

In-service Assessment of Road Sinkholes with 2D Ambient Noise Tomography

GRIP Meeting 2020

FDOT BDV31 977-122

Project Manager David Horhota, Ph.D., P.E.

Principal Investigator Khiem Tran, Ph.D.

Graduate Assistants Yao Wang, Ph.D. student Mohammad Khorrami, Ph.D. student

Presentation outline

- Introduction and background
- Project objective
- Research motivation
- Benefits of using traffic noise
- 2D ANT method
- Numerical experiments on void detection
- Field experiment at US 441
- Conclusion

Introduction and background

- Road sinkholes pose significant risk to the health and safety of the traveling public. Successful detection of the pre-collapsed sinkholes (buried voids) is crucial for remediation to minimize the risk.
- Existing 2D/3D full waveform inversion (FWI) methods using active wave-fields can be used to identify a buried void to a depth of three void diameters.

Example of 3D FWI at Newberry

Introduction and background

- However, 2D/3D FWI methods require multiple source impacts to generate the active wave-fields, the data acquisition time is considerable, leading to negative impacts caused by closing the traffic flow during seismic testing.
- It is risky to collect active seismic wave-fields on top of large voids, as ground perturbation by an active source may trigger collapses while persons are in the test area.
- This project goal is to reduce time of closing traffic during data acquisition, reduce the field testing risk and effort, and increase depths of investigation.

Research motivation

www.parkseismic.com

Energy comparison (active vs. passive source)

Benefits of using traffic noise

- Traffic noises are rich in low frequency components at 5 to 10 Hz (from heavy trucks), which are important to resolve deep structures to 100-ft depth.
- No wave citation is needed, thus minimizing the risk of collapse due to ground perturbation as well as reducing testing efforts.
- Land-streamer geophones can be deployed quickly in a few minutes on road shoulder or land dividers, and data are acquired without closing traffic.

Challenges:

Uncontrollable wave energy, unknown source locations

Project objective

To develop a 2D Ambient Noise Tomography (2D ANT) method using traffic noise for detection of pre-collapsed sinkholes (buried voids) beneath roadways to 100 ft depth

Deliverable 1: 2D ANT algorithm

 Extract measured correlation function (C) from recorded ambient noise

$$\mathbf{C}(t, x_i, x_j) = \mathbf{d}(t, x_i) * \mathbf{d}(t, x_j)$$
$$= \int_{0}^{T} \mathbf{d}(\tau, x_i) \cdot \mathbf{d}(t + \tau, x_j) d\tau$$

2D ANT algorithm

 Simulate synthetic correlation function using 2D wave equations

$$\mathbf{G}(t, x_i, x_j) = \mathbf{F}(t, x_i) * \mathbf{F}(t, x_j) = \int_0^T \mathbf{F}(\tau, x_i) \cdot \mathbf{F}(t + \tau, x_j) d\tau$$

 Match the synthetic and measured correlations to extract material property (Vs)

$$E = \frac{1}{2} \|G - C\|^2$$

$$\mathbf{V}_{s}^{n+1} = \mathbf{V}_{s}^{n} + \theta_{s}^{n} \delta V_{s}^{n}$$

Numerical experiment: one-void model

- > 24 receivers on the free surface at 3-m spacing
- Noise data is modeled as moving sources (similar to vehicles)
- Noise data is then assumed as field data, and input in the 2D ANT to extract Vs, Vp.

One-void model

Data comparison

- a) Synthetic 20slength simulated traffic noise data,
- b) 20s-length field data recorded on US 441 highway,
- c) Blow-up of data
 highlighted with
 red rectangle in
 a)
- d) Blow-up of data highlighted with red rectangle in b).

a. Cross-correlation function b. Normalized cross-correlation function residual

0.3

0.2

1 / 1 1 1 1 1 1 1 / / / / / / / / / /

residual at iter#7

initial residual

One-void model

Data analyses Five inversion runs at 0-10, 0-15, 0-20, 0-25, and 0-30 Hz

0.3

0.2

initial simulatior

simulation iter#7

observation

One-void model results

True and initial models

Two-void model

Inverted results of 5 inversion runs with increasing frequencies

- > 24 land-streamer geophones on the surface at 1.5-m spacing
- Traffic noises were recorded for 10 minutes with multiple passing vehicles.
- Active data by PEG (40 kg drop weight) were collected.

Passive vs. active wave energy comparison

Data analyses
 Two inversion runs at
 5-15, 5-20 Hz

Conclusion

- We have developed a new 2D ANT method for void detection using ambient traffic noise
- The 2D ANT method is demonstrated on a realistic synthetic model with the accurate recovery of the model variable layers and buried voids.
- The field result shows that the 2D ANT method is capable of resolving the subsurface velocity structures and detecting a roadway anomaly/void.
- The inverted Vs profile of the 2D ANT agrees with that of 2D active-source FWI, including Vs value and depth of the anomaly.

Thank You!

