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Introduction
• For scenarios where driving-induced soil compaction occurs, piles driven in the vicinity of Sheetpile

Walls (SPW) or adjacent piles can develop greater load capacities relative to those piles driven in virgin 
ground. 

• The phenomenon that individual pile stress states are dependent upon the proximity of other pre-driven 
structural members is further complicated for those scenarios where pile driving into granular soil 
causes grain motions and rearrangement. Subsequent to installation of driven piles, removal (pull-out) 
of any nearby SPW may well further alter the pile-soil stress states, due to soil disturbances that occur 
during extraction of the SPW. Such disturbances can lead to reductions in frictional and bearing 
resistance at piles-soil interfaces, and thus, overestimation of pile design capacities. 
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Project Subject Background

• In recent years technological advances have been made in 
relation to piled foundations, and as a result, it is now 
recognized that the process of pile construction or installation 
in the ground can cause major changes in the stress state and 
density conditions of granular soil in the vicinity of the pile.

• Such recognition signifies the value of basic research, which 
has enabled geotechnical engineers to depart from the 
relatively more historical approach of employing empirical 
constants to modify theoretical predictions, where 
corresponding design predictions were not capable of allowing 
engineers to reliably account for residual stresses induced 
during sheet pile wall construction or removal of pre-installed 
SPW. 



Project Objectives

• Evaluate the influence that pertinent parameters have on 
driven pile resistance under service loadings, e.g., sheet pile 
proximity, sheet pile depth, and characteristics of dynamic soil-
structure interaction;

• Evaluate temporary increases in driven pile resistance 
associated with nearby SPW;

• Quantify the effect of sheet pile extraction in pile load 
capacities; and,

• Cultivate design-oriented practical recommendations for 
calculation of SPW-associated pile capacities. 



Task Descriptions

• Phase I 
• Task 1. Literature Review

• Task 2. Numerical Modeling Schemes for Granular Soil (medium 
dense)

• Phase II 
• Task 3. Numerical Modeling of Driven foundation in Granular Soils

• Task 4. Physical Laboratory/Centrifuge Experimentation

• Task 5. Reporting of Findings and Design-Oriented Recommendations

• Task 6. Draft Final Report



Task 1. Literature Review: Identification of Key Parameters

Sheet pile wall
Installation (removal) procedures
Embedment  depth
Horizontal offset distance from pile 
installation

Soil numerical parameters
Particle sliding and rolling friction 
angles
Particle contact stiffness
Mass density of soil grain
Damping coefficients

Driven 
pile

Sheet pile 
wall

Granular soil

Relative 

depth

Horizontal offset 
distance

Pile geometry
Width
Driven depth

Dynamic load rate
Penetration time history measured in 
centrifuge testing

Hammer

Soil physical parameters
Internal friction angle
Relative density
Loading history
Geostatic stresses



Task 2 Numerical Modeling Schemes for Granular Soil 
• A granular medium is composed of distinct soil particles which displace independently 

one another, and interact only at contact points. The discrete character of the medium 
results in a complex behavior under loading conditions.

• Combined Discrete Element and Finite element Method.

 Allow for modeling of dynamic soil (particulate)-structure interaction

 Meso-scale characterization of soil states

• Challenges

• Calibration of particle parameters for Florida regional soil

• Simulation efficiency



Task 2. Numerical Modeling of Florida Sand

• Florida natural sand with relative 
density of 60-65%. 

• Laboratory tests were performed 
by the FDOT: States Material Office 
(SMO) to characterize this soil. 
Sieve analyses revealed that the 
USCS name of the soil is “SP” with 
coefficients of uniformity and 
curvature of 1.77, and 1.08, 
respectively. 

• Direct Shear Test data was 
provided by SMO at a relative 
density of 63% for 3 different 
applied normal stresses of 7 psi, 
14 psi, and 21 psi. Based on the 
test data, the peak internal friction 
angle is 31.7 degrees.
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• Upscaling:

o Use of larger discrete 
elements to represent a pre-
defined volume of smaller 
size particles.

o Constitutive relationship of 
the up-scaled representative 
discrete volume is 
determined from the material 
behavior of particles within 
the representative volume.

Task 2. Numerical Modeling of Florida Sand

Particle diameter= 0.5 mm

1 in



• Upscaling

Effective modulus for representative spherical volume

Task 2. Numerical Modeling of Florida Sand
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• Upscaling: Effective modulus for representative 
spherical volume

Task 2. Numerical Modeling of Florida Sand

• Effective shear modulus as given by Chang, Misra
and Sundaram (1991):

• Above equation gives an effective shear modulus 
in the range of 11 ksi to 14 ksi (75 MPa to 95 
MPa) for selected range of confining pressures 
(0.1 MPa to 0.2 MPa)
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From Fahey (1992)

Chang, C S., Misra, A., Sundaram, S. S. (1991). “Properties of Granular Packings under low-Amplitude Cyclic Loading,” 
Soil Dynamics and Earthquake Engineering, 10, pp. 201–211.

Fahey, M. (1992). “Shear Modulus of Cohesionless Soil: Variation with Stress and Strain Level,” Canadian Geotechnical 
Journal; 29, pp. 157–161. 

Iwasaki, T., Tatsuoka, F.,and Takagi, Y. (1978). “Shear Moduli of Sands under Cyclic Torsional Shear Loading,” Soils and 
Foundation, 18, pp. 39-56.



• Tri-axial Compression Test Simulations

Task 2. Numerical Modeling of Florida Sand



• Tri-axial Compression Simulations

Task 2. Numerical Modeling of Florida Sand
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• Tri-axial Compression Simulations

Task 2. Numerical Modeling of Florida Sand

Simulation: 1 2 3 4 5 6 7 8
Elastic properties:

Mass density (lb/ft3)
Bulk modulus (ksi)
Poisson’s ratio

165.5
10.52
0.27

165.5
10.52
0.27

165.5
15.77
0.27

165.5
15.77
0.27

165.5
17.87
0.27

165.5
17.87
0.27

165.5
21.02
0.27

165.5
21.02
0.27

Rheological model parameters:
Normal damping
Tangential damping
Sliding friction coefficient
Rolling friction coefficient
Normal stiffness factor
Tangential stiffness ratio

0.7
0.4
0.6

0.06
1.0
0.8

0.7
0.4
1.0
0.1
1.0
0.8

0.7
0.4
0.6

0.06
1.0
0.8

0.7
0.4
1.0
0.1
1.0
0.8

0.7
0.4
0.6

0.06
1.0
0.8

0.7
0.4
1.0
0.1
1.0
0.8

0.7
0.4
0.6

0.06
1.0
0.8

0.7
0.4
1.0
0.1
1.0
0.8

Shear behavior under triaxial
compression testing:

At 5.8 psi confinement:
Peak shear strength (psi)

At 10.15 psi confinement:
Peak shear strength (psi)

At 14.5 psi confinement:
Peak shear strength (psi)

29

32.33

39.44

32.625

35.38

43.5

30.6

34.22

39

33.5

36.98

44.95

33.2

36.10

44.52

35.1

40.02

48

36.4

39.88

47.27

37.56

41.47

49.45

Peak internal angle of friction (º) 28.5 30.86 29.8 31.3 31.2 31.94 31.79 32.23

Measured internal friction angle for Florida sand using Direct Shear Test:
Peak friction angle =  31.3º
Ultimate friction angle = 29.5º



Three loading scenarios are considered for centrifuge tests:

• Scenario 1: A pile is driven into the soil and is subjected to 
incremental quasi-static top down loads.

Task 4. Prototype-scale Centrifuge Tests on FL Sand



• Scenario 2: A sheet pile is pushed into the soil, followed by a 
pile driven in the vicinity of the sheet pile (2.5 times width; 
2.5B), and is subjected to incremental quasi-static top down 
loads.

Task 4. Prototype-scale Centrifuge Tests on FL Sand

Sheet pile

Pile



• Scenario 3: A sheet pile is driven into the soil followed by 
the pile. Prior to application of quasi-static axial loads on 
the pile, the sheet pile is vertically extracted (with no 
vibration) from the soil.

Task 4. Prototype-scale Centrifuge Tests on FL Sand

Sheet pile

Pile



Task 4 Prototype-scale Centrifuge Tests on FL Sand

Mass flow rate determined by a maximum size 
of the DEM model.

Drop height = 380 mm  (             )

The unscaled mass flow rate values for 0.5 mm 
and 0.85 mm diameter sphere generation are 
taken as averaged values from maximum DEM 
injection rate: 5.78E+4 mm3/s and 4.26E+4 
mm3/s, respectively. 

12.5  mm

533.4 mm (length) 
×431.8 mm (width)  ×
406.4 mm (height)



Quasi-static Top Down Load-Settlement Test Result:
SPW is pre-installed at the full-embedment length (18 ft) of the pile (i.e., 9B)

Task 4. Prototype-scale Centrifuge Tests on FL Sand
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Quasi-static Top Down Load-Settlement Test Result:
SPW is pre-installed at the half-embedment length (9 ft) of the pile (i.e., 4.5B)

Task 4. Prototype-scale Centrifuge Tests on FL Sand

Load Test Scenario Ultimate Capacity (kips) Davisson Capacity (kips) 

Scenario 1  561 185 

Scenario 2  649 197 

Scenario 3  534 160 

 



Rigid cylinder

The scaled mass flow rate values for 0.85 mm diameter sphere generation are taken as averaged 
values from maximum DEM injection rate: 4.26E+4 mm3/s. 

With a planar injection method, the diameter of the domain is 3000 mm, which limits a number of 
DSE to be generated in plane. Thus, centrifuge pluviation rate is calibrated as per the numerical 
maximum mass flow rate. 

(*DEFINE_DE_INJECTION, LSTC 2016)

Task 3 Numerical Modeling of Driven foundation in 
Granular Soils
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Simulated Geostatic Stress Conditions



Simulated Geostatic Stress Conditions

Jaky’s
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• Scenario 1 : Penetration-Depth Time History

Task 3. Numerical Modeling of Loading Scenarios
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• Scenario 1: Simulations of Pile Driving Force Time 
History

Task 3. Numerical Modeling of Loading Scenarios
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• Scenario 1: Vertical stresses during pile driving 
(units of MPa)

Task 3. Numerical Modeling of Loading Scenarios
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• Scenario 1: Prediction of quasi-static axial load-
settlement behaviors

Task 3. Numerical Modeling of Loading Scenarios

0

100

200

300

400

500

600

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

F
o

rc
e 

[k
ip

s]

Displacement [in]

Centrifuge test

Simulation 6

Simulation 7

Load Test Scenario Ultimate Capacity (UC) (kips) Davisson Capacity (DC) (kips)

Centrifuge test 468 150

Simulation 6(S1) 425 152

Simulation 7(S1) 532 200



• Scenario 2

Task 3. Numerical Modeling of Loading Scenarios
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• Scenario 2: Simulation of pile driving force history

Task 3. Numerical Modeling of Loading Scenarios
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• Scenario 2: Vertical stresses during pile driving 
(units of MPa)

Task 3. Numerical Modeling of Loading Scenarios

First 
drive

Second 
drive

Third 
drive

Fourth 
drive

Fifth 
drive

Increasing 
magnitudes of 

compressive stress 



• Scenario 2: Prediction of quasi-static top down load 
settlement behaviors

Task 3. Numerical Modeling of Loading Scenarios
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• Scenario 3
• The Scenario 2 installation sequence is repeated, but SPW is vertically pulled out 

prior to application of vertical loads at the top of the pile.

Task 3. Numerical Modeling of Loading Scenarios
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0

2

4

6

8

10

12

14

16

18

20

647 648 649 650 651 652 653 654

D
ep

th
 [

ft
]

Time [min]

Centrifuge test

Numerical simulations

A
B

C

D

E

F G



• Scenario 3: Vertical stresses during SPW removal 
(units of MPa)

Task 3. Numerical Modeling of Loading Scenarios
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• Scenario 3: Prediction of quasi-static top down 
load-settlement behaviors

Task 3. Numerical Modeling of Loading Scenarios
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• Summary of Scenario 1 vs. Scenario 3
Task 3. Numerical Modeling of Loading Scenarios
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Ultimate
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% change 6.62 (+) 0.71 (+) 3.2 (+) 2.1 (+)



Geometric Parameters selected for parametric study:

• Horizontal offset distance (HOD) between pile and 
sheet pile – 4 ft; 5 ft; 6 ft; 8 ft; and 10 ft.

• Ratio of sheet pile embedment depth to pile 
embedment length – 0.25; 0.5; 0.75; and 1.0

Task 5. Findings and Design-Oriented Recommendations

Embedment-depth ratio
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• Prediction of load capacities for Scenario 3

Task 5: Findings and Design-Oriented Recommendations
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• Abscissa values represent horizontal offset distances 
(Davisson pile capacity).

Task 5. Design Recommendations
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Loading scenario 3: A sheet pile is 

driven into the soil followed by 
the pile. Prior to application of 
quasi-static axial loads on the 
pile, the sheet pile is vertically 
extracted (with no vibration) 
from the soil.
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• Abscissa values represent ratios of SPW 
embedment depth to pile embedment length.

Task 5. Design Recommendations

Scenario 2 Scenario 3

Davisson capacityDavisson capacity
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HOD

Increasing  
HOD

Loading scenario 2: A sheet pile is pushed into 

the soil, followed by a pile driven in the vicinity 
of the sheet pile (2.5 times width; 2.5B), and is 
subjected to incremental quasi-static top down 
loads.

Loading scenario 3: A sheet pile is driven into 

the soil followed by the pile. Prior to 
application of quasi-static axial loads on the 
pile, the sheet pile is vertically extracted (with 
no vibration) from the soil.



-60

-50

-40

-30

-20

-10

0

10

20

0  1/4  1/2  3/4 1 1 1/4

%
 C

h
a
n
g
e
 
in

 
c
a
p
a
c
it
y

Normalized SPW Embedment Depth

Horizontal distance between pile and SPW = 4 ft

Horizontal distance between pile and SPW = 5 ft

Horizontal distance between pile and SPW = 6 ft

Horizontal distance between pile and SPW = 8 ft

Horizontal distance between pile and SPW = 10 ft

Centrifuge - Full Embedment

Centrifuge - Half Embedment

• Semi-Empirical Assessment of Reduction Factors
• Problem Statement: 

Given a sheet pile wall installation depth = 25 ft

Depth of pile driving = 40 ft.

Horizontal offset distance = 6 ft

Davisson capacity of pile = 320 kips

Ultimate capacity of pile = 960 kips

Solution:

Ratio of SPW installation to depth of pile = 25ft / 40 ft = 0.625

From figures in previous slides: For HOD = 6 ft:

Reduction in Davisson pile capacity 

Thus, Davisson capacity on removal of SPW

Ultimate capacity remains unchanged after SPW removal.

Recommendations
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Semi-Empirical Assessment can be made using 
capacity reduction factors.

• Based on the parametric sensitivity study of Task 5, 
patterns in the reduction of pile capacities are 
found. 

• Graphical representation of the force trends is 
presented as guidelines to estimate Scenario 3 pile 
capacities with respect to geometric configurations 
of the SPW installation and subsequent removal.

Conclusions



• Reduction Factors for Cofferdam Configuration are 
to be determined.

• Effects of Installation (Driving) and Vibratory 
Removal Methods in SPW or Pile Load Capacities 
can be further investigated.

Future Research

Offtset Distance

SPW 1

SPW 2



Thank you.


