data Collection

 Completed May 2018 through February 2023

e Data consisted of 91 drives from 13 sites
— 70 square precast concrete piles ranging from 18 inches to 36 inches
— 5 vibratory drives w/ 18-inch sheet pile and 36-inch steel pipe
— 16 steel impact drives on H-piles
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Site Locations
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Data Collection — Buoy System
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Task 3 — Data Analysis

* Decibels * Sound Statistics
2 _ : )
_ dB = 10logy, [( P ) ] Peak = maximm sound-level
Pref
— P = sound pressure (Pa) — RMS = root-mean-square sound-level
— Py = 1uPa
— SEL = sound exposure level
° . « . 2
Sound Attenuation Coefficient SEL = 101logy, j(P/Pref) dt
— TL=Flogyo+ I
0
— R =Range from sound source go_ﬂVM
— R, =Reference range “w 0 Y
— F =Transmission loss coefficient. According to _ 317.4 317.45 3175 317.55 317.6 3:;.55)5 317.7 317.75 317.8 317.85 317.9
NMFS, F = 15 £ _ S—
— TL = Transmission loss (in dB) §05 i i
S |y 5%, i
g | 1 1 I 1 | I
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Sample Frequency Data — Howard Frankland

10 102! Buoy 1 Spectrum
<1019 Buoy 2 Spectrum 5L R R IR “ RS B [~[
5F T T T T T T T T T LERILE B 0 L T il L iiaii P i Dk iicial P il ih
1 107 10 10° 10° 10*
0 s . . i e . Frequency (Hz)
10 107 10 107 10° 10' 10% 10° 10* <1018 Buoy 2 Spectrum
Frequency (Hz) 1
5x1p1f3 . . B,.lclinSISpeIt:tlrurr?I . . oL——— el Am-——a i R Y [ l
' ' ' ‘ ' 1 ' ' 10 10 10° 10° 10*
—~ N Frequency (Hz)
R . EEPT R J et B = «10" Buoy 3 Spectrum
® 10" 10 107 1077 10° 10! 102 10° 10* E gE T ' St St skl r
L Frequency (Hz) = 4 | - R ]
% mxmﬁ Buoy 4 Spectrum o 10 102 10° 102 10%
n? sk | D%_ Frequency (Hz)
A EREE NI 10" Buoy 4 Spectrum
10 107 10 107 10° 10’ 10° 10° 10* ?F ' ﬁ JL..rL N [ [ q
Frequency(Hz) 0 4 ' e = .1_2 I I 0 — B S Lz — e - 4
1017 Buoy 5 Spectrum 10 10 10 10 10
2F T T T T T T T T T T Frequency (Hz)
1+ i WM | . «1018 Buoy 5 Spectrum
Lol i Ll i | iad il | Ny 1 T T T ] IEEEEaE — R R
0 [ : R : _ _
107 10° 102 107! 10° 10" 102 10° 10* gF T S h b -mL o [4
Frequency (Hz) 10 102 10° 102 10*
Frequency (Hz)
Spectral data from Howard Frankland East Spectral data from Howard Frankland West
(Steel King Piles) (Concrete Piles)

FDOT

j Examples of Spectral Data from the Howard Frankland Bridge &
S UNF gg%’ﬁfgg{oﬁ\



e-Strike and Blow-by-Blow Sound Decay Curves
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Examples of single-strike averaged data (left and middle) and blow-by-blow data (right)
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1/1 Octave Decay Curves

16 Hz Decay Curve
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Examples of Peak Octave Decay Curves
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Sound Decay Curves for Different Bottom Absorption Coefficients
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CFD Data using Local Bathymetry

Bayway TL for absorption: Bottom=0.0 Surface=0.00

242
O Modeled Data Bayway CFD Simulation Results: F = f(cx,,cx ) Ribault CFD Simulation Results: F = f(cx,,cx)
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Development of the EIoridaAAttenuation Coefficient Tool (FACT)

bvsa Steel Percussion Data b vs a LT' = b + a loglo (TL)
0

O RMSData O RMSData
b =-2a+151.6; R? = 0.86 b=-2a+168.1; R? = 0.98

350 O  SELData 350 O  SELData b F = 'a; b = LS - B

300 \ = :?(1 ?::; iz; RrR? =.o.az 300 = :f;:z:znis; R%= o:ge T
s | e b=aqia+a, - L, =aa+a,+alogq, (r—)
S 0
i SN ORY * Example-L; =220 dB @ 10 m; threshold = 206
oo Lt TR dB; concrete pile
’ ) — Using NMFS
_— Steel Vibrational Data b vs a 00 Concrete Datab vs a ° F = 15 dB

O  RMSData O RMSData

b=-19a+139.6; R? = 0.9 b=-2.3a +142.8; R?= 0.92 220 dB—206 dB

0 ° :ilh.s::»,mo; R?=0.95 ® - :E=L.;2d:o1415: R?=0.94 * r= {10[Lm;Lr] }Tm = {10[ 15dB ]}10 m= 86 m
: — Using FACT

O Peak Data O Peak Data
b=-19a +151.6; R*= 0.9 300 b=-21a +166.4; R%= 0.85

300 [

250 Lnh,—a 220dB—-166.4dB
. al_logm(%) 2.1-logq9(10 m/1m)
Cheal 20 Lm—Ly 220 dB—206 dB
o (D) —_ _—
-70 60 -50 -40 -30 -20 -10 0 = -70 -60 -50 -40 -30 -20 -10 0 ° r = {10[ F ]}Tm = {10[ 49dB ]}10 m = 19 m
a a
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Is the FACT Universal?
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Data
y = -2a+174; R® = 0.94
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Why is the FACT Universal?

Slope vs Frequency

Slope
N
= }

10! 10? 10* 104
-inter FFBQ:B :;y;:ue:mency
i, S | Example — suppose 200 dB in each frequency bin
8o Frequency (Hz) | Slope (i.e., a;; unitless) Intercept (i.e., F-value (i.e., a; dB)
;;; 150 - ay; dB)
10 - 16 2.15 133
130 - - - : 31.5 2.23 131
= " Frequency (Hz) " v 63 1 . 68 155
- slope vs y-intercept 125 1.02 178
al 2 250 2.2 151
5 500 2.2 153
i 1000 2.83 142
S 2000 1.65 175
] 4000 2.87 140
0y 28 26 24 2z 2 A8 A8 A4 A2 7 8000 1.87 161
Sope 16000 1.65 163

Attenuation and source-levels as functions

FDOﬁ of frequency
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Why is the FACT Universal?

* L. =b+ alogqg (r)

* b=aa+a, O
*a;=Ca(f)+D
*b=a;(fla+Cay(f)+D

L, =a,(f)a+ Ca(f) + D + alogq (r)

* L.=D+a;(f)|C + a] + alogq, (r)

To
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Do Including Water Depth, Geotech Absorption, or Channel
Width Improve Predictive Value?

b=a,+aya

400 . b=a+aa+aza+
O Data =a a-a + a-a
=-2a + 174; R® = 0.94 11 a0 + a3 asw + asz
350 y=-za R =0 1 400 : : : , , 400 -
O  Data O Data
y = 0.94x + 14.46; R% = 0.94 y=0.95x + 11.04; R% = 0.95
350 - 350
300 r
o o 300 | o 300
3 250 M *
o '-'gi 250 '-'é 250
200 2 200 2 200
150 L 150 | 150 |
O 100 : : : ‘ ' 100 : : : : ‘
100 150 200 250 300 350 400 100 150 200 250 300 350 400
100 . L . L b from CFD b from CFD
-100 -80 -60 -40 -20 0 . .
a (dB) Modeled b data including geotech (left) and water

depth + geotech + channel width (right) using

Hypothetical CFD data relationship between a hypothetical CFD data

and b using hypothetical CFD data

w = channel width
z = water depth

a = geotech absorption coeffici
FDOT\) g

UNF UNIVERSITY of
S NORTH FLORIDA



e -

Predicting Attenuation Without Measuring Sound at 1 Location

a=a +aa+

a=a +a« a=a+a,axa+ azz + a,w
S 12 3 4 asz + a,w + asA

O Data
y=07x+-7:R%=0.74

O Data
y=0.9x +-6; R° = 0.88

.80100 -8.0 -éO 4.0 ZLO 0 .90100 -8.0 -6‘0 -4‘0 2‘0 0 .90100 -80 -6‘0 -4AO ?;0 0
(a) a from CFD (b) a from CFD (C) a from CFD
Modeled attenuation data based upon site conditions only using hypothetical CFD data
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Verification

* Using 32 datasets from CalTrans, the FACT was verified

* Very few CalTrans data from concrete and vibratory piles;
mostly from steel impact driving
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Verification Results
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Task 4 — Stakeholder Meetings

* Several meetings were held with stakeholders including
representatives from NMFS, USFWS, and NOAA. These

meetings began ~spring of 2021 and continued throughout the
end of the project.

* As a result of these meeting, data analysis had to be repeated
and reformatted several times to meet the agencies’
expectations.
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Task 5 — Technical Guidance

* The FACT was implemented in the NOAA/NMEFS calculator
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FACT/NMFS Calculator

4 A E | c | [u] E | | H | | | Jo| L M| N 0O
3 Acoustic Metric
4 Peak [ SEL [ RMS
5 Drive Type Concrete Impact
3 Measured single suike level (dB) 220 220 | 220
7 Distance [m] 10 10 | 10
g HNumber of Piles Per Day 5
Number of Strikes Per Pile OR
a Vil i u] i in Mi 20
MMFZ recommends 5 dB 2z default, IF |
0 Attenuation Assumed (dB]| 0 sttenuation used
1
2 | F-Value
: Drive Type Peak | SEL | RMS
R Concrete Impact 43 | B5 | 53
il
N Motes [source for estimates, etc.]l
[This toal w as last updated June 7, 2023)
)
Drive Type [Please Choose From Below) | Coefficient
Unknown
Steel Impact
Concrete Impact
0| Sreel Vibration
1
2
E
alll
e
i
s
k]
3 INSTRUCTIONS ACROMYMS IMPACT PROXY SOUND LEVELS VIBRATORY PR ND LEVELS FL ATTEN COEFF TOOL (FACT) VIBRATORY CALCULATOR
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Summary, Research Conclusions, and Recommendations

. Underwater noise data were collected at 13 sites around Florida. Overall, data from 98 drive events were
collected. Data were collected from five sites in northeast Florida, two sites from the Panhandle; three sites near
Tampa Bay; one site near Cape Canaveral; and one site near Port St. Lucie.

« Computational analysis using CFD showed that geometrical spreading coupled with local bathymetry data could
not explain measured field data. However, inclusion of bottom absorption allowed one to accurately reproduce
field data.

. Analysis of these data showed that usually, using an F-value of 15 to predict underwater TL may be overly
conservative for concrete piles in the sense that this estimate for F may underpredict sound attenuation. For steel
piles driven via a percussion hammer, using an F-value of 15 was relatively close to measured data most of the
time. While data from steel vibrational drives showed much higher attenuation than F = 15, and verification
produced relatively accurate results, these data are limited and should be treated cautiously.

. Field data showed that sound attenuation was frequency dependent in the sense that very low frequencies (i.e.,
less than ~100 Hz to ~1,000 Hz) tended to attenuate faster than relatively high frequency sound.

. Mathematical analysis showed that the frequency dependency in attenuation was interrelated to the attenuation
associated with geometrical spreading (i.e., the F-values or a terms presented throughout this report).
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Summary, Research Conclusions, and Recommendations

« Based upon the field data, a new design tool was developed to estimate F-values that was dubbed the FACT. The FACT is based
upon the interplay between attenuation and the source-level that were consistently apparent in both field and hypothetical
computational data. Its limitations are (i) it requires sound-level to be known at some distance from a pile drive; and (ii) the
sound-level used in (i) must be above some threshold associated with the design tool’s coefficient. In addition, we recommend
using this tool only for piles of similar shape and dimension as the piles studied and verified in this report. Specifically, these
are:

1) Square concrete piles between 18 inches and 36 inches wide driven via impact driving.
i) Circular steel piles or sheet piles driven with an impact hammer up to a maximum diameter of 66 inches.

111)18-inch wide sheet piles driven with a vibrational hammer or 24-inch diameter circular piles driven with a vibrational
hammer.

iv)Water depths between 2 m and 15 m.

« The FACT was verified using data reported by CalTrans (Buehler et al. 2015) at 32 sites where F-values were reported
explicitly and where reported sound-levels were above the threshold mentioned above. In general, the FACT performed well in
the sense that most of the time, it returned F-value that were either within 5 dB of reported values or were conservative.
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Project Benefits

* Quantitative * Qualitative
— New quantitative design tool — Prior to this project, all underwater
designed for Florida-specific pile noise due to pile driving relied upon
driving using data from Florida data from CalTrans
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Implementation Items

* The FACT is easy to implement, and a MS Excel
spreadsheet/calculator has already been developed for this
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Equipment
* Hydrophones/buoys — still at UNF but can be used in the future
if needed
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Thank you for Supporting this Research!
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