BED Two 28 977-01 Using the PENCEL PMT to Evaluate Shallow Foundations at Florida's Fine Sand Sites

PM: David Horhota Ph.D., P.E. State Geotechnical Engineer

PI: Paul J Cosentino Ph.D., P.E. Florida Institute of Technology 150 West University Boulevard Civil Engineering and Construction Olin Engineering Room 205 Melbourne FL 32901-6975 <u>cosentin@fit.edu</u> 321-674-7555

FDOT GRIP 2023 Meeting Outline

- 1. Introduction & Overview
- 2. Objective
- 3. Task Results to Date
 - 1. Literature- Completed
 - 2. SMO Testing Completed
 - 3. Site Selection, Site Visits, and Procurement of Site Data In Progress
 - 4. **PPMT, CPT, DMT, SPT, and Field Plate Load Testing In Progress**
 - 5. Analyzing the Modulus Effects on Foundation Settlement and Bearing Capacity In Progress
 - 6. Extrapolation of Design Procedure Data with Design Flow Chart using Florida Site Conditions
 - 7. Draft Final Report and Closeout Teleconference
 - 8. Final Report
- 4. Project Timeline
- 5. Closing Slide

Introduction

When Shallow Foundations are used, the zone of soil affected is typically within the top 25 to 25 feet.
 PENCEL PMT stress-strain curve components are easy to interpret and use in footing designs

Introduction (Cont.)

FHWA reports a 50 to 65 % cost savings when shallow footings replace deep foundations.

Geotechnical Engineering Consultants using PENCEL Pressuremeter data saved clients <u>hundreds of</u> <u>thousands of dollars</u>.

\$4.5 million dollars saved during the construction of a 15-story hospital in Jacksonville, Florida.

The instrumentation and software developed from BD-658 Standardizing the Pressuremeter Test for Determining p-y Curves for Laterally Loaded Piles has resulted in the significant increase in its use and has resulted in an estimated <u>½ billion dollars in savings</u>.

Results will be incorporated into FDOT's Soils and Foundations Handbook.

Overview

Data from this work will be added to the existing data used in Briaud's 2007 Settlement of Sands prediction method.

New PPMT data will be compared to existing PMT data and determine its affect on the Briaud 2007 settlement prediction method.

Potential pile foundation sites will be re-evaluated using digital PENCEL PMT data to determine if they would enable shallow footings to be used.

The research report will contain specific guidelines/ recommendations for consulting engineers to follow when using PMT data to design shallow footings.

Objective

To improve the confidence that geotechnical engineers would have in using PENCEL PMT data to safely design shallow footings placed on Florida fine sands.

Overview of Literature and Historical Review

Engineers now use pressuremeter testing for more applications

Traditional uses were for lateral loads on structures

High-quality PMT stress-strain data gives engineers confidence to use it in other areas especially for shallow footings

Methods to predict elastic moduli and settlement of sands were reviewed indicating
 Several PMT elastic moduli approaches are available
 DMT elastic moduli approaches to predict both bearing capacity and settlement are available
 CPT correlations between qc and elastic moduli are used
 SPT Correlation to elastic moduli are available
 Case Histories from Chicago, Virginia and Florida were reviewed

Several Correlations were reviewed

Overview of Literature and Historical Review (cont.)

1800

Comparing PMT Elastic Moduli and Limit Pressures in Overconsolidated Residual Soils

Comparing N Values to PMT Elastic Moduli in Overconsolidated Residual Soils Comparing N Values to PMT Limit Pressures in Overconsolidated Residual Soils

SMO Testing- In situ tests to determine E

- Both Indoor SMO Pits used
 - Compacted to about 5 ½ feet
- Two SP sands
 - Starvation Hill Pit- LBR =32
 Osteen Pit- LBR= 20
- NDG-to ensure uniform compaction 90, 95, 100 % Modified Proctor Densities
- PPMT-mostly pushed
- 🔍 CPT
- CMT DMT
- Plate Loading

Summary of SMO Test Pit Testing

	11-		198 198	and the second second
Site	PPMT Tests	CPT Soundings	DMT Tests	Plate Tests
SMO Starvation Hill 90 %	18	3 5	12	3
SMO Starvation Hill 95 %	6	3	12	3
SMO Starvation Hill 100 %	10	3	12	3
Subtotal	34	9	36	9
SMO Osteen 90 %	8	3	9	4
SMO Osteen 95 %	6	3	9	5
SMO Osteen 100 %	6	3	9	3
Subtotal	20	9	27	12
Total	54	18	63	21

Starvation Hill PPMT Results

Osteen PPMT Results

Both Pits SMO PPMT Results 54 tests SP Sands

Results indicate PPMT tests produce reliable data!

DMT Results

Starvation Hill Pit

0

L

1.5

2

2.5

3

3.5

4.5

4

0.5

CPT Results

Osteen Pit

Plate Testing Results

Osteen Pit

You're Starvation Pit

Test Pits Correlations

and the state	Starvation Hill														
%	Pation	Depth (ft)													
Compaction	Ratios	0 - 0.5	0.5 - 1	1 - 1.5	1.5 - 2	2 - 2.5	2.5 - 3	3 - 3.5	3.5 - 4	4 - 4.5	4.5 - 5				
	E _{PMT} /qc	2	2	2	2	2	2	2	2	1	1				
90%	E _{DMT} /qc	6	5	4	5	5	6	5	4	4	3				
	qc/pL	4	5	6	6	5	4	5	6	7	9				
	E _{PMT} /qc	4	3	2	2	1	1	1	1	1	1				
95%	E _{DMT} /qc	9	6	5	4	3	3	3	2	2	2				
	qc/pL	3	5	6	8	10	10	11	13	15	16				
	E _{PMT} /qc	5	3	2	1	1	1	1							
100%	E _{DMT} /qc	13	7	4	3	2	2	2	5102						
	qc/pL	2	4	6	8	11	14	16							
CAR PACE T		A State		1. A 150 /6	1000	2.000	1.0								

10 H - 10 - 19/	2000	Carl D	125.00	140	Osteer	- p 59	1 Martin	C. Phates	1. 1. 1. 1.	100	AL AR
%	Pation					Dept	:h (ft)				
Compaction	Ratios	0 - 0.5	0.5 - 1	1 - 1.5	1.5 - 2	2 - 2.5	2.5 - 3	3 - 3.5	3.5 - 4	4 - 4.5	4.5 - 5
90%	E _{PMT} /qc	8	5	3	3	2	2	2	2	1	1
	E _{DMT} /qc	12	7	5	4 3		3	3	2	2	1
	qc/pL	2	3	4	5	6	6	7	8	9	15
95%	E _{PMT} /qc	8	5	2	1	1	1	1	1	1	1
	E _{DMT} /qc	16	10	5	3	2	2	2	2	2	1
	qc/pL	1	2	4	7	9	9	8	8	10	14
100%	E _{PMT} /qc	8	4	2	1	1	1	1			
	E _{DMT} /qc	20	10	6	3	2	2	2	-		
	qc/pL	1	2	4	7	11	13	16			

Comparing Settlements based on plate loading tests

• Predicted settlements – Briaud 2007, Elastic settlement eq. using PMT data

Actual settlement – plate data

You're Starving Settlement – Ave. Plate vs. PPMT

Osteen Settlement – Ave. Plate vs. PPMT

Kingsley-Outdoor Testing

Type of Te	st	Depth (ft)	No of tests Conducted	Remark
PMT		3 to 21	21	Tests @ 3' intervals
	12"	0.6	1	Additional tests to be conducted
SSMini PMT	10"	0.52	1	Additional tests to be conducted
	8″	0.44	0	Tests will be conducted
	6"	0.35	0	Tests will be conducted
Plate Load	l	Surface	3	12-inch plates
DMT		1 to 21	63	Three Soundings with tests @ 1' interval
СРТ	1 to 21		3	Three Soundings with Continuous Testing

Schedule of Tasks

Task	Task												Мо	onths											
No	Description	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
N/A	Project Kick-off Meeting	4 2022			1				1	3		2.2		3				1	No.	100					
1	Literature Review and Historical Evaluations Concerning Settlement of Sands	4 2022	5 2022	6 2022	7 2022	8 2022	9 2022	1							N.	2	3		2%						B
2	PPMT and Plate Bearing Test Pit Evaluations of Fine Sands	100	5 2022	6 2022	7 202:	8 2022	9 2022	10 2022	11 2022	12 2022	1 2 2023	2 2023	3 2023	4 2023	1		N.	9	C.	2		S.C.			
3	Site Selection, Site Visits, and Procurement of Site Data:	12	5 2022	6 2022	7 202:	8 2 2022	9 2022	10 2022		100	10	R	X	No.	See.	R	Sec.	1		60		/			
4	PPMT, CPT, DMT, SPT, and Field Plate Load Testing		10		1	2	9 2022	10 2022	11 2022	12 2022	1 2 2023	2 2023	3 2023	4 2023	5 2023	6 2023	7 2023	8 2023	9 2023						
5	Analyzing the Modulus Effects on Foundation Settlement and Bearing Capacity												3 2023	4 2023	5 2023	6 2023	7 2023	8 2023	9 2023	10 2023	11 2023	12 2023			
6	Extrapolation of Design Procedure Data with Design Flow Chart using Florida Site Conditions											2 2023	3 2023	4 2023	5 2023	6 2023	7 2023	8 2023	9 202 3	10 2023	11 2023				
7	Draft Final Report and Closeout Teleconference														5 2023	6 2023	7 2023	8 2023	9 202 3	10 2023	11 2023	12 2023			
8	Final Report															Too						12 2023	1 2024	2 2024	3 2024

Summary

Both SP Sands were prepared to very high QC standards PPMT, DMT, CPT and Plate Testing successfully completed PPMT Moduli and Limit Pressures are related in SP sands PPMT and DMT Moduli relate to CPT Tip Resistance PPMT limit pressures relate to CPT Tip Resistance E_{PMT} and E_{DMT} to q_c ratios consistent with depth q to p ratios increased with depth

Closing Time

The lives we touch are our most important gift!

Questions?