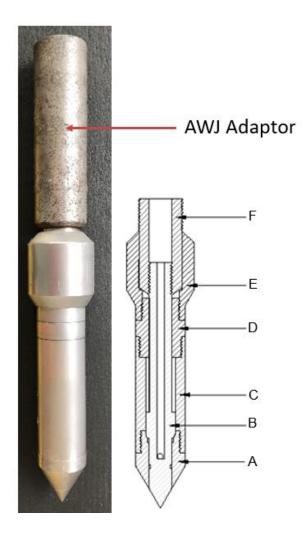
Field Implementation of the Vertical In situ Permeameter (VIP) BDV31-977-88

FDOT GRIP Meeting

FDOT Project Manager: David Horhota, Ph.D., P.E.

UF PI: Michael Rodgers, Ph.D., P.E. UF Co-PI: Ana Mohseni, Ph.D.

July 22, 2021



Project Background

- Recently UF and FDOT developed a new permeability probe, the Vertical In situ Permeameter (VIP)
 - Includes an inner rod/outer casing design with a retractable tip that produces a circular injection surface
 - Retractable tip injects flow in the vertical direction
- Does not utilize a well screen with horizontal injection
 - Typical drive point probe flow injection
- Channeling effects are eliminated by VIP design
 - No fluid injection necessary during advancement
- Smearing and/or siltation effects are minimized by the VIP's unique design.
 - Probe is closed off from debris intrusion during advancement
- Vertical injection eliminates misleading results caused by the well screen positioned between two different soil layers.

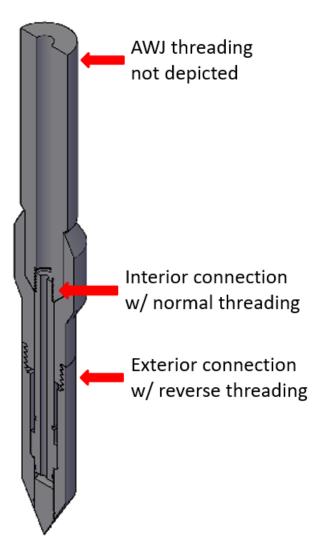
Original VIP Probe Design

- A. Probe head
- B. Inner rod
- C. Main chamber
- D. Connector
- E. Friction reducer
- F. AWJ adaptor connection*AWJ adaptor depicted**3 set screws not depicted

Original VIP Probe Observations

- VIP measurements were in good agreement with results obtained from various conventional methods
 - Cased constant head
 - Cased falling head
 - Uncased constant head
- VIP requires far less test time than conventional methods
 - Greatly improves efficiency
 - More data can be collected with less effort
- Based on the success, a new Florida Method of Test was developed for the probe
 - FM 5-614
- Additional testing is recommended to validate the success of the preliminary trials

Research Primary Objectives


- The primary objective of the current research effort is to implement VIP testing throughout Florida
 - Validation testing
 - Introduce the new test method to each FDOT district
 - On-site training provided by UF research team
- 8 locations will be tested
 - 7 FDOT districts and along the turnpike
- Variable soil and field conditions will be encountered
 - Provide a better understanding of the probe's capabilities and constraints

Research Secondary Objectives

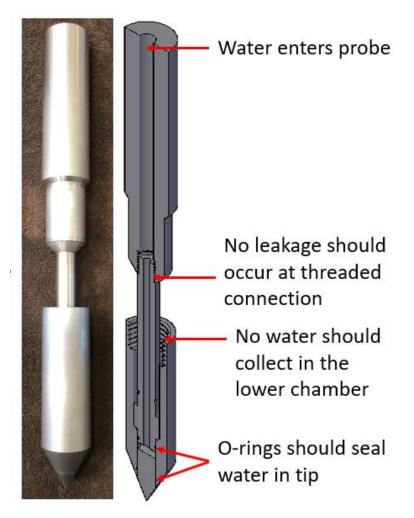
- Investigate and update VIP probe design provided in FM 5-614
 - More robust internal design for percussive driving
 - Simplify design for easier assembly and disassembly
- Fabricate 8 probes and falling head vessels
 - Distribute amongst the FDOT districts
- Develop an instructional video
 - VIP training purposes
 - Promote the newly developed test method

New VIP Design

- Simplified probe design
 - 4 individual probe components
 - Combined original VIP probe components:
 - Probe head and main chamber
 - Connector and friction reducer
 - AWJ adaptor connection and AWJ adaptor
- One interior and one exterior threaded connection
 - Reverse threading used on exterior connection
 - Eliminates unthreading when adding AWJ rods without using set screws
- Additional attributes:
 - Robust threading
 - Increased wall thickness
 - 2" stroke length
 - Upper chamber O-ring ensures water only flows through injection port at probe tip
 - Assembly in less than 30 seconds
 - Easier to fabricate concentric probe pieces
 - Easier to fabricate proper internal alignment
 - 20% reduction in fabrication cost

VIP Testing Equipment

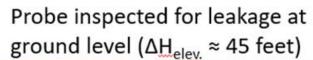
- Each district received:
 - VIP Probe
 - Falling Head VesselAWJ attachment
- On-site training was provided within each FDOT district
 - D4 and D6 were combined
- YouTube VIP instructional video now available online



VIP Calibration

- Calibration was completed to ensure the probes and accompanying equipment function properly before distribution
- Required a standard calibration procedure to be developed
 - Check O-ring compression
 - Determine permeability limits of the probe
- The previously developed shape factor (F) was investigated
 - F = 3D found to be appropriate shape factor for new VIP

O-ring Watertight Seal Testing


- Friction reducer is removed
 - Can observe internal components for leakage
- Water is introduced to probe at various elevation heads
- Investigated locations for leakage
 - O-ring seals near tip
 - Ensures water is contained until the probe tip is retracted to inject water for testing
 - Internal threaded connection
 - Ensures water only exits through the inner rod flow ports

Watertight Seal Controlled Testing

Falling head vessel placed on the fifth floor of stairwell

≈ 5′

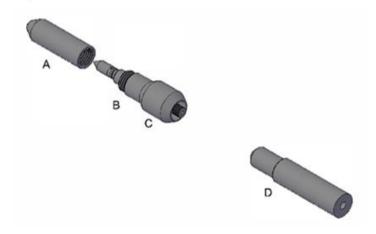
No water observed in either location

No leakage from the probe tip

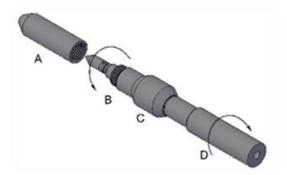
Watertight Seal Testing Analysis

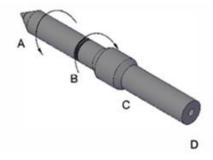
- Tested at 45 feet of head in controlled setting
 - Maximum estimated field test depth = 25 feet
 - Factor of safety ≈ 2 based on controlled testing
- PTFE (plumbers) tape recommended at threaded connections
 - PTFE tape is commonly used to prevent leaks in threaded pipe connections containing water under pressure
 - Some leakage observed without PTFE tape
 - No leakage observed when PTFE tape was applied at the inner rod threaded connection (internal connection)
- No leakage observed at probe tip O-ring locations
 - Confirming O-ring seal at the tip confirms upper O-ring seal
 - Same O-ring seal is provided in both locations
 - Ensures water only exits through flow ports during testing
 - Provides more accurate measurements of hydraulic conductivity

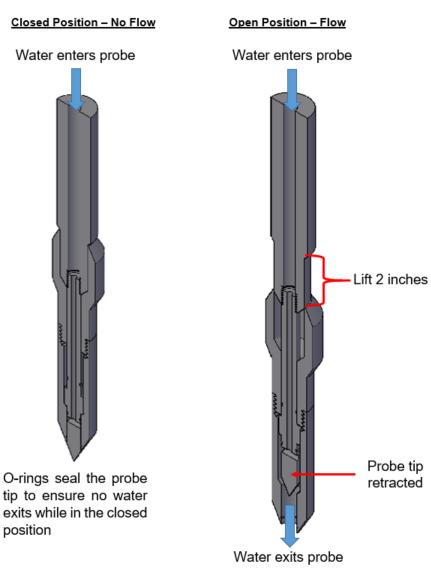
Updated Test Method - FM 5-614


- Test method was updated to reflect new probe design
- Improved procedures with more detail
- Incorporated feedback from consultants and FDOT engineers
- CAD plans are provided for probe and falling head vessel
 - Anyone can fabricate a new VIP probe
 - Probe cost ≈ \$2,000
 - Falling Head Vessel Cost ≈ \$1,500

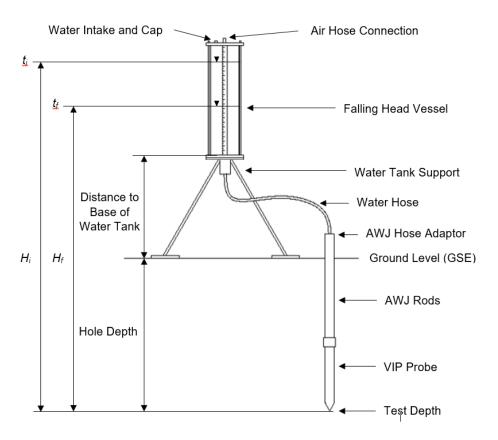
Probe Assembly


1.) Arrange parts A - D


2.) Slide C onto B


3.) Slide D into C and thread onto B (CW)

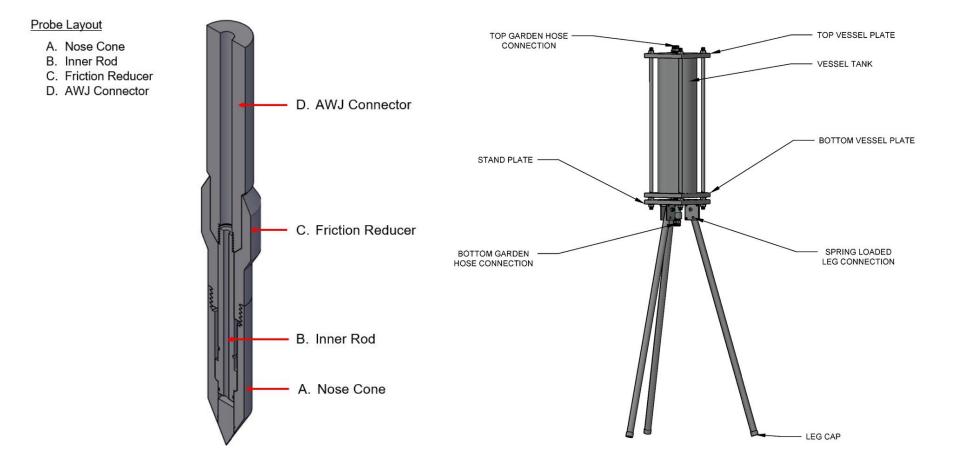
4.) Thread A onto C (CCW)


Probe Mechanics

VIP Mean Permeability Calculations

$$k_m = \frac{\pi d^2}{4F(t_f - t_i)} ln \frac{H_i}{H_f}$$

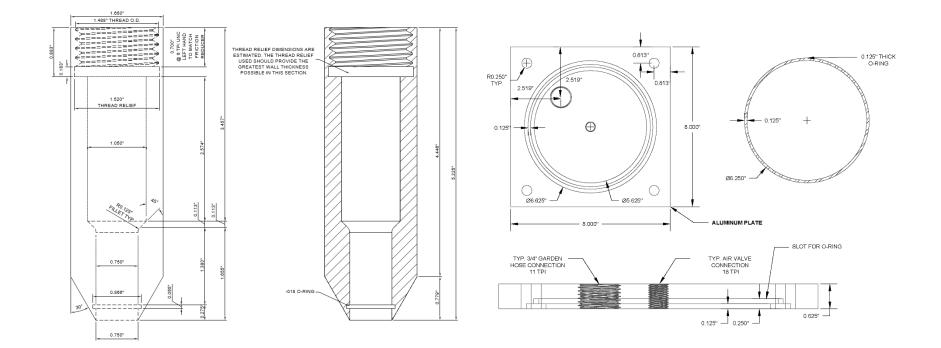
- $-k_m = mean permeability (L/T)$
- d = piezometer (water tank) inner diameter (L)
- D = vertical flow port diameter (L) = 0.75-in = 1.905-cm
- F = Hvorslev (Case C) shape factor = 3D (L) = 5.715-cm
- t_i , t_f = initial and final time of test, respectively (T)
- H_i, H_f = initial and final water head, respectively (L)


Updated Test Recommendations

Supplemental Information

Testing Times Based on Soil Type and Flushing Recommendations*.

Testing Recommendations (Estimate during saturation)			Flushing Recommendations (If needed, typically not required)	
Soil Type	Recording Increment	Total Length of Test	Air Pressure	Flush Time
Coarse Sand	15 – 30 sec	3 – 5 min	10 – 20 psi	10 sec
Fine Sand	30 sec – 1 min	5 – 10 min	15 – 25 psi	10 – 30 sec
Silty Sand	30 sec – 1 min	5 – 10 min	20 – 30 psi	10 – 30 sec
Sandy Silt	1 – 5 min	10 – 50 min	25 – 35 psi	10 – 30 sec
Clay	5 – 15 min	45 - 60 min	30 – 45 psi	30 sec – 1 min


Updated CAD Drawings

Detailed CAD Examples

Probe CAD

Falling Head Vessel CAD

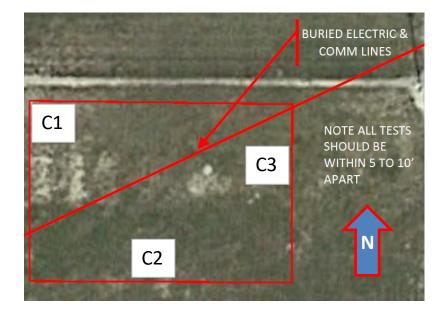


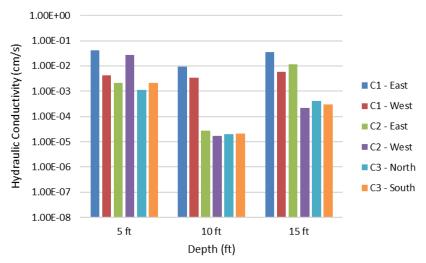
VIP Instructional Video

https://www.youtube.com/watch?v=qOV19WIPMgE

Search

YouTube


Q

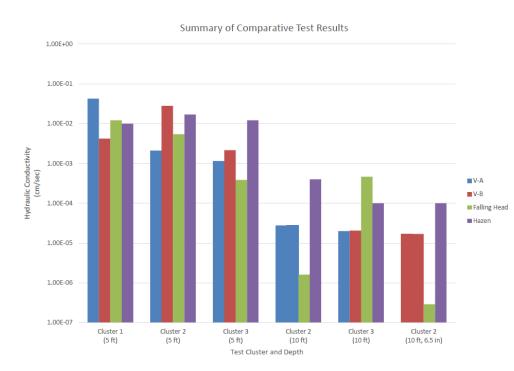

VIP Field Testing

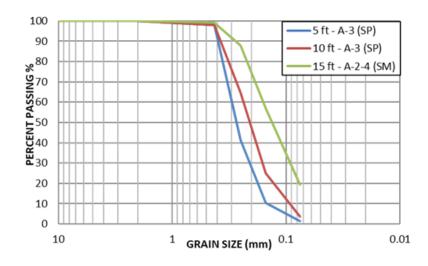
- Field testing will be conducted at sites throughout Florida
 - FDOT districts and along the turnpike
- Additional testing will also be conducted at each site
 - Comparative conventional testing
 - Cased and uncased borehole methods
 - Laboratory testing
 - Soil classification
 - VIP push tests and SPT to quantify soil density effects on hydraulic conductivity
- Data will be reduced and analyzed after each site is completed
- Upon completion of all sites, a final analysis will be conducted, and conclusions will be drawn

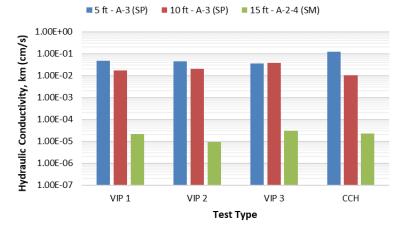
D1 - Bartow

- Provided VIP training to D1 consultants
- Three locations tested at the site
 - 2 VIP tests per location3 tests depths
- Loose sand tailings and phosphatic waste clays present at the site
- C2 and C3 showed similar trends w/ depth
- C1 indicated higher permeability at all test depths

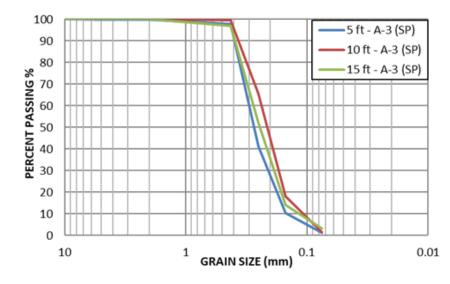
D1 – Bartow

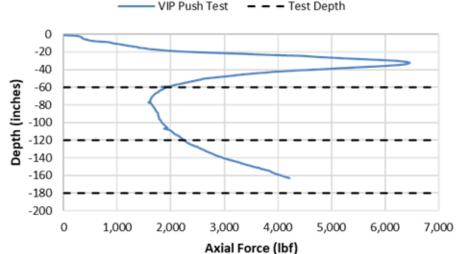

- CPT style truck was used for VIP tests
- Custom VIP tank platform was installed
- Very precise control for opening and closing the probe
- Water supply and rig controls all within close proximity to VIP tank
 - Convenient to perform VIP tests

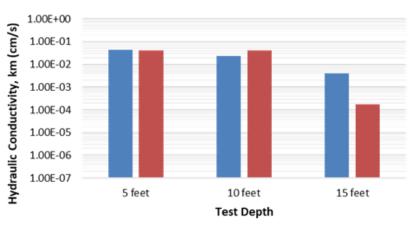

D1 – VIP vs. Laboratory Testing


- VIP and Lab Data agreed in coarse grained soils near surface
- Results were not conclusive at greater depths with lower permeable soils
 - Hazen not intended for finegrained soils
 - Channeling observed in lab tests
 - Recommended longer FH lab test times due to clayey soils encountered
- Stated that VIP identified lower permeability soils

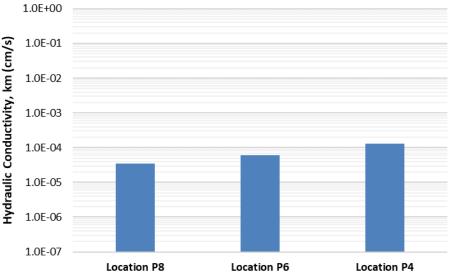
D2 – Trenton – Location 1


- VIP and cased constant head (CCH) test performed at 3 depths
 Depths = 5', 10', 15'
- Sieve Analysis indicated changing soil type at 15'
 - − A-3 (SP) \rightarrow A-2-4 (SM)
 - 20% passing No. 200 at 15'
 - < 5% at 5' and 10'
 - Nearby boring indicated sand with red clay at 15'
- VIP and CCH both indicated changes in hydraulic conductivity (k_m) at 15'
 - 1x10⁻² cm/s → 1x10⁻⁵ cm/s



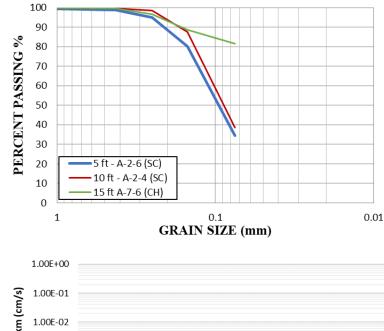

D2 – Trenton – Location 2

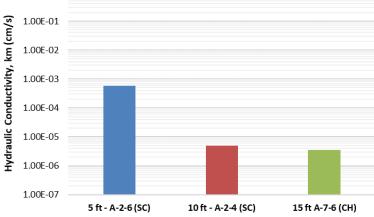
- Same soil type at each depth
 - A-3 (SP) at 5', 10', and 15'
- Push test indicated soil density increasing with depth
 - Based on measured axial force
- VIP and CCH tests both indicated k_m decreasing with increasing soil density



D2 – Newberry

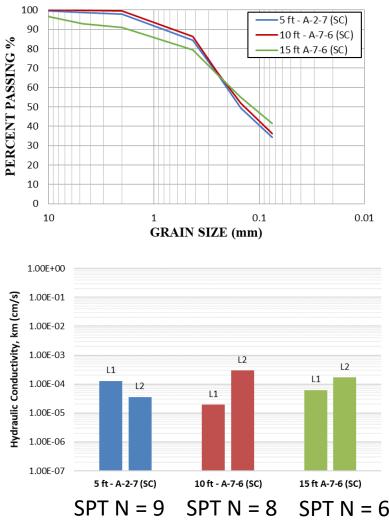
- Investigated a potential retention pond site
 - Provided training to
 FDOT D2 field specialists
- Tested the hydraulic conductivity at the same elevation across the site
- Similar hydraulic conductivity across the site @ same elevation
 - Slight increase in K_m moving east to west


D2 – CR 349


- Provided VIP training to D2 consultants
- Observed large change in k_m moving from 5' to 10'
 - Increase in SPT blow counts
- Recorded very low k_m at 15'
 - A-7-6 / CH
 - $K_{\rm m} = 3.45 \times 10^{-6} \, {\rm cm/s}$

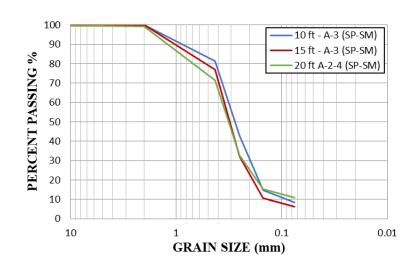
 5 ft
 10 ft
 15 ft

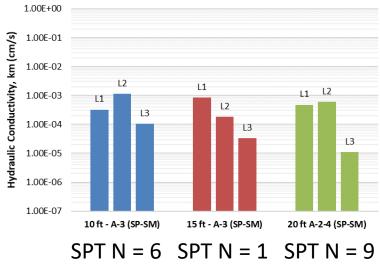
 SPT N = 6
 SPT N = 27
 SPT N = 25



D3 – Marianna

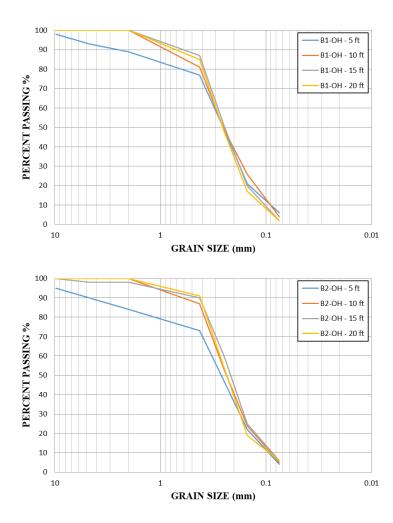
- Provided training to FDOT D3 Field Specialists
- Tested 2 locations at the site
 3 test depths per location
- Low k_m at all locations
- No clear trend of increasing k_m with depth
 - SPT N decreased with depth

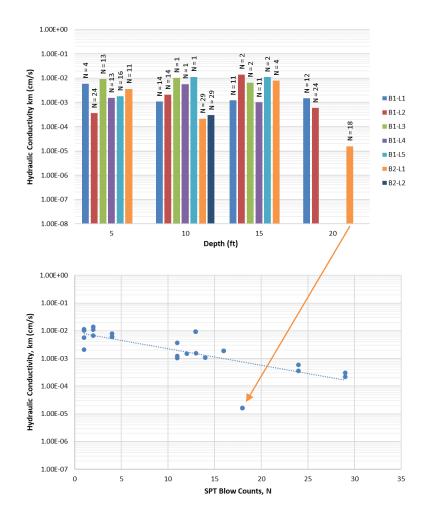




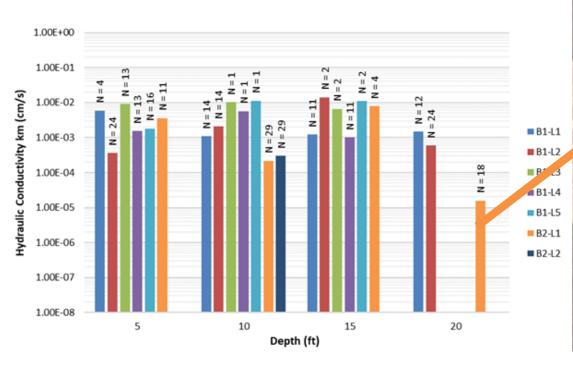
D3 – SR 231 - Cottondale

- Tested 3 locations at the site
 3 test depths per location
- Lower k_m at all 3 locations
- Only Location 3 indicated decreasing k_m with depth
 – SPT N variable with depth
- Often encountered dark black soil at site




D4/6 – D4 Operations Center

- Completed 22 VIP tests
- Depths ranged from 5 to 20 feet
- All soil was classified as A-3
- Large range of SPT blow counts
- Excellent opportunity to investigate influence of density on soil permeability

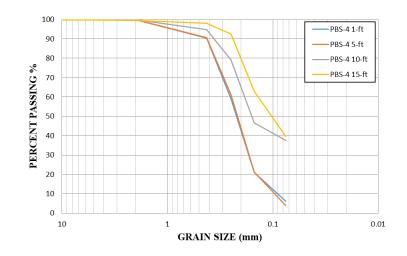

D4/6 – D4 Operations Center

False Reading

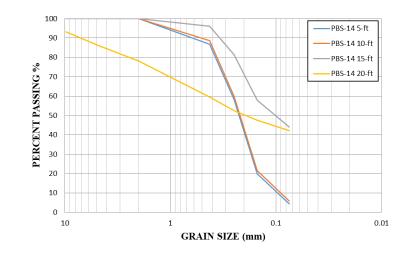
- Too much grease was added to AWJ threads
- Transmitted through the drill string and out of the probe tip
- Grease likely permeated into soil and caused a false reading

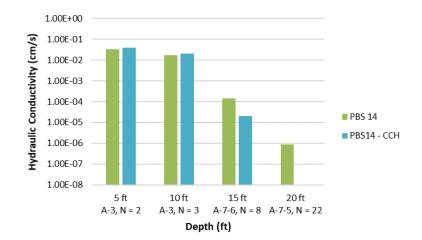
Placing the Probe Down an Open Hole

- South Florida site had shell and limestone fragments near surface
- Hand augered first 3-4 feet to pass through limestone fragments
- Placed VIP probe down the open hole
- Used electric tape to ensure probe stayed closed until the test was initiated

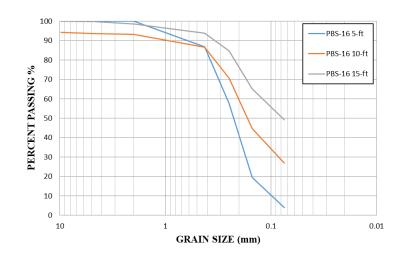


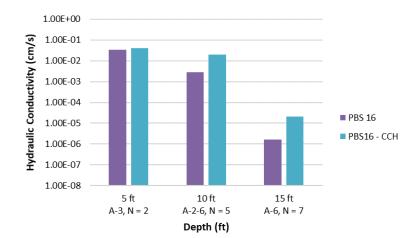
D5 – I75 Rest Area

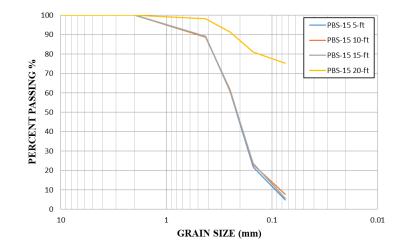

- Provided training for D5 FDOT engineers and consultants
- 21 VIP tests completed
 - 10 comparative CCH tests performed
- Investigated VIP as infiltrometer tests
 - Shows promise as a new quick infiltrometer method
- Very large range of hydraulic conductivity
 - $K_{m-max} = 4.15 \times 10^{-2} \text{ cm/s}$
 - $K_{m-min} = 8.65 \times 10^{-7} \text{ cm/s}$

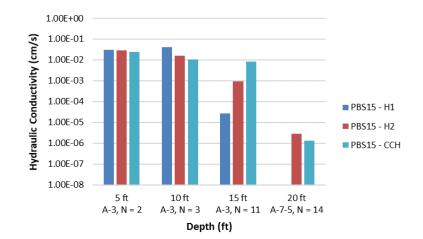


D5 – I75 Rest Area – PBS 4 & 14

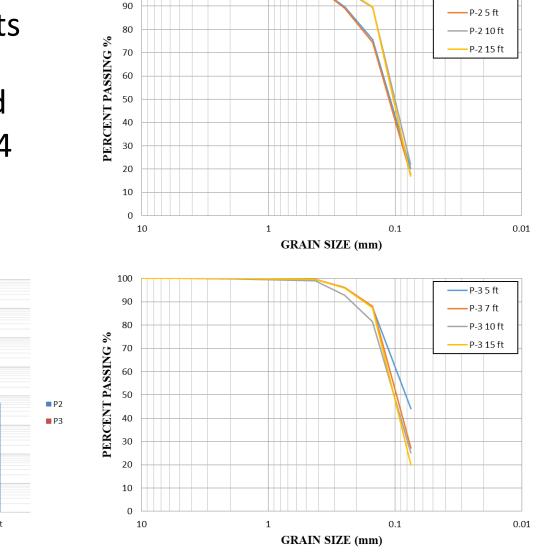




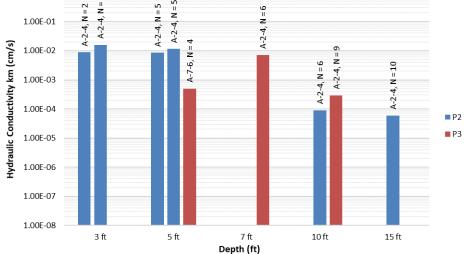




D5 – I75 Rest Area – PBS 15 & 16

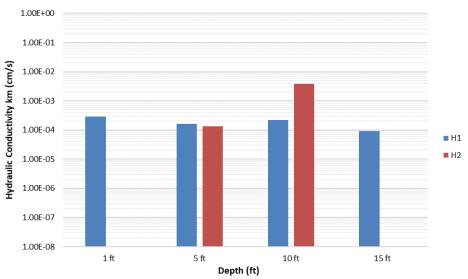


D7 – Brooksville FDOT Office

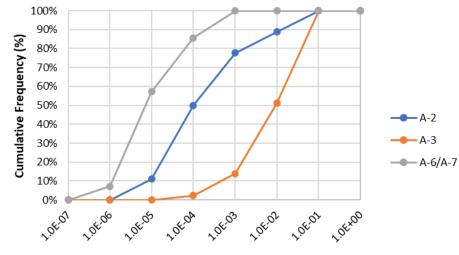

100

- Trained D7 Consultants and FDOT Engineers
- 9 VIP Tests Completed
- 8 of 9 tests were A-2-4
- 1 A-7-6 soil
- SPT N ≤ 10

1.00E+00


P-2 3 ft

D7/Turnpike – Veterans Expressway


- 5 VIP tests were completed
 - 5 to 15 feet
 - High water table (2.6 ft) slowed testing down
- 1 VIP infiltrometer tests was completed
 - Do not to use drill rig for VIP infiltrometer tests
- Historical data indicated km range of 7.37 x 10⁻³ cm/s to 2.43 x 10⁻⁴ cm/s
- VIP measurements were in excellent agreement
 - Fine grained soil collected by hand auger also indicates lower permeability

Testing Summary

- 109 VIP tests total
 - 75 tests with SPT data and soil classifications
- Permeability range of K_m = 4.68 x 10⁻² cm/s to 8.65 x 10⁻⁷ cm/s
- Soil types encountered were A-3, A-2-4, A-2-6, A-6, A-7-5, and A-7-6
- Predominately A-3
- VIP performed well in all soil types
 - Above and below GWT

Hydraulic Conductivity, k_m (cm/s)

Statistics	Fine Sand	Silty or Clayey Sand	Clayey Soils
	A-3	A-2	A-6/A-7
Mean	1.45E-02	2.21E-03	5.76E-05
Median	9.25E-03	1.10E-04	7.60E-06
Std Dev	1.47E-02	4.57E-03	1.32E-04
CV	1.01	2.07	2.28
Max	4.68E-02	1.59E-02	4.94E-04
Min	2.76E-05	4.99E-06	8.65E-07
Count	43	18	14

VIP Permeability Limits

- Tests were performed in which the probe was left to drain freely into the air
 - Determines upper permeability limit
 - Procedure provided in FM 5-614
- Upper permeability was increased with new VIP design compared to original VIP design

 $- k_{max} = 9.31 \times 10^{-2} \text{ cm/s} > k_{max} = 7.48 \times 10^{-2} \text{ cm/s}$

• Lowest permeability recorded with new VIP design

- Lowest permeability recorded with any VIP probe
- I-75 Rest Area in District 5 \rightarrow Soil Type A-7-5 (SC) \rightarrow SPT N = 22

VIP Probe Testing Notes

- Check O-rings in between tests locations when encountering a lot of silty soils
 - Fine grain soils can reduce the life of the tip O-ring
- Check O-rings between tests when testing operating in very cold weather
 - O-rings become stiffer in cold weather
- Inspect probe and drill rod throughout testing
 - Make sure no debris or grease buildup is present
- High water tables lead to longer test times
 - Reduced head to push water through soil
- Rock fragments can score the probe, use a file to smooth any roughened surfaces
- Rotate the probe inner rod after cleaning or filing to ensure concentric rotation and for binding
- Electric tape can be used to keep the probe closed when advancing down an open borehole
- The more you use the probe the better it operates


Conclusions

- The new robust probe design was successful
 - SPT hammering and direct push with large axial forces generated
 - Simplified assembly and breakdown for cleaning
- The probe functioned well in a large variety of Florida soils
 - A-3, A-2-4, A-2-6, A-6, A-7-5, A-7-6
 - Measured k_m range of 4.68 x 10⁻² to 8.65 x 10⁻⁷ cm/s
 - Increased soil density decreased permeability
- The probe functioned well above and below the water table
 - Higher GWT \rightarrow Longer test times
- VIP performed well in a large range of depths
 - 1 to 20 feet
- The VIP probe and test method were well received in each district
 - Potential replacement for all permeability methods used in FL
 - Could provide continuity for k_m measurements statewide
 - Very efficient and easy to use
- New FM is much improved and incorporates input from Florida geotechnical engineers across the state
 - VIP online tutorial is very thorough and easy to follow
- Mission accomplished!

Remaining Tasks

- Closeout Meeting and Draft Final Report
- Final Report

Questions?

