

<u>Contract Title</u>: Quantifying Pile Rebound with Detection Systems Best Suited for Florida Soils

Task Work Order: BDV28 Two 977-07

PM: Juan Castellanos, P.E

PI: Paul J Cosentino, PhD, P.E., Co-PI's: Matthew Jensen, PhD, Charles Bostater, PhD, Graduate Students: Aline Franqui, Robert Rogulski, Samin Aziz, Jennifer Closson

> Florida Institute of Technology Melbourne FL 32901-6975 321-674-7555 Direct

Presentation Outline

- Background/Approach
- Objective
- Project Tasks
- Sites Tested
- Requipment Used
- Results
- Conclusion & Recommendations
- Further Research
- Reproject Benefits: Qualitative and Quantitative
- Implementation
- Closing Slide

Background

- Large Displacement Prestressed Concrete Piles (PCP's) rebound in Florida's Saturated Very Fine Sands with Silts and Clays
 - Rebound significantly decreases end bearing capacity
 - Elastic compression (PL/AE) is controlled by the large end bearing area, plus P and L are not really known
- Several Previous Projects has helped clarify the problem
 - The very fine sands must be relatively thick, possible 6B
 - Single Acting Hammers have been associated with rebound
- Digital measurements are not always reliable

Approach

Evaluate two new pile movement measuring systems

Inopiles PDM LASER deflection-measuring system

FIT camera measurement system (CMS)

- Cyclic Triaxial (CT) testing on 40 samples produced interesting findings
 - Evaluate damping from
 - Cyclic Triaxial (CT) Viscous Response
 - CAPWAP Signal Matching

Objective

- Evaluate how the Inopiles PDM LASER and Florida Tech CMS deflection-measuring systems can be used to quantify pile rebound.
- Evaluate the damping and associated pile rebound observed during BDV 28 977-01 CT testing.

BDV 28 977-01 Course GSDC's

BDV 28 977-01 CT Results

Cyclic Results show HPR Soils are Viscoelastic

Three deflection versus time cycles @ Ramsey Branch - 63' Site 12 Three deflection versus time cycles @ Heritage Parkway -57 ' Site 10

Inopiles PMD-Basic Usage

Offset	t Distance (m)	Active Zone Height (m)
	5.5	0.25
	10	0.45
	11	0.50
	16.5	0.75
	25	1.13
PDM	11	m Offset Distance
		Reflector

- Mount PDM to surveyors tri-pod
 Measure distance to target
- About 30-inches of data recorded
 - Angle is <u>2.6 ⁰</u> from horizontal
 - Reflective Tape must stay within Zone
 - Add Active Zone marks on pile leads
- To record data during entire driving
 - Each testing sequence or piece of tape requires new input data-Express Mode
 - Reflective Tape Quality May Affect Results
- Most reliable for set-checks or limited pile movement

BECAUSE EVERY PILE IS IMPORTANT

Field Testing Set-ups

Rain-rain go away you'll mess up the PDM today

PDM Evaluations

Preliminary Lab and Field Testing

 Lab Testing using Metal Yard Stick Taped into Loose Sand
 Field Testing on and near campus

 Full-Scale Field Testing

 PDA Instrumented Piles- 6 sites
 SPT Borings- 2 sites 3 locations

PDM Preliminary Testing

- **W** Unit on Tripod to Allow Leveling & Proper Sighting on Pile-Rods
- **Properly Use Reflective Tape to Produce Optimal Signal**

Full-Scale Field Testing

Project # and Name	Rebound	Pile or <i>SPT</i>	PDM Data	Camera Data	PDA Data
1 Baldwin Bypass	Yes	Pile	No	Yes	Yes
2 Port Canaveral	No	Pile	Yes	N/A	N/A
3 Reedy Creek	No	Pile	Yes	Yes	Yes
4 Ellis Overpass	No	Pile	Yes	Yes	Yes
5 Dunns Creek	Yes	Pile	Yes	Yes	Yes
5 Dunns Creek	Yes	SPT	Yes	Yes	N/A
6 Wekiva Parkway	Yes	SPT	Yes	Yes	N/A

PDM Reedy Creek Test Pile Data Near 90 '

PDM - G2 - 1.2.1.5 - [frmReview]

PDM Software: Displacement vs. Time

Zoom View: blue vs gray

PDM - G2 - 1.2.1.5 - [frmReview]

Blue line and dot maximum displacement vs. Gray line continuous displacement

Blows 8 - 14

PDM Output Rebound 1.5 mm (0.06-inches)

Blow	StartTime	Penetration (m)	Set (mm)	Rebound (mm)	Velocity (m/s)
8	16:00:15	33.334	20.6	1.9	1.73
9	16:00:17	33.354	20.5	1.3	1.65
10	16:00:18	33.374	19.7	1.6	1.58
11	16:00:18	33.396	22.3	1.9	1.65
12	16:00:20	33.417	20.8	1.1	1.51
13	16:00:21	33.437	20	1.5	1.68
14	16:00:22	33.457	19.5	1.8	1.55
Average			20.5	1.6	1.62
Range			2.8	0.8	0.23

PILE DRIVING MONITOR

Dunns Creek SPT

PDM REPORT Stable Reference Monitoring

Company Name

Client Name

Project Name

Project Area

Supervisor

10/4/2019

1:16:07 PM

14/3/2019

11:33:38 AM

Dunns Creek PDM from <u>SPT</u>

3-EOD PDM Pile Offset (m) Pile Number 8.200 Final Penetration at Blow 6 (m) Plic Type 12,404 Hammer Stroke (m) 1.000 m | mm 55.2 12.42 12.41 12.4 12.39 12.38 12.37 12.36 57.A 65.8 12.35 12.34 12.33 12.32 12.31 12.3 12.29 42.4 12.28 76.7 12.27 12.26 12.26 38.1 12.24 45.5 12.23 12.22 12.21 36.5 12.2 38.5 12.19 12.18 12.17 73.0 12.16 37.0 12.15 12.14 12.13 12.12 12.11 12.1 12.09 12.08 78.6 12.07 Blow #1 Blow #2 Blow #3 Blow #4 Blow #5 Biow #5

Blows

Report Date

Report Time

Test Date

Test Time

Superintendent.

Blue Dot and DMX are Not the Same Location

- Samples within Rebound Soil!
- Possible Time-Dependent Soil Response
- Possible Secondary Hammer Hit

PILE DRIVING MONITOR

PDM REPORT Stable Reference Monitoring

Company Name		Report Date	18/4/2019	
Client Name		Report Time	3:48:04 PM	
Project Name	Dunns Creek SPT	Test Date	14/3/2019	
Project Area		Test Time	11:02:37 AM	
Supervisor		Superintendent		
Pile Number	2-EOD	PDM Pile Offset (m)	8.200	
Pile Type		Final Penetration at Blow 7 (m)	11.016	
Hammer		Stroke (m)	1.000	

Dunns Creek (cont.)

Possible Time-Dependent Soil Response
 Possible Secondary SPT Hammer Hit

Test Pile Set Comparisons CMS vs PDM

20 Data Points in about 0.2 feet of driving from Dunns Creek

- Data are reasonably clustered around red line
- Matching data points between systems complex (i.e. PDM Active Zone and Camera One Location on Pile)
- Note # of plottable points from PDM testing is related to the # of blows per foot
 - i.e. 6 blows per foot would yield 6 points in 12 inches
 - Note the limit of PDM active testing zone was often about 18-inches

SPT Testing Set Comparisons CMS vs PDM

- 8 Data Points from Dunns Creek
- Matching data points worked well with SPT testing intervals

CMS Overview

Horizontal distance : 459.2 pixel * 0.197 mm / pixel = 90.4 mm

Marine Environmental Optics Lab, FIT

Baldwin Bypass Test Pile Movement vs Frame #: black spray paint line

60 Hz Data from Marine Environmental Optics Lab, FIT

60 Hz Data from Marine Environmental Optics Lab, FIT

Florida Institute of Technology

CMS Max Displacement and Rebound from Baldwin Bypass video: 0164

		Hammer Blow	DMAX (pixels)	Rebound (<mark>pixels</mark>)
		1	88	37
		2	82	33
		3	93	40
		4	93	43
		5	87	42
# of Pixels		6	87	37
		7	79	29
Diama		8	75	30
BIOWS	width per pixel	9	85	35
	0 197 mm	10	88	38
	0.157 mm	11	85	40
		12	100	45
		Mean	87	37
		Std Deviation	22	17
		Std Error	6	5
		Hammer Blow	DMAX (mm)	Rebound (mm)
		Hammer Blow 1	DMAX (mm) 17.336	Rebound (mm) 7.289
		Hammer Blow 1 2	DMAX (mm) 17.336 16.154	Rebound (mm) 7.289 6.501
		Hammer Blow 1 2 3	DMAX (mm) 17.336 16.154 18.321	Rebound (mm) 7.289 6.501 7.88
		Hammer Blow 1 2 3 4	DMAX (mm) 17.336 16.154 18.321 18.321	Rebound (mm) 7.289 6.501 7.88 8.471
r	nm	Hammer Blow 1 2 3 4 5	DMAX (mm) 17.336 16.154 18.321 18.321 17.139	Rebound (mm) 7.289 6.501 7.88 8.471 8.274
r	nm	Hammer Blow 1 2 3 4 5 6	DMAX (mm) 17.336 16.154 18.321 18.321 17.139 17.139	Rebound (mm) 7.289 6.501 7.88 8.471 8.274 7.289
r	nm	Hammer Blow 1 2 3 4 5 6 7	DMAX (mm) 17.336 16.154 18.321 18.321 17.139 17.139 15.563	Rebound (mm) 7.289 6.501 7.88 8.471 8.274 7.289 5.713
r	nm	Hammer Blow 1 2 3 4 5 6 7 8	DMAX (mm) 17.336 16.154 18.321 18.321 17.139 17.139 15.563 14.775	Rebound (mm) 7.289 6.501 7.88 8.471 8.274 7.289 5.713 5.91
r	nm	Hammer Blow 1 2 3 4 4 5 6 7 8 8 9	DMAX (mm) 17.336 16.154 18.321 18.321 17.139 17.139 15.563 14.775 16.745	Rebound (mm) 7.289 6.501 7.88 8.471 8.274 7.289 5.713 5.91 6.895
r	nm	Hammer Blow 1 2 3 4 4 5 6 7 7 8 8 9 10	DMAX (mm) 17.336 16.154 18.321 18.321 17.139 17.139 15.563 14.775 16.745 17.336	Rebound (mm) 7.289 6.501 7.88 8.471 8.274 7.289 5.713 5.91 6.895 7.486
r	nm	Hammer Blow 1 2 3 4 4 5 6 6 7 8 9 9 10 10	DMAX (mm) 17.336 16.154 18.321 18.321 17.139 17.139 15.563 14.775 16.745 17.336 16.745	Rebound (mm) 7.289 6.501 7.88 8.471 8.274 7.289 5.713 5.91 6.895 7.486 7.88
r	nm	Hammer Blow 1 1 2 3 4 4 5 6 7 6 7 8 9 10 10 11 12	DMAX (mm) 17.336 16.154 18.321 18.321 17.139 17.139 15.563 14.775 16.745 17.336 16.745 19.7	Rebound (mm) 7.289 6.501 7.88 8.471 8.274 7.289 5.713 5.91 6.895 7.486 7.88 8.865
r	nm	Hammer Blow 1 1 2 3 4 4 5 6 6 7 6 7 8 9 10 10 11 12 Mean	DMAX (mm) 17.336 16.154 18.321 18.321 17.139 17.139 15.563 14.775 16.745 17.336 16.745 17.336 16.745 19.7 17.106	Rebound (mm) 7.289 6.501 7.88 8.471 8.274 7.289 5.713 5.91 6.895 7.486 7.88 8.865 7.371
r	nm	Hammer Blow 1 1 2 3 4 4 5 6 6 7 6 7 8 9 10 10 11 12 Mean Std Deviation	DMAX (mm) 17.336 16.154 18.321 18.321 17.139 17.139 15.563 14.775 16.745 17.336 16.745 19.7 19.7 17.106 4.327	Rebound (mm) 7.289 6.501 7.88 8.471 8.274 7.289 5.713 5.91 6.895 7.486 7.88 8.865 7.371 3.265

Hammer Blows

12

Video 0164 from Black Spray Paint Line

60 Hz Results Marine Environmental Optics Lab, FIT

60 Hz Video Plot from Dunns Creek SPT Rod Movements

Dunns Creek SPT Rod Movements: 60 Hz Video

0.1 inch of time-dependent movement following linear movement of 0.85 inch about 1.25 seconds

Damping Coefficient Sensitivity Analysis of High Rebound Soils in Florida

Ms. Aline Franqui

Master's of Science - Civil Engineering

Soil Type at Pile Toe	Case Damping Coefficients Range (1975)	Updated Case Damping Coefficients Range (1996)
Clean Sand	0.05 to 0.20	0.10 to 0.15
Silty Sand, Sandy Silt	0.15 to 0.30	0.15 to 0.25
Silt	0.20 to 0.45	0.25 to 0.40
Silty Clay, Clayey Silt	0.40 to 0.70	0.40 to 0.70
Clay	0.60 to 1.10	0.70 or higher

BDV 28 977-01 Sites Evaluated

Rebound Levels from PDA data

Site	% Depths with Rebound Equal or Greater than			
Site —	0.25 in	0.50 in	1.00 in	
Ramsey Branch	95%	67%	29%	
I10 & Chaffee	89%	35%	18%	
I4 - 192	80%	37%	0%	
Heritage Parkway	52%	8%	0%	
I4 & 417	45%	1%	0%	

Rebound = DMX (2nd derivative) – Set (visual blows/foot)

Cyclic Triaxial Testing

- Shelby Tubes from Rebound Zones
- Effective Stress Estimated
- CU Triaxial Tests Performed
- CT Tests run with 1000 cycles each at 10, 20, 40, 60, & 80 % of Failure

CT Damping Data (σ-t)

Complex Python[®] computer coding used to analyze, over 600,000 data points <u>per test</u> and there were 42 tests or over 25 millions data points

CT Damping Data (σ-t)

_	% Cumulative	% Total	Data Points	η_{ave} Range
	1.1%	1.1%	5	0.001 - 0.01
	24.7%	23.6%	106	0.01 - 0.1
72% of	72.2%	47.6%	214	0.1 - 1
values	90.9%	18.7%	84	1 - 10
bet	95.1%	4.2%	19	10 - 100
0 and 1	98.0%	2.9%	13	100 - 1,000
	98.7%	0.7%	3	1,000 - 10,000
Case's Upd	99.6%	0.9%	4	10,000 - 100,000
, range fo	99.8%	0.2%	1	100,000 - 1,000,000
0.1	99.8%	0.0%	0	1,000,000 - 10,000,000
(dime	100.0%	0.2%	1	10,000,000 - 100,000,000
		100%	450	Total

72% of the η_{ave} values obtained between 0 and 1 psi-sec

ase's Updated damping range for silty sands: 0.15 – 0.25 (dimensionless)

Additional Evaluations

0.15 to 0.30

0.15 to 0.25

B) Area Under Strain vs. Time Curve

Silty Sand, Sandy Silt

C) CAPWAP signal matching analysis on 12 piles @ 5 Sites

Evaluation criteria:

Hammer Blows Used

- Blow counts: > 60 blows/foot
- Rebound > 0.45 inches
- Side friction < 110 kips

Signal matching: Wave measured versus Wave computed

Test Pile PR2PL9 EB1P1 EB5P1 IB3P1	BN 354 279 450 280	Elevation (ft) -9.15 -28.01 -29.95	Blows/ft 75 32	Rebound (in) 0.48 0.58	SFT (kips) 77 24
PR2PL9 EB1P1 EB5P1 IB3P1	354 279 450 280	-9.15 -28.01 -29.95	75	0.48 0.58	77 24
EB1P1 EB5P1 IB3P1	279 450 280	-28.01 -29.95	32	0.58	24
EB5P1 IB3P1	450 280	-29.95	74		
IB3P1	280		/1	0.48	19
104040	200	-26.82	46	0.55	17
IB4P10	158	-27.63	39	0.51	7
P8P4	2260	17.71	100	0.93	76
EB1P14	322	51.22	38	0.41	29
EB2P5	1479	3.85	75	0.48	104
EB1P1	654	-63.37	133	0.96	82
EB1P3	600	-63.81	150	1.06	0
EB4P5	1322	-60.61	171	0.95	51
EB5P2	480	-51.61	109	1.33	0
erage			87	0.73	41
Standard Deviation				0.29	34
	IB4P10 P8P4 EB1P14 EB2P5 EB1P1 EB1P3 EB4P5 EB5P2 rage Deviation	IB4P10 158 P8P4 2260 EB1P14 322 EB2P5 1479 EB1P1 654 EB1P3 600 EB4P5 1322 EB5P2 480	IB4P10 158 -27.63 P8P4 2260 17.71 EB1P14 322 51.22 EB2P5 1479 3.85 EB1P1 654 -63.37 EB1P3 600 -63.81 EB4P5 1322 -60.61 EB5P2 480 -51.61 rage Deviation -51.61	IB4P10 158 -27.63 39 P8P4 2260 17.71 100 EB1P14 322 51.22 38 EB2P5 1479 3.85 75 EB1P1 654 -63.37 133 EB1P3 600 -63.81 150 EB4P5 1322 -60.61 171 EB5P2 480 -51.61 109 rage 87 44	IB4P10 158 -27.63 39 0.51 P8P4 2260 17.71 100 0.93 EB1P14 322 51.22 38 0.41 EB2P5 1479 3.85 75 0.48 EB1P1 654 -63.37 133 0.96 EB1P3 600 -63.81 150 1.06 EB4P5 1322 -60.61 171 0.95 EB5P2 480 -51.61 109 1.33 rage 87 0.73 Deviation 44 0.29

CAPWAP Findings

Rebound versus CAPWAP Ultimate Toe Resistance (Ru)

Maybe toe resistance has more of an effect on rebound than previously understood

Rebound vs CAPWAP Ultimate Shaft Resistance

More shaft resistance should decrease rebound

CT Damping Conclusions

Cyclic Triaxial Damping Evaluations

- > Measured stress-time damping coefficients somewhat match Case values but not units
- > Dimensionless hysteresis loop values match Case's dimensionless values
- > Area under the strain versus time curve might help indicate PDA rebound

PDA Rebound & CAPWAP Signal Matching

- > Blow count, rebound and side friction criteria were successfully used to study rebound
- > Higher shaft resistance decreases rebound
- Higher toe resistance decreases rebound

PDM Conclusions

- PDM pile Set is comparable to CMS Set
- PDM pile Set is comparable to Inspector sets
- PDM pile Rebound roughly comparable to PDA Rebound
- PDM pile comparisons are limited to active zone
- PDM SPT rod movements successfully produced,
 - Viscous behavior may have occurred during SPT tests
 - Time-dependent soil responses or SPT hammer bounces occurred
- Concerns were identified with PDM equipment:
 - Reavy Rain prevented it from working
 - Limited time to input the required information for new testing zones

CMS Conclusions

- The CMS system produced reliable pile and SPT rod movement data at every site and climate condition encountered at frame rates of 60 Hz.
- It works best on piles when a <u>black line is sprayed</u> onto the pile and on SPT rods when <u>white chalk lines</u> are used
- The CMS system is relatively inexpensive and most likely comparable in cost to the PDM equipment, plus multiple cameras could be used, providing backup at all times.
- Currently the signals recorded in the field must be analyzed in the office, an easily addressed limitation.

Recommendations

FDOT's PDM should be used at a variety of sites throughout Florida to help clarify when it should be used.

The CMS system must be improved to produce real-time displacements on a rugged field laptop. The steps required to complete this task include shortening the duration of the videos and making the camera and laptop a single system.

PDM most suitable for set-check type uses

PDM during driving would require inspector to stop process
PDM could be used following hammer cushion replacement

Qualitative Benefits

When PDM and CMS results become readily available, <u>inspectors can be more confident in</u> <u>their work</u> and as a result <u>be more efficient</u>, and thereby <u>saving time and ultimately taxpayers</u> <u>money</u>.

Quantitative Benefits

- The comparisons between the PDA, PDM and CMS pile movements indicate that CMS based measurements are the most reliable and that the PDM may be most suitable for monitoring pile driving when a limited number of hammer blows are being anticipated (such as when set-checks are performed).
- Providing engineers and field inspectors better knowledge of the pile driving movements will improve the installation and approval process.
- Both PDM and CMS equipment may be useful to record time-dependent or visco-elastic SPT rod movements in rebound type soils, during the design phase invesitgations

Closing Slide: Questions ?

