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In 1870, 70 bridges 
collapsed in the U.S. 

In the past 16 months 2 major 
bridges have collapsed from 

unforeseen corrosion/durability 
issues



August 14, 2018 Genoa, Italy





October 1, 2019 Taiwan



Study Motivation

A construction technique was 
discovered that leaves the protective 
concrete cover with a condition 
suspected to compromise the 
reinforcing steel protection.







Objective

 Assess the effects of concrete flow on drilled shaft 

performance

◼ Rebar bond

◼ Durability / Corrosion Resistance

◼ Soil / concrete bond

 Evaluate methods of inspecting/detecting poor 

concrete conditions



Tasks

 Literature review

 Rheological modeling

 Rebar pullout tests

 Concrete coring/strength distribution

 Corrosion resistance

 Surface roughness (lab)

 Underwater bridge inspections

 Surface roughness (field)
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Slurry Preparation

Mix with venturi eductor

Recirculate

Polymer

0.5lb/100gal 

(0.6kg/1000L)

Bentonite 100X





Excavation and Cleanout



Steel Reinforcing Cage Placement



Lower tremie pipe 

to bottom of 

excavation



Place concrete 

through tremie

pipe and displace 

slurry



Surface Casing Extraction
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Deese, G. and Mullins, G. (2005). “ Factors Affecting Concrete Flow in Drilled Shaft Construction,” ADSC GEO3, GEO Construction 

Quality Assurance / Quality Control Conference Proceedings, Bruce, D.A. and Cadden, A. W. (eds) pp. 144-155, November.



Drilling Fluid: Water



Drilling Fluid: Bentonite



Drilling Fluid: Attapulgite



Drilling Fluid: Polymer



Concrete fills cage first



Then presses through cage



Creases form that 

may not fully close





Bentonite shafts show severe creases









Volume of voided surface 

was trapped bentonite clay 

Layer of clay reduces side shear



Water or polymer slurry not trapped

No soil interface interruption



Bowen (2013)





Bowen (2013)

Water



Bowen (2013)

60 sec/qt
Polymer



Bowen (2013)

30 sec/qt
Bentonite



Bowen (2013)
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Bentonite



Bowen (2013)
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Effects of Slurry on Rebar Pullout Resistance
(reinforcing steel to concrete bond)

Threaded pullout 

specimens



Effects of Slurry on Rebar Bond
(227 rebar pullout tests; 58 shafts)
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Effects of Slurry on Rebar Bond
(measured / prediction ratio)
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Effects of Slurry on Rebar Bond
(load vs resistance; Safety Factor = 2)
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Expected Conditions
Actual Conditions



Effects of Slurry on Concrete Strength
(quality of the cover)



Concrete penetrometer

Pulse Wheel







Coring Locations









Bentonite 

Shaft 

# Viscosity Baseline Crease Cover 1 Cover 2 

  (sec) (psi)       

1 44 4688 0.82 0.81 0.74 

3 40 4296 0.86 1.03 0.94 

4 55 4268 1.06 1.08 0.91 

5 90 5023 0.61 0.94 0.82 

7 30 4304 0.67 0.68 0.88 

8 40 4532 0.88 0.91 0.91 

9 57 5627 0.74 0.67 0.88 

10 90 5142 0.77 0.76 0.80 

13 30 3796 0.93 0.94 0.94 

14 30 4512 0.68 0.93 0.90 

15 56 4742 1.05 0.92 0.95 

21 42 5092 0.73 0.81 0.95 

45 37 4847 0.83 0.84 0.89 

Average 0.82 0.87 0.89 

 



Polymer 

Shaft 

# Viscosity 

Baseline 

Strength 

Ratio 

To 

Crease 

Ratio 

To 

Cover 1 

Ratio 

To 

Cover 2 

  (sec) (psi)       

11 65 4220 1.04 1.22 1.06 

12 66 5976 0.77 0.96 0.96 

16 85 4045 0.87 0.89 0.94 

17 85 4345 0.91 0.91 0.93 

19 63 5739 0.84 0.86 0.97 

20 121 4720 0.76 1.01 0.96 

Average 0.86 0.98 0.97 

 



Water 

Shaft 

# Viscosity 

Baseline 

Strength 

Ratio 

To 

Crease 

Ratio 

To 

Cover 1 

Ratio 

To 

Cover 2 

  (sec) (psi)       

6 26 4752 0.85 0.87 0.96 

18 26 3957.3 0.84 1.12 1.12 

22 26 4597.6 0.88 1.02 1.03 

32 26 4956.7 1.15 0.91 0.92 

46 26 5341.3 0.86 0.95 1.01 

Average 0.92 0.97 1.01 

 



Effects of Slurry on Corrosion Resistance
(is concrete cover protecting steel?)

No corrosion > -350mV > Corroding

Cu-CuSO4 reference electrode

Damp sponge

Multimeter

(2000mV)
(+)

(-)

42in (1.07m) concrete 

shaft specimen

Stainless steel wire

#8 reinforcing steel



Effects of Slurry on Corrosion Resistance
(surface potential mapping)



Shaft 6 Shaft 18 Shaft 22

Water



Shaft 6 Shaft 18 Shaft 22

Water



Shaft 6 Shaft 18 Shaft 22

Water



Shaft 11 (60 sec) Shaft 12 (60 sec) Shaft 16 (90 sec)

Polymer Slurry



Shaft 4 (50 sec) Shaft 5 (90 sec) Shaft 7 (30 sec)

Bentonite Slurry



Digitizing Surface Roughness





Water and Polymer Shafts



Bentonite Shafts



Surface Roughness
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Underwater Shaft Inspections

Gandy (water)
Bridge of Lions (attapulgite)

US90 / Choctawhatchee (bentonite)

Blountstown

(bentonite)



Casing Removal



Water-cast Shafts
Gandy Bridge 

US92 over Tampa Bay

(salt water)



Pier 60: Shaft 2 (single cage) 



Pier 60: Shaft 2 (single cage) 



Pier 60: Shaft 4 (single cage) 



Pier 94: Shaft 2 (single cage)



Pier 94: Shaft 4 (single cage)



Pier 70: Shaft 1 (double cage)



Pier 70: Shaft 1 (double cage)



Pier 70: Shaft 3 (double cage)



Pier 70: Shaft 3 (double cage)



Attapulgite-cast Shafts 
(~1-1.5 lb/gal)

Bridge of Lions
SR A1A over Intracoastal Waterway

St. Augustine
(salt water)



Pier 17, NW Shaft



Pier 17: SW Shaft



Pier 18: SE Shaft



Pier 18: SE Shaft



Pier 19: NE Shaft 



Pier 19: NE Shaft 



Pier 19: SE Shaft 



Bentonite-cast Shafts 
(~0.5 lb/gal) 

SR 20 over Apalachicola River

Blountstown 

(fresh water)



Pier 58 Shaft 1



Pier 58: Shaft 2



Pier 58: Shaft 2



Pier 58: Shaft 2



Pier 58: Shaft 2



Pier 59, Shaft 1



Pier 59: Test Shaft



Pier 59: Test Shaft



Surface Condition 
(failure ratios: measured and observed)

Specimen 

Source

Water Attapulgite Bentonite Polymer

Lab
measured 

corrosion

1:10 10% 2:5 40% 18:21 86% 9:15 60%

Field
observed 

surface 

blemishes

1:8 12.5% 5:11 45% 13:13 100% n/a n/a

2:2 100%
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Underwater Laser Scanning







Gandy Bridge Pier 94
Southwest shaft



Caryville Bridge Pier 13
South shaft North shaft



Caryville Bridge Pier 14
South shaft North shaft



Blountstown Bridge Pier 59
North



Blountstown Bridge Pier 59
North



Digital Surface Roughness

Shaft ID Surface Void 

Volume

Slurry Type

Pier 13 North 13.81 Bentonite

Pier 13 South 8.39 Bentonite

Pier 14 North 7.52 Bentonite

Pier 14 South 12.57 Bentonite

Pier 59 North 12.49 Bentonite

Pier 59 South 40.44 Bentonite

Pier 94 Southwest 1.89 Water

Lab verification 45.42 Bentonite
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Summary

 Effects of tremie placed concrete in a slurry 

environment were evaluated.

 Surface roughness (behind smooth casing) is 

a strong indicator of cover integrity / 

durability / active corrosion

 Field and laboratory observations of shafts 

cast in mineral slurry qualitatively and 

quantitatively appear to be the same.



Conclusions

 Water cast shafts had very low occurrences of 

problems.

 Slurry cast shafts had high probability of problems:

◼ Rebar bond strength is statistically half that of water or 

dry casting conditions (code based).

◼ Corrosion was active in 86% of bentonite cast shafts and 

100% when surface roughness exceeded 5in3/ft2

◼ Corrosion was active in 60% of polymer cast shafts after 

two years but surface roughness was visibly perfect.



Recommendations / 
Implementation

 Discourage or eliminate bentonite and polymer 

slurry displacement in aggressive environments 

(temporary casing method only).

 Increase (double) reinforcing bar development 

length for slurry casting environments.

 Evaluate current bridge inventory for eminent 

failure potential (active corrosion or high 

bending moment applications)



Questions


