Bearing Capacity Factors for Shallow Foundations Subject to Combined Lateral and Axial Loading

FDOT Contract No. BDV31-977-66

FDOT Project Manager:

Larry Jones

Principal Investigator:

Scott Wasman, Ph.D.

Co-Principal Investigator:

Michael McVay, Ph.D.

Research Assistant:

Stephen Crawford

PRESENTATION OVERVIEW

- 1) BACKGROUND AND MOTIVATION
- 2) PROJECT TASKS
- 3) BEARING CAPACITY EQUATIONS
- 4) SOIL PROPERTIES
 - A-3 Soil

5) PLUVIATION PROCEDURE

- Medium dense condition
- Very dense condition

6) LOADING, FOOTINGS, AND SOIL CONDITIONS TO BE TESTED

• Foundation size, L/B ratio, Embedment Depth, Relative Density, G-Level, etc.

7) CENTRIGUE MODEL EXPERIMENT SETUP

- Test apparatus
- Instrumentation

8) TEST RESULTS AND ANALYSIS

- General or Local shear failure
- Bearing capacity
- N_{γ}

BACKGROUND AND MOTIVATION

- 1) AASHTO Specifications (10.6.3.1.2) make allowance for load inclination
 - Meyerhof (1953), Vesić (1973) and Hansen (1973) are considered
 - Based on small scale experiments
 - Derived for footings without embedment
- 2) AASHTO commentary (C10.6.3.1.2a) suggest inclination factors may be overly conservative
 - Footing embedment $(D_f) = B$ or greater
 - Footing with modest embedment may omit load inclination factors
- 3) FHWA GEC No.6 indicates load inclination factors can be omitted if lateral and vertical load checked against their respective resistances
- 4) Resistance factors included in the AASHTO code were derived for vertical loads
 - Applicability to combined lateral/axial loads are currently unknown
 - Up to 75% reduction in Nominal Bearing Resistance computed with AASHTO load inclination factors

BACKGROUND AND MOTIVATION

- 5) NCHRP 651 on LRFD Design and Construction of Shallow Foundations for Highway Bridges
 - Identify and propose the concept of a combined failure state
 - Similar to beam/column interaction diagram
- 6) FDOT research project BDK75-977-22 completed in December 2013
 - Limited set of combined vertical and horizontal loads
 - Results indicated the inclination of resultant load had an experimentally proven effect on the bearing capacity of MSE walls

OBJECTIVES

Measure bearing capacity of representative shallow foundations in centrifuge tests to identify the influence of embedment, lateral/axial concentric and eccentric loads through experimentally determined load factors.

TASKS

- 1) Task-1: Collect data on current practice through online survey
- 2) Task-2: Select foundation scenarios to test and design experimental program
- 3) Task-3: Conduct centrifuge tests on model foundations for bearing capacity
- 4) Task-4: Compare measured bearing capacity to predictions
- 5) Tasks-5 and 6: Closeout Teleconference and Final Report

FDOT recommends analysis of shallow foundations be done in accordance with AASHTO LRFD Bridge Design Specifications

General bearing capacity equation recommended by AASHTO (2016)

$$q_n = cN_{cm} + \gamma D_f N_{qm} C_{wq} + 0.5\gamma B N_{\gamma m} C_{w\gamma}$$
 Eq.1

$$q_n = \gamma D_f N_{qm} + 0.5\gamma B N_{\gamma m}$$
 Eq.2

$$N_{qm} = N_q S_q d_q i_q$$
 Eq.3

$$N_{\gamma m} = N_{\gamma} S_{\gamma} i_{\gamma}$$
 Eq.4

$$N_q = e^{\pi \tan \phi_f} tan^2 \left(45^\circ + \frac{\phi_f}{2} \right)$$
 Eq.5

$$N_{\gamma} = 2(N_q + 1)tan(\phi_f)$$
 Eq.6

$$B$$
 = Foundation width
 γ = Soil unit weight

 D_f = Embedment depth

 S_q , S_γ = Shape correction factor d_q = Depth correction factor i_q , i_γ = Inclination correction factors

TASK 2: TEST SOIL

AASHTO CLASS: A-3

- Max unit weight: 108.9 pcf
- Min unit weight: 90.7 pcf
- 2.5% Passing #200
- 97.5% Sand
- Coefficient of Uniformity: 1.67
- Coefficient of Curvature: 1.35
- Specific gravity: 2.67
- e_{min}: 0.53
- $e_{max}: 0.84$
- SP Unified Soil Classification **DIRECT SHEAR TEST:**
- $D_r = 55 93\%$
- $\phi = 29.5^{\circ} 34^{\circ}$

TRIAXIAL CD-TEST:(c=0)

- $D_r = 61 94\%$
- $\phi = 36.0^{\circ} 41.2^{\circ}$

TRIAXIAL CD-TEST:(c≠0)

- $D_r = 61 94\%$
- $\phi = 33.3^{\circ} 39.9^{\circ}$

TASK 2: SOIL PLUVIATION

Front View

Side View

TASK 2: SOIL PLUVIATION

TASK 3: GEOTECHNICAL CENTRIFUGE TESTS

- Useful to study geotechnical problems (capacity of foundations) at a fraction of the cost of prototype study
- Soil has non-linear mechanical properties dependent on effective stress and stress history
- Spinning model in centrifuge increases the "gravitational" acceleration model which produces identical self-weight stresses between model and prototype ($\sigma_{model} / \sigma_{prototype} = 1$)
- Scale other properties for testing ex. $L_{model}/L_{prototype} = 1/N$

Property	Scale Factor
Length	1/N
Area	$1/N^{2}$
Volume	$1/N^{3}$
Force	$1/N^{2}$
Unit Weight	Ν
Stress	1
Strain	1

3 meter diameter centrifuge

• In flight load application and monitoring of foundation response (displacement and soil pressure)

UF FLORIDA

TASK 3: TEST CONDITION-1

Strip Foundation: (L/B = 20)						
Interior container width (in.)	20					
Interior container length (in.)	20					
Interior container height (in.)	9.5					
Soil height (in.)	8.5					
Scale factor (N)	36					
Foundation material	Aluminum					
Model width (in)	1					
Model length (in.)	20					
Model thickness (in.)	0.5					
# of Hyd. load actuators	3					
# of Omega load cells	3					
# of BEI linear potentiometers	3					
Enerpac P464 hand pump	1					

* Container designed to accommodate max load for ultimate bearing capacity and eliminate boundary influences on failure surfaces.

TASK 3: TESTS PERFORMED

Loading and Foundation Scenario	Name	Date	Density (D _r)	Embedment Depth (D _f)	Eccentricity	Inclination	Series #
			Very				
	LT-1	7/5/2018	Dense	0	0	0	1
			Very				
	LT-2	7/7/2018	Dense	0	0	0	2
← B →			Medium				
	LT-3	7/12/2018	Dense	0	0	0	1
			Medium				
	LT-4	7/13/2018	Dense	0	0	0	2
			Medium				
	LT-5	7/14/2018	Dense	0.5B	0	0	1
			Medium				
	LT-6	7/16/2018	Dense	0.5B	0	0	2
$-B \rightarrow$			Very				
	LT-7	7/17/2018	Dense	0.5B	0	0	1
			Very				
	LT-8	7/18/2018	Dense	0.5B	0	0	2

TASK 3: LT-1 SOIL PROFILE VIEW

Post-test soil stratigraphy

UF FLORIDA

$$\alpha = 45^{\circ} - \frac{\phi}{2} \therefore \alpha = 30.23^{\circ}$$
$$\phi = 29.54^{\circ}$$

TASK 3: LT-1 SOIL PLAN VIEW

Post-test soil plan view

TASK 3: LT-1 LOAD vs. DISPLACEMENT (model scale)

TASK 3: LT-2 SOIL PROFILE VIEW

Post-test soil stratigraphy

UF FLORIDA

 $\alpha = 45^\circ - \frac{\phi}{2} \div \alpha = 29.30$ $\phi = 31.40^{\circ}$

?

TASK 3: LT-2 SOIL PLAN VIEW

Post-test soil plan view

TASK 3: LT-2 LOAD vs. DISPLACEMENT (model scale)

TASK 3: LT-1 & LT-2 LOAD vs. DISPLACEMENT (prototype scale)

TASK 3: LT-3 SOIL PROFILE VIEW

Post-test soil stratigraphy

UF FLORIDA

$$\alpha = 45^{\circ} - \frac{\phi}{2} \therefore \alpha = 29.36$$
$$\phi = 31.28^{\circ}$$

?

TASK 3: LT-4 SOIL PROFILE VIEW

Post-test soil stratigraphy

UF FLORIDA

 $\alpha = 45^{\circ} - \frac{\phi}{2} \div \alpha = 29.44^{\circ}$ $\phi = 31.12^{\circ}$

TASK 3: LT-3 & LT-4 LOAD vs. DISPLACEMENT (prototype scale)

TASK 3: INVESTIGATION OF Ν_γ

Bearing Factor for Surcharge and Soil Unit Weight:

$$N_q = e^{\pi \tan \phi_f} \tan^2 \left(45^\circ + \frac{\phi_f}{2} \right)$$
$$N_\gamma = 2(N_q + 1) \tan(\phi_f) - (\text{Vesic'})$$
$$N_\gamma = 2(N_q + 1) \tan(1.07\phi_f) - (\text{Zhu et al method})$$

Simplified form of Bearing Capacity Equation:

$$q_n = \gamma D_f N_{qm} C_{wq} + 0.5 \gamma B N_{\gamma m}$$

$$N_{\gamma m} = \frac{q_n}{0.5\gamma B}$$
 (Measured)

Evaluate N_{γ} with various $\varphi\text{-values:}$

- ϕ -Direct shear test
- ϕ -Triaxial shear test
- ϕ -Measured failure surface

TASK 3: INVESTIGATION OF N_y

φ-Direct Shear Test									
Test Density ^{¢-}	Donsity	ϕ -Direct Shear	Ν _γ -	N _γ - Vesic'	%-Difference	N_{γ} - Zhu et al	%-Difference		
	(degree)	Measured	method	(Vesic')	method	(Zhu et al method)			
LT-1	86.91	33.45	45.24	37.71	18.2	41.15	9.5		
LT-2	87.10	33.47	45.22	37.83	17.8	41.28	9.1		
LT-3	63.42	30.89	32.86	25.57	25.0	27.81	16.6		
LT-4	63.36	30.89	32.86	25.57	25.0	27.81	16.6		
φ-Triaxial Shear Test (c=0)									
	Develter	φ-Triaxial	Ν _γ -	N _γ - Vesic'	%-Difference	N_{γ} - Zhu et al	%-Difference		
Test	Density	est Density	(degree)	Measured	method	(Vesic')	method	(Zhu et al method)	
LT-1	86.91	40.27	45.24	114.64	86.8	126.58	94.7		
LT-2	87.10	40.30	45.22	115.23	87.3	127.25	95.1		
LT-3	63.42	36.62	32.86	62.13	61.6	68.25	70.0		
LT-4	63.36	36.61	32.86	62.13	61.6	68.14	69.9		
φ-Measured Failure Surface									
Test	Density	φ-Failure surf.	Ν _γ -	N _γ - Vesic'	%-Difference	N_{γ} - Zhu et al	%-Difference		
Test		(degree)	Measured	method	(Vesic')	method	(Zhu et al method)		
LT-1	86.91	29.54	45.24	20.93	73.5	22.73	66.2		
LT-2	87.10	31.40	45.22	27.6	48.4	30.04	40.3		
LT-3	63.42	31.28	32.86	27.11	19.2	29.50	10.8		
LT-4	63.36	31.12	32.86	26.47	21.5	28.79	13.2		

TASK 3: LT-5 SOIL PROFILE VIEW

 $\begin{array}{l} \mu_{Dr}^{'}=64.07\% \\ CV_{Dr}^{'}=0.029 \end{array}$

UF FLORIDA

Post-test soil stratigraphy

$$\alpha = 45^{\circ} - \frac{\phi}{2} \therefore \alpha = 27.75^{\circ}$$
$$\phi = 34.50^{\circ}$$

TASK 3: LT-6 SOIL PROFILE VIEW

 $\frac{\text{Soil properties:}}{\mu_{\gamma d} = 101.38 \text{ pcf}} \\ \mu_{\phi DS} = 30.85^{\circ} \\ \mu_{\phi TS} = 36.56^{\circ} \\ \mu_{Dr} = 63.05\% \\ \text{CV}_{Dr} = 0.029 \\ \end{array}$

UF FLORIDA

Post-test soil stratigraphy

$$\alpha = 45^{\circ} - \frac{\Phi}{2} \therefore \alpha = 29.93^{\circ}$$
$$\phi = 30.14^{\circ}$$

TASK 3: LT-5 & LT-6 LOAD vs. DISPLACEMENT (prototype scale)

TASK 3: LT-7 SOIL PROFILE VIEW

$$\begin{split} \underline{Soil \ properties:} \\ \mu_{\gamma d} &= 105.97 \ pcf \\ \mu_{\phi DS} &= 33.37^{\circ} \\ \mu_{\phi TS} &= 40.16^{\circ} \\ \mu_{Dr} &= 86.21\% \\ CV_{Dr} &= 0.012 \end{split}$$

UF FLORIDA

Post-test soil stratigraphy

$$\alpha = 45^{\circ} - \frac{\phi}{2} \therefore \alpha = 27.64^{\circ}$$
$$\phi = 34.72^{\circ}$$

TASK 3: LT-8 SOIL PROFILE VIEW

 $\frac{\text{Soil properties:}}{\mu_{\gamma d}} = 105.85 \text{ pcf}$ $\mu_{\phi DS} = 33.31^{\circ}$ $\mu_{\phi TS} = 40.07^{\circ}$ $\mu_{Dr} = 85.65\%$ $CV_{Dr} = 0.008$

UF FLORIDA

Post-test soil stratigraphy

$$\alpha = 45^{\circ} - \frac{\phi}{2} \div \alpha = 28.64^{\circ}$$
$$\phi = 32.72^{\circ}$$

TASK 3: LT-7 & LT-8 LOAD vs. DISPLACEMENT (prototype scale)

Name	Date	Density (D _r)	Embedment Depth (D _f)	Eccentricity	Inclination	Measured Bearing Pressure	Vesic' Bearing Pressure	Percent Difference (%)
						(psf)	(psf)	. ,
		Medium						
LT-5	7/14/2018	Dense	0.5B	0	0	6000	7537	22.7
		Medium						
LT-6	7/16/2018	Dense	0.5B	0	0	5900	7414	22.7
LT-7	7/17/2018	Very Dense	0.5B	0	0	6000	10878	57.8
LT-8	7/18/2018	Very Dense	0.5B	0	0	5500	10776	64.8

 $q_n = \gamma D_f N_{qm} + 0.5 \gamma B N_{\gamma m}$

$$N_{qm} = N_q d_q \qquad \therefore \qquad N_q = e^{\pi \tan \phi_f} \tan^2 \left(45^\circ + \frac{\phi_f}{2} \right)$$
$$N_{\gamma m} = N_{\gamma} \qquad \therefore \qquad N_{\gamma} = 2(N_q + 1) \tan(\phi_f)$$

 $N_{\gamma m}$ = Measured value (once confirmed)

$$d_q = 1 + 2 \tan \phi_f \cdot \left(1 - \sin \phi_f\right)^2 \left(\frac{d_f}{B}\right) \text{ for } \frac{d_f}{B} \le 1$$
F

TASK 3: CONCLUDING COMMENTS

- 1) **LT-1 through LT-4:** $(D_f = 0)$
 - φ-direct shear test appears representative of φ-measured failure surface.
 - Plane strain condition
 - $N_{\gamma} = 2(N_q + 1)tan(1.07\phi_f) Zhu$ et al method is best estimate of test results
- 2) LT-5 through LT-8: $(D_f = 0.5B)$
 - Re-evaluate LT-7 & LT-8 at higher relative density to ensure general shear failure (higher bearing capacity).
 - q_{Measured} vs. $q_{\text{Estimated}}$ (confirm $N_{\gamma} \& d_{q}$)

TASK 3: CONCLUDING COMMENTS

1) Future tests

• Evaluate inclined and inclined-eccentric loading on L/B = 1 & L/B = 10 foundations $D_f = 0$ and $D_f > 0$

