Field Implementation of the Vertical In situ Permeameter (VIP) BDV31-977-88

FDOT GRIP Meeting

Project Manager: David Horhota, Ph.D., P.E.

UF PI: Michael Rodgers, Ph.D., P.E. UF Co-PI: Ana Mohseni, Ph.D.

August 9, 2018

Topics Covered

- Introduction
- Background
- Objectives
- Tasks
- Project Benefits

Introduction

- Measuring hydraulic conductivity in soil can be challenging
- Grain size, grain orientation, density, degree of saturation, and soil type all effect hydraulic conductivity
- Soil disturbance can lead to skewed results
- Several methods have been developed to measure hydraulic conductivity

Includes laboratory and field methods

Introduction

- Laboratory methods are often questionable
 - Inherent sample disturbance induced during extraction and transport
- Field methods induce less disturbance
 Provides better insight for in situ conditions
- Field testing is often preferred

– e.g., cased and uncased methods

- Field testing is more expensive and time consuming
 - Makes the approach less ideal

Background

 Recently UF and FDOT developed a new permeability probe

- The Vertical In situ Permeameter (VIP)

 VIP measurements were in good agreement with results obtained from various conventional methods

Includes both cased and uncased methods

- VIP requires far less test time
 - Greatly improves efficiency
 - More data can be collected with less effort

Background

- During the previous investigation, 104 VIP tests were performed
 - 4 different sites
 - 72 depths ranging from 4 to 15 feet
 - Hydraulic conductivities ranging from 1x10⁻⁵ to 1x10⁻² cm/s
- Based on the success, a new Florida Method of Test was developed for the probe

 FM 5-614
- Additional testing is recommended to validate the success of the preliminary trials

Objectives

- The primary objective of this research is to implement VIP testing throughout Florida
 - Validation testing
 - Introduce the new test method to each FDOT district
- 8 locations will be tested
 - 7 FDOT districts and along the turnpike
 - 2 sites per location
- Variable soil and field conditions will be encountered
 - Provide a better understanding of the probes capabilities and constraints

Secondary Objectives

 Further investigating and updating the shop drawings provided in FM 5-614

- More robust internal design for percussive driving

- Fabricating 8 probes and falling head vessels
 Distribute amongst the districts
- Developing and instructional video
 - VIP training purposes
 - Promote the newly developed test method

Supporting Tasks and Deliverables

- Task (1a) VIP Probe and Falling Head Vessel Fabrication
- Task (1b) Updating CAD Drawings for FM 5-614
- Task (2) VIP Calibration
- Task (3) VIP Field Testing
- Task (4) Creating and Instructional Video
- Task (5) Draft Final and Closeout Teleconference
- Task (6) Final Report

Task (1a) – VIP Probe and Falling Head Vessel Fabrication

• 8 VIP probes will be fabricated

– Design will be investigated in Task 1b

- 8 Falling head vessels will also be fabricated
 Needed to perform VIP testing
- Provide each district with the needed testing equipment to implement VIP testing when desired
 - In-house testing (FDOT)
 - Consultant testing within the district

Task (1b) – Updating CAD Drawings for FM 5-614

- Current probe drawings provided in FM 5-614 were investigated and currently being updated
 - Working alongside machine shop to ensure accuracy
- More robust design was developed
 - FDOT indicated a more robust design would be ideal for percussive advancement into denser soils
 - Allow the probe to be advanced without predrilling which requires more time and may cause soil disturbance
- More in-depth CAD drawings are being completed
 - Three dimensional CAD renderings are being developed
 - Better visualization of probe mechanics and guidance for future fabrication

New Design – 3D CAD Rendering

- More robust design
 - Percussive advancement
- More robust threading
- Increased wall thickness
- Increase stroke length to 2"
 - Easier to track the required lift to open the probe tip
- Reduced diameter for the friction reducer
 - Less resistance during advancement
- Increased length of the connector to ¾"
 - fit wrench for easier disassembly
- Added O-ring to seal upper chamber when testing
 - Water only exits through the tip

Probe Mechanics

Probe Comparison

Task (2) – VIP Calibration

- After each probe is constructed, calibration will need to take place to ensure the probes and accompanying equipment function properly before distribution
- Requires a standard calibration procedure to be developed
 - Check O-ring compression
 - Closed off during advancement
 - Properly opens for testing at shallow depths and in less dense soil
 - Determine permeability limits of the probe
- The previously developed shape factor (F) will also be investigated
 - Currently, F = 3D
 - Could range from 2.5D to 3.1D based on the literature

Task (3) – VIP Field Testing

- Field testing will be conducted at 16 different sites throughout Florida
 - 7 FDOT districts and along the turnpike (2 sites/location)
- Each site will be identified by the Project Manager
- Ideal sites will provide ease of access for testing and have prior hydraulic conductivity data available for comparison
- Data will be reduced and analyzed after each site is completed
- Upon completion of all sites, a final analysis will be conducted and conclusions will be drawn
 - Cost comparisons to conventional methods
 - Commentary on any regional/geological variability effects

Task (4) – Creating an Instructional Video

 An instructional video will be developed and made readily available on the internet

– e.g., YouTube

- Will be developed after calibration standards have been established and some field testing has taken place
 - Allow researchers to identify/resolve any issues before the video is made public
- The video will serve as a companion to the instructions provided in FM 5-614

Project Benefits

- VIP testing will provide a significant increase in the amount of data obtained during a standard site investigation
 - VIP allows more data to collected at multiple depths with reduced test times
 - More data is collected with less effort
- Lead to a reduction in future costs for obtaining accurate hydraulic conductivity data
- This research will validate and promote the use of FDOT's newly developed Florida Method of Test FM 5-614
 - Each district will be provided with the needed equipment and training to implement VIP testing

Questions?

