

In-service Assessment of Road Sinkholes with 2D Ambient Noise Tomography

GRIP Meeting July 22, 2021

FDOT BDV31 977-122

Project Manager David Horhota, Ph.D., P.E.

> Principal Investigator Khiem Tran, Ph.D.

Graduate Assistants Yao Wang Mohammad Khorrami

Presentation outline

- Introduction and background
- Project objective
- Benefits of using traffic noise
- Task 1: 2D ANT methodology
- Task 2: Test configuration optimization
- Task 3: Field experiments
- Task 4: Software development

Conclusion

- Recommendations
- Project benefits

Introduction and background

- Road sinkholes pose significant risk to the health and safety of the traveling public. Successful detection of the pre-collapsed sinkholes (buried voids) is crucial for remediation to minimize the risk.
- Existing 2D/3D full waveform inversion (FWI) methods using active wave-fields can be used to identify a buried void to a depth of three void diameters.

Example of 3D FWI at Newberry

Introduction and background

- However, 2D/3D FWI methods require multiple source impacts to generate the active wave-fields, the data acquisition time is considerable, leading to negative impacts caused by closing the traffic flow during seismic testing.
- It is risky to collect active seismic wave-fields on top of large voids, as ground perturbation by an active source may trigger collapses while persons are in the test area.
- This project goal is to reduce time of closing traffic during data acquisition, reduce the field-testing risk and effort, and increase depths of investigation.

Project objective

To develop a new 2D Ambient Noise Tomography (2D ANT) method using traffic noise for detection of pre-collapsed sinkholes (buried voids) beneath roadways to 100 ft depth

Benefits of using traffic noise

- Traffic noises are rich in low frequency components at 5 to 10 Hz (from heavy trucks), which are important to resolve deep structures to 100-ft depth.
- No wave citation is needed, thus minimizing the risk of collapse due to ground perturbation as well as reducing testing efforts.
- Land-streamer geophones can be deployed quickly in a few minutes on road shoulder or lane dividers, and data are acquired without closing traffic.

Weight Drop	Weight Drop (V _{max} =10 m/sec)		Truck (<i>mass = 10,000 kg</i>)			
Mass (kg)	Energy (J)	Speed (mph)	Total Energy (J)	10% Energy (J)		
5	250	30	720,000	72,000		
10	500	40	1,280,000	128,000		
20	1,000	50	2,000,000	200,000		
50	2,500	60	2,880,000	288,000		
100	50,000	70	3,920,000	392,000		

Task 1: Develop 2D ANT computational algorithm

 Extract measured correlation function (C) from recorded ambient noise

$$\mathbf{C}(t, x_i, x_j) = \mathbf{d}(t, x_i) * \mathbf{d}(t, x_j)$$
$$= \int_{0}^{T} \mathbf{d}(\tau, x_i) \cdot \mathbf{d}(t + \tau, x_j) d\tau$$

2D ANT algorithm

 Simulate synthetic correlation function using 2D wave equations

$$\mathbf{G}(t, x_i, x_j) = \mathbf{F}(t, x_i) * \mathbf{F}(t, x_j) = \int_0^T \mathbf{F}(\tau, x_i) \cdot \mathbf{F}(t + \tau, x_j) d\tau$$

 Match the synthetic and measured correlations to extract material property (Vs)

$$E = \frac{1}{2} \|G - C\|^2$$

$$\mathbf{V}_{s}^{n+1} = \mathbf{V}_{s}^{n} + \theta_{s}^{n} \delta V_{s}^{n}$$

Numerical experiment

- Two voids at 60 and 100 ft depths
- > 24 receivers on the free surface at 3-m (10 ft) spacing
- Noise data is modeled as moving sources (like vehicles)
- Noise data is then assumed as field data, and input in the 2D ANT to extract Vs.

Data simulation

Data comparison

- a) Synthetic 20slength simulated traffic noise data,
- b) 20s-length field data recorded on US 441 highway,
- c) Blow-up of data highlighted with red rectangle in a)
- d) Blow-up of data highlighted with red rectangle in b).

Inversion results

Inverted results of 5 inversion runs with increasing frequencies

Task 2: Optimize field testing configurations and investigate impacts of ambient noises characteristics

- 1) Develop the optimal test configuration (number and spatial density of receivers)
- Investigate the required ambient noise frequency range for characterization of subsurface profiles to 100-ft depth at feet-scales
- 3) Conducted via computational simulation (data)

Task 2: Shallow void

- Void is 12 ft diameter (3.75 m), located 40 ft (13 m), more than three void diameters
- 3 test configurations:
 8, 12, 24 receivers at 15
 ft, 10 ft, and 5 ft spacing, respectively
- ➢ Noise data at 5 to 20 Hz

Task 2: Shallow void

14

Task 2: Deep void

- Void is 30 ft diameter (10 m), located 80 ft (24 m) depth
- 4 test configurations:
 8, 12, 24, 48 receivers at
 30 ft, 20 ft, 10 ft, and 5 ft
 spacing, respectively
- ➢ Noise data at 5 to 20Hz

Task 2 summary

- From the analyses, 5 ft receiver spacing is recommended for field testing for both shallow and deep voids.
- For large voids, 10 ft receiver spacing also generates acceptable inversion results. These optimal test configurations are applied on field experiments in Task 3.
- In term of required frequency content, noise data at 5-20 Hz is needed for accurate imaging of voids.

Task 3: Verify 2D ANT method at field test sites

1. US 441 Highway

- Noise data collected for both pre- and postgrouting
- 24 land-streamer geophones on the surface at 1.5-m spacing
- Traffic noises were recorded for 10 minutes with multiple passing vehicles

US 441 (pre-grouting): data processing

US 441 (pre-grouting)

Passive vs. active wave energy comparison

US 441 (pre-grouting)

Data analyses
 Two inversion runs at
 5-15, 5-20 Hz

US 441 results

post-grouting results

pre-grouting results

22

Task 3: Verify 2D ANT method at field test sites

2. Wekiva Parkway SR 46

- Sinkhole recently settled, and the roadway was temporarily remediated by compaction of filled sand
- > 24 land-streamer geophones on the surface at 2-m spacing for a total length of 46 m (
- Traffic noises were recorded for 20 minutes with multiple passing vehicles.

Wekiva Parkway SR 46: Data processing

b. Data residual

Wekiva Parkway SR 46: Data processing

a. Cross-correlation function.

CONCID. DOM 1007

Wekiva Parkway SR 46: results

Task 3: Verify 2D ANT method at field test sites

3. Wekiva Parkway Bridge

- A void and problematic soils were encountered during the bridge foundation construction
- 36 vertical geophones at 2.0 m (6.6 ft) spacing, for a spread length of 70 m (233 ft).
- Data were collected beneath an elevated bridge, and most of traffic noises were from the embankment at one bridge end (about 200 ft from the first geophone).
- Noises from vehicles passing on the elevated bridge did not propagate along the geophone line.

Wekiva Parkway Bridge: data processing

Wekiva Parkway Bridge: results

Task 3: Verify 2D ANT method

4. Miami site (I-395 pier)

- Large, deep void
- 48 geophones on the surface at 2-m spacing for a total spread of 94 m (313 ft)
- Traffic noises were recorded for 30 minutes

Miami site: data processing

Miami site: data processing

Miami site result

Miami site result

Task 4: Implement the 2D ANT algorithm into existing 2D FWI software

💽 Full Waveform Inversion – 🗆 X		🕢 Full Waveform Inversion	- 🗆 X
File PSV Method ANT Method Help	I	File PSV Method ANT Method Help	۲
Wave Type Selection PSV		ANT Inversion	
New ANT			
Open >			
Save >			
Save as >			
I		1	

Wave type selection

ANT Inversion	– 🗆 X	ANT Inversion – 🗆 X
File Settings		File Settings
Time segment parameters Filter noise Time seg 0.3 Time max 0.3 Vs max(default 500) 500	3 25 f4 30 p B 0 Flip A~B	Time segment parameters Filter noise Time seg 0.3 Time max 0.3 Vs max(default 500) 500 Filter noise f1 5 f2 10 f3 25 f4 30 Flip CCF Time flip Flip A 0 Flip B 0 Flip A~B
Ref. Station 1		Ref. Station 1
CCF 0.9 0.8 0.7 0.6 0.4 0.3 0.2 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.8 Status Message	Calculate CCF Calculate CCF Restore plot Gain Balance Spectrum Kill Trace Save	CCF CF Calculate CCF Calculate CCF
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6		Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

ANT Inversion	– 🗆 X
File Settings	
Velocity max (m/s) 1000 Frequency max 30	Analysze
Dispersion image	
0.9-0.8-0.7-	40 60 20 80 0 100
Dhase velo diy (mis) Phase vel	Progress
0.2 - 0.1 -	
0 0.2 0.4 0.6 0.8 1 Frequency (Hz)	
Status Message Previous	Next
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6	

 \times

	ANT Inversion –	
ile Settings	File Settings	
[u u		
Iterations	Iterations	
Iter Max 30 # runs 2	Run Iter Max 30 # runs 2	Ē
freq. (Hz) for 1st run 0 5 10 15 f increment (Hz) 5	Stop	
	treq. (Hz) for 1st run 0 5 10 15 f increment (Hz) 5	6
model gradient Waveform Error Export	model aradient Waveform Error Evport	
1-	Attention: Response might be slow when the inversion is running	J.
	Vs	45
0.8 -	InvertedVs_022.mat 5	
	InvertedVs_023.mat	40
- 0.6 -	invertedvs_024.mat	35
	InvertedVs_025.mat & 15	20
th the second seco	InvertedVs_026.mat	300
<u>0.4</u>	InvertedVs_027.mat 20	250
	InvertedVs_028.mat	—
	invertedVs_029.mat 0 10 20 30 40 X (m)	
0.2 -	InvertedVs_030.mat	
	Vs_16f5f20.mat	
	Vs_115f15.mat Refresh Export	
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 X (m)	0.9 1	
Status 🕘 Message	Status 😑 Message	
Olive 4 Olive 9 Olive 4 Olive 5 Olive 9		

Conclusion

- We have developed a new 2D ANT method for void detection using ambient traffic noise.
- The method has been demonstrated on realistic synthetic models with the accurate recovery of the variable layers and buried voids.
- The field results at 4 sites show that the 2D ANT method can detect voids down to large depths (>100 ft).
- 2D ANT GUI software allows users analyze data with minimal training.

Recommendations

- The 2D ANT should be used on or near roadway for consistent noise energy
- Depth of investigation $\sim \frac{1}{2}$ geophone length
- Geophone spacing < targeted void diameter
- Maximum wavelength > depth of investigation (e.g., heavy trucks for depth > 100 ft).

Project Benefits

- New 2D ANT allows roadway voids/sinkholes and soil/rock layering to be characterized with minimal traffic interruption. It provides much more subsurface information than 1D (SPT, CPT)
- The 2D ANT greatly reduces subsurface uncertainty (layering, voids), which reduces cost in the design, construction and maintenance of roadway and bridges. For instance, in case of large void near the planned I-395 pier - the foundation may be relocated

Publications resulted from this project

- Wang Y., Tran K.T, and Horhota D. (2021). "Road sinkhole detection with 2D Ambient noise tomography" *Geophysics*, Vol. 86 (6), (Impact Factor: 2.928).
- 2. Wang Y., Tran K.T, and Horhota D. (2022). "Assessment of roadway subsidence and remediation with ambient noise tomography", *FastTimes*, under review.

Thank You!

