

Evaluation Of SCC and Class IV Concrete Flow In Drilled Shafts – Part 1

BDV25 TWO977-25

Closeout Meeting Presented by Gray Mullins, Ph.D., P.E.

Closeout Meeting Information

- Project Manager: Dale DeFord, Ph.D.
- Principal Investigator: Gray Mullins, Ph.D., P. E.
- Co-Principal Investigator: Abla Zayed, Ph.D.
- Research Institution: University of South Florida
- Contract Title: Evaluation Of SCC and Class IV Concrete Flow In Drilled Shafts – Part 1
- Contract Number: BDV25 TWO977-25

Outline

- Introduction
- Background
- Objectives
- Tasks
- Summary
- Conclusions / Recommendations
- Project Benefits
- Implementation Items
- Future Work

In 1870, 70 bridges collapsed in the U.S.

In the past 16 months 2 major bridges have collapsed from unforeseen corrosion/durability issues

October 1, 2019 Taiwan

Study Motivation

A construction technique was discovered that leaves the protective concrete cover with a condition suspected to compromise the reinforcing steel protection.

Objective

- Assess the effects of concrete flow on drilled shaft performance
 - Rebar bond
 - Durability / Corrosion Resistance
 - Soil / concrete bond
- Evaluate methods of inspecting/detecting poor concrete conditions

Tasks

- Literature review
- Rheological modeling
- Rebar pullout tests
- Concrete coring/strength distribution
- Corrosion resistance
- Surface roughness (lab)
- Underwater bridge inspections
- Surface roughness (field)

Background Drilled Shaft Construction (slurry stabilization)

Drilled Shaft Construction Casing Stabilized / Water Displaced

Slurry Preparation

Mix with venturi eductor

Recirculate

ALTER

Excavation and Cleanout

- Aller

NULLIT

Change and

Steel Reinforcing Cage Placement

Lower tremie pipe to bottom of excavation

Place concrete through tremie pipe and displace slurry

9 9

Effects of Slurry on Side Resistance (concrete to soil shear strength)

Deese, G. and Mullins, G. (2005). "Factors Affecting Concrete Flow in Drilled Shaft Construction," ADSC GEO3, GEO Construction Quality Assurance / Quality Control Conference Proceedings, Bruce, D.A. and Cadden, A. W. (eds) pp. 144-155, November.

Drilling Fluid: Water

Drilling Fluid: Bentonite

Drilling Fluid: Attapulgite

Drilling Fluid: Polymer

Concrete fills cage first

Then presses through cage

Creases form that may not fully close

Bentonite shafts show severe creases

Volume of voided surface was trapped bentonite clay

Layer of clay reduces side shear
Water or polymer slurry not trapped

No soil interface interruption

60 sec/qt Polymer

30 sec/qt Bentonite

40 sec/qt Bentonite

Effects of Slurry on Rebar Pullout Resistance (reinforcing steel to concrete bond)

Threaded pullout specimens

Effects of Slurry on Rebar Bond (227 rebar pullout tests; 58 shafts)

Effects of Slurry on Rebar Bond (measured / prediction ratio)

Effects of Slurry on Rebar Bond (load vs resistance; Safety Factor = 2)

Effects of Slurry on Rebar Bond (load vs resistance; Safety Factor = 3)

Surface Roughness vs Rebar Pullout (Costello, 2018)

Effects of Slurry on Concrete Strength (quality of the cover)

Concrete penetrometer

Coring Locations

Bentonite						
Shaft #	Viscosity	Pasalina	Crosso	Covor 1	Covor 2	
π		(nsi)	Clease			
1	44	4688	0.82	0.81	0.74	
3	40	4296	0.86	1.03	0.94	
4	55	4268	1.06	1.08	0.91	
5	90	5023	0.61	0.94	0.82	
7	30	4304	0.67	0.68	0.88	
8	40	4532	0.88	0.91	0.91	
9	57	5627	0.74	0.67	0.88	
10	90	5142	0.77	0.76	0.80	
13	30	3796	0.93	0.94	0.94	
14	30	4512	0.68	0.93	0.90	
15	56	4742	1.05	0.92	0.95	
21	42	5092	0.73	0.81	0.95	
45	37	4847	0.83	0.84	0.89	
		Average	0.82	0.87	0.89	

Polymer							
Shaft #	Viscosity	Baseline Strength	Ratio To Crease	Ratio To Cover 1	Ratio To Cover 2		
	(sec)	(psi)					
11	65	4220	1.04	1.22	1.06		
12	66	5976	0.77	0.96	0.96		
16	85	4045	0.87	0.89	0.94		
17	85	4345	0.91	0.91	0.93		
19	63	5739	0.84	0.86	0.97		
20	121	4720	0.76	1.01	0.96		
		Average	0.86	0.98	0.97		

Water							
Shaft #	Viscosity	Baseline Strength	Ratio To Crease	Ratio To Cover 1	Ratio To Cover 2		
	(sec)	(psi)					
6	26	4752	0.85	0.87	0.96		
18	26	3957.3	0.84	1.12	1.12		
22	26	4597.6	0.88	1.02	1.03		
32	26	4956.7	1.15	0.91	0.92		
46	26	5341.3	0.86	0.95	1.01		
		Average	0.92	0.97	1.01		

Effects of Slurry on Corrosion Resistance (is concrete cover protecting steel?)

Effects of Slurry on Corrosion Resistance (surface potential mapping)

Shaft 6

Shaft 18

Shaft 22

Water

Shaft 6

Shaft 18

Shaft 22

Water

Shaft 6

Shaft 18

Shaft 22

Water

Shaft 11 (60 sec) Shaft 12 (60 sec)

Shaft 16 (90 sec)

Shaft 4 (50 sec)

Shaft 5 (90 sec)

Shaft 7 (30 sec)

Bentonite Slurry

Digitizing Surface Roughness

Water and Polymer Shafts

Bentonite Shafts

Surface Roughness

Underwater Shaft Inspections

Blountstown (bentonite)

Gandy (water)

a Francisk

Bridge of Lions (attapulgite)

US90 / Choctawhatchee (bentonite)

Casing Removal

Water-cast Shafts Gandy Bridge US92 over Tampa Bay (salt water)

Pier 60: Shaft 2 (single cage)

Pier 60: Shaft 2 (single cage)

Pier 94: Shaft 2 (single cage)

Pier 94: Shaft 4 (single cage)

Pier 70: Shaft 1 (double cage)

Pier 70: Shaft 1 (double cage)

Pier 70: Shaft 3 (double cage)

Pier 70: Shaft 3 (double cage)

Attapulgite-cast Shafts (~1-1.5 lb/gal) Bridge of Lions SR A1A over Intracoastal Waterway St. Augustine (salt water)

Pier 17, NW Shaft

Pier 17: SW Shaft

Pier 18: SE Shaft

Pier 18: SE Shaft

Pier 19: NE Shaft

Pier 19: NE Shaft

Pier 19: SE Shaft

Bentonite-cast Shafts (~0.5 lb/gal) SR 20 over Apalachicola River Blountstown (fresh water)

Pier 59, Shaft 1

Pier 59: Test Shaft

Surface Condition (failure ratios: measured and observed)

Specimen	Water		Attapulgite		Bentonite		Polymer	
Source								
Lab	1:10	10%	2:5	40%	18:21	86%	9:15	60%
measured								
corrosion								
Field	1:8	12.5%	5:11	45%	13:13	100%	n/a	n/a
observed								
surface	2:2	100%						
blemishes								

Specific Surface Roughness (Need to quantify)

Surface Roughness vs Corrosion Activity

(Two years later; Mobley, 2019)

Underwater Laser Scanning

Gandy Bridge Pier 94 Southwest shaft

Caryville Bridge Pier 13 South shaft North shaft

Caryville Bridge Pier 14 South shaft North shaft

Blountstown Bridge Pier 59 North

Blountstown Bridge Pier 59 North

Digital Surface Roughness

Shaft ID	Surface Void Volume	Slurry Type
Pier 13 North	13.81	Bentonite
Pier 13 South	8.39	Bentonite
Pier 14 North	7.52	Bentonite
Pier 14 South	12.57	Bentonite
Pier 59 North	12.49	Bentonite
Pier 59 South	40.44	Bentonite
Pier 94 Southwest	1.89	Water
Lab verification	45.42	Bentonite

Summary

- Effects of tremie placed concrete in a slurry environment were evaluated.
- Surface roughness (behind smooth casing) is a strong indicator of cover integrity / durability / active corrosion
- Field and laboratory observations of shafts cast in mineral slurry qualitatively and quantitatively appear to be the same.

Conclusions

- Water cast shafts had very low occurrences of problems.
- Slurry cast shafts had high probability of problems:
 - Rebar bond strength is statistically half that of water or dry casting conditions (code based).
 - Corrosion was active in 86% of bentonite cast shafts and 100% when surface roughness exceeded 5in³/ft²
 - Corrosion was active in 60% of polymer cast shafts after two years but surface roughness was visibly perfect.

Recommendations / Implementation

- Discourage or eliminate bentonite and polymer slurry displacement in aggressive environments (temporary casing method only).
- Increase (double) reinforcing bar development length for slurry casting environments.
- Evaluate current bridge inventory for eminent failure potential (active corrosion or high bending moment applications)

Questions

