

Quantifying Pile Rebound with Detection Systems Best Suited for Florida Soils

Task Work Order BDV28 Two 977-07

PI: Paul J Cosentino PhD, P.E., Co-PI's: Matthew Jensen PhD Charles Bostater PhD Graduate Students: Aline Franqui, Robert Rogulski, Samin Aziz, Jennifer Closson

> Florida Institute of Technology Melbourne FL 32901-6975 321-674-7555 Direct

PM: Juan Castellanos, P.E

Today's Presentation

Evaluate two new pile movement measuring systems

Inopiles PDM LASER deflection-measuring system

FIT camera measurement system (CMS)

- Evaluate Damping from
 - Cyclic Triaxial (CT) Viscous Response
 - CAPWAP Signal Matching

New Technologies

- Inopiles PDM Measuring System
- FIT High Speed Cameras

Rain-rain go away you'll mess up the PDM today

BECAUSE EVERY PILE IS IMPORTANT

Cyclic Results show HPR Soils are Viscoelastic

Three deflection versus time cycles @ Ramsey Branch - 63' Site 12 Three deflection versus time cycles @ Heritage Parkway -57 ' Site 10

PDM Evaluations

Preliminary Lab and Field Testing

 Lab Testing using Metal Yard Stick Taped into Loose Sand
 Field Testing on and near campus

 Full-Scale Field Testing

 PDA Instrumented Piles- 6 sites
 SPT Borings- 2 sites 3 locations

PDM Preliminary Testing

Reflective Tape to Produce Optimal Signal

Full-Scale Field Testing

Project # and Name	Rebound	Pile or <i>SPT</i>	PDM Data	Camera Data	PDA Data
1 Baldwin Bypass	Yes	Pile	No	Yes	Yes
2 Port Canaveral	No	Pile	Yes	N/A	N/A
3 Reedy Creek	No	Pile	Yes	Yes	Yes
4 Ellis Overpass	No	Pile	Yes	Yes	Yes
5 Dunns Creek	Yes	Pile	Yes	Yes	Yes
5 Dunns Creek	Yes	SPT	Yes	Yes	N/A
6 Wekiva Parkway	Yes	SPT	Yes	Yes	N/A

Inopiles PMD-Basic Usage Limitations

- Only about 30-inches of data can be recorded
 - Angle is <u>2.6⁰</u> from horizontal
 - Reflective Tape must stay within Zone
- Solution of the second data during entire driving process
 - Each testing sequence requires new input data-Express Mode
 - Reflective Tape Quality May Affect Results

Reedy Creek Test Pile PDM Data Near 90 '

1.2.1.5 - [frmReview]					
AFT' PILE	DRIVING MO		ி сом₄	CURRENT 3/08/2	2018 3:29:15 PM
OVERVIEW	BLOW VIEW NUME		TE VIEW GENERAT REPORT	E RECORD EXPORT	
Home > Review & Report > C	omplete View				
m					Zoom to Blows
33.18					
33.16					
33.14					
33.12					
33.1					
33.08					
33.06					
33.04					
33.02					
32.98					
32.96					
32.94					
32.92					
32.9					
32.88	······				
32.86					
32.84					
32.82					
32.8					
32.78					Replay
32.70	-				
32.74					
32.7					
00:00 00:01 00:02 00:0	3 00:05 00:06 00:07 00:08 00:10	00.11 00.12 00.14 00.15 00.16 0	00.18 00.19 00.20 00.21 00.23	0.24 00.25 00.27 00.28 00.29	Deek to Manu
00.00 00.01 00.02 00.0	3 00.00 00.00 00.07 00.00 00.10 0	Time (mm:se)	0.10 00.10 00.20 00.21 00.23 0	N.24 00.20 00.21 00.20 00.20	Back to Menu

PDM Software: Displacement vs. Time

Zoom View: 20 mm: blue vs gray

Blue maximum displacement = Gray continuous displacement

Blows 8 - 14

PDM Output 1.5 mm rebound

Blow	StartTime	Penetration (m)	Set (mm)	Rebound (mm)	Velocity (m/s)
8	16:00:15	33.334	20.6	1.9	1.732
9	16:00:17	33.354	20.5	1.3	1.645
10	16:00:18	33.374	19.7	1.6	1.581
11	16:00:18	33.396	22.3	1.9	1.651
12	16:00:20	33.417	20.8	1.1	1.506
13	16:00:21	33.437	20	1.5	1.68
14	16:00:22	33.457	19.5	1.8	1.553
Average			20.5	1.6	1.62
Max Variation			2.8	0.8	0.23

PDM eliminates inspectors average set versus PDA DFN

PILE DRIVING MONITOR

PDM REPORT Stable Reference Monitoring

Hammer

Company Name		Report Date	10(4/2019
Client Name		Report Time	1:16:07 PM
Project Name	Dunns Creek SPT	Test Date	14/3/2019
Project Area		Test Time	11:33:38 AM
Supervisor		Superintendent	
Pile Number	3-EOD	PDM Pile Offset (m)	8.200
Plie Type		Final Penetration at Blow 6 (m)	12.404

Stroke (m)

1.000

Dunns Creek DDM on SPT

Blue Dot and DMX are Not the Same Location

- Possible Time-Dependent Soil Response
- Possible Secondary Hammer Hit
- Samples within Rebound Soil!

PILE DRIVING MONITOR

PDM REPORT Stable Reference Monitoring

Company Name		Report Date	18/4/2019	
Client Name		Report Time	3:48:04 PM	
Project Name	Dunns Creek SPT	Test Date	14/3/2019	
Project Area		Test Time	11:02:37 AM	
Supervisor		Superintendent		
Pile Number	2-EOD	PDM Pile Offset (m)	8.200	
Pile Type		Final Penetration at Blow 7 (m)	11.016	
Hammer		Stroke (m)	1.000	

FD

Dunns Creek (cont.)

Response of the secondary SPT Hammer Hit

CMS vs PDM Set from Pile testing

20 Data Points in about 0.2 feet of driving from Dunns Creek

- Data are reasonably clustered around red line
- Matching data points complex
- Note # of points per PDM test sequence related to Blows per foot
 - *i.e.* 6 blows per foot would yield 6 points in 12 inches and reach limits of PDM testing region

CMS vs PDM Set from SPT testing

Red dotted line is line of equality

- 8 Data Points from Dunns Creek
- Wekiva Parkway data to be added
- Matching data points worked fairly well

PDM Summaries

Summary of PDM data for Piles

Tests	% Of Useable Test Data	Average % Of Active Zone
PDM-Pile	55	52
PDM-SPT	88	68

Highlights concerns about using PDM throughout driving

CMS - PDM SET/Rebound for Piles and SPT

Average %	Average %	Average %	Average %
Difference	Difference	Difference	Difference
In Set From	In Rebound	In Set From	In Rebound
PDM For	From PDM	PDM For	From PDM
Piles	For Piles	SPT	For SPT
-7	-25.25	6.16	-121.33

PDM and Inspector Sets are reasonably close PDM and SPT movements are also close Rebound from PDM on piles is much better than on SPT rods

PDA - PDM DFN vs SET

Average %	Average %	Average %	Average %
Difference	Difference	Difference	Difference
In Set From	In Rebound	In Set From	In Rebound
PDM Using	From PDM	PDM Using	From PDM
DFN	Using DFN	SET	Using SET
255.71	18.49	55.08	33.26

PDM Set and PDA DFN poorly related

PDM Conclusions

PDM Set similar to camera movements

PDM Set similar to Inspector sets

PDM Rebound roughly similar to PDA Rebound

PDM comparisons are limited to higher Blow counts

PDM Recommendation

PDM more suitable for set-check than full driving

Video Camera Signal Analysis of Pile Rebound by Charles R. Bostater Jr., Samin T. Aziz, Jennifer Clossen & ME[©]

Center for Remote Sensing, Florida Institute of Technology Melbourne, Florida bostater@fit.edu 321-674-7113

Background➢ 30 to 120 Hz Video Signals tested in lab and at 6 sites.

Approach:

	📓 ROI Measuremen 🗕 🗖 🗙
· All show and the factor of the second states of t	File Units Area Options
1 & a the man - and at the state of the second	Perimeter: 788.0000 Pixels
ROI Measuremen	Point #1: (12/4.00,452.00)
File Units Area Options	Point #3: (1281.00,839.00) Point #4: (1274.00.839.00)
Permeter: /22.000 Pixels Total Area: 3,168.000 Pixels ²	
Segment #1: 9.0000 Pixels	
Segment #3: 9.0000 Pixels Segment #4: 352.0000 Pixels	
	Conoral Mathadalagy
	General Wethodology.
	1. Each video frame converted to an image.
	2. Region of interest (ROI) selected for signal analysis
ROI II	3. Each ROI analyzed to detect edge of paint line/tape
	4. Position movement tracked within image
The state of the second s	5. Position movement plotted for each frame signal
A MALE AND A STATE OF	6. Error analysis performed
the second s	7. Pixel space converted to actual distance
when the country of the state of the second s	•
the second s	Next Slide represents a video nicture
and the second	MERE SHALL TEPTESCHES & VILLE PIELULE

Basic Equipment Descriptions

Horizontal distance : 459.2 pixel * 0.197 mm / pixel = 90.4 mm

Movement (mm) vs 60 HZ Frames for Baldwin Bypass Jacksonville Pile: black spray paint line

Max Displacement, Set and Rebound of Baldwin Bypass video: 0164

Hammer Blow	Max displacement (pixels)	Rebound (pixels)
1	88	37
2	82	33
3	93	40
4	93	43
5	87	42
6	87	37
7	79	29
8	75	30
9	85	35
10	88	38
11	85	40
12	100	45
Mean	87	37
Standard Deviation	22	17
Standard Error	6	5
Hammer Blow	Max displacement (mm)	Rebound (mm)
1	17.336	7.289
2	16.154	6.501
3	18.321	7.88
4	18.321	8.471
5	17.139	8.274
6	17.139	7.289
7	15.563	5.713
8	14.775	5.91
9	16.745	6.895
10	17.336	7.486
11	16.745	7.88
12	19.7	8.865
Mean	17.106	7.371
Standard Deviation	4.327	3.265
Standard Error	1 249	0 943

Hammer Blows	Width per pixel
12	0.197 mm

Baldwin Bypass Test Pile driving 60HZ Video

Video 0164 Using Black Spray Paint Line

60 Hz Video Recording Software Plot from Dunns Creek SPT Rod Movements

60 Hz Video Dunns Creek SPT Rod Time-Dependent Movements

0.1 inches of movement following linear movement of 0.85 inches about 1.25 seconds

Damping Coefficient Sensitivity Analysis of High Rebound Soils in Florida

Aline Franqui

Master's of Science - Civil Engineering

Soil Type at Pile Toe	Case Damping Coefficients	Updated Case Damping
	Range (1975)	Coefficients Range (1996)
Clean Sand	0.05 to 0.20	0.10 to 0.15
Silty Sand, Sandy Silt	0.15 to 0.30	0.15 to 0.25
Silt	0.20 to 0.45	0.25 to 0.40
Silty Clay, Clayey Silt	0.40 to 0.70	0.40 to 0.70
Clay	0.60 to 1.10	0.70 or higher

Damping

Relates to energy loss during a cyclic loading

Case's damping factor (Jc) - dimensionless

$$J_{c} = \frac{R_{smax}}{Z \times c} \quad Z = \frac{EA}{c}$$

Smith's damping factor (Js) – units of time/displacement

$$J_s = \frac{R(t)}{R_{smax} \times c}$$

 $R_{smax} = \max \text{ load}$ Z = impedance c = particle or wave velocity

E = Young's modulus A = pile's cross section R(t) = load

Sites

Rebound from PDA data

Site -	% Depths with Rebound Equal or Greater than			
	0.25 in	0.50 in	1.00 in	
Ramsey Branch	95%	67%	29%	
I10 & Chaffee	89%	35%	18%	
I4 - 192	80%	37%	0%	
Heritage Parkway	52%	8%	0%	
I4 & 417	45%	1%	0%	

Rebound = DMX (2nd derivative) – Set (visual blows/foot)

Cyclic Triaxial Testing

- Shelby Tubes in Rebound Zones
- Effective Stress Estimated
- CU Triaxial Tests Performed
- CT Tests run with 1000 cycles each at 10, 20, 40, 60, & 80 % of Failure

Strain

CT Results

Complex Python computer coding used to analyze, over 600,000 data points per test and there were 42 tests or over 25 millions data points

η_{ave}			
Range	Data Points	% Total	% Cumulative
0.001 - 0.01	5	1.1%	1.1%
0.01 - 0.1	106	23.6%	24.7%
0.1 - 1	214	47.6%	72.2%
1 - 10	84	18.7%	90.9%
10 - 100	19	4.2%	95.1%
100 - 1,000	13	2.9%	98.0%
1,000 - 10,000	3	0.7%	98.7%
10,000 - 100,000	4	0.9%	99.6%
100,000 - 1,000,000	1	0.2%	99.8%
1,000,000 - 10,000,000	0	0.0%	99.8%
10,000,000 - 100,000,000	1	0.2%	100.0%
Total	450	100%	

72% of the η_{ave} values obtained are within 0 and 1 psi-sec

Case's damping range for silty sands: 0.15 – 0.25 (dimensionless)

Hysteresis Loop

$$\zeta_{eq}(dimensionless) = \frac{\Delta W}{4\pi W}$$

 $\Delta W = Energy loss during a cycle$

W = Maximum strain energy

Area Under Strain versus Time Curve

CAPWAP signal matching analysis on 12 piles @ 5 Sites

Evaluation criteria:

- Blow counts: > 60 blows/foot
- *Rebound > 0.45 inches*
- Side friction < 110 kips

Signal matching: Wave measured versus Wave computed

Site	Test Pile	BN	Elevation (ft)	Blows/ft	Rebound (in)	SFT (kips)		
Chaffee Rd	PR2PL9	354	-9.15	75	0.48	77		
Heritage Pkwy	EB1P1	279	-28.01	32	0.58	24		
	EB5P1	450	-29.95	71	0.48	19		
	IB3P1	280	-26.82	46	0.55	17		
	IB4P10	158	-27.63	39	0.51	7		
I4 & 192	P8P4	2260	17.71	100	0.93	76		
117 & International	EB1P14	322	51.22	38	0.41	29		
	EB2P5	1479	3.85	75	0.48	104		
	EB1P1	654	-63.37	133	0.96	82		
Pamsov Branch	EB1P3	600	-63.81	150	1.06	0		
Ramsey branch	EB4P5	1322	-60.61	171	0.95	51		
	EB5P2	480	-51.61	109	1.33	0		
Av	Average			87	0.73	41		
Standard Deviation				44	0.29	34		

CAPWAP Findings

Rebound and CAPWAP ultimate TOE resistance

Unexpected. Why would rebound decrease with increasing toe resistance?

Rebound and CAPWAP ultimate SHAFT resistance

Expected More shaft resistance should prevent rebound

Conclusions

Cyclic Triaxial Damping Evaluation

- > Hysteresis Loop matches Case's damping factor better than Kelvin-Voigt Model
- > Area under the curve strain versus time seems to be proportional to PDA rebound

PDA Rebound & CAPWAP Signal Matching

- Expected behavior: higher damping = lower rebound was verified for Smith's toe but not for Smith's shaft
- > Higher ultimate TOE resistance seems to produce higher rebound
- > PDA rebound data is most useful when analyzed in CAPWAP

Questions?

