


PI: Dr. Ana Mohseni

Consultant: Dr. Harald Klammler

Research Assistant Scientist: Dr. Michael Rodgers, P.E.

Graduate Student: Aminta Velasquez

Undergraduate Student: Angelina Liu



# VERTICAL IN SITU PERMEAMETER (VIP) PROJECT

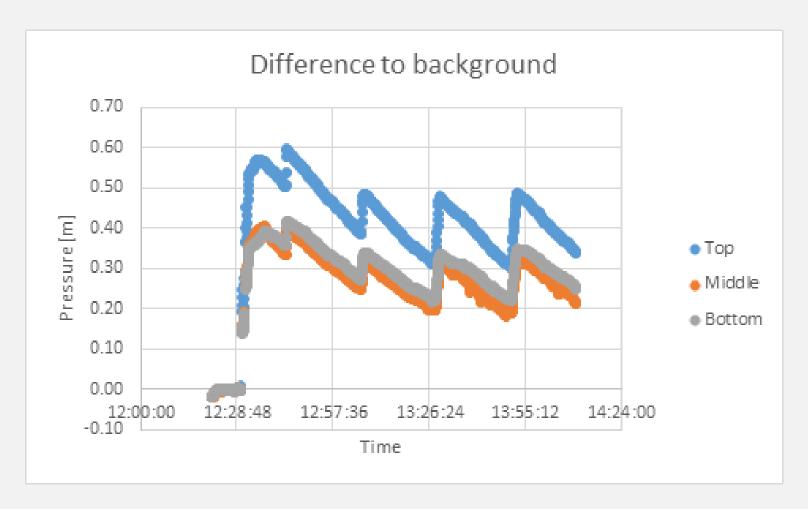
- New permeability probe recently developed by UF and FDOT
  - Measurements were in good agreement with results obtained from various conventional methods
  - Includes both cased and uncased methods
- Requires far less test time
  - Greatly improves efficiency
  - More data can be collected with less effort
- New Florida Method of Test was developed for the probe
  - o FM 5-614
- Issues
  - o Delivers some "average" conductivity rather than independent values of  $k_v$  and  $k_h$
  - o Difficulty to drive the probe into deeper layer
    - Old VIP difficulty in layers deeper than 10 ft
    - Improved VIP TBD

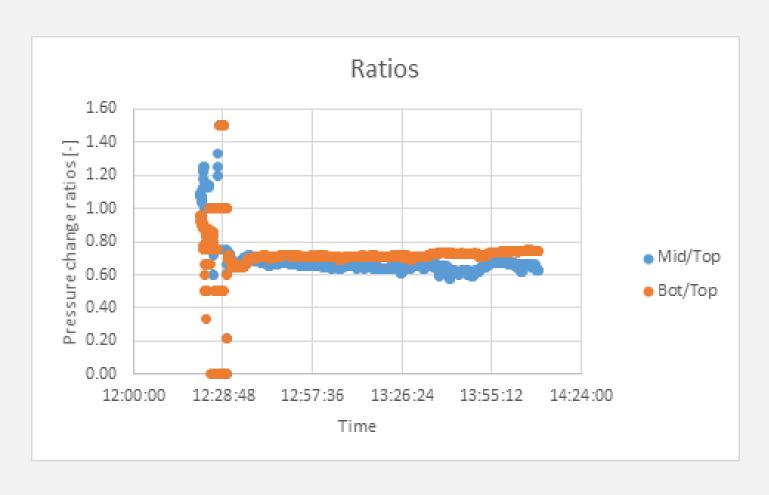
#### IMPROVED VAHIP

- Advances in flow theory
  - $\circ$  Potential for estimating vertical and horizontal permeabilities  $k_v$  and  $k_h$  under saturated conditions
- Simple mechanical design
  - No moving parts
- Automated data acquisition using pressure transducers
  - No hand readings
- Potentially capable of reaching greater depths
- Potentially insensitive to smearing and compaction near probe surface
  - Use of SPT hammer

# VERTICAL AND HORIZONTAL IN SITU PERMEAMETER PROJECT (VAHIP)

- Project Tasks
- ✓ 1. Identification of an appropriate pressure measurement system
- ✓ 2. Development of computer-aided drawings (CAD) for the proposed probe
- ✓ 3. Fabrication of a PVC-prototype and possible adjustments of injection system
- ✓ 4. Testing of PVC-prototype at the DOT test pit
  - 5. Fabrication of a steel probe
  - 6. Final report


- Data acquisition (DAQ) module
  - o Track and record the measurement in real time during the test procedure
    - No more stop watch and hand readings
    - Potentially be extended to real time conductivity estimates
      - Visualization of tests results on the same screen
      - Ability to determine if test results are stable and replicable when running more than one test
      - No more hand or spreadsheet calculations
  - Created an instruction manual for the DAQ
  - o Development of a standard test procedure


- 2 day testing
  - $\circ$  3 tests on 1st day
    - Pipping during 3<sup>rd</sup> test
      - Solution
        - Deeper embedment of probe
        - Lower the total head at the beginning of the test
        - Not an issue during tests in the field
  - $\circ$  4 tests on 2<sup>nd</sup> day
    - No issues











# **UPCOMING TASKS**

- PVC probe test
  - o Data analysis of last tests
  - Manufacture steel probe (in progress)
    - · Porous steel
- Test steel probe in DOT test pit and/or filed using DOT rig
- Final report





# **THANK YOU**