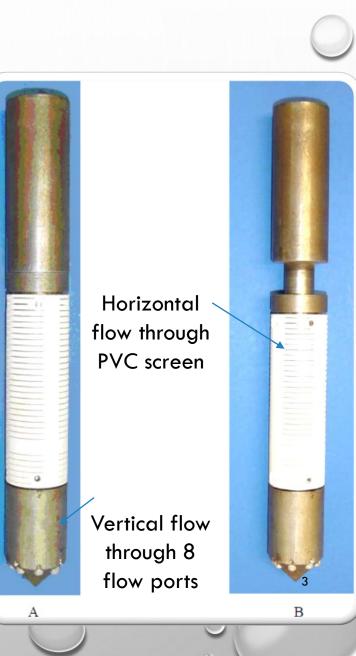
DEVELOPMENT OF AN IMPROVED VERTICAL AND HORIZONTAL INSITU PERMEAMETER (VAHIP)

UF PRINCIPAL INVESTIGATOR: ANA MOHSENI, PH.D.

CONSULTANT: HARALD KLAMMLER, PH.D.

POST-DOCTORATE RESEARCHER: MICHAEL RODGERS, PH.D.

GRADUATE STUDENT: AMINTA VELASQUEZ.


UNDERGRADUATE STUDENT: ANGELINA LIU

VAHIP BACKGROUND AND PURPOSE

- THE VERTICAL AND HORIZONTAL INSITU PERMEAMETER (VAHIP)
 - DEVELOPMENT STARTED IN 2004
 - PURPOSE
 - IN SITU PERMEABILITY TEST
 - CHEAPER
 - FASTER
 - READINGS OF PERMEABILITY AT DIFFERENT DEPTHS AT THE SAME LOCATION

VAHIP (2004 VERSION)


- PHASE 1 (COMPRESSED)
 - VERTICAL FLOW
- PHASE 2 ("OPENED")
 - HORIZONTAL FLOW
- MADE OF STEEL
 - 45° cone tip
- PROCEDURE TO ESTIMATE PERMEABILITY
 - ADVANCING THE PROBE INTO THE SUBSURFACE
 - Use of standard penetration test (SPT) RIG
- ISSUES
 - DIFFICULTY TO RETURN TO PHASE I AFTER COMPLETING PHASE II
 - PRESENCE OF SOIL IN THE GAP FORMED WHEN PULLING THE PROBE OUT (OPENED POSITION)
 - SAND INFILTRATION
 - NEED TO EXTRACT THE PROBE, DISASSEMBLE IT, AND REASSEMBLE IT
 - LACK OF RIGIDITY DUE TO THE PVC SCREEN

VAHIP (2005 VERSION)

- IMPROVED RIGIDITY
 - REPLACEMENT OF PVC SCREEN FOR A STEEL SCREEN
- MORE ISSUES WERE OBSERVED WHILE TESTING THE PROBE
 - VERTICAL FLOW PORTS CLOGGING

CLOGGED FLOW PORTS ISSUE SOLVED

- REPLACED BY A SINGLE AND LARGER FLOW PORT
 - REMAINED CLOSED DURING ADVANCEMENT
- HORIZONTAL SCREEN OPENED DURING ADVANCEMENT
- ISSUE
 - DIFFICULT AND PROBLEMATIC TO ADVANCE
 - STIFF CLAY

- MAIN CHANGE
 - HORIZONTAL SCREEN SLITS
 - REPLACED BY VERTICAL SLITS
 - ENSURE THOSE SLITS BEING CLOSED DURING ADVANCEMENT
 - PREVENTING CLOGGING

- ISSUE
 - MECHANICALLY COMPLICATED
 - ROTATED TO OPEN THE SCREEN
 - ALLOW WATER TO FLOW HORIZONTALLY
 - ROTATED TO CLOSE THE VERTICAL SLITS FOLLOWED BY THE TIP OPENING
 - ALLOW VERTICAL FLOW
 - ROTATED TWICE FOR EVERY DEPTH
 - FABRICATION WAS EXPENSIVE

VERTICAL IN SITU PERMEAMETER (VIP) PROJECT

- STEEL PROBE FABRICATED DURING VAHIP (2013) PROJECT
 - New permeability probe recently developed by UF and FDOT
 - MEASUREMENTS
 - GOOD AGREEMENT WITH RESULTS FROM VARIOUS CONVENTIONAL METHODS
 - INCLUDES BOTH CASED AND UNCASED METHODS

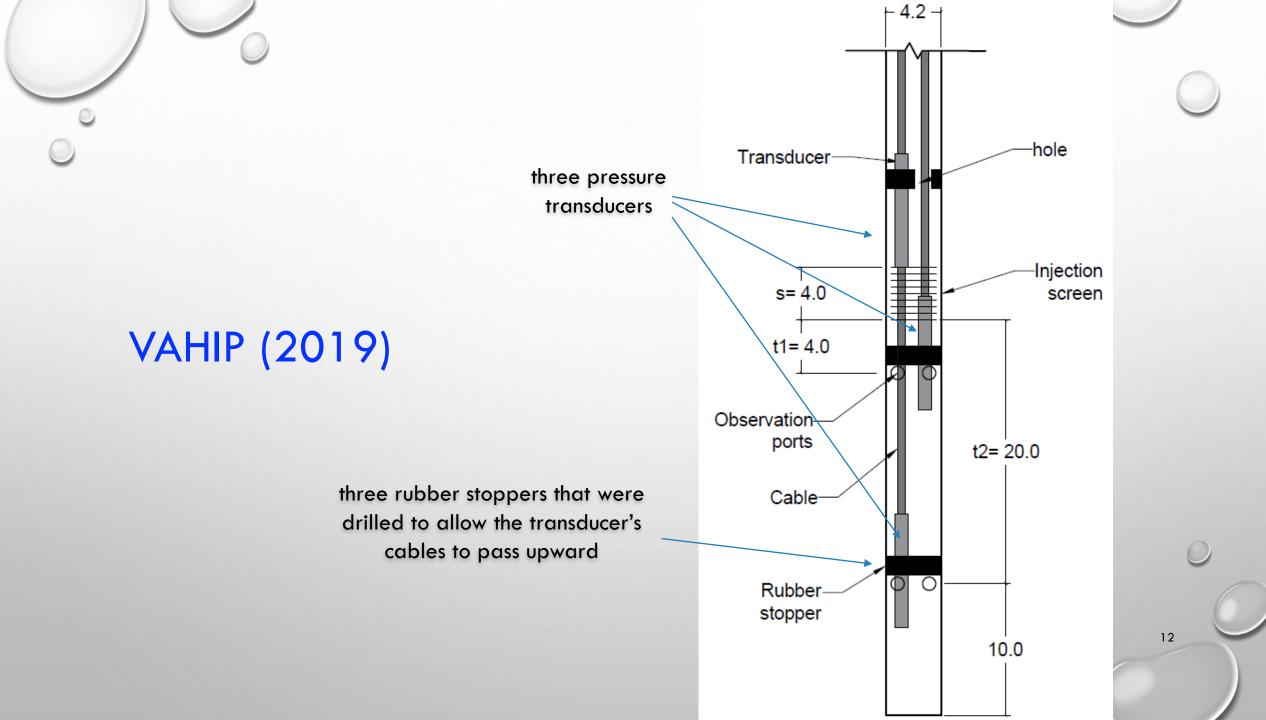
- REQUIRES FAR LESS TEST TIME
 - GREATLY IMPROVES EFFICIENCY
 - MORE DATA CAN BE COLLECTED WITH LESS EFFORT
- New Florida Method of Test was developed for the probe
 - FM 5-614
- ISSUES
 - Delivers some "average" conductivity
 - NO INDEPENDENT VALUES OF k_{v} and k_{h}
 - DIFFICULTY TO DRIVE THE PROBE INTO DEEPER LAYER

- AMENDMENT OF VIP PROJECT
- Advances in Flow Theory
 - Potential for estimating vertical and horizontal permeability k_v and k_h under saturated conditions
- SIMPLE MECHANICAL DESIGN
 - NO MOVING PARTS
- AUTOMATED DATA ACQUISITION USING PRESSURE TRANSDUCERS
 - NO HAND READINGS
 - POTENTIALLY CAPABLE OF REACHING GREATER DEPTHS
- POTENTIALLY INSENSITIVE TO SMEARING AND COMPACTION NEAR PROBE SURFACE
 - Use of SPT hammer

VERTICAL AND HORIZONTAL IN SITU PERMEAMETER PROJECT (VAHIP)

- PROJECT TASKS
- ✓ 1. IDENTIFICATION OF AN APPROPRIATE PRESSURE MEASUREMENT SYSTEM
- ✓ 2. DEVELOPMENT OF COMPUTER-AIDED DRAWINGS (CAD) FOR THE PROPOSED PROBE
- ✓ 3. FABRICATION OF A PVC-PROTOTYPE AND POSSIBLE ADJUSTMENTS OF INJECTION SYSTEM
- ✓ 4. TESTING OF PVC-PROTOTYPE AT THE DOT TEST PIT
- ✓ 5. FABRICATION OF A STEEL PROBE
 - IN SITU TESTS WITH SPT RIG
 - 6. FINAL REPORT

- SIMPLE MECHANICAL DESIGN
 - NO MOVING PARTS
- AUTOMATED DATA ACQUISITION
 - Use of pressure transducers
 - NO HAND READINGS
- POTENTIALLY CAPABLE OF REACHING GREATER DEPTHS
 - REDUCED PROBE DIAMETER
- POTENTIALLY INSENSITIVE TO SMEARING AND COMPACTION NEAR PROBE SURFACE


- BASED ON MODEL DEVELOPED BY KLAMMLER AT ALL (2017)
 - "THEORETICAL ASPECTS FOR ESTIMATING ANISOTROPIC SATURATED HYDRAULIC CONDUCTIVITY FROM IN-WELL OR DIRECT-PUSH PROBE INJECTION TESTS IN UNIFORM MEDIA"
 - MATHEMATICAL METHOD
 - FIND THE RELATION BETWEEN VERTICAL AND HORIZONTAL PERMEABILITY

- Use of this model
 - MEASURE THE HORIZONTAL PERMEABILITY
 - CALCULATE THE VERTICAL PERMEABILITY

VAHIP 2019

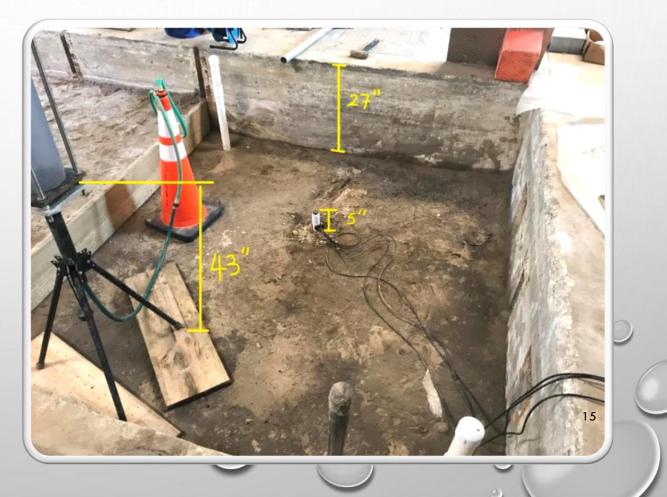
- SELECTION OF PRESSURE MEASUREMENT SYSTEM
 - MINIATURE MTM3000 SUBMERSIBLE TRANSMITTERS
 - PMC ENGINEERING
- FABRICATION OF A PVC-PROTOTYPE
 - DETAILED COMPUTER-AIDED DRAWINGS (CAD)
 - POSSIBLE ADJUSTMENTS OF INJECTION SYSTEM
- LABORATORY TEST
 - INJECTION TESTS IN SAND-PACKED BARRELS

13

VAHIP PROTOTYPE USED FOR LABORATORY TESTING

• INJECTION TESTS IN SAND-PACKED BARRELS

• RESULT COMPARISON BETWEEN PVC PROTOTYPE AND CONSTANT HEAD TEST


From PVC prototype	From constant head test	
k _h = 0.065 cm/s	$k_{\rm h} = 0.069 \ {\rm cm/s}$	
kv = 0.022 cm/s	kv= 0.025 cm/s	

• **PROTOTYPE PROBE**

0


• SMO TEST PIT

RECORDED THREE PRESSURES FROM EACH TRANSDUCER BY EVERY 6 SECONDS

VAHIP LABVIEW PROGRAM SCREENSHOT WITH POWER SUPPLY USED FOR THE FDOT TEST PIT

RESULTS FROM PVC-PROTOTYPE AT THE SMO TEST

PIT

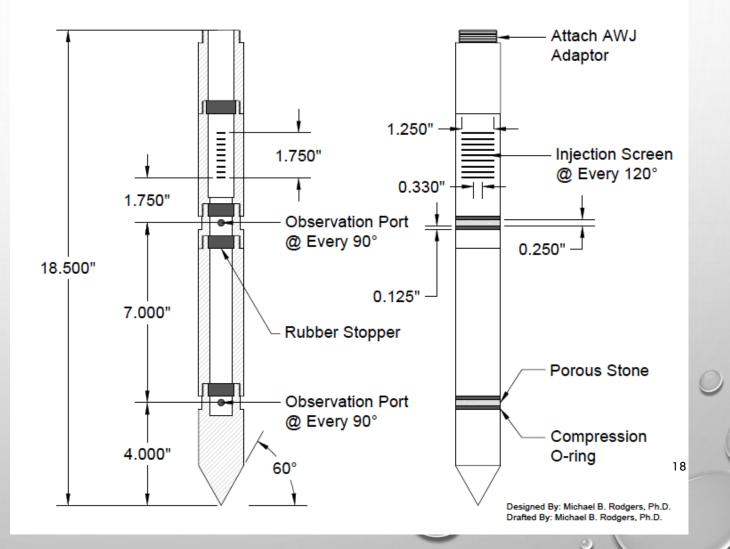
- UNSUITABLE COMPACTION OF SOIL
 - CAUSED THE SOIL AROUND THE PROBE TO BECOME LOOSER
 - GAP LEAD TO PIPING ISSUES ALONG THE PVC PROBE
- TEST PIT HAD A LIMITED PVC PROBE DEPTH
 - HIGH HYDRAULIC GRADIENTS AROUND THE PROBE

Table 1- 2.	The Q/∆Ptop in	two minutes interval	l for test 1, with	calculated kh and kv.
-------------	----------------	----------------------	--------------------	-----------------------

Test 1	Average $Q/\Delta P_{top}$ (m^2/s)	kh (m/s)	Kv (m/s)
1-5 mins	5.04E-06	1.87E-06	7.50E-04
5-10 mins	5.91E-06	2.20E-06	8.79E-04
10-15 mins	6.03E-06	2.24E-06	8.97E-04

Table 1-2 cont. The Q/ΔPtop in two minutes interval for test 2, with calculated kh and kv.

Test 2	Average $Q/\Delta P_{top}$ (m^2/s)	kh (m/s)	Kv (m/s)
1-5 mins	6.19E-06	2.30E-06	9.20E-04
5-10 mins	6.70E-06	2.49E-06	9.97E-04
10-15 mins	7.23E-06	2.69E-06	1.08E-03


Table 1-2 cont. The Q/DPtop in two minutes interval for test 3, with calculated kh and kv.

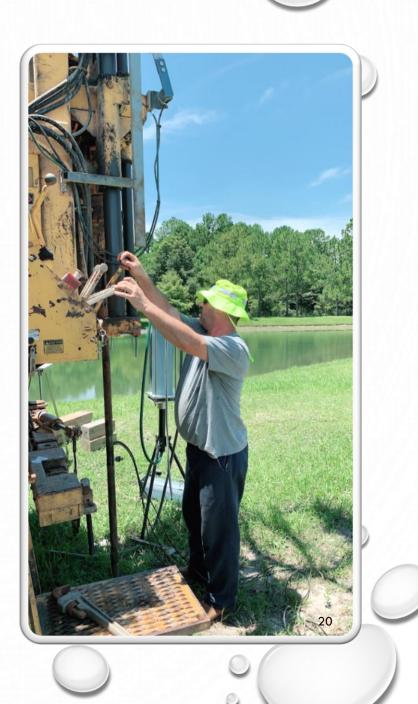
Test 3	Average $Q/\Delta P_{top}$ (m^2/s)	kh (m/s)	Kv (m/s)
1-5 mins	5.30E-06	1.97E-06	7.88E-04
5-10 mins	5.45E-06	2.03E-06	8.11E-04
10-15 mins	7.95E-06	2.96E-06	1.18E-03

Table 1-2 cont. The $Q/\Delta P$ top in two minutes interval for test 4, with calculated kh and kv.

Test 4	Average $Q/\Delta P_{top}$ (m^2/s)	$\frac{\mathbf{k_h}}{(\mathrm{m/s})}$	K _v (m/s)
1-5 mins	5.10E-06	1.90E-06	7.58E-04
5-10 mins	6.83E-06	2.54E-06	1.02E-03
10-15 mins	6.34E-06	2.36E-06	9.43E-04

• CAD DESIGN FOR STEEL PROBE

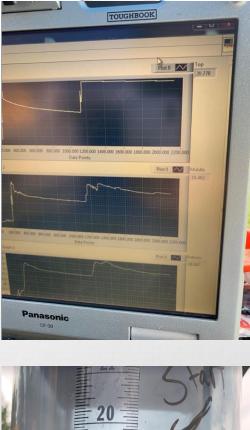
- STEEL PROBE FABRICATION
 - 1.75" DIAMETER
 - 18.5" LENGTH


•

- 2 POROUS STEEL
- 3 TRANSDUCERS WIRED TO THE DATA ACQUISITION SYSTEM

- NO MOVING PARTS
 - EASIER OPERATION

- IN-SITU TESTS
 - LOCATION: BACKYARD OF SMO
 - SETUP: SAME AS TEST PIT TESTS
 - METHODS: DATA RECORDING AND FALLING HEAD TEST



- TEST PERFORMED ON 08/07/2019
 - DEPTH: 11 FT
 - NO LEAKING
 - GOOD LOOKING READINGS
 - PROPERLY MARKED FALLING HEAD TEST

19 =

- ANALYSIS OF THE RECORDED DATA
- MORE FIELD TESTS ON SHALLOW GWT AREA
- FINISH FINAL REPORT