Quantifying Pile Rebound with Detection Systems Best Suited for Florida Soils

Task Work Order BDV28 Two 977-07

PI: Paul J Cosentino PhD, P.E., Co-PI's: Matthew Jensen PhD Charles Bostater PhD Graduate Students: Aline Franqui, Robert Rogulski, Samin Aziz

> Florida Institute of Technology Melbourne FL 32901-6975 321-674-7555 Direct

PM: Juan Castellanos, P.E

Today's Presentation

Evaluate two new measuring systems
 Inopiles PDM LASER deflection-measuring system
 FIT camera system
 Evaluate Cyclic Triaxial Viscous Response

New Technologies

- Inopiles PDM Measuring System
- FIT High Speed Cameras

BECAUSE EVERY PILE IS IMPORTANT

Cyclic Results show HPR Soils are Viscoelastic

Three deflection versus time cycles @ Ramsey Branch - 63' Site 12 Three deflection versus time cycles @ Heritage Parkway -57 ' Site 10

Schedule of Tasks (overview)

FLORIDA DEPARTMENT OF TRANSPORTATION RESEARCH CENTER																									
PROJECT SCHEDULE																									
Project Title	Meas	surin	g Sys	tem t	for P	ile Ro	eboui	nd Du	uring	Con	struc	tion	and I	Desig	Geo	tech	nical	Inve	stiga	tion					
FDOT Project No.																				FY	201	7	Mor	ıth	April
Research Agency	Florida	Institu	ute of T	echnolo	ogy																				
Principal Investigator	Paul J.	Cosenti Int.17	no, Ph.I	J. P.E. Sep.17	Oct-17	New-17	Dec.17	Jan-18	Ech-18	Mar-18	Apr.18	May-18	Jun-18	hd.18	urg.18 5	Sep.18 (Oct-18	Nov-18	Dec-18	Ian-19	Feb-19	Mar-19 A	pr.19 M	av-19	Comments
RESEARCH TASK	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
Project Kickoff Meeting	1																								Cosentino
Task 1 Literature Search on Existing Pile Driving Deflection Measuring Systems and Soil Damping	1	2	3	4	5																				Cosentino
Task 2 Viscoelastic Analysis of Existing Cyclic Triaxial Load versus Time Data		1	2	3	4	5	6	7	8	9	10	11	12											_	Cosentino
Task 3 Wave Equation Software Damping Factor Sensitivity Analysis		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15								_	Cosentino
Task 4 High Speed Camera Validation for Inopiles PDM LASER Measuring System					1	2	3	4	5	6	7	8	9	10	11	12	13	14	15					_	Jensen/Cosentino
Task 5 Determine SPT and PDA Test Piles Field Testing Locations			1	2	3	4	5	6	7	8														\square	Cosentino
Task 6 Measuring System Evaluations						1	2	3	4	5	6	7	8	9	10	11	12	13	14	15			_	_	Cosentino/Jensen
Task 7 Draft Final Report and Closeout Conference																		1	2	3	4	_		1	Cosentino/Jensen
Task 8 Final Report																						1	2	3	Cosentino/Jensen

Tasks 4, 5 & 6: Three Sites Tested To Date

Baldwin Bypass, Jacksonville: PDM didn't function: Surface Pro wasn't ⁽²⁾

Port Canaveral Cargo Birth: Concentrated ONLY on PDM: no Camera

Reedy Creek, Kissimmee: Signals from Camera and PDM

Inopiles PMD

Only about 30-inches of data can be recorded at a time
 Not practical to record data during entire driving process

Reedy Creek PDM Data Near 90 '

PDM - G2 - 1.2.1.5 - [frmReview] AFT' PILE DRIVING MONITOR T CURRENT 3/08/2018 **₽**∩ сом4 3:29:15 PM 谷 (1) GENERATE **BLOW VIEW** NUMERICAL VIEW COMPLETE VIEW RECORD EXPORT OVERVIEW REPORT Home > Review & Report > Complete View m Zoom to Blows 33.18 33.16 33.14 33.12 33.1 33.08 33.06 33.04 33.02 33 32.98 32.96 32.94 32.92 32.9 32.88 32.86 32.84 32.82 32.8 32.78 Replay 32.76 32.74 32.72 32.7 00:00 00:01 00:02 00:03 00:05 00:06 00:07 00:08 00:10 00:11 00:12 00:14 00:15 00:16 00:18 00:19 00:20 00:21 00:23 00:24 00:25 00:27 00:28 00:29 Back to Menu Time (mm:ss)

(1)

Replay

Back to Menu

Zoom View: 20 mm: blue vs gray

PDM - G2 - 1.2.1.5 - [frmReview] **AFT'** PILE DRIVING MONITOR **₽**∩ сом4 CURRENT 3/08/2018 3:27:05 PM RECORD EXPORT OVERVIEW NUMERICAL VIEW COMPLETE VIEW **BLOW VIEW** REPORT Home > Review & Report > Overview **Pile Name** m I mm P1-EOD-10 21.3 33.16 00:00:31 33.15 21.4 33.14 19.5 33.13 21.9 33.12 20.0 33.11 24.2 Extend Blow Record 33.1 20.8 33.09 21.4 33.08 22.3 33.07 21.8

19.7

Blow #10

20.5

Blow #9

33.06

33.05

33.04

33.03

33.02

33.01

33

22.5

20.6

Blow #8

Blue maximum displacement = Gray continuous displacement= No Rebound?

Blow #12

Blow #13

Blow #14

Blow #11

Blows

PMD Accuracy 1.5 mm rebound

				Rebound	
Blow	StartTime	Penetration (m)	Set (mm)	(mm)	Velocity (m/s)
8	16:00:15	33.334	20.6	1.9	1.732
9	16:00:17	33.354	20.5	1.3	1.645
10	16:00:18	33.374	19.7	1.6	1.581
11	16:00:18	33.396	22.3	1.9	1.651
12	16:00:20	33.417	20.8	1.1	1.506
13	16:00:21	33.437	20	1.5	1.68
14	16:00:22	33.457	19.5	1.8	1.553
average			20.5	1.6	1.62
max variation			2.8	0.8	0.23

Video Camera Signal Analysis of Pile Rebound by Charles R. Bostater Jr. & Samin T. Aziz

Center for Remote Sensing, Florida Institute of Technology Melbourne, Florida <u>bostater@fit.edu</u> 321-674-7113

Background

- 1. 30 to 120 Hz Video Signals tested to date at 3 highway sites.
- 2. Built and tested a laboratory testing pile.
- 3. Used Existing Software and Cameras for Signal & Image Processing

Approach:

Charles Bostater & Samin Aziz, Marine Environmental Optics Lab, FIT

Pile driving Test Pile in Lab

Number of pixels in vertical width of white line = 38 pixels Width of the line = 6.3 mm (measured using lupe scope) Width per pixel = 6.3/38 = 0.166 mm (0.0065 inches) Error range = +/- 3 pixels (~ 0.039 inches error range)

Charles Bostater & Samin Aziz, Marine Environmental Optics Lab, FIT

Jacksonville Florida: **Pile driving testing**

~	🗊 Display Measurement Tool 🗕 🗖 🗙
	File Type Units Area Options
	Display 🗋 💿 Image 🔿 Scroll 🔿 Zoom 🔿 Off
	Total Dist: 61.4003 Pixels
- 6	Segment #1: 61.4003 Pixels
	▼
	< >

No. of pixels in within the **black tape** = 61 pixels Width of the line = 12 mm (lupe measured) Width per pixel = 12/61 = 0.197 mm (0.00774 inch) Error range = +/- 3 pixels = +/- 0.591 mm (+/- 0.023 inch error range)

Horizontal distance : 459.2 pixel * 0.197 mm / pixel = 90.4 mm Charles Bostater & Samin Aziz, Marine Environmental Optics Lab, FIT

(mm) vs 60 HZ Frames for Baldwin Bypass Jacksonville Pile: black spray paint line

Max Displacement, Set and Rebound of Baldwin Bypass video: 0164

Hits	Max displacement (pixels)	Rebound (pixels)			
1	88	37		hits	width/pixel
2	82	33			
3	93	40		12	0.197 mm
4	93	43			
5	87	42			
6	87	37			
7	79	29			
8	75	30			
9	85	35			
10	88	38		Baldwin B	upass Tost Dilo driving
11	85	40		Daluwill D	6047 Video
12	100	45		•	
Mean	86.8333333	37.41666667			
standard deviation	21.96403837	16.57581139			
Standard error	6.340471732	4.785024583	V	1deo 0164 (Using Black Spray Paint Line
Hits	Max displacement (mm)	Rebound (mm)			
1	17.336	7.289			
2	16.154	6.501			
3	18.321	7.88			
4	18.321	8.471			
5	17.139	8.274			
6	17.139	7.289			
7	15.563	5.713			
8	14.775	5.91			
9	16.745	6.895			
10	17.336	7.486			
11	16.745	7.88			
12	19.7	8.865			
Mean	17.10616667	7.371083333			
standard deviation	4.326915559	3.265434843			
Standard error	1.249072931	0.942649843			

Charles Bostater & Samin Aziz, Marine Environmental Optics Lab, FIT

Orlando Reedy Creek Site:

No. of pixels in Vertical width of the Dark line = 23 pixels Width of the line = 15 mm (measured using eye scope) Width per pixel = 15/23 = 0.652 mm (0.0256 inches) Error range = +/- 3 pixels = +/- 1.956 mm (+/- 0.077 inches error range)

Charles Bostater & Samin Aziz, Marine Environmental Optics Lab, FIT

Vertical distance travelled (mm) vs 60 HZ frame graph

Orlando Reedy Creek Site - 90th ft mark on pile - little rebound detected

Task 2 Viscoelastic Analysis of Existing Cyclic Triaxial Load versus Time Data

- Existing BDV 28 977-01 results from 30 cyclic triaxial tests
- The results include
 - a list of the sites evaluated,
 - soil profiles from each site that include
 - the locations of undisturbed samples,
 - SPT N values,
 - pile driving blow counts and
 - displacement per hammer blow data,
 - results from the cyclic triaxial data analyses and
 - correlations between the rebound near the sample depth and cyclic responses.

Viscoelastic Analysis of Existing Cyclic Triaxial Data

Presented by: Aline Franqui, Graduate Student

August 2018

AGENDA

- **Objective**
- □ Literature Review
- PDA & SPT Tests
- **Cyclic Triaxial Test**
- Results
- Conclusions

Cyclic Triaxial Test

Site	PDA Test	SPT Test	CT Test
SR 417 & I4	\checkmark	\checkmark	\checkmark
Saint John's Heritage Parkway	\checkmark	\checkmark	\checkmark
I10 & Chaffee Road	\checkmark	\checkmark	\checkmark
14 - US192	\checkmark	\checkmark	\checkmark
Ramsey Branch	\checkmark	\checkmark	\checkmark
I-4 Osceola Parkway			\checkmark

AGENDA

- Objective
 Literature Review
 PDA & SPT Tests
 Cyclic Triaxial Test
- Results
- Conclusions

AGENDA

- Objective
- □ Literature Review
- **DA & SPT Tests**
- **Cyclic Triaxial Test**
- Results
- Conclusions

Table 6 - Percentage of Depths with Rebound ≥ 0.25 , 0.50 and 1.00 inch

Site	% Depths with Rebound Equal or Greater than						
Site	0.25 in	0.50 in	1.00 in				
Ramsey Branch	95%	67%	29%				
110 & Chaffee	89%	35%	18%				
I4 - 192	80%	37%	0%				
Heritage Parkway	52%	8%	0%				
I4 & 417	45%	1%	0%				

AGENDA

- Objective
- □ Literature Review
- PDA & SPT Tests
- **Cyclic Triaxial Test**
- Results
- Conclusions

Data Input

Data Management (Cycle numbers, Stress Levels, Noise Reduction, Fitting)

> Calculations (E, Damping Coefficient, Area)

AGENDA

- Objective
- □ Literature Review
- PDA & SPT Tests
- **Cyclic Triaxial Test**
- **Results**
- Conclusions

Damping Coefficient Plot – All Sites

Normalized Stress Level

Damping Coefficient Histogram Table – All Sites

Range	Data Points	% Total	% Cumulative
0 - 0.01	5	1.1%	1.1%
0.01 - 0.1	106	23.6%	24.7%
0.1 - 1	214	47.6%	72.2%
1 - 10	84	18.7%	90.9%
10 - 100	19	4.2%	95.1%
100 - 1,000	13	2.9%	98.0%
1,000 - 10,000	3	0.7%	98.7%
10,000 - 100,000	4	0.9%	99.6%
100,000 - 1,000,000	1	0.2%	99.8%
1,000,000 - 10,000,000	0	0.0%	99.8%
10,000,000 - 100,000,000	1	0.2%	100.0%
Total	450	100%	

 Table 5-Processing of Depler with Releval + 8.05, Mith and Hild Rels

 optimizing of Depler with Releval 4.05, Mith and Hild Rels

 Colspan="2">Rels of Depler with Rels of Depler with Rels

 Colspan="2">Rels of Depler with Rels

 Colspan="2">Rels of Depler with Rels

 Rels of Depler with Rels of Depler with Rels

 Rels of Depler with Rels of Depler with Rels

 Rels of Depler with Rels of Depler with Rels

 Rels of Depler with Rels of Depler with Rels

 Rels of Depler with Rels of Depler with Rels

 Rels of Depler with Rels<

Average Strain-Time Area

AGENDA

- Objective
- □ Literature Review
- PDA & SPT Tests
- **Cyclic Triaxial Test**
- Results
- Conclusions

Preliminary Conclusions

- Damping coefficient successfully calculated from 42 CT tests
- $\P_{\rm c}$ η (psi-s) results similar to dimensionless J_c
- Area under the strain vs time curve may be related to rebound
- Data ready for subsequent task of Wave Equation Sensitivity Analysis

Questions?

