Underwater Noise Level Study during Impact Pile Driving

FDOT Project No. BDV34 985-03, Katasha Cornwell, Office of Environmental Management, Project Manager

University of North Florida 1 UNF Drive, Jacksonville, FL 32224

PI: Raphael Crowley, Ph.D., P.E., Associate Professor, Coastal (and sometimes Geotechnical) Engineering, <u>r.crowley@unf.edu</u> Co-PI: Jim Gelsleichter, Ph.D., Associate Professor, Biology, <u>jim.gelsleichter@unf.edu</u> Co-PI: Brian Kopp, Ph.D., Assistant Professor, Electrical Engineering <u>brian.kopp@unf.edu</u> Co-PI: Bill Dally, Ph.D., P.E., Associate Professor, Coastal Engineering, <u>w.dally@unf.edu</u> Research Assistants – Jon Berube (GRA), Clark Morgan (MSRA), and Christian Matemu (GRA)

Motivation

 Pile driving may make enough noise to kill/injure fish and other marine animals

 Florida does not have reliable local guidelines to predict anthropogenic noise during pile driving and it has been using CalTrans' "Technical Guidance for Assessment and Mitigation of the Hydroacoustic Effects of Pile Driving on Fish" (Buehler et al. 2015)

Specific Variables of Interest

• Sound Attenuation Coefficient

$$- TL = F \times \log_{10} \frac{R}{R_0}$$

- R = Range from sound source
- R_0 = Reference range
- F = Transmission loss coefficient
- TL = Transmission loss (in dB)

- Sound Statistics
 - LZ_{peak} = Peak sound measured at 1-Hz
 - RMS_{90} = 90th sound percentile
 - Peak data = Peak data from each drive event from LZ_{peak} data
 - $Peak_{90}$ = Peak data from RMS_{90}
 - SEL_{90} = Sound exposure level from RMS_{90}
 - *SEL_{CUM}* = Cumulative sound exposure level

Project Objectives

- Main Objective Characterize underwater noise levels during impact pile driving throughout the State of Florida
 - Sample noise data at several bridges throughout the state and use data to develop correlations between noise and other variables
 - Determine transmission loss coefficients and use to data to develop statistics between noise and other variables
 - Develop technical guidance in collaboration with NMFS and USFWS

Field Data Collection – Data Collection System Development

- Field data collection system must be
 - Robust
 - Easily deployable/movable
 - Capable of sending real-time data to users
 - Capable of capturing accurate data
- Solution buoy-mounted hydrophone array with onboard WiFi transmission (5 buoys)

Field Data Collection – Buoy Development

Field data collection original buoy schematic

- Issues with original design:
 - Too heavy (over 50 lbs per buoy)
 - Too large/bulky would not be easy to deploy from watercraft

Field Data Collection – Buoy Development

New buoy design idea

- Pontoon-based system with aluminum frame
 - Lightweight (approximately 30 lbs. per buoy)
 - Easy to deploy
 - Stackable/can fit several in watercraft
- Issues to solve
 - How to get instruments into/out of box?
 - Strain Relief?
 - How to give WiFi appropriate range?
 - Where to coil cables?
 - How to anchor?
 - Buoy drift

Buoy Electronics

WiFi Antenna and Bullet

Data loggers, batteries, power converters, etc.

Receiver box

How to Keep Instruments Dry, Provide Strain Relief, Coil Cables ?

Bulkhead connections through box and strain relief

Hydrophone/cable/thermocouple coil attached to box

Anchoring/Deployment

Bridle connection

Secondary buoys/ropes/daisy chains

River anchors

Field Data Collection – Buoy Development

First buoy launch (it floats!)

Field Data Collection – Buoy Development

Stacked Buoys

Pulling away from first buoy

Field Data Collection – Successful Buoy Deployment

Grad students with buoys in watercraft

Data Collection

John Sims Parkway	Site Name	Latitude (N)	Longitude (W)	Date(s) of Visit	Number of Piles	Drive Type
Suwannee River Ribault River	Bayway E	27°41'41.06"	82°43'0.84"	6/3/19 6/4/19	1 steel pile	Steel trestle vibrating
	Dunn's Creek	29°34'38.95"	81°37'34.73"	3/14/19 3/15/19	2 sheet pile pairs	Sheet pile vibrating
	John Sims Pkwy	30°30'9.73"	86°29'38.51"	6/24/19 6/26/19	1 concrete pile	Concrete production piles percussion hammer
Florida	Ribault River	30°23'43.99"	81°42'52.21"	5/7/19 6/10/19	1 concrete test pile and 3 production piles	Percussion hammer
	Suwannee River	30°14'40.86"	83°15'0.34"W	4/18/19	3 concrete piles	Percussion hammer
				5		

UNIVERSITY of NORTH FLORIDA

Data Collection Location Map

Data Analysis

- $SEL = 10 \log_{10} \int_0^T P^2(t) dt$
- $P = P_{ref} 10^{\frac{LZ_{peak}}{20}}$
- $SEL = 10 \log_{10} \frac{\int Pdt}{P_{ref}^2}$
- $SEL \approx \overline{(LZ_{peak})} + 10 \log_{10} T$
- SEL = Sound Exposure Level
- P = Sound Pressure
- P_{ref} = Reference Sound Pressure
- LZ_{peak} = Peak Sound @ 1-Hz Sampling Rate
- T = Time of Sound Event

- $TL = F \log_{10} \left(\frac{R}{R_0} \right)$
- $P_s P_b = F \log_{10} \left(\frac{R}{R_0} \right)$
- $P_B = P_S F \log_{10} \left(\frac{R}{R_0} \right)$
- $P_B = a \log_{10} \left(\frac{R}{R_0} \right) + b$
- TL = Transmission Loss
- R = Range from Sound Source
- R₀ = Reference Range (usually 1 m)
- P_B = Sound at the Buoy
- P_s = Sound at the Source
- F = Transmission Loss Coefficient
- a,b = Best-Fit Regression Coefficients

Dunn's Creek – Sound Collection

Raw Data from Dunn's Creek

Buoy Number	Buoy Distance (m)	Water Depth (m)	Hydrophone Depth (m)
1	59.5	7.62	3.96
4	202.0	6.10	2.74
3	396.0	6.71	3.09

Dunn's Creek Buoy Distance

Dunn's Creek Sheet Piles

Dunn's Creek – Data Analysis Sample

Ribault River Test and Production Piles – Data Collection

Buoy Number	Buoy Distance (m)	Water Depth (m)	Hydrophone Depth (m)
1	25	2.35	1.22
2	49	2.19	1.22
3	195	2.10	1.22
4	70	2.26	1.22

Top-Left – Test Pile Data Bottom-Left – Production Pile Data Middle – Test Pile Driving

Ribault River – Data Analysis Sample Results

Suwannee River – Data Collection

Buoy Number	Buoy Distance (m)	Water Depth (m)	Hydrophone Depth (m)
2	15	4.88	2.44
3	65	3.96	2.44
4	502	2.74	1.52

Suwannee River Buoy Distances

Suwannee River Construction Trestle

Suwannee River – Data Analysis and Sample Results

Suwannee River Sample Data Analysis (Pile 3 Shown)

Bayway E – Data Collection

Buoy Number	Buoy Distance (m)	Water Depth (m)	Hydrophone Depth (m)
1	16-25 distance to pile 1 and to pile 4	3.05	1.52
2	73	3.96	1.83
3	177	3.66	1.83
4	370	2.96	1.83

Bayway E Pile Rig

Bayway E Buoy Distances

Bayway E – Data Analysis and Results

John Sims Parkway – Data Collection

Buoy Number	Buoy Distance (m)	Water Depth (m)	Hydrophone Depth (m)
1	25	3	1.5
2	85	3	1.5
3	190	3	1.5
4	375	3	1.5

Top-Left – Raw Signal Bottom-Left – Buoy Distances Above – Driving the Pile

John Sims Parkway – Data Analysis and Results

Data Collection Summary

Site Name	Mean F-value	Mean Worst- Case SEL _{cum}
Dunn's Creek	43.81	257.75
Ribault River Test Pile	35.64	249.57
Ribault River Production Piles	42.06	270.26
Suwannee River	26.26	262.24
Bayway E*	7.79*	201.18*
John Sims Parkway	23.39	244.17

- Except for Bayway E, F has consistently been greater than the recommended value, F=15
- Worst-case *SEL* may be <u>very</u> high, but appears to dissipate quickly as a function of distance

Issues with Testing/Areas for Improvement

• Hydrophone reliability needs to be improved

• GPS reliability needs to be improved

• WiFi reliability needs to be improved

Upcoming Work

- Short-term (fall 2019)
 - Back to Bayway E (St. Pete, D4)
 - Choctawhatchee Bay Bridge Fender Replacement? (Destin, D3)
- Longer-term (2020)
 - C Street Cedar Key (Cedar Key, D2)
 - Manatee River Bridge (Bradenton, D1)
 - Howard Frankland Bridge (Tampa, D7)
 - New River Bridge (West of Starke, North of Gainesville, D2)
 - Simpson River Bridge (Amelia Island, D2)
 - Myrtle Creek bridge (Amelia Island, D2)
 - Simpson Creek Bridge (Pensacola, D3)

Thank you!

