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Problem Statement

* Like all capacity prediction methods, the post-
grouted end bearing of drilled shafts has
inherent uncertainty.

* Both the design and construction practices
affect reliability

* No resistance factors (or safety factors) are in
place to mitigate the uncertainty associated
with varying design or grouting methods



Soils and Foundations Handbook

“Resistance factors and associated design
methods for geotechnical resistance of drilled
shafts are in SDG Table 3.6.3-1 [Table 2.3]. Itis
implicitly shown in the table that the resistance
factors for drilled shafts tipped in sand or clay
are based on side shear design methods only
(i.e. FHWA alpha method in clay and FHWA
beta method in sand).”



Soils and Foundations Handbook

“In sand, drilled shafts with pressure grouted
tips should be considered. Pressure grouted
tips are most effective in loose to medium
dense sands. Guidance for the design of
drilled shafts with pressure grouted tips may
be found in Appendix D and in Reference 9.”

No Resistance Factor is directly associated with pressure
grouted shafts; rather that from the load test method is

used.



Grouting Basics Grout supply
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Grouting systems

L Iﬁ\i‘i T .ﬂ Y

Taipel
7
a

[ -

Sleeve Port (tube-a-manchette)



: ,1 l‘ ...c d

h“ : f\

-4

—~

N \.A

3 1 \.
.‘ﬂ.\ [ ]

tems

Grout

iNg sys

ST\

A 4,.-;. : w
I
& i

Flat jack (open or closed)



Field Practice / Design Expectation

Grout pressure is intended to create an expanding

oulb of grout where pressure increases with size of
oulb

f pressure is not achieved, stage grouting is often
suggested

Stage grouting reduces the size of the active/liquid
grout pressure area and does not continue to increase
soil improvement in the same way

Design methods implicitly assign capacity gains on a
combination of increases in tip area and soil strength

Designer must be aware of this global effect
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Undesired Result
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Design Methods

Three Basic Approaches

* End bearing « grout volume (circa 1970s not used)
* End bearing = Grout pressure

* End bearing function of grout pressure and
displacement

— Single stage grouting mullins et al. 2006
— Multi-stage grouting papp and Brown, 2010
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Design Methods
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Design Methods
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Design Methods
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FDOT Method

%D
0.4(%D)+3.0

Qgp = [(0.713(GPI) (%D%3%%) + ( )] d

Qg < grout pressure

GPI = grout pressure / q,; where q, is from O’Neill

In original study q, was determined from ungrouted
shaft on-site and not assumed from O’Neill

So there is an imposed bias when 0.6N is used to
estimate the ungrouted capacity



Approach

Collect end bearing data from load tests
conducted on post grouted shafts

Compare measured to predicted end bearing
Compute resistance factor based on bias statistics

Required information includes:

— Field grouting logs

— Load test end bearing vs disp data

— Boring logs

Check grouting effectiveness and determine:
— Max field recorded grout pressure

— Side shear predicted grout pressure

— Effective grout pressure from tri-axis plots



Factors Affecting Resistance Factor

Predicted End Bearing depends on grout pressure
— Side shear prediction of grout pressure
— Field measurements of grout pressure

Grouting Effectiveness

— Effectiveness plot verification

Displacement
— Davisson method not applicable
— Not a single bias from a given load test

Frequency of Load Testing (or in this case grouting)



Grout pressure determmatlon
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Grout pressure determmatlon
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Measured vs Predicted
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Measured end bearing (ksf)

Measured vs Predicted
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Preliminary Results
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Preliminary Results

Resistance Factor (¢)

Blas Criteria B=1.00 | p=2.00]| =233 |p=23.00
Effective pressure (field 090 | 050 | 041 | 0.27
verified / inspection plots)

Maximum field pressure 0.65 0.34 0.27 0.18
Side shear predicted 0.66 034 028 0.18
pressure




Future Work

* Half of the available data has not been included
(missing one or more required items). Will
continue to fill in the missing pieces.

* Grout pressure predictions based on side shear
predictions apply no resistance factor. Will check
the effects of using uplift side shear resistance
factor (e.g. 0.45 for sand)

* Need to establish criteria for selecting proper
reliability index for 100% post grout (proof test)



Effects of Slurry on Rebar Bond
(FHWA Drilled Shaft Manual 2010)

“The current state of knowledge on this topic suggests
that the use of mineral and polymer slurries for drilled
shaft construction does not reduce the bond resistance
between concrete and reinforcing bars. There Is
currently no reason to account for the use of drilling
fluids when considering development length of rebar iIn
drilled shafts.”



Effects of Slurry on Rebar Bond
(FDOT 455 Specifications 2018)

For new slurry products

“demonstrate the bond between the bar reinforcement
and the concrete iIs not materially affected by exposure
to the slurry under typical construction conditions, over
the typical range of slurry viscosities to be used.”



Effects of Slurry on Rebar Bond
(227 rebar pullout tests)
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Effects of Slurry on Rebar Bond
(227 rebar pullout tests)
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Probability Density

Effects of Slurry on Rebar Bond
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Effects of Slurry on Rebar Bond

(development length)

la = 40 /W)d\/ft’ (Cbzftr) dp

AN

Present ACI 318 Code limits
this expression to < 2.5

Water — 0/1,000,000
Bentonite — 1/3074
Polymer —1/2040

Required Reliability Index
B=350rPf<1/4149



Effects of Slurry on Rebar Bond

(development length)
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Effects of Slurry on Rebar Bond
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Effects of Slurry on Rebar Bond
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Conclusion

Mineral and polymer slurry affect rebar bond

New product testing has compared new slurry to
bentonite and have been similar

Most rebar splices in shafts do not occur in high
moment regions requiring full development so
failures are not likely to occur (?)

However, to maintain same reliability some
allowance should be made by increasing
development lengths for slurry casting conditions



Questions




