Estimating Soil Pressure Against Unyielding Surfaces BDV31-977-89

FDOT GRIP Meeting

Project Manager: Rodrigo Herrera, P.E. Project Co-Manager: Jose Hernando, P.E.

UF PI: Michael Rodgers, Ph.D., P.E. UF Co-PI: Michael McVay, Ph.D.

August 9, 2018

Topics Covered

- Introduction
- Background
- Objectives
- Tasks
- Project Benefits

Introduction

- Mechanically Stabilized Earth (MSE) Walls are a cost effective option for earth retention systems.
 - Bridge abutments, highway separations, and when construction space is limited
- Reinforced strips or grids are placed between layers of compacted soil and mechanically attached to the wall facing.
- Lateral earth pressures exerted on the wall facing by granular backfill are opposed by frictional resistance developed along the surface of the reinforcement

Background

- In general design, the lateral earth pressure imposed on a retaining wall is approximately equal to the active lateral earth pressure
 - Conventional earth pressure theory
 - Reinforcement embedded in soil provides resistance
- In certain cases, the reinforcement ties two walls together resulting in an unyielding condition.
 - Widening conditions (new wall tied to existing wall)
 - Acute corners
- The actual soil pressure that results behind an unyielding surface is not well defined

Unyielding Condition

Background

- FHWA GEC #11 acknowledges that "much higher" tension develops in the reinforcement when walls are tied together
- Minor deformations that typically occur in conventional MSE walls are prevented
- While GEC #11 recognizes the problem, it does not provide a clear recommendation for estimating the pressure of compacted soils

Objectives

- Investigate the resulting earth pressure coefficients derived from an approved MSE wall configuration
 - MSE reinforcement is tied to an unyielding structure
 - Prevents minor wall deformations in the yielding MSE wall
 - Two states of soil density
- The outcome can be used to adequately address design methodology and earth pressure coefficients
 - Earthen fill compacted behind unyielding structures

Tasks

- Task (1) Literature Review and Preliminary Design
- Task (2) Final Design, Site Preparation, and Materials Purchasing
- Task (3) MSE Wall Construction with Two Designated Relative Compaction Efforts
- Task (4) Draft Final and Closeout Teleconference
- Task (5) Final Report

Task (1) – Literature Review and Preliminary Design

- Extensive literature review of current design practices and standards was conducted
 - Ensure the MSE wall configurations adhere to the FDOT standard specifications for road and bridge construction
 - Comply with AASHTO design code.
- Construction and quality control procedures developed within the industry were also investigated
 - Ensures proper construction and sequencing takes place
 - Provides structures that are representative of typical MSE wall construction
- Preliminary MSE wall design was completed

Reinforcement Type

- Two types of reinforcement
 - Extensible and Inextensible
- Inextensible Reinforcement
 - <u>Metal strips</u>, metal bar mats, and welded wire grids
- MSE structures that utilize inextensible reinforcement behave as a rigid body
 - Reinforcement prevents internal deformation
 - Under tension over full reinforcement length
- Maximum tension occurs within the active zone
 - Strain gages strategically placed near active failure surface in multiple locations

Anderson et al. 2010

Design Methods Investigated

- National Concrete Masonry Association Procedure (NCMA)
- Geosynthetic Reinforced Soil (GRS) Analysis
- Tieback Wedge Method*
- FHWA Structure Stiffness Method*
- K-Stiffness Method*
- Coherent Gravity Method*
- The Simplified Method*

Coherent Gravity Method

- Developed to estimate steel strip reinforcement stresses for precast panel-faced MSE Walls
- Soil mass is assumed to behave as a rigid body
- K₀ condition is assumed at the top of the wall
 - Locked-in-compaction stresses & stiff reinforcement prevent an active stress condition
- K₀ decreases to K_a at a depth (z) of 20 feet below the top of the wall
 - Overburden stress overcomes locked-in-compaction
 - Deformations become great enough to mobilize an active stress condition
- Produces a bilinear failure surface

Simplified Method

- Simplified Coherent Gravity Method
- AASHTO recommended method
- Combines the best and simplest features of various AASHTO approved designed methods
 - Coherent Gravity
 - FHWA Structure Stiffness
 - Tieback Wedge
- Provides a single k_r/k_a curve for each reinforcement type
- Design methodology is similar to FHWA Structure Stiffness and Tieback Wedge Methods for calculating peak reinforcement load (T_{max})
 - k_r is calculated from curves

*Does not apply to polymer strip reinforcement.

$$k_r = k_a \left(1.2 + (1.7 - 1.2) \left(\frac{20 - z(ft)}{20} \right) \right)$$

Wall Panel Size & Reinforcement Spacing

- Surveyed approved FDOT vendors
 - SSL 5' x 5' square panel
 - The Neel Company 5' x 7' rectangular
 - Tensar Int. Corp. 5' x 5' square panel
 - Tri-Con Precast 5' x 5' square panel
 - Sine Wall, LLC 5' x 5' square panel
 - Sanders Pre-cast 5' x 5' square panel
 - Earth Wall Products 4' x 8' rectangular
 - Visit-A-Wall Systems 5' x 5' square pane
 - RECo 5' x 5' square panel
- 5' x 5' determined standard/generic wall panel size for Florida
- Vertical reinforcement spacing
 - $-S_v = 2.46'$
- Horizontal reinforcement spacing

 $-S_{H} = 2.46'$

Vertical Reinforcement Layout

Preliminary Soil Properties

Sieve Size	Required Percent Passing (AASHTO T-27)	Reported Percent Passing (AASHTO T-88)
3-1/2 inches	100	N/A
¾ inch	70 to 100	100
No. 4	30 to 100	100
No. 40	15 to 100	99.7
No. 60	N/A	78.4
No. 100	0 to 65	19.3
No. 200	0 to 12	2.5

- D₁₀ = 0.1 mm
- D₆₀ = 0.2 mm
- Coefficient of Uniformity $(C_u) = 2$
- AASHTO Classification = A-3
- USCS Classification = SP
 - Poorly Graded Sand
- Liquid Limit = Non-plastic (NP)
- Plastic Limit = NP
- Plasticity Index = NP

- Specific Gravity $(G_s) = 2.673$
- Maximum Dry Density (γ_{dmax}) = 107.5 pcf
- Optimum Moisture Content (w_{opt}) = 11.9 %
- Compaction (%) = 94.8
- Dry Density $(\gamma_d) = 101.5 \text{ pcf}$
- Moisture Content (*w*) = 11.3 %
- Internal Friction Angle (Φ) = 31.3°

External Stability Design

- 4 potential external failure mechanisms
 - Sliding of the base
 - Limiting eccentricity
 - Formerly overturning
 - Bearing resistance
 - Overall/global stability
 - Failure planes behind or under reinforced zone
- External failure not likely
 - Strong Wall produces no external loading
 - Bearing & Global stability concerns alleviated due to wall bearing on concrete floor
- External stability checks were conducted in preliminary design – stable for all cases

Sliding

Limiting Eccentricity

Internal Stability Design

- Considers two modes of failure
 - Pullout of reinforcement
 - Structural failure of reinforcement
- Critical failure (slip) surface assumed to be bilinear
 - Inextensible reinforcement
 - Coincides w/ locus of maximum tensile force in each reinforcement layer (T_{max})
- Design wall height ≈ 10'
 - Slip surface 3' behind facing at the top of the wall to 5' below top of wall
 - Decreases linearly from 3' behind the facing at 5ft below top of wall to 0' behind facing at the base of the wall

Unfactored Loads

- Vertical earth pressure (EV)
 - Calculated using preliminary soil properties
- Horizontal earth pressure (EH) calculated using:
 - At-rest (k_0)
 - Active (k_a)
 - Coherent gravity method (k_r)
 - Simplified Method (k_r)
 - Used for preliminary design
- Live load surcharge (LS)
 - Weight of researchers and compaction equipment
 - Calculated for final design
- Earth surcharge (ES)
 - Simulated

Known Parameters		Earth Pressures for Various k-Values				
		k _o	k _a	k _r - Coherent	k _r - Simplified	
Depth (ft)	σ _v (psf)	σ_{h} (psf)	σ _h (psf)	σ _h (psf)	σ _h (psf)	
1	113	54	36	53	60	
2	226	109	71	105	118	
3	339	163	107	155	174	
4	452	217	143	202	229	
5	565	271	179	248	281	
6	678	326	214	292	332	
7	791	380	250	335	381	
8	904	434	286	375	429	
9	1,017	489	322	413	474	
10	1,130	543	357	450	518	

Surcharge Loading

- UF Soil Box walls or large concrete blocks will be used for surcharge loading
 - Representative of earth surcharge (ES)
- Estimated surcharge
 - $q_s = 250 \text{ psf}$
 - True surcharge will be measured prior to final design
- Approximate equivalent to 2' of overburden soil
 - AASHTO recommended height equivalent for traffic loads parallel to MSE walls

Internal Stability Checks

Factored horizontal stress and maximum tension

 $\sigma_h = k_r [(\gamma_r Z) \gamma_{EV-MAX} + q_s \gamma_{ES-MAX}]$

 $\sigma_h = 0.469[(113 \ pcf \times 8.61 \ ft)1.35 + (250 \ psf)1.5] = 792 \ psf$

 $T_{max} = \sigma_h S_v S_h = 792 \ psf \times 2.46 \ ft \times 2.46 \ ft = 4,793 \ lbf$

- Doubled the maximum load as suggested by WSDOT

 $T_{max} = 2 \times 4,793 \ lbf = 9,586 \ lbf$

 Factored reinforcement tensile resistance, T_r, for static loading

 $T_r = \Phi T_{al} = \Phi F_y A_{cs} = 0.75 \times 65,000 \ psi \times 0.31 \ in^2 = 15,113 \ lbf$

 $T_r = 15,113 \ lbf > T_{max} = 9,586 \ lbf : ok$

Internal Stability Checks

 Number of strips required per tributary wall area for tensile capacity

 $N = \frac{(\sigma_h A_p)}{A_{cs}(0.55F_y)} = \frac{2(792 \, psf) \times 24.2 \, ft^2}{0.31 \, in^2(0.55 \times 65,000 \, psi)} = 3.46 \therefore 4 \, strip/tributary \, wall \, area$

- Connection Resistance at Facings
 - Connection resistance > reinforcement tensile resistance (per RECo)
 - Used tensile resistance for connection strength design (conservative)

Depth (ft)	σ _v (psf)	Δσ _v (psf)	σ _h (psf) Factored	T _{max} (lbf) Unfactored	T _{max} (lbf) Factored	T _{max} (lbf) Doubled	Connection Strength (lbf)	
1.23	139	250	297	1,243	1,797	3,594	15,113	∴ ok
3.69	417	250	477	2,052	2,885	5,771	15,113	OK
6.15	695	250	642	2,796	3,885	7,771	15,113	
8.61	973	250	793	3,475	4,797	9,594	15,113	2

Task (2) – Final Design, Site Preparation, and Materials Purchasing

- Soil testing conducted at the SMO:
 - Sieve analysis
 - Relative density
 - Consolidation
 - Compaction (T99 and T180)
 - Direct shear
 - Moisture content
 - Unit weight
 - Soil classification
 - Routine nuclear density testing during construction
- If permitted:
 - pH, resistivity, chloride, and sulfate testing

Task (2) – Final Design, Site Preparation, and Materials Purchasing

- Preliminary designs will be updated based on the results of the soil investigation
 - Designs will be reviewed by practicing engineers within the industry
 - The Reinforced Earth Company (RECo)
 - Offer guidance on construction operations and internal stability
 - Provide recommendations on number of reinforced strips required to maintain internal stability
- Final designs will be drafted and presented to FDOT for approval

FDOT approval must be gained before construction

Task (2) – Final Design, Site Preparation, and Materials Purchasing

- Site prep
 - The Strong Wall at UF will be used to conduct the research
 - Develop tie-ins on the strong wall (unyielding) to connect MSE strips
 - Develop a safety barrier and an access platform to enter the wall area
- Instrumentation purchasing and calibration (See Slide 25)
 - Earth pressure cells (embedded in soil)
 - "Fatback" earth pressure cells (wall mounted)
 - Strain gauges placed on the top and bottom of the reinforced strips (compensate for bending)
 - Displacement transducers to measure wall displacement
 - Vibrating wire readout box for spot checks during wall construction
 - Vibrating wire data logger to record and store measurements taken during the experiments

- To properly investigate the earth pressure coefficients, two relative compaction efforts will need to implemented
 - For example, 94% of T180 and 104% of T180
- The final degree of compaction will be determined by FDOT after soil lab testing.
 - Plate compactor
 - Vibratory roller compactor
 - Develop rolling plan
 - Routine nuclear density testing

- Design provides eight tributary wall areas (TWA)
 - ½ panel tall and 2 panels wide
 - Used to check internal stability of the structure under Coherent Gravity or Simplified methods
- Four depth layers to investigate for each compaction effort

- Concrete blocks will be cast prior to MSE wall construction
 - Provides soil base layer containment
- A geotextile drain will be placed at the base of soil
- Leveling pads will be cast and placed in soil prior to construction
 - MSE wall is constructed atop the leveling pads
- After wall construction and backfilling is complete, surcharge loading will be induced
 - UF Soil Box walls an/or large concrete blocks
 - Length of sustained loading will be determined by Project Managers and Principle Investigators
 - Based on data collected on-site

- Horizontal EPCs will be embedded in the soil at the midpoint of each TWA (Slide 18)
- Vertical EPCs will be mounted on the MSE wall panels at same vertical location as horizontal EPCs within each TWA
- Provides direct measurement of the horizontal and vertical stresses in 16 different zones
 - Earth pressure coefficients will be derived from multiple stress states, based on depth of embedment, simultaneously
- Strain gauges will be placed on reinforcement strips
 - At least three locations on strips (active zone)
 - Converted to axial force and lateral stress for comparison with EPCs
- Displacement transducers will measure wall movement
- Roller compactor will be driven atop soil to investigate the effects and soil disturbance

Project Benefits

- Qualitative
 - Directly address the uncertainty of the engineering design for this special case of MSE wall construction
 - Increase the reliability of the engineering design for this special case of MSE wall construction
 - Provide guidelines for implementation
 - FDOT's Structures Design Guidelines and/or Soils and Foundations Handbook
- Quantitative
 - Possible savings by alleviating overly conservative designs for this type of MSE wall construction

Questions?

