

Proposal: Prediction model of vibration-induced settlement due to pile driving

PRESENTED BY

Boo Hyun Nam and Luis G. Arboleda-Monsalve

Univ. of Central Florida, Orlando, FL

UNIVERSITY OF CENTRAL FLORIDA

- Problem statement
- Background
 - Geotechnical aspects of pile driving induced settlement
 - Numerical modeling for dynamic settlement
- Project objectives
- Work plan
- Discussion

- A survey to geotechnical consultants in FL reported that 75% of the respondents experienced vibration-induced settlement (i.e., dynamic settlement).
- Significant surface settlements in loose to medium dense sands with relative density less than 70% was reported.
- Several ground vibration prediction models have been developed, including (i) wave attenuation method, (ii) scale distance method, (iii) impulse response function method.
- <u>However</u>, there are no existing models and/or methods to predict dynamic settlement due to pile driving and/or construction-induced vibration.

Four project objectives:

- To <u>understand</u> the mechanisms of near-field and far-field settlement and determine critical distance (influence zone).
- To <u>measure</u> field vibration-induced settlements in predetermined locations in the state of Florida.
- To <u>develop</u> <u>numerical</u> models of settlement prediction that can simulate various site conditions in Florida.
- To <u>develop</u> Florida-specific pile driving induced settlement <u>prediction model(s)</u> (e.g., closed formulas or charts).

BACKGROUND

Main variables:

- Vibration characteristics: vibration type, amplitude, frequency, and duration of the source
- Soil characteristics: soil gradation, relative density, and moisture content
- Attenuation characteristics: geometric and material damping

Pile driving can:

i) Cause vibration-induced particle rearrangement, called settlement!

ii) Cause excess pore water pressure build-up... and when dissipated generates **settlement!**

iii) Cause soil re-sedimentation (settlement!) after localized liquefaction around the pile is generated

iv) Damage nearby infrastructure as a product of **settlement!**

Geotechnical Aspects of Pile Driving Induced Settlement

- Dynamic settlements are caused by ground vibrations, particularly important for contractive loose sands that densify when piles are driven.
- Current practice methods are limited to capture many of the key attributes of pile driving-induced settlements. This is the motivation to propose this research.
- Pile driving generates a stress wave and propagates through soil media and wave propagation characteristics along with site condition affects the wave attenuations characteristics.
- Vibrations by pile driving can generate peak particle velocities (PPV) even up to 4 in/s and even if PPV values reach only 0.1 in/s, settlements can still be generated.

BACKGROUND: Geotechnical Aspects of Pile Driving Induced Settlement

- Accurate calculation of settlements is critical to guarantee integrity of nearby infrastructure.
- Relatively small ground vibrations can cause dynamic settlement in sandy soils.
- Pile driving may cause settlement due to densification and liquefaction of vulnerable soils.
- Relative density changes are easily measured via correlations with CPT tests.

BACKGROUND: Vibration Limit Examples

• USBM Criteria: (frequency based limits for cosmetic cracking, Siskind et al. 1980)

Safe level blasting criteria (USBM RI 8507) Shaded region represents amplification of 4.5

- Critical vibration limits are not strictly correlated to vibration settlement. Bayraktar and Kang (2013) reported a case of 0.2 in/s vibrations that caused settlement crack of a brick chimney, house driveway destroyed and architectural damage of the second floor due to 26 Hz vibrations.
- Major sources of complains in FDOT projects: vibratory rollers, tandem rollers, sheet pile installation
- PPV limit in Florida: 0.5 in/s and 0.2 in/s in some districts. Dowding (1996) and Lacy and Gould (1985) said 0.08 in/s (2 mm/s) is the limit beyond which dynamic settlement may be triggered

BACKGROUND: Results from Previous FDOT Project

Bayraktar and Kang (2013): PPV versus ground vibrations as a function of horizontal distance (Turnpike projects, 40 different monitoring reports)

Task 1 – Review settlement case studies throughout state and nation

Task 2 – Field testing in pile installation sites

Task 3 – Develop numerical modeling of pile driving induced settlement

Task 4 – Develop empirical prediction formula or chart for dynamic settlement

Task 5 – Guidelines and recommendations

Task 1: Review of settlement case studies

				S	ource of Vibrati			d				
MRCK Case Desig- nation Location		Pile Type	Hammer	Input Energy (ft- kips)	Distance Pile to Measurement (ft)	Peak Particle Velocity (in./sec)	N (Blows/ ft)	D ₆₀	D_{10} (mm)	U ^a	D ^b _r (%)	Remarks
Δ	Foley Square	146073	Impost	26	20	0.10	22 40	0.02	0.005	4	12 10	Buildings settled 2 in
Α	New York City	14KF 75	"Subsonia "	20	20	0.19	22-40	0.02	0.005	4	42-49	Bunungs settled 5 m.
	New Tork City		Bodine-"Son	ic"	20	0.14	29	0.32	0.10	3	55-57	
В	Lower Manhattan, New York City	18-in. open-end pipe	Vulcan 010	32		—	20-40	0.35	0.10	3	40-60	1.5 ft. settlement of street
C	Western Brooklyn, New York City	14KP73	Vulcan 08	26	5-30	0.1	8-25	0.12	0.03	4	30-50 40-60°	Structure settled 3 in. as 40 piles were drive
D	South Brooklyn, New York City	10.75-in. closed-end pipe	Vulcan 08	26	10-80	0.9-0.1	21-35	0.26	0.13	2	40	Structure settled 3 in. as 220 piles were driven
E	Lower Connecticut River	12HP53	MKT 1083	13-20	3.5 center to center	—	20	0.42	0.10	4	40	Ground between piles settled 2.75 ft
F	Western Brooklyn, New York City	Noesch 134	ICE 812	4.0	3	—	27	0.12	0.03	4	48° 40–60	Building settled 2.4 in.
G	North Syracuse, N.Y.	PZ-27	ICE 416	2.2	10-25	—	1	Sand to fir	y silt/silt/ e sand	coarse	25	Ramp settled 3 in. as sheeting removed
Н	Syracuse, N.Y.	PZ-27	ICE 812	_	4 feet from sewer	-	7	Fine to co	sandy silf	t/fine	30	Sewer settled 6 in. as sheeting removed
Ι	Southern Queens, New York City	Noesch 134	ICE 812	4.0	4 feet from sewer	_	25	0.40	0.10	4	45	Sewer settled 3 in. as sheeting removed

^a U-uniformity coefficient $-D_{60}/D_{10}$.

Ň

^bRelative density based on Bazara.

^cRelative density from actual measurement.

Source: Lacy and Gould, Vibration Problems in Geotechnical Engineering, Gazetas & Selig, eds, ASCE Spec. Technical Pub. 1985. Reprinted with permission.

Purpose:

Collect field data of vibration induced settlement

Study concept:

- <u>Near-field settlement</u>: liquefaction mechanism => excess pore water pressure and soil densification
- <u>Far-field settlement</u>: soil densification due to propagated stress waves
- Critical distance (transition) from near-field to farfield

<u>Procedure</u>: Site selection => data collection => instrumentation => field testing

<u>Field testing:</u> to measure PPV, excess pore water pressures, and settlements

Task 2: (Continuation)

Task 3: (Continuation)

Goal of numerical study:

- To solve the question about ground settlements and associated changes in relative density when a pile is driven in Florida soils.
- Use a continuum finite element (FE) numerical model (including soil-pile interaction) to produce a reliable chart (or formula) for pile driving induced settlement.

Notes:

 Research team has used those models in the past (liquefaction analyses and earthquake induced settlements under free-field conditions and when structures are present in earthquake-prone areas, Caltrans Project)

Task 3: Numerical Modeling

Task 3: (Continuation)

Typical output of a forcing function on the pile and structural deformations

Task 3: (Continuation)

Proposed Model: Hardening Soil Small Model (Plaxis 2D)

Main Characteristics:

- Elasto-plastic multi-yield surface model
- Hyperbolic stress-strain relation
- Elastic material behavior during unloading and reloading
- Failure based on Mohr-Coulomb criterion
- > A yield cap surface controls the volumetric plastic strains
- Small strain behavior included

Hyperbolic stress-strain relation (After Schanz et al. 1999)

Yield Contour (After Schanz et al. 1999)

Proposed Model: Hardening Soil Small Model

Constitutive Parameters (Schanz et al. 1999, Plaxis 2016):

Parameter	Description	Method		
$E_{50}^{ m ref}$	Reference modulus for primary loading in drained triaxial test	Drained triaxial test		
$E_{\mathrm{oed}}^{\mathrm{ref}}$	Reference modulus for primary loading in oedometer test	Oedometer test		
E _{ur} ^{ref}	Reference modulus for unloading/reloading in drained triaxial test	Drained triaxial test		
$G_0^{\rm ref}$	Reference shear modulus at very small strains	Cyclic shear test		
$\gamma_{0.7}$	Threshold shear strain at which $G_s=0.722G_0$	Cyclic shear test		
m	Modulus exponent for stress dependency	Curve Fit		
υ_{ur}	Poisson's ratio for loading/unloading			
<i>c</i> ′	Effective cohesion intercept at failure	Triaxial or Direct Shear tests		
Ф'	Effective friction angle at failure	Triaxial or Direct Shear tests		
Ψ	Dilatancy angle at failure	Triaxial or Direct Shear tests		
σ_{p}	Initial preconsolidation stress	Oedometer test		
ko	Earth pressure coefficient at rest			

Proposed correlations:

$$\begin{split} E_{50} &= E_{50}^{ref} \left(\frac{\sigma_3 + c \cot \varphi_p}{\sigma^{ref} + c \cot \varphi_p} \right)^m \\ E_{oed} &= E_{oed}^{ref} \left(\frac{\sigma_1 + c \cot \varphi_p}{\sigma^{ref} + c \cot \varphi_p} \right)^m \\ E_{ur} &= E_{ur}^{ref} \left(\frac{\sigma_3 + c \cot \varphi_p}{\sigma^{ref} + c \cot \varphi_p} \right)^m \\ E_{ur,oed} &\approx 3E_{oed} \\ E_{ur}^{ref} &\approx 3E_{oed}^{ref} / \sqrt{K_0} \approx 4E_{oed}^{ref} \\ G_0 &= G_0^{ref} \left(\frac{c \cos \varphi - \sigma_3 \sin \varphi}{c \cos \varphi + p^{ref} \sin \varphi} \right)^m \\ \gamma_{0.7} &\approx \frac{1}{9G_0} \left[2c'(1 + \cos(2\varphi')) - \sigma'_1(1 + K_0) \sin(2\varphi') \right] \end{split}$$

After Schanz et al. (1999) and Plaxis (2016)

12 Constitutive Parameters

Task 3: (Continuation)

70%

Proposed Model: Hardening Soil Small Model

More features:

- Elastoplastic type of hyperbolic model based on HS model
- Incorporates strain-dependent stiffness moduli to simulate soil behavior at small strains from the very small (i.e., strains lower than 0.001%) to large until failure (i.e., strains above 0.1%)

Hyperbolic law, Hardin and Drnevich (1972)

$$\frac{G_s}{G_0} = \frac{1}{1 + \left|\frac{\gamma}{\gamma_r}\right|} \qquad \text{Where threshold shear strain is:} \quad \gamma_r = \frac{\tau_{\text{max}}}{G_0}$$

Results from Hardin-Drnevich relationship compared to Santos and Correia (2001)

Secant modulus G/G₀[-]

at which the secant shear modulus Gs is reduced to

Normalized shear strain $\gamma_s/\gamma_{0.7}$ [-]

Example, Santos and Correia (2001): $\gamma r = \gamma_{0.7}$ of its initial value

$$\frac{G_s}{G_0} = \frac{1}{1+a\left|\frac{\gamma}{\gamma_{0.7}}\right|} \quad \text{where } a = 0.385$$

Task 3: (Continuation)

Analogous Problem: Numerical simulation of liquefaction and seismic response of tall buildings

- Site response effects are evaluated by a simulation of the propagation of the seismic waves.

- Wave propagation can be described by the solution of the dynamic equation of motion PLUS with a stressstrain model (i.e., constitutive soil model) of the material in which the waves propagate

• Scope:

To develop a dynamic settlement prediction formula and/or chart

- Correlations PPV vs. distance; Settlement vs. variables (e.g. PPV, distance, Dr, excess pwp)
- Dynamic settlement prediction model
 Dyn. Settlement = f(PPV, distance, soil condition)

Task 4: (Continuation)

Example of settlement vs. distance (from Dowding 1996)

- Guideline of field instrumentation procedures for measurement and monitoring dynamic settlements (e.g., sensor type, sensor number, location, and spacing)
- 2) Recommendations and key considerations for near-field and far-field dynamic settlement analysis

PRESENTED BY Boo Hyun Nam and Luis G. Arboleda-Monsalve

Univ. of Central Florida, Orlando, FL.

UNIVERSITY OF CENTRAL FLORIDA

Task 4: (Continuation)

SEISMOMETER MOUNTED ON GAS MAIN CROWN

SEISMOMETER MOUNTED IN SOIL

- REGRESSION LINE FOR SOIL DATA

Example of PPV vs. distance (Linehan et al. 1991)

BACKGROUND: Numerical modeling for dynamic settlement Proposed Model 2: Pressure dependent multi-yield model (OpenSees)

Main Characteristics:

- Post-liquefaction is captured (necessary to estimate settlements)
- Main model and program used for liquefaction purposes in California
- Fully coupled model of water and soil necessary to accurately model settlement from water pressures
- The research team has experience on its use for earthquake loadings (similar but the main difference is the range of frequencies)

BACKGROUND: Numerical modeling for dynamic settlement Proposed Model 2: Pressure dependent multiyield model (OpenSees)

Main Characteristics:

- It is an elastoplastic model used to simulate the monotonic and cyclic response depending on the confining pressure.
- It defines the multi-yield criteria by the number of open conical shaped yield surfaces (i.e., Drucker-Prager yield surface) with a common apex at the origin.
- > The outermost surface defines the shear strength envelope of the material.
- Uses a nonlinear kinematic hardening and non-associative flow rules to reproduce the dilative or contractive behavior.
- The plastic flow is purely deviatoric, thus no plastic change of volume takes place under a constant stress ratio.

Elgamal et al. 2002; Yang et al. 2003, 2008

BACKGROUND: Numerical modeling for dynamic settlement

Proposed Model 2: Pressure dependent multi-yield model (OpenSees)

Task 3: (Continuation) Dynamic settlement due to EQs

