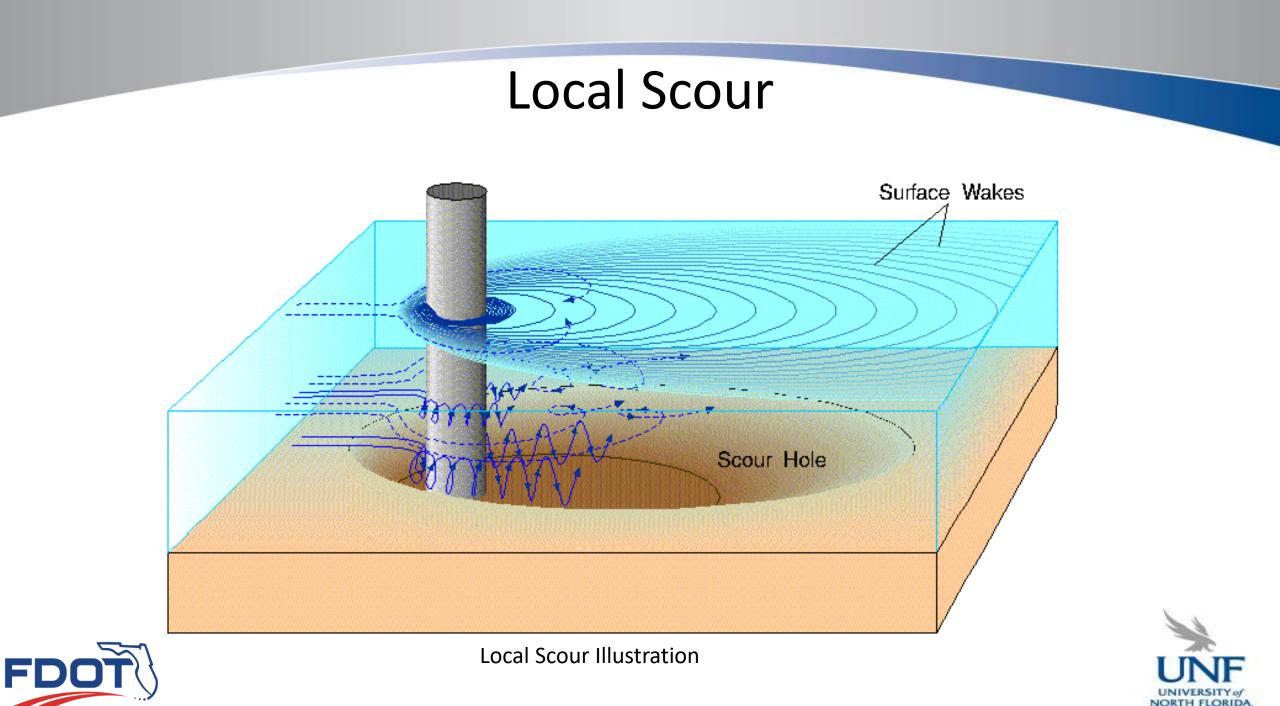
Development of FDOT SERF and RETA Design Equations for Coastal Scour when a Single Vertical Pile is Subjected to Wave Attack


FDOT Project No. BDV34 977-12, Jennifer Green, P.E., State Drainage Engineer, Project Manager

University of North Florida 1 UNF Drive, Jacksonville, FL 32224

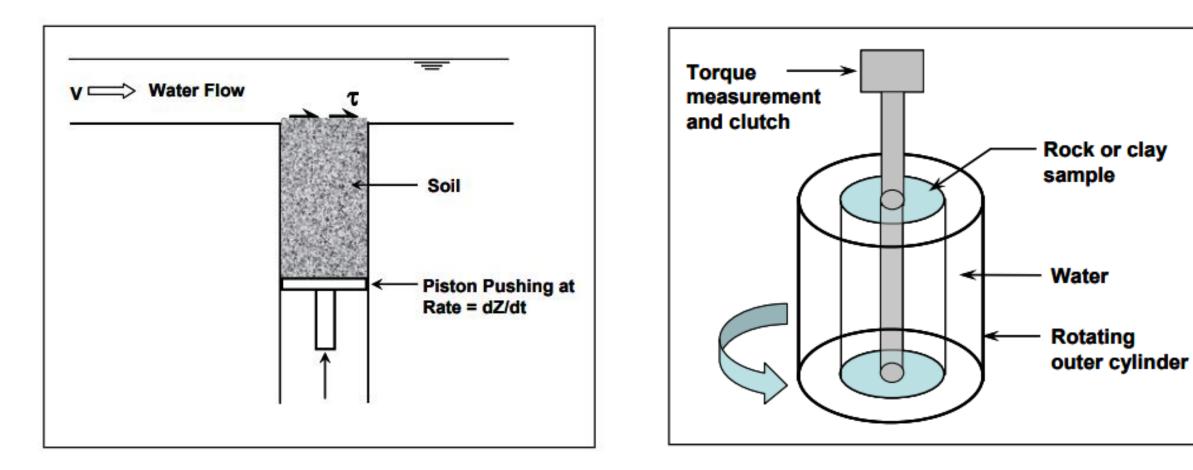
PI: Raphael Crowley, Ph.D., P.E., Associate Professor, Taylor Engineering Research Institute, <u>r.crowley@unf.edu</u> Research Assistants – Paige Ammons (GRA) and Ian Gstalder (URA)

Motivation

 Florida is doing much better in scour! Of 12,000+ bridges, only 102 are now "scour critical"

 HEC-18/FDOT bridge scour manual may lead to significant overdesign cost/over-conservatism because soil conditions were not taken into account when designing for scour

SERF/RETA – Motivation


Alternative scour design method:

- 1. Develop conservative hydrograph to get flow as a function of time
- 2. Use hydrograph to estimate bed stresses in the field as a function of time
- 3. Collect soil sample and subject it to erosion testing; this gives relationship between stress and erosion
- 4. Each stress from (2) corresponds to an erosion rate from (3). Add the erosion rates together to get total scour depth over bridge's lifetime.

SERF – Scour Testing

Rotational-Style Erosion Test (RETA)

UNIVERSITY of NORTH FLORIDA

Piston-style erosion test (SERF)

SERF/RETA Steady Flow Equation

$$\tau_{max} = k_w k_{sp} k_{sh} k_\alpha \left[0.094 \rho u^2 \left(\frac{1}{\log_{10} Re} - \frac{1}{10} \right) \right]$$

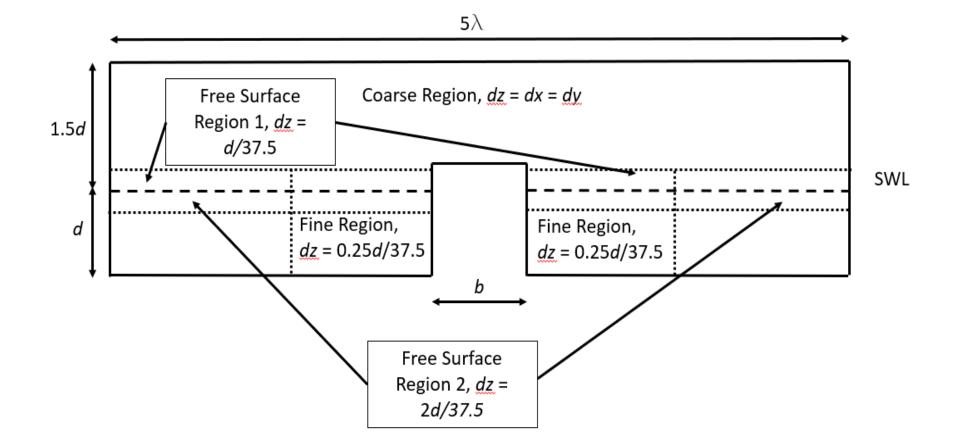
- $\tau_{max} =$ maximum bed stress
- k_w , k_{sp} , k_{sh} , k_{α} = correction factors for pier width, pile group spacing, pile length, attack angle
- u = mean velocity
- Re = Pile Reynolds Number = $\frac{uD}{v}$
 - *D* = pile diameter
 - v = kinematic viscosity of water
- Similar equation for wave action does not exist for field-scale structures!

Toward Development of Wave-Specific Design Equations

- Briaud et al. (Texas A&M) showed that steady-flow max stress is a function of $\rho u^2 (1/\log_{10} Re 1/10)$
- Sumer, Fredsoe et al. (Delft) showed that equilibrium wave scour is a function of KC and L/D
 - KC = Keuligan-Carpenter Number = $\frac{U_mT}{D}$
 - U_m = mean max upstream wave velocity from linear wave theory
 - *T* = wave period
 - L = wavelength

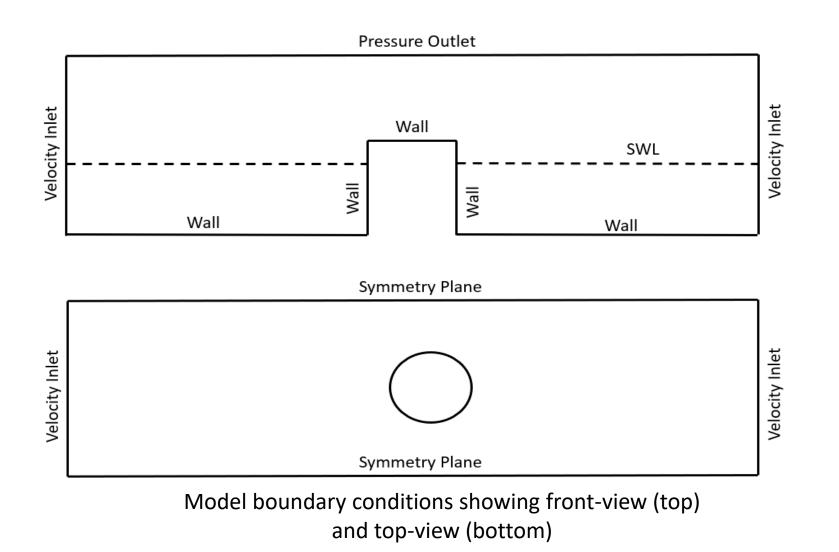
Toward Development of Wave-Specific Design Equations

- FDOT/Sheppard showed that equilibrium scour depth is a function of D/D_{50}
- Approach model several piles under wave attack at small-scale; match data; and then upscale and fit parametric equations to data using KC, L/D, Re, and D/D_{50} as nondimensional governing variables

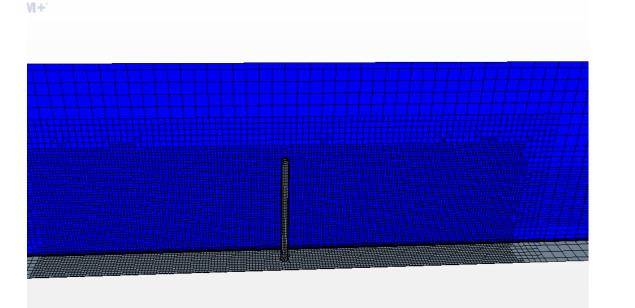

Model Parameters

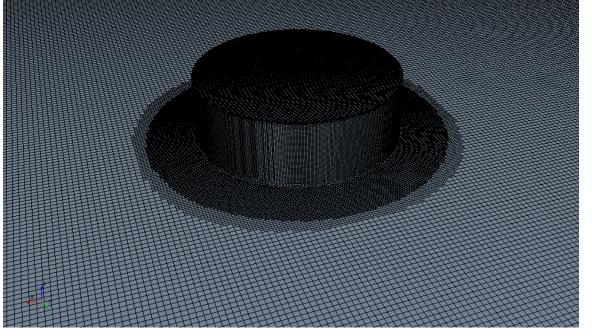
- Proposed RANS/ke modeling this blows up due to turbulent production/diffusion balancing assumption
- Solution Detached Eddy Simulation (DES) combined best aspects of Large-Eddy Simulation (LES) with wall effects associated with RANS model
- Turbulence model coupled to volume of fluid (VOF) model to account for air-water free-surface

Mesh Parameters



Model Meshing Parameters


Boundary Conditions



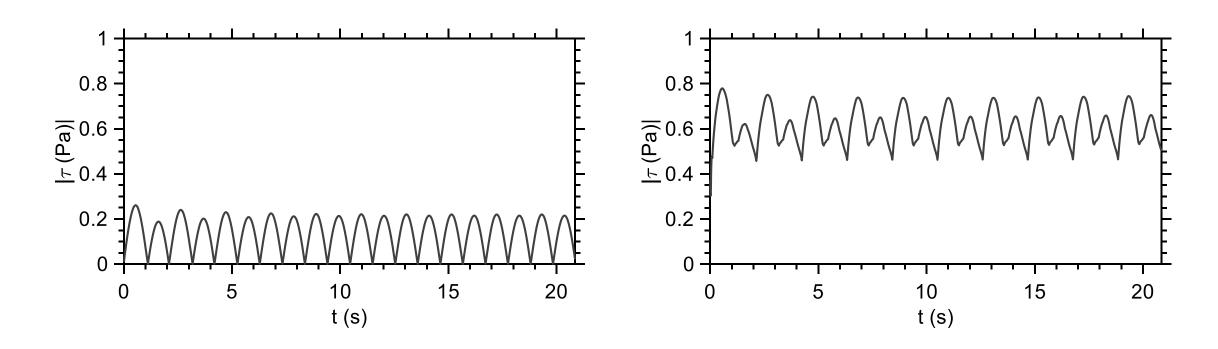
FC

Meshed Models

Meshed large-scale pile

Meshed small-scale pile

Test Matrix – Medium-Scale Data

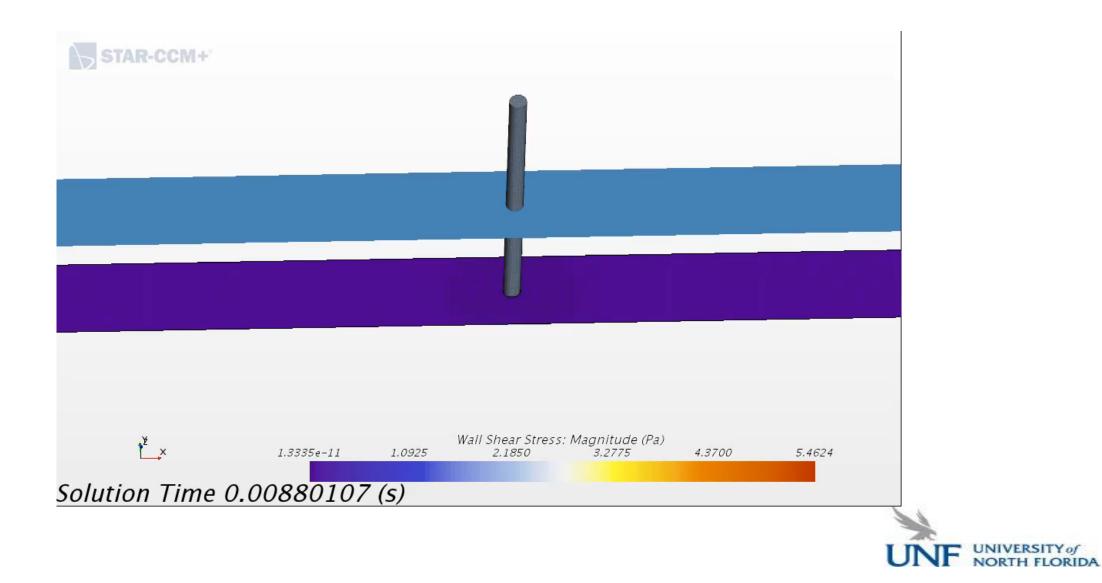

Run Number	T (s)	H (cm)	λ (m)	b (m)	d (m)	
1	3.5	12.0	6.79	1.0	0.40	
2	3.5	8.6	6.79	1.0	0.40	
3	3.5	4.9	6.79	1.0	0.40	
4	2.0	8.2 3.70		1.0	0.40	
5	3.5	2.5	6.79	1.0	0.40	
6	3.5	5.7	6.79	1.0	0.40	
7	3.5	6.4	6.79	0.54	0.40	
8	3.5	6.9	6.79	0.54	0.40	
9	3.5	6.9	6.79	0.54	0.40	
10	3.5	6.9	6.79	0.54	0.40	
11	3.5	6.4	6.79	0.54	0.40	
12	3.5	5.6	6.79	0.54	0.40	
13	3.5	12.0	6.79	1.53	0.40	
14	3.5	8.7	6.79	1.53	0.40	
15	3.5	6.9	6.79	1.53	0.40	
16	3.5	6.4	6.79	1.53	0.40	

Initial Proposed Testing Matrix

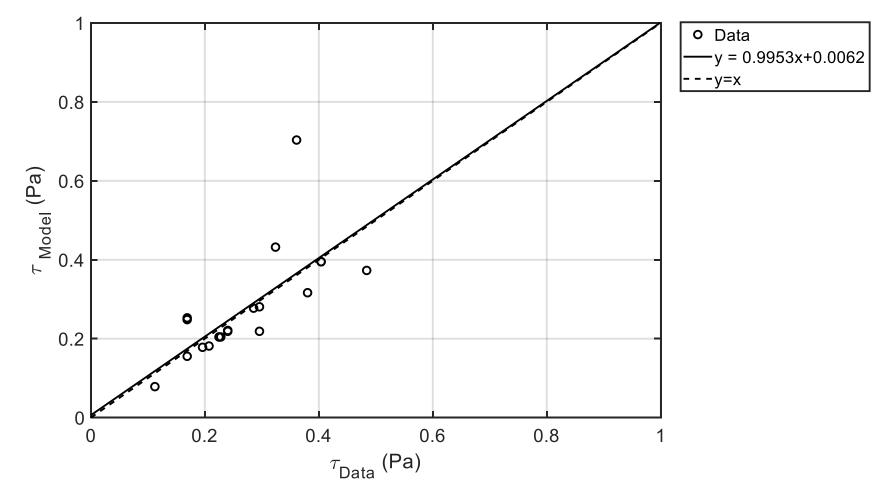
Sample Results

Sample Results – Data Matching

Sample Results – Maximum Stress

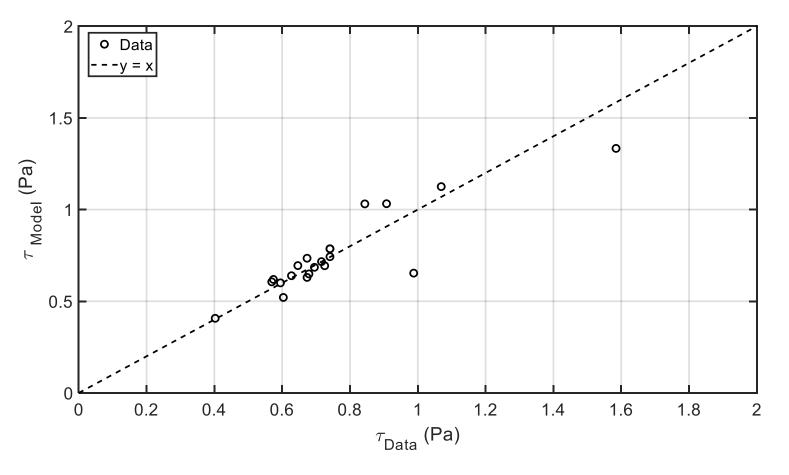

Supplement Original Test Matrix

 Original test matrix was only for small L/D; need to also examine large L/D; therefore five additional runs added to test matrix to account for large L/D



Sample Results

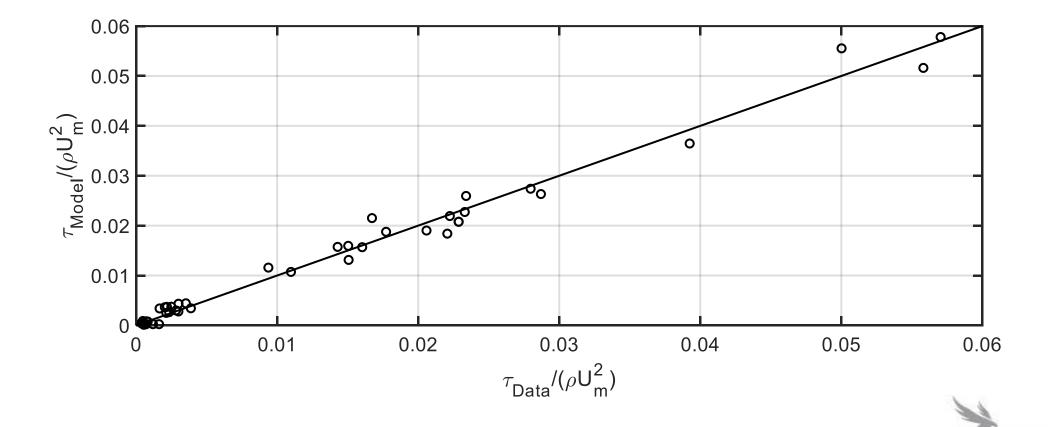
Matched Data Results



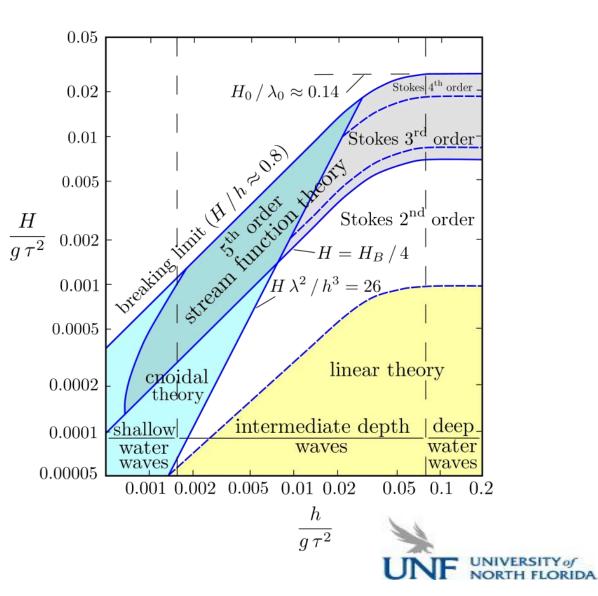
Results showing matched data

Initial Parametric Model

$$\frac{\tau}{\rho U_m^2} = a_0 + a_1 R e^{0.58} + a_2 \left(\frac{L}{D}\right)^{-0.7} + a_3 K C^{-4.25} + a_4 \left(\frac{D}{D_{50}}\right)^{0.07} + a_5 [\ln(Re)]^3$$


Ongoing Work – Large-Scale Models

Run No	T (s)	H (m)	h (m)	b (m)	L (m)	Run No	T (s)	H (m)	h (m)	b (m)	L (m)
1	8.00	4.50	7.50	1.53	63.16	19	8.00	9.00	15.00	1.53	81.70
2	12.00	4.50	7.50	1.53	99.46	20	12.00	9.00	15.00	1.53	135.45
3	16.00	4.50	7.50	1.53	134.57	21	16.00	9.00	15.00	1.53	186.32
4	8.00	4.50	7.50	1.00	63.16	22	8.00	9.00	15.00	1.00	81.70
5	12.00	4.50	7.50	1.00	99.46	23	12.00	9.00	15.00	1.00	135.45
6	16.00	4.50	7.50	1.00	134.57	24	16.00	9.00	15.00	1.00	186.32
7	8.00	4.50	7.50	0.54	63.16	25	8.00	9.00	15.00	0.54	81.70
8	12.00	4.50	7.50	0.54	99.46	26	12.00	9.00	15.00	0.54	135.45
9	16.00	4.50	7.50	0.54	134.57	27	16.00	9.00	15.00	0.54	186.32
10	8.00	2.25	7.50	1.53	63.16	28	8.00	4.50	15.00	1.53	81.70
11	12.00	2.25	7.50	1.53	99.46	29	12.00	4.50	15.00	1.53	135.45
12	16.00	2.25	7.50	1.53	134.57	30	16.00	4.50	15.00	1.53	186.32
13	8.00	2.25	7.50	1.00	63.16	31	8.00	4.50	15.00	1.00	81.70
14	12.00	2.25	7.50	1.00	99.46	32	12.00	4.50	15.00	1.00	135.45
15	16.00	2.25	7.50	1.00	134.57	33	16.00	4.50	15.00	1.00	186.32
16	8.00	2.25	7.50	0.54	63.16	34	8.00	4.50	15.00	0.54	81.70
17	12.00	2.25	7.50	0.54	99.46	35	12.00	4.50	15.00	0.54	135.45
18 🤝	16.00	2.25	7.50	0.54	134.57	36	16.00	4.50	15.00	0.54	186.32
FDOT											NIVERSITY


Ongoing Work – Current Large Parametric Model

$$\frac{\tau}{\rho U_m^2} = a_0 + a_1 K C^{-5.25} + a_2 \left(\frac{D}{L}\right)^{0.78} + a_3 R e^{-0.25} + a_4 \ln(Fr)^6$$

Ongoing Work – Sorting out Wave Steepness

- All large-scale models were run using a cnoidal wave input approach
- This assumption may lead to instability because it is only for steep waves
- Currently, higher-order stokes and linear models are being investigated for other wave runs

Upcoming Work

REFINE DATA FROM LARGE-SCALE MODELS CONTINUE RUNNING LARGE-SCALE MODELS AND EXAMINE WAVE STEEPNESS

SUPPLEMENT LARGE-SCALE RESULTS

Thank you!

