Geo-Statistical Deep Foundation Software

FDOT GRIP - Segment 2 - No. 10 - August 5, 2021

FDOT Project BDV31 977-143

Project Manager Rodrigo Herrera, PE

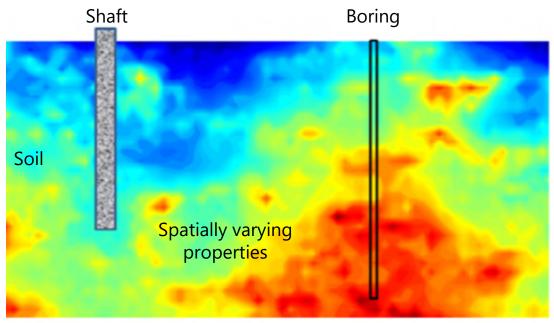
Institution University of Florida

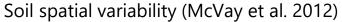
Pl Michael Davidson, PhD, PE

Co-Pl Michael Rodgers, PhD, PE

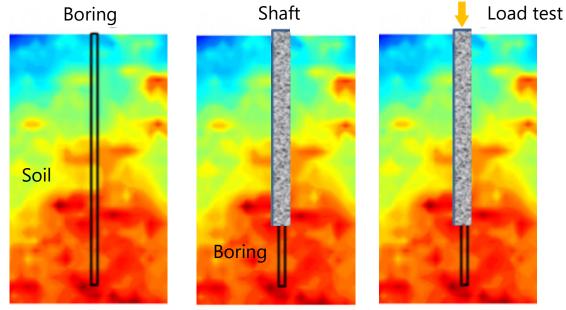
Co-Pl Gary Consolazio, PhD

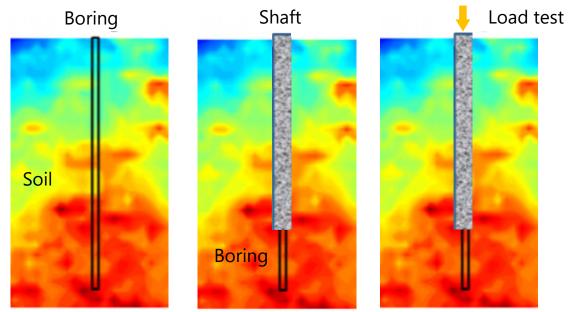
- Introduction and background
- Project objective
- Project tasks and deliverables
- Implementation and deployment
- Project benefits
- Anticipated project timeline
- Closing discussion

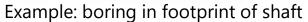




- Introduction and background
- Project objective
- Project tasks and deliverables
- Implementation and deployment
- Project benefits
- Anticipated project timeline
- Closing discussion

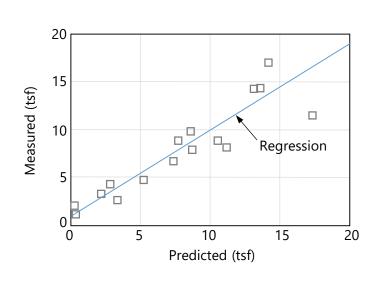

- Spatial variability
 - Horizontal
 - Vertical

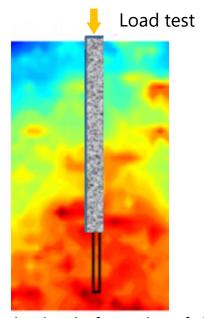

- Method error
 - Due to underlying assumptions in empirical methods
 - Correlation of measurement to unit resistance



Example: boring in footprint of shaft

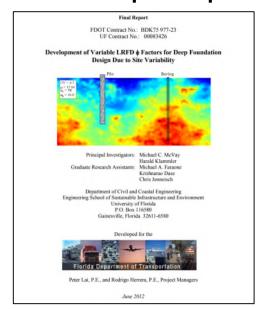
- Method error
 - Leads to uncertainty in computed capacities

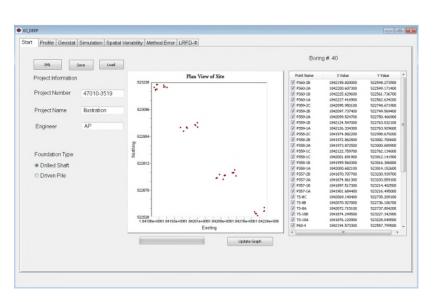




- Method error
 - Leads to uncertainty in computed capacities

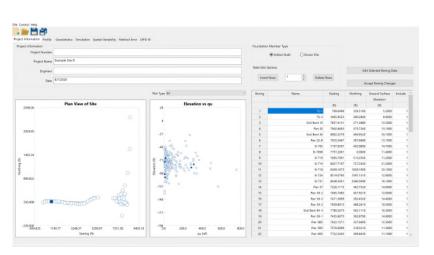
Predicted versus measured resistance




Example: boring in footprint of shaft

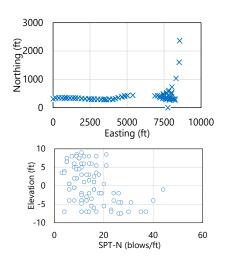
Background

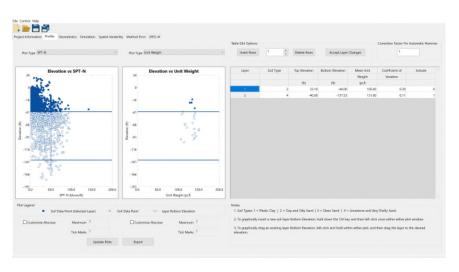
- FDOT BDK 977-23 (McVay et al. 2012)
 - Developed geostatistical methodologies
 - Compiled method error data
 - Developed prototype tool

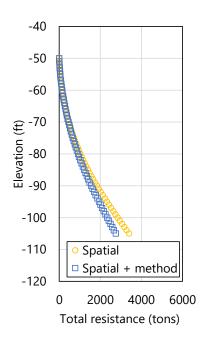


Background

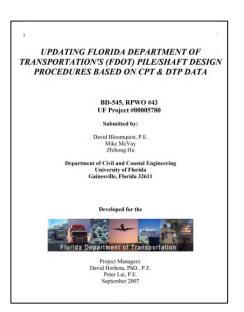
- FDOT BDV31 977-108 (Davidson et al. 2020)
 - Streamlined the prototype tool
 - Performed quality assurance and verification
 - Created help and technical manuals


Streamlined tool

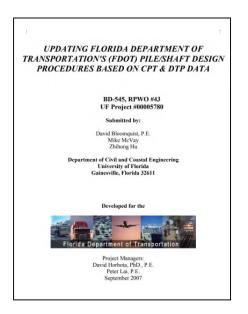



- Introduction and background
- Project objective
- Project tasks and deliverables
- Implementation and deployment
- Project benefits
- Anticipated project timeline
- Closing discussion

- Implement updates to streamlined geostatistical tool for use by practicing engineers
 - Leverage previous FDOT research
 - Compute axial design capacities of piles and shafts
 - Characterize uncertainty



- Introduction and background
- Project objective
- Project tasks and deliverables
- Implementation and deployment
- Project benefits
- Anticipated project timeline
- Closing discussion


- Task 1: Incorporate analysis of CPT data
 - Read-write of key variables
 - Generation of variograms
 - Population of analysis files for simulation
 - Identify method error regressions
 - Software manual documentation

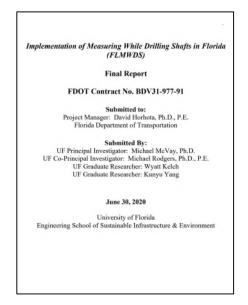


- Deliverable 1: Task 1 report
 - Input file format
 - User interface (UI) modifications
 - As-identified method error formulation

- Task 2: Incorporate analysis of results from Measuring While Drilling (MWD)
 - Read-write of key variables
 - Generation of variograms
 - Population of analysis files for simulation
 - Identify method error regressions
 - Software manual documentation

Implementation of Measuring While Drilling Shafts in Florida

FDOT Contract No. BDV31-977-91

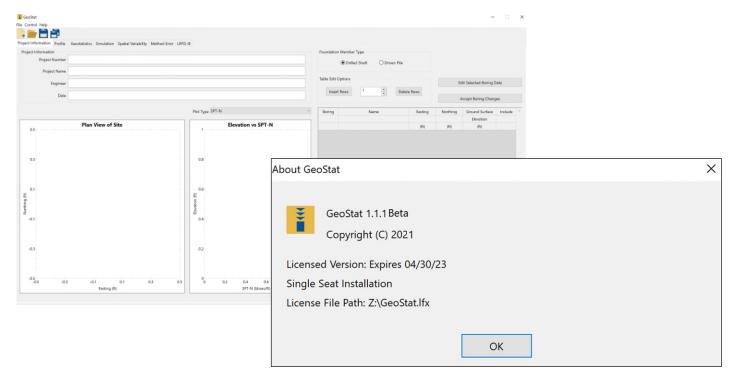

Project Manager: David Horhota, Ph.D., P.E. Florida Department of Transportation

UF Principal Investigator: Michael McVay, Ph.D. UF Co-Principal Investigator: Michael Rodgers, Ph.D., P.F. UF Graduate Researcher: Wyatt Kelch UF Graduate Researcher: Kunyu Yang

University of Florida Engineering School of Sustainable Infrastructure & Environment

- Deliverable 2: Task 2 report
 - Input file format
 - User interface (UI) modifications
 - As-identified method error formulation

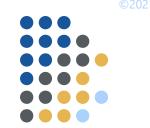
- Task 3: Conduct quality assurance (QA) testing
 - Develop test input sets
 - **CPT**
 - **MWD**
 - Add data validation checks
 - Ensure integrity of data writes to simulation files



- Deliverable 3.1: Task 3 report
 - Input sets used for QA
 - Input and output processes
 - Summary of data validation checks
 - Listing of new program error messages

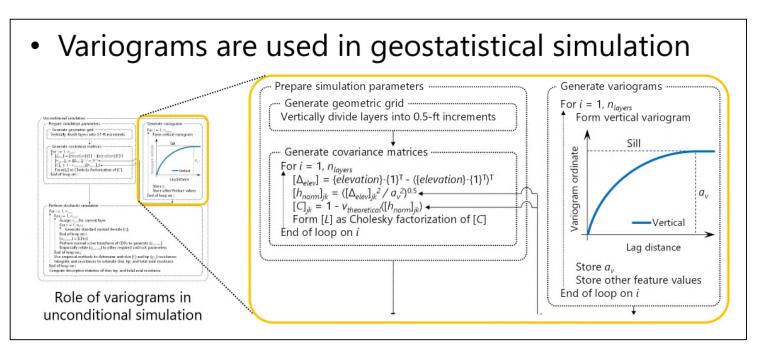
©2021

- Deliverable 3.2: Beta version of GeoStat
 - Link to be provided to FDOT



- Task 4: Investigate methodology for effective radius
 - Assess GeoStat capabilities to produce estimates of zonal radius
 - Applicability of pile/shaft LRFD resistance factors
 - If identified as feasible:
 - Obtain site data from Project Manager
 - Build up illustration case
 - Add feature to visualize radius on plan-view plot within program

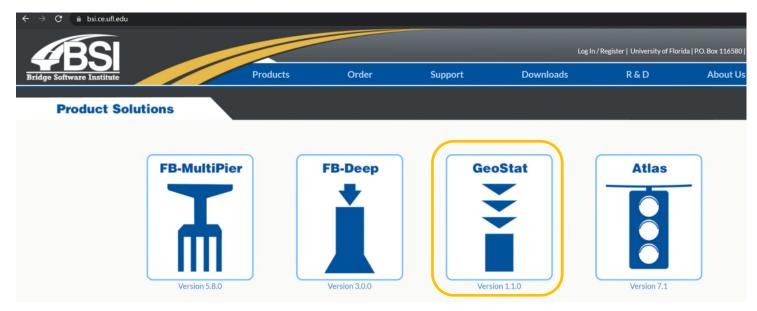
- Deliverable 4: Task 4 report
 - Assess program capabilities
 - If feasible:
 - Key steps of methodology
 - Illustration case
 - If not feasible:
 - Document underlying reasons


- Task 5: Technology transfer
 - Leverage sample projects in FDOT BDV31-97-108
 - Web-based
 - Delivered to FDOT district engineers
 - Two sessions
 - Theoretical basis and driven pile sample project (2 hrs)
 - Drilled shaft sample project and Q&A (2 hrs)

- Deliverable 5: Technology transfer materials
 - Zip-file package
 - Slides
 - Models

- Task 6: Draft final and closeout teleconference
 - Deliverable 6.1: draft final report
 - Deliverable 6.2: Closeout teleconference

- Task 7: Final report
 - Deliverable 7: Submission of final report



- Introduction and background
- Project objective
- Project tasks and deliverables
- Implementation and deployment
- Project benefits
- Anticipated project timeline
- Closing discussion

©2021

Implementation and deployment

- Licensed software made available to practicing engineers at bsi.ce.ufl.edu
- Maintained by BSI

- Introduction and background
- Project objective
- Project tasks and deliverables
- Implementation and deployment
- Project benefits
- Anticipated project timeline
- Closing discussion

Project benefits


- New methodologies for geostatistical analysis
 - **CPT**
 - **MWD**
 - Zonal radius visualization
- Technology transfer
 - Promotes use by FDOT engineers

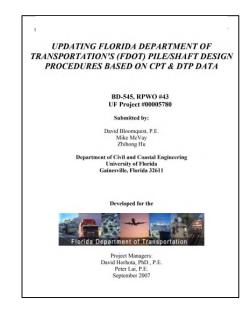
Project benefits

- Quantitative:
 - How much variability is present in computed pile/shaft axial capacity?
 - How much uncertainty?
 - Are geological zones present?
- Qualitative:
 - Within a zone/site, what are representative layer definitions?
 - Do additional site data need to be gathered?

- Introduction and background
- Project objective
- Project tasks and deliverables
- Implementation and deployment
- Project benefits
- Anticipated project timeline
- Closing discussion

Anticipated project timeline

- Total duration: 18 months
 - Task 1 (Deliverable 1: Nov. 2021)
 - Task 2 (Deliverable 2: Mar. 2022)
 - Task 3 (Deliverable 3.1: Jun. 2022)
 - Task 3 (Deliverable 3.2: Jun. 2022)
 - Task 4 (Deliverable 4: Aug. 2022)
 - Task 5 (Deliverable 5: Sept. 2022)
 - Task 6 (Deliverable 6.1: Oct. 2022)
 - Task 6 (Deliverable 6.2: Dec. 2022)
 - Task 7 (Deliverable 7: Jan. 2023)


Anticipated project timeline: Where we are

- Total duration: 18 months
 - Task 1 (Deliverable 1: Nov. 2021)
 - Task 2 (Deliverable 2: Mar. 2022)
 - Task 3 (Deliverable 3.1: Jun. 2022)
 - Task 3 (Deliverable 3.2: Jun. 2022)
 - Task 4 (Deliverable 4: Aug. 2022)
 - Task 5 (Deliverable 5: Sept. 2022)
 - Task 6 (Deliverable 6.1: Oct. 2022)
 - Task 6 (Deliverable 6.2: Dec. 2022)
 - Task 7 (Deliverable 7: Jan. 2023)

Where we are: preliminary progress

- Task 1: Incorporate analysis of CPT data
 - Read-write of key variables
 - Tip resistance, sleeve friction
 - Generation of variograms
 - Tip resistance w/ co-simulation
 - Population of analysis files for simulation
 - Draw upon existing FB-Deep syntax
 - Identify method error regressions
 - FDOT BD-545, RPWO #43 final report, Tables in Ch. 4

- Introduction and background
- Project objective
- Project tasks and deliverables
- Implementation and deployment
- Project benefits
- Anticipated project timeline
- Closing discussion

Thank you

