INTERSTATE 95 (I-95) / STATE ROAD 9 (SR 9) SYSTEMS INTERCHANGE MODIFICATION REPORT

VOLUME 1 OF 2

FDOT Financial Project Identification Number: 436903-1-22-02 Efficient Transportation Decision Making (ETDM) Number: 14254

Project Study Limits:

From South of Hallandale Beach Boulevard (SR 858) to North of Hollywood Boulevard (SR 820) Broward County, Florida

Prepared for:

FDOT DISTRICT FOUR
2300 WEST COMMERCIAL BOULEVARD
FORT LAUDERDALE, FL 33309

System Interchange Modification Report(SIMR)

Interstate 95 (I-95) / State Road 9 (SR 9) PD&E Study

From South of Hallandale Beach Boulevard (SR 858) to North of Hollywood Boulevard (SR 820)

> FPID Number: 436903-1-22-02 ETDM Number: 14254

Florida Department of Transportation

Determination of Safety, Operational and Engineering Acceptability

Acceptance of this document indicates successful completion of the review and determination of safety, operational and engineering acceptability of the Interchange Access Request. Approval of the access request is contingent upon compliance with applicable Federal requirements, specifically the National Environmental Policy Act (NEPA) or Department's Project Development and Environment (PD&E) Procedures. Completion of the NEPA/PD&E process is considered approval of the project location design concept described in the environmental document.

Requestor	DocuSigned by:	09/02/2025 9:24 AM EDT
1	Leslie Wetherell, P.E.	Date
	FDOT District Four	
Interchange Review Coordinator	DocuSigned by: Gysa Sosa DDD87623A6304F5	08/29/2025 4:47 PM EDT
	Geysa Sosa, P.E. FDOT District Four	Date
Systems Management Administrator	Signed by: Joshna Jester	09/19/2025 4:41 PM EDT
	Joshua Jester, P.E.	Date
	Systems Implementation Office – Central Office	
Chief Engineer of Production	DocuSigned by: Junity Mushall D881D2848766482	09/25/2025 4:53 PM EDT
	Jennifer Marshall, P.E.	Date
	Central Office	

SYSTEMS IMPLEMENTATION OFFICE

QUALITY CONTROL CERTIFICATION FOR INTERCHANGE ACCESS REQUEST SUBMITTAL

Submittal Date: 6/26/2025

FPID Number: <u>436903-1-22-02</u>

Project Title: Interstate 95 (I-95) / State Road 9 (SR 9) Project Development and Environment Study

District: Four

Requestor: <u>Leslie Wetherell</u>, P.E Phone: <u>954-777-4438</u>

District IRC: Geysa Sosa, P.E. Phone: 954-777-4323

<u>Document Type</u>: \Box MLOU \Box IJR \Box IMR \Box IOAR \boxtimes OTHER <u>SIMR</u>

Status of Document

FINAL

Quality Control (QC) Statement

This document has been prepared following FDOT Procedure Topic No. 525-030-160 (New or Modified Interchanges) and complies with the FHWA two policy requirements. Appropriate District level quality control reviews have been conducted and all comments and issues have been resolved to their satisfaction. A record of all comments and responses provided during QC review is available in the project file or Electronic Review Comments (ERC) system.

Requestor	DocuSigned by:	09/02/2025 9:24 AM EDT
-	Leslie Wetherell, P.E. FDOT District Four Project Manager	Date
Interchange Review	Docusigned by: Gysa Sosa DDD8762346304F5	08/29/2025 4:47 PM EDT
Coordinator	Geysa Sosa, P.E. FDOT District Four	Date
	Project Development Manager Interchange Review Coordinator	

PROFESSIONAL ENGINEER CERTIFICATE

I hereby certify that I am a registered professional engineer in the State of Florida practicing with The Corradino Group, a Florida Corporation authorized to operate as an engineering business, P.E. #7665, by the State of Florida Department of Professional Regulation, Board of Engineers and that I have prepared or approved the evaluation, findings, opinions, conclusions, or technical advice hereby reported for:

Project: Interstate 95 (I-95) / State Road 9 (SR 9)

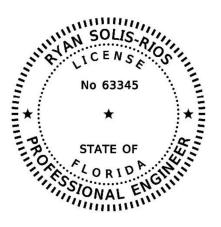
Project Development and Environment Study

ETDM Number: 14254

Financial Project

Identification Number: 436903-1-22-02

Federal Aid


Project Number: D419-102-B

County: **Broward**

FDOT

Project Manager: Leslie Wetherell, P.E.

I acknowledge that the procedures and references used to develop the results contained in this report are standard to the professional practice of transportation engineering as applied through professional judgment and experience.

Ryan Solís-Ríos **SIGNATURE:**

Name: Ryan Solis-Rios, P.E., PTOE

Date: 6/26/2025

P.E. No.: 63345

Consultant Firm: The Corradino Group

Ryan Solis-Rios Date: 2025.08.20 16:25:06 -04'00'

Digitally signed by Ryan Solis-Rios

EXECUTIVE SUMMARY

INTRODUCTION

The Florida Department of Transportation (FDOT) District Four is conducting a Project Development and Environment (PD&E) Study for Interstate 95 (I-95) from south of Hallandale Beach Boulevard (SR 858) to north of Hollywood Boulevard (SR 820), a distance of approximately three miles (see *Figure ES.1*). The PD&E Study is proposing improvements to the Hallandale Beach Boulevard, Pembroke Road, and Hollywood Boulevard interchanges. The project is located in Broward County, Florida and is contained within the municipalities of Hallandale Beach, Pembroke Park, and Hollywood.

This Systems Interchange Modification Report (SIMR) was prepared in support of the I-95 PD&E Study. The SIMR documents the results of the traffic analyses for the considered alternatives and provides an assessment of the proposed roadway improvements in accordance with the FHWA's Policy on Access to The Interstate System. The SIMR was prepared in accordance with the FDOT's policies and procedures and serves as part of the necessary documentation for receiving Location Design Concept Acceptance (LDCA) for the proposed project.

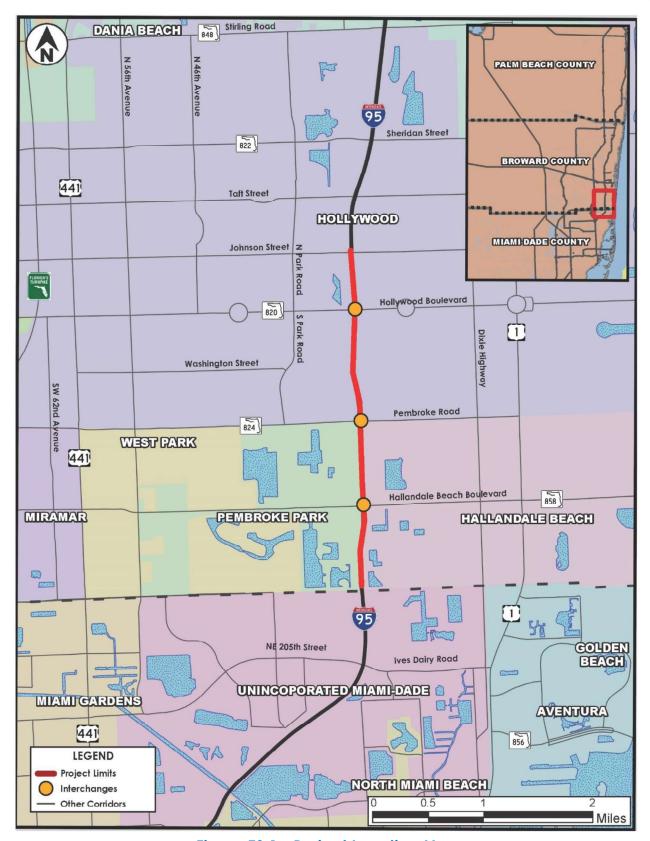


Figure ES.1 - Project Location Map

PURPOSE AND NEED FOR PROJECT

The purpose of this project is to develop recommendations for the proposed improvements of I-95 between south of Hallandale Beach Boulevard and north of Hollywood Boulevard. The need for this project is to increase interchange and ramp terminals intersection capacity at Hallandale Beach Boulevard, Pembroke Road and Hollywood Boulevard. Other considerations for the purpose and need of this project include safety, system linkage, modal interrelationships, transportation demand, social demands, economic development, and emergency evacuation. The overall goals and objectives of this PD&E Study are described below:

- Evaluate the implementation of potential interchange and intersection improvements that will improve capacity, operations, safety, mobility, and emergency evacuation.
- Identify the appropriate interstate/interchange access improvements that, combined with Transportation Systems Management and Operations (TSM&O) improvements, will service the users of the area, and achieve the Purpose and Need.
- Provide relief from existing and projected traffic congestion.
- Improve the safety of the I-95 mainline corridor by addressing speed differentials and lane weaving deficiencies between interchanges.
- Support the optimal operations of the existing roadway network.
- Maintain consistency with the current I-95 Express Lanes and local projects.
- Prioritize the proposed improvements based on the area needs (short-term vs. long-term), logical segmentation and funding.

METHODOLOGY

The methodology applied for this I-95 SIMR is documented in the Methodology Letter of Understanding (MLOU), dated September 2017, and later updated in June 2021. The MLOU was approved by FDOT District Four and FDOT Central Office Systems Implementation. The MLOU outlines the criteria, assumptions, processes, analyses, and documentation requirements for the project. The MLOU was prepared in accordance with the FDOT's Interchange Access Request User's Guide and related standards. The interchange modifications proposed in this SIMR were developed in coordination with FDOT. The viability of future interchange modifications within the I-95 project area was established and documented in the I-95 Broward Interchanges Masterplan, dated January 2016. The Masterplan Study evaluated and screened concepts, which focused on preliminary engineering efforts and future traffic projections. The conceptual design analysis evaluated

interchange concepts to identify logical project termini, a preliminary typical section, and the alignment of the proposed improvements.

EXISTING CONDITIONS

I-95, within the project limits, currently consists of eight general use lanes (four in each direction) and four dynamically tolled express lanes (two in each direction). This segment of I-95 is functionally classified as a Divided Urban Principal Arterial Interstate and has a posted speed limit of 65 miles per hour. The access management classification for this corridor is Class 1.2, Freeway in an existing urbanized area with limited access.

There are three existing full interchanges within the project limits located at Hallandale Beach Boulevard, Pembroke Road, and Hollywood Boulevard. All three roadways are classified as Divided Urban Principal Arterials. Hallandale Beach Boulevard consists of four lanes west of I-95 and six lanes east of I-95. Pembroke Road and Hollywood Boulevard each have six lanes west of I-95 and four lanes east of I-95.

Existing Annual Average Daily Traffic (AADT) volumes vary between 238,000 and 268,000. Peak direction during the AM peak period is southbound, while the peak direction during the PM peak period is northbound. The following traffic conditions are typical for average weekday AM and PM peak periods in the existing year.

AM Peak Period – The I-95 AM peak direction of flow is southbound. The AM peak period is 6:00 AM to 10:00 AM. Congestion tends to form during the AM peak period on I-95 southbound south of the Ives Dairy Road off-ramp. In addition, congestion occurs northbound on the northern portion of the corridor north of Sheridan Street, which is considered outside the project area.

PM Peak Period – The PM peak period is 3:00 PM to 7:00 PM. The PM peak period is generally the reversal of the AM peak period in terms of directionality. The northbound direction is the peak direction of flow during the PM peak. However, major congestion is evident on I-95 southbound at the Ives Dairy Road off-ramp and south of the Ives Dairy Road interchange, which is considered outside of the project area. This congestion is a result of capacity constraints at Ives Dairy Road as well as spillback from interchanges further south of the project area. Congestion from the Ives Dairy Road southbound off-ramp spillbacks onto the mainline and impacts traffic operations at the upstream interchanges.

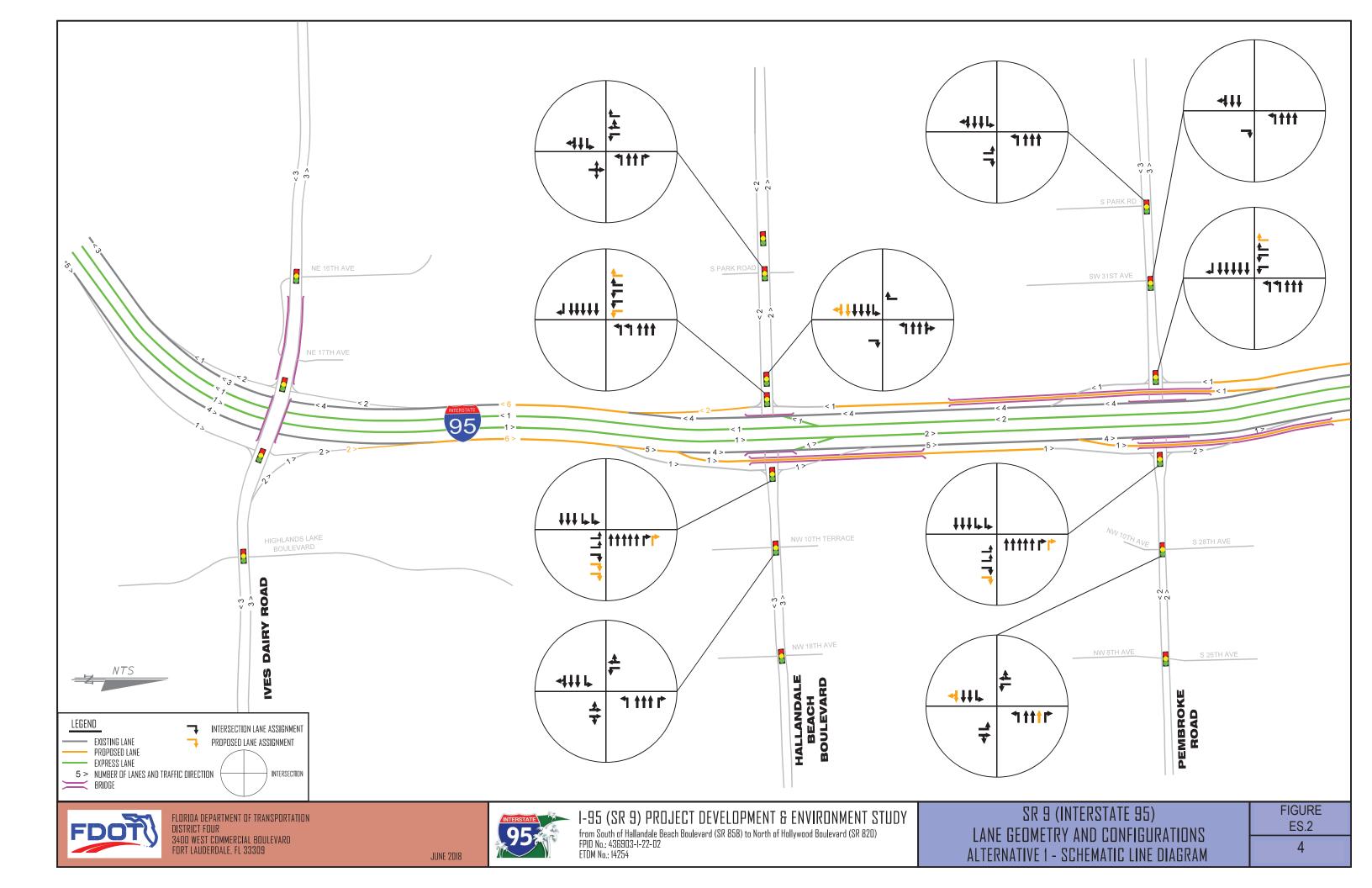
I-95 (SR 9) PD&E Study

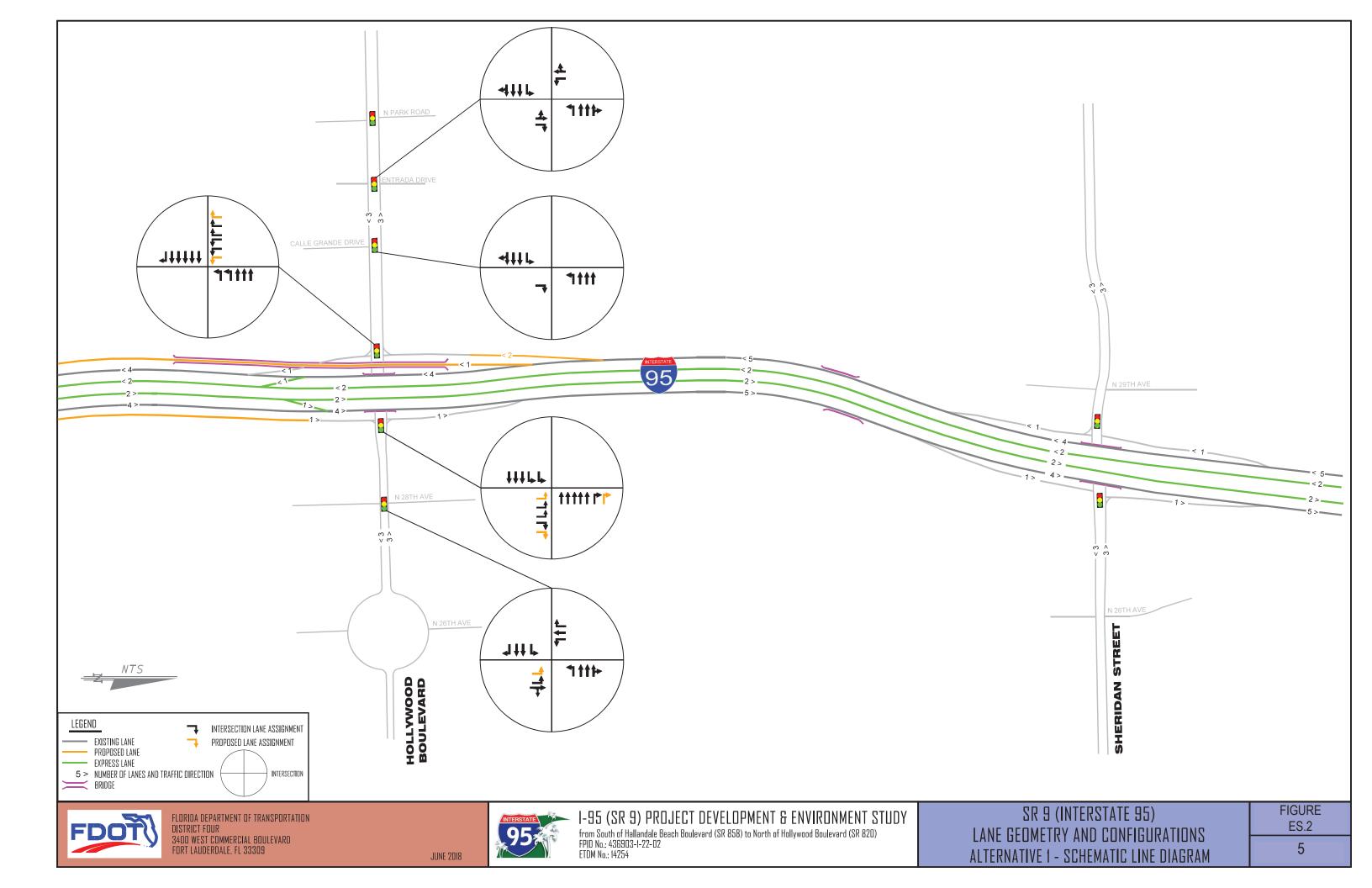
A major north-south railroad corridor exists within the project area with three at-grade crossings and a railroad station. The railroad corridor is located to the west of I-95. The atgrade crossings are located at Hallandale Beach Boulevard, Pembroke Road, and Hollywood Boulevard. The Tri-Rail Station is located at Hollywood Boulevard.

NO-BUILD ALTERNATIVE

The No-Build Alternative proposes to keep the existing study area without future corridor improvements. The effect associated with this alternative includes the acceptance of existing highly congested traffic conditions. Also, travel demand and truck traffic will increase significantly over the next 20 years, given the continued growth expected in this area. Future 2045 AADT volumes vary between 305,000 and 319,000. Traffic analysis results indicate that operations along I-95 are expected to be at LOS E or F during the AM and PM peak period at select locations.

Average operating speeds are expected to range from approximately 14 to 61 mph at certain locations. The No-Build Alternative will not improve the system capacity needs within the study area. Long-term improvements are necessary to mitigate the existing traffic conditions and increase capacity to accommodate future travel demand. The No-Build Alternative will not reduce congestion on the system, nor will it provide mobility for this section of Broward County.

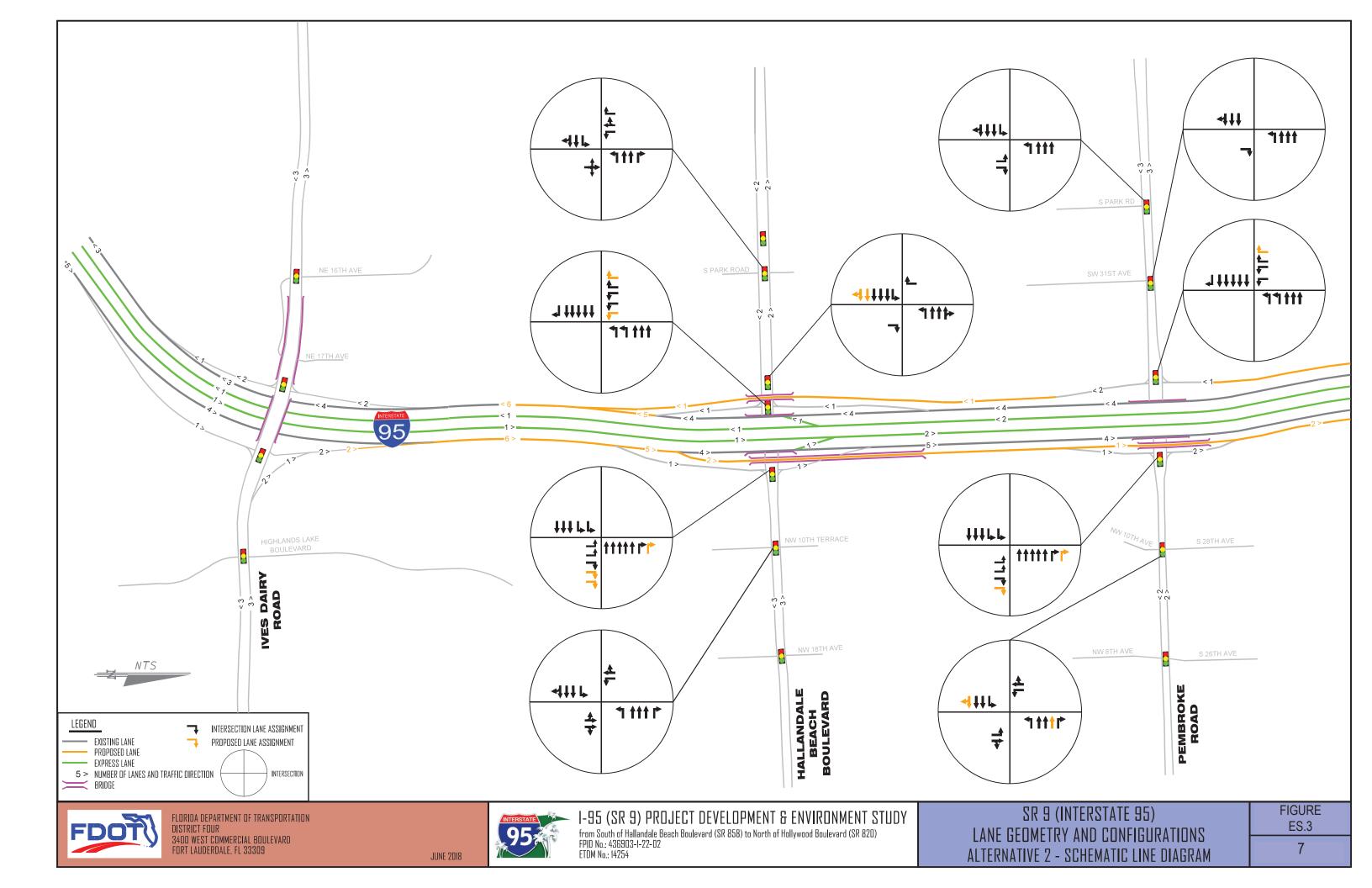

During the AM peak-hour, two areas of congestion are present on I-95 in the northbound direction. Between Ives Dairy Road and Hallandale Beach Boulevard, the high demand volume coupled with weaving maneuvers between the two interchanges cause congestion and speeds between 36-43 mph to occur. The Hallandale Beach Boulevard northbound off-ramp queues on the mainline. Speeds as low as 26 mph are observed at the Hollywood Boulevard northbound off-ramp, extending upstream within the Pembroke Road interchange. This occurs because the northbound off-ramp turning movements experience significant delay and queueing. The congestion and queueing from the Hollywood Boulevard off-ramp reach a mainline speed of approximately 14 mph. In the southbound direction, congestion within the 800-foot-long weave segment between Pembroke Road and Hallandale Beach Boulevard is observed with an approximate mainline speed of 40 mph. The southbound off-ramp at Hallandale Beach Boulevard queues onto the mainline causing operational issues within the short weave segment.

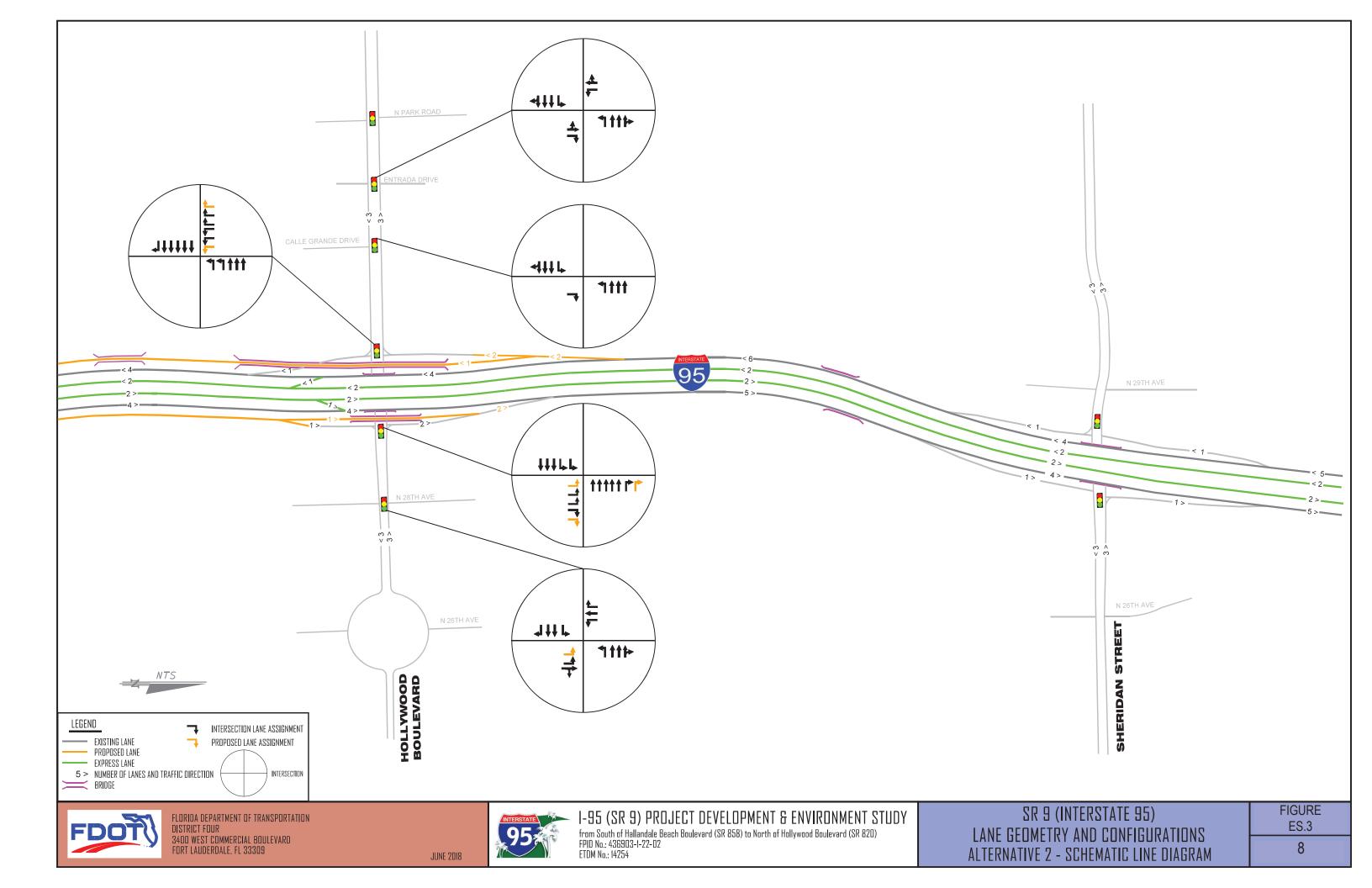

During the PM peak-hour, congestion is observed on I-95 northbound at similar locations to the AM peak-hour. Between Ives Dairy Road and Hallandale Beach Boulevard, the high demand volume coupled with weaving maneuvers between the two interchanges cause congestion and speeds between 25-36 mph to occur. The Hallandale Beach Boulevard northbound off-ramp queues on the mainline. The Hollywood Boulevard diverge also begins to degrade with speeds between 21-40 mph. Significant queueing is observed spilling back from the off-ramp. In the southbound direction there is minor turbulence upstream of the Hollywood Boulevard off-ramp, this is in part due to the Hollywood Boulevard off-ramp queueing on the mainline. Also, there is minor turbulence within the 800-foot-long weave segment between Pembroke Road and Hallandale Beach Boulevard with mainline speed of 53 mph.

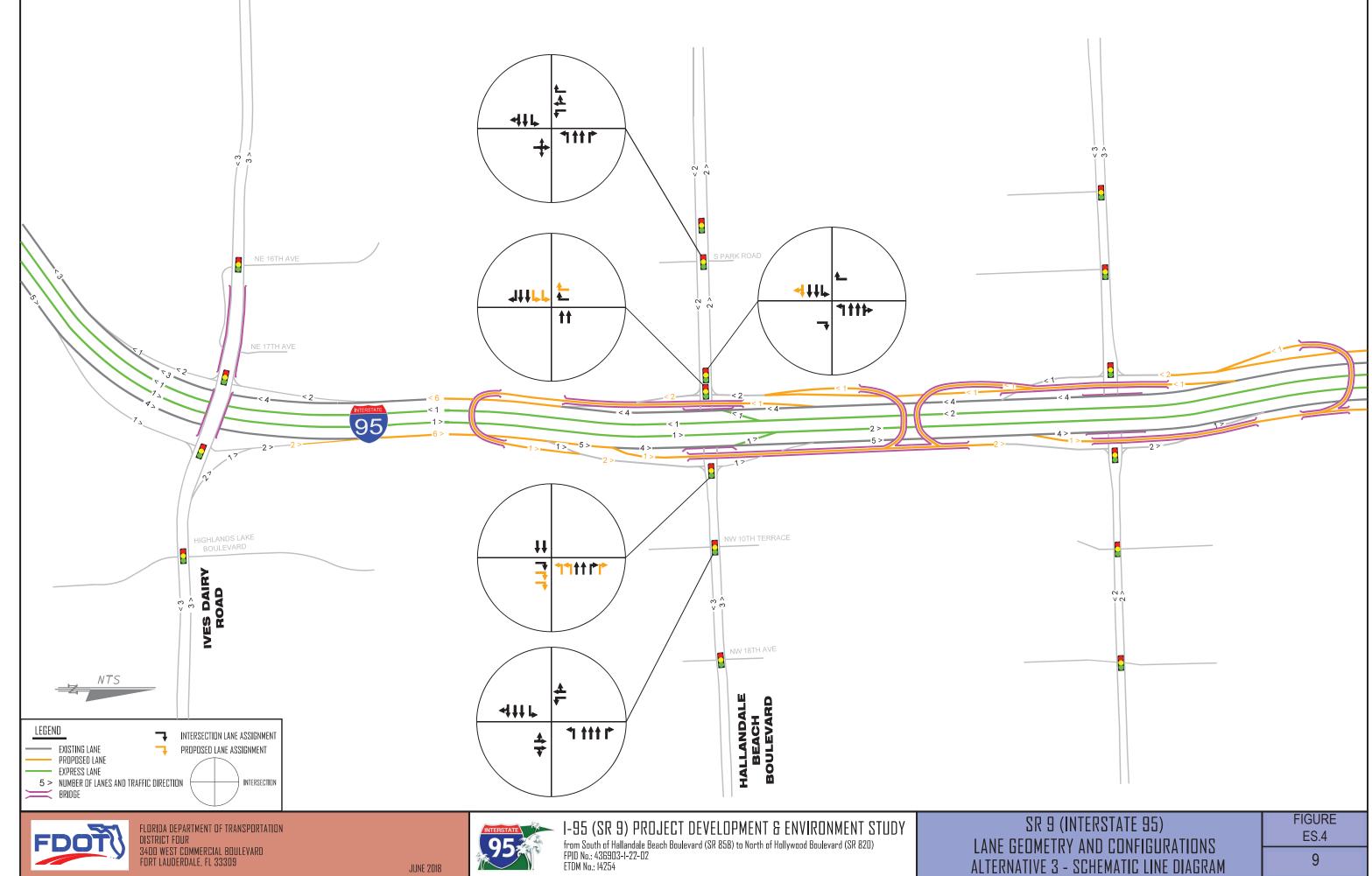
ALTERNATIVES CONSIDERED

The objective of this PD&E Study is to evaluate interchange alternatives that will address existing and projected traffic operating deficiencies along this section of I-95. In order to keep up with the growing traffic demand within the study area, three build alternatives (Alternatives 1, 2 and 3) were considered in this PD&E Study. All three alternatives propose potential modifications to the existing entrance and exit ramps serving the three interchanges within the project limits. Ramp terminal intersection modifications were evaluated at Hallandale Beach Boulevard, Pembroke Road, and Hollywood Boulevard to improve the access and operations to and from I-95.

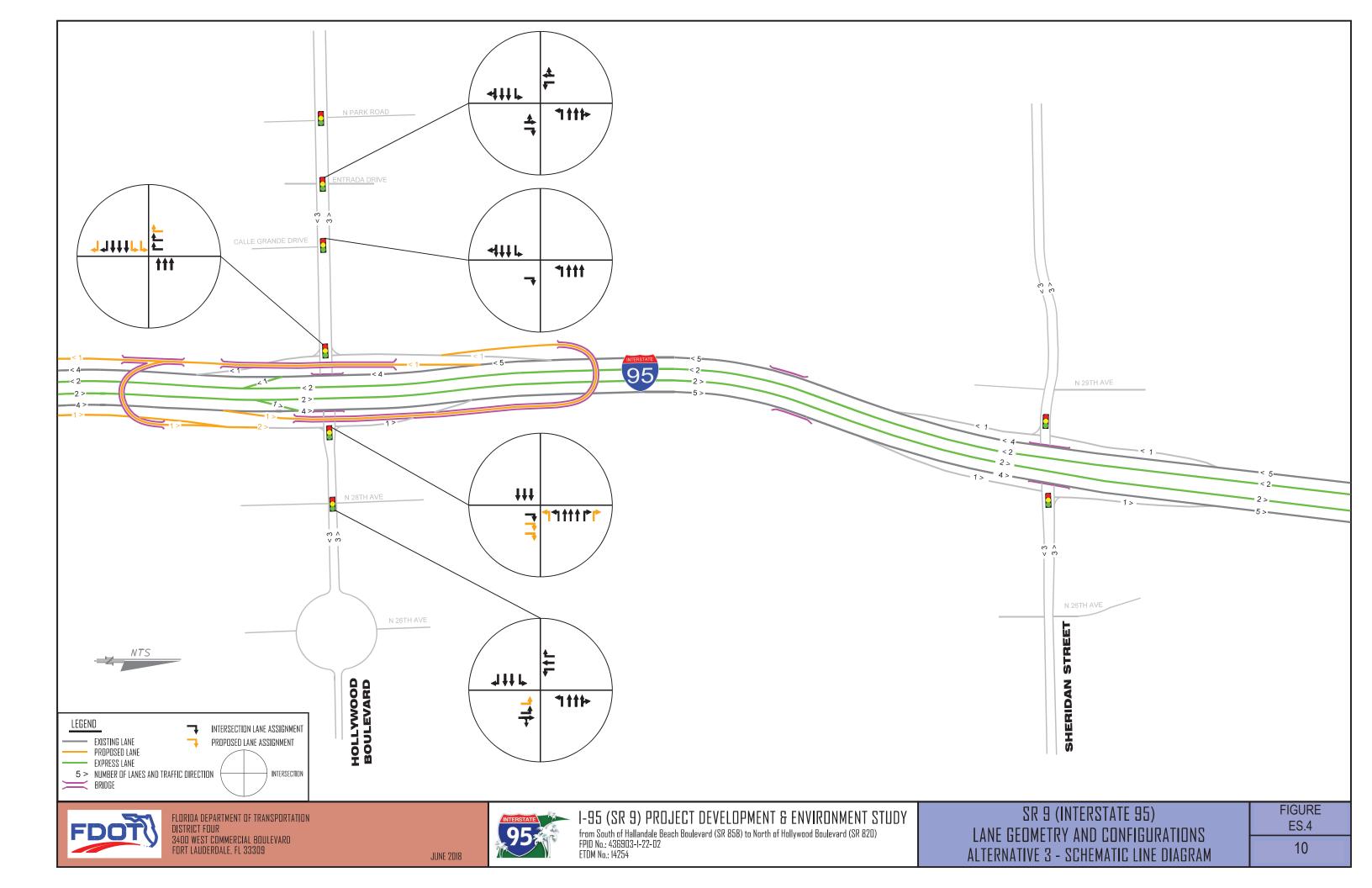
Alternative 1 – Alternative 1 proposes braided ramps between interchanges to improve substandard weaving movements along I-95. In this alternative, the on-ramps from each interchange remains unchanged. However, the off-ramps to Pembroke Road and Hollywood Boulevard in the northbound direction and to Pembroke Road and Hallandale Beach Boulevard in the southbound direction were located one interchange prior to the destination interchange. For example, travelers destined northbound to Pembroke Road would use an exit ramp located just south of the Hallandale Beach Boulevard corridor right after the Hallandale Beach Boulevard off-ramp. The new exit ramp continues separated from the I-95 mainline braiding over the Hallandale Beach Boulevard on-ramp and continuing along the right of way line until reaching the cross-street ramp terminal. This new exit ramp bypasses and avoids conflicts with the Hallandale Beach Boulevard onramp. The same design continues northbound to Hollywood Boulevard and southbound to Pembroke Road and Hallandale Beach Boulevard. Figure ES.2 shows the schematic geometric layout of Alternative 1.




Alternative 2 – Alternative 2 proposes a collector distributor roadway system within the I-95 mainline project area. The collector distributor roadway system removes the Pembroke Road Interchange from directly interacting with the I-95 mainline. In the northbound direction, all exiting traffic to Pembroke Road and Hollywood Boulevard utilizes a new collector distributor off-ramp just south of Hallandale Beach Boulevard. The collector distributor roadway system extends to just north of Hollywood Boulevard serving the exit traffic to Pembroke Road, entry traffic from Pembroke Road and entry traffic from Hollywood Boulevard. In the southbound direction, the new collector distributor roadway system is not continuous, it ends and begins at Pembroke Road. The first section combines the off-ramps to Hollywood Boulevard and Pembroke Road and the second section moves the Pembroke Road on-ramp to enter I-95 south of the Hallandale Beach Boulevard on-ramp. *Figure ES.3* shows the schematic geometric layout of Alternative 2.


Alternative 3 – Alternative 3 proposes to eliminate all left-turn movements from the off-ramp terminal intersections. The left-turn movements were converted to right-turn movements by relocating the left-turn movements to a successive off-ramp that becomes a U-turn ramp over the interstate touching down to the opposite ramp terminal intersection. For example, the northbound exiting interstate traffic destined westbound conventionally uses the northbound off-ramp and make a left turn. However, in this alternative, the northbound exiting interstate traffic destined westbound uses the interstate U-turn off-ramp to access the southbound off-ramp right-turn movement. This alternative reduces the number of phases needed at the interchange ramp terminals. **Figure ES.4** shows the schematic geometric layout of Alternative 3.

Interchange Alternatives – Four types of interchange configurations were evaluated along each cross street for each I-95 interchange at Hallandale Beach Boulevard, Pembroke Road and Hollywood Boulevard.


- 1. Diamond Interchange
- 2. Diverging Diamond Interchange (DDI)
- 3. Displaced Left-Turn Lane Interchange (DLT)
- 4. Continuous Flow Intersection (CFI)

JUNE 2018

Alternatives Eliminated – During the alternative analysis and geometrics evaluation, the following alternatives were eliminated from further consideration:

- Alternative 3 This alternative was eliminated from the PD&E Study for the following reasons:
 - o Low U-turn ramp design speed (20 MPH).
 - o U-turn bridge ramps will need median piers, which will require a complex maintenance of traffic along I-95. The maintenance of traffic will impact the operations of the express lanes system.
 - o Interchange design is not uniformed with the other interchanges, upstream, downstream and throughout the corridor, which impacts driver expectancy and a potential increase in crashes.
 - o Interchange design footprint is not compatible with the future I-95 projects north and south of the study limits.
- Diverging Diamond Interchange This alternative was eliminated from the PD&E Study for the following reasons:
 - o Low crossing lanes path design speed (30-35 MPH).
 - o Railroad at-grade crossing is too close to the crossing lanes path, which could create wrong way vehicle maneuvers and a complex operation of the railroad crossing gates.
- Displaced Left-Turn Lane Interchange This alternative was eliminated from the PD&E Study for the following reasons:
 - Requires a larger footprint within the off-ramp interchange quadrants, which increases right of way impacts.
 - Railroad at-grade crossing is too close to the new upstream intersection on the west side.
 - o The design requires additional railroad crossing gates and a more complexed crossing gate operation.
- Continuous Flow Intersection This alternative was eliminated from the PD&E Study because this interchange configuration will work with mainline Alternative 3 only, which was eliminated from the PD&E Study.

The evaluation methodology used in this study involved a combination of both comparative qualitative and quantitative analyses to determine a preferred alternative, which focused on engineering, traffic, socio-economic, environmental and project cost. The key components of the alternative's analysis were purpose and need, travel demand

forecasting, geometrics, right of way impacts, construction cost and operational analysis. The alternatives analysis was geared to determine which capacity improvements were necessary to improve traffic operations, safety, interchange access, system linkage, modal interrelationships, social demand, economic development, and emergency evacuation. Alternative 2 was selected as the preferred alternative based on the alternatives alignment analysis and the evaluation results documented during the PD&E Study.

PREFERRED ALTERNATIVE REFINEMENTS

On September 8, 2021, shortly after the Public Hearing, the Town Commission of the Town of Pembroke Park submitted a resolution to FDOT requesting to remove the impacts to the existing business properties at the I-95/Hallandale Beach Boulevard Interchange within the Town of Pembroke Park from the I-95 PD&E Study proposed improvements. The resolution also requested to consider other improvements that do not include impacts to these properties within the Town's limits.

On September 14, 2021, the City Commission of the City of Hollywood submitted a resolution rejecting the I-95 PD&E Study preferred alternative recommendations. The resolution recommended to move forward with the No-Build Alternative or modify the preferred alternative recommendations. The City had the following concerns with respect to the preferred alternative:

- Elimination of the direct access between Hallandale Beach Boulevard, Pembroke Road and Hollywood Boulevard with I-95 and the impact on local roadway network.
- Elimination of the City of Hollywood emergency vehicle access to this segment of the I-95 corridor.
- FDOT's drainage needs for the new improvements and their intention to utilize approximately eight acres of the newly acquired Sunset Property or Orangebrook Golf Course.

In 2023, modifications to the preferred alternative were made and presented to the local municipalities. A resolution from the City of Hollywood was then passed on April 4, 2023, supporting FDOT's new preferred alternative. The City of Hallandale Beach sent a letter supporting the project on July 10, 2023. The Town Commission of the Town of Pembroke Park passed a resolution on December 13, 2023, agreeing with the proposed project improvements. Therefore, all concerns and issues raised by the local municipalities were addressed by FDOT. *Figures ES.5* and *ES.6* show the schematic geometric layout of the previous and refined Preferred Alternatives respectively.

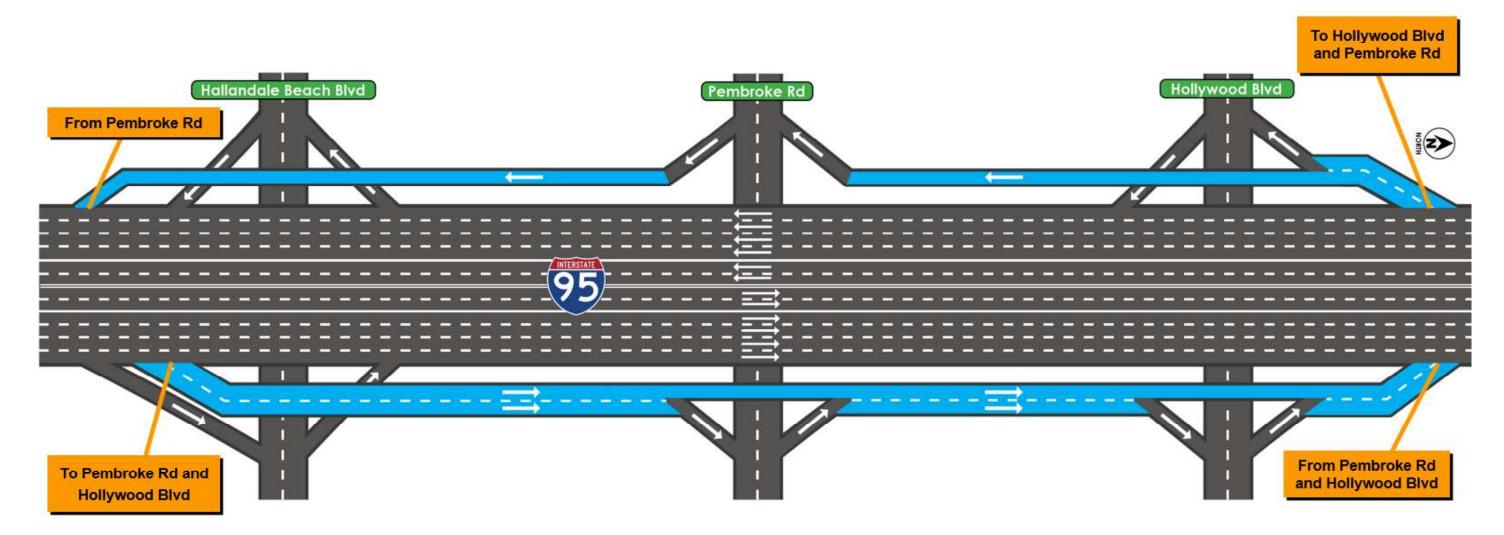


Figure ES.5 – Previous Preferred Alternative Schematic Line Diagram

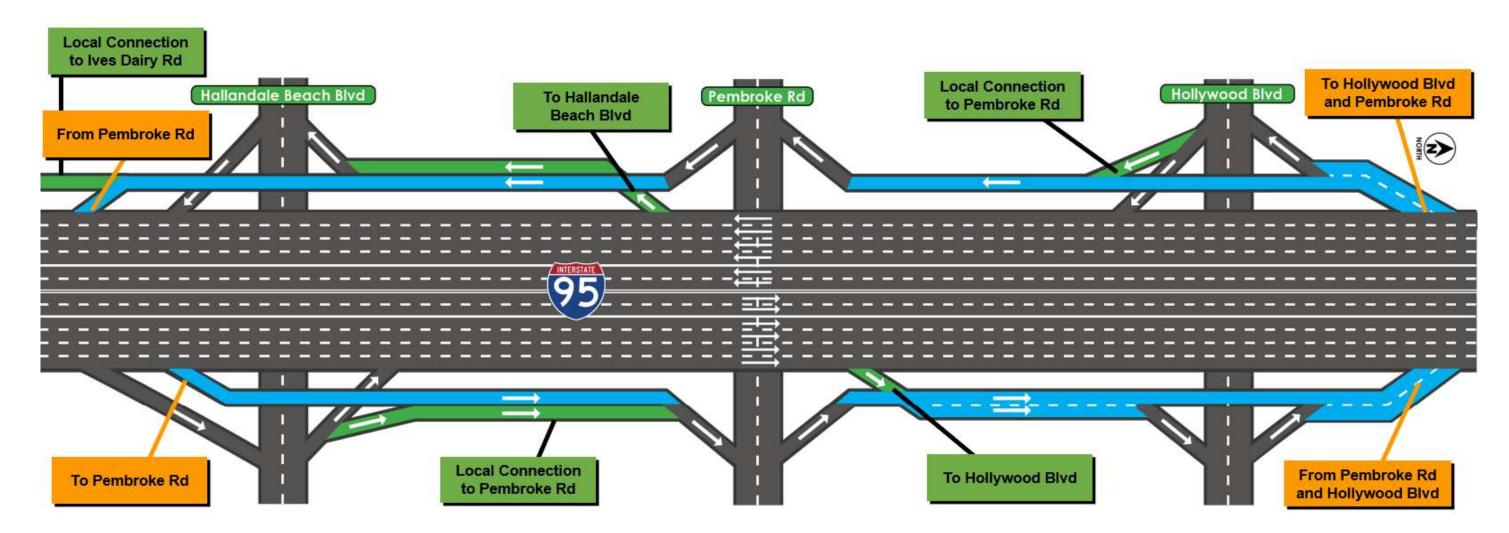


Figure ES.6 – Refined Preferred Alternative Schematic Line Diagram

PREFERRED ALTERNATIVE INTERSECTION AND INTERCHANGE IMPROVEMENTS

The preferred alternative is proposing interchange and intersection improvements to support the optimal operations of the corridor. The preferred alternative proposes interchange improvements to all three interchanges. The improvements will vary from minor to major capacity enhancements (see **Appendix N**, Preferred Concept Plans).

Below is a summary of the overall interchange ramp improvements:

Hallandale Beach Boulevard

- Northbound off-ramp terminal intersection widening to triple right turn lanes and additional storage
- Southbound off-ramp terminal intersection widening to dual right-turn lanes and additional storage
- Westbound to northbound right-turn lane extension
- Eastbound to southbound right-turn lane extension

Pembroke Road

- Westbound to northbound right-turn lane extension
- Eastbound to southbound right-turn lane extension and additional storage
- Northbound off-ramp terminal intersection additional storage
- Southbound off-ramp terminal intersection additional storage
- Additional eastbound through right-turn shared at NW 10th Avenue

Hollywood Boulevard

- Northbound off-ramp terminal intersection widening to triple left-turn lanes and additional storage
- Southbound off-ramp terminal intersection widening to triple left-turn lanes, triple right-turn lanes, and additional storage

COMPARISON OF NO-BUILD ALTERNATIVE AND PREFERRED ALTERNATIVE – HCM ANALYSIS

A comparative assessment was performed for the No-Build Alternative and the Preferred Alternative for the design year 2045 based on HCM analytical procedures. The tables below provide the summary of the comparative assessment of the HCM analyses.

HCM Freeway Segments Analysis - No-Build vs. Preferred

		I-95 Freeway Segments					
Year	Alternative	Total Locations	LOS D or better	LOS E or F			
2020	No-Build	44	37	7			
2030	Preferred	51	51	0			
20.45	No-Build	44	37	7			
2045	Preferred	51	47	4			

HCM Intersection Analysis – No-Build vs. Preferred

			Signalized Intersections						
	Year	Alternative	Total Intersections	LOS D or better	LOS E or F				
	2030	No-Build	14	12	2				
		Preferred	14	14	0				
	2045	No-Build	14	10	4				
		Preferred	14	12	2				

As shown in the two tables, the results from the assessment indicated that the Preferred Alternative performs better than the No-Build Alternative. This HCM analysis was conducted as an initial screening evaluation of the Preferred Alternative refinements. HCM results were used to discuss the preliminary results of the refinements with FDOT and local stakeholders for concurrence and approval before performing microsimulation.

NO-BUILD ALTERNATIVE AND PREFERRED ALTERNATIVE – MICROSIMULATION ANALYSES

A detailed assessment of operating conditions for the No-Build and Preferred Alternatives was performed using VISSIM microsimulation models. VISSIM models were developed for the AM peak period (6:30 AM to 10:30 AM) and PM peak period (3:30 PM to 7:30 PM) in the design year 2045. The results from the microsimulation analyses indicate that the Preferred Alternative generates overall better operating conditions for all considered Measures of Effectiveness (MOE) in both the AM and PM peak periods within the study area.

The 2045 Preferred Alternative results for the AM peak-hour show significant improvements over the No-Build due to the capacity improvements on the mainline and at study interchanges. I-95 northbound operates at 55 mph or better for all four hours of simulation throughout the project area. The additional lane available within the northbound weave segment between Ives Dairy Road and Hallandale Beach Boulevard significantly improves operations at this location. The additional left turn lane and increased right turn lane storage at the Hollywood Boulevard northbound off-ramp, in addition to the proposed

collector distributor roadway, significantly reduces the risk of queue spillback from the ramp terminal intersection to the I-95 mainline.

I-95 in the southbound direction operates at or near free-flow conditions throughout the project area. The proposed relocation of the Pembroke Road southbound on-ramp to south of the Hallandale Beach Boulevard on-ramp eliminated the turbulence experienced in the No-Build weave segment between the Pembroke Road on-ramp and Hallandale Beach Boulevard off-ramp.

The 2045 results for the PM peak-hour show significant improvements over the No-Build Alternative due to the improvements on the mainline and at study interchanges. I-95 northbound operates at 55 mph or better throughout the project area for hours 1, 3, and 4 of the simulation. Hour 2 experiences a short duration of queue spillback from the Hollywood Boulevard off ramp C-D road system resulting in a speed of 47 mph at the Hollywood Boulevard off ramp. This location is significantly improved compared to the No-Build alternative which has significant congestion on I-95 mainline and speeds as low as 21 mph throughout the simulation duration. Similar to the AM peak-hour, the additional lane between Ives Dairy Road and Hallandale Beach Boulevard significantly improves operations at this location. The additional left turn lane and increased right turn lane storage at the Hollywood Boulevard northbound off-ramp significantly reduced the ramp queueing. In the southbound direction speeds of 59 mph or higher are observed for all four hours of simulation.

All but four intersections in the Preferred Alternative operate with lower intersection delay than the No-Build Alternative. Additionally, more volume is being processed at each of these intersections in the Preferred Alternative due to improved operations on the I-95 mainline.

In terms of average speed, the Preferred Alternative shows better performance than the No-Build during both peak periods with speed increases of 14% (AM) and 8% (PM). Network delay time reductions for the Preferred Alternative were 40% (AM) and 29% (PM).

OTHER CONSIDERATIONS

An assessment was made of other relevant factors that could potentially impact the viability of the proposed project. These other considerations included environmental considerations, consistency with Masterplans/Local Government Comprehensive Plans/Development of Regional Impacts, project constructability and maintenance of traffic, safety, anticipated

design exceptions and variations, and conceptual signing master plan. The assessment of these factors did not find any issues that would prohibit the implementation of the proposed project.

JUSTIFICATION FOR PROJECT

An assessment was made of the FHWA's Policy on Access to the Interstate System. The FHWA Policy defines the requirements that must be addressed for the justification and documentation necessary to substantiate any proposed change in access to the Interstate System. The results from this SIMR provided information necessary to demonstrate compliance with the FHWA's requirements and justification for the proposed modifications to I-95. The following provides a summary of the responses to the FHWA's policy requirements (detailed responses are provided under **Section 10** of the SIMR):

Policy #1 – An operational and safety analysis has concluded that the proposed change in access does not have a significant adverse impact on the safety and operation of the Interstate facility (which includes mainline lanes; existing, new or modified ramps; and ramp intersections with crossroad) or on the local street network based on both the current and the planned future traffic projections. The analysis should, particularly in urbanized areas, include at least the first adjacent existing or proposed interchange on either side of the proposed change in access (Title 23, CFR, paragraphs 625.2(a), 655.603(d) and 771.111(f)). The crossroads and the local street network to at least the first major intersection on either side of the proposed change in access should be included in this analysis to the extent necessary to fully evaluate the safety and operational impacts that the proposed change in access and other transportation improvements may have on the local street network (23 CFR 625.2(a) and 655.603(d)). Requests for a proposed change in access should include a description and assessment of the impacts and ability of the proposed changes to safely and efficiently collect, distribute and accommodate traffic on the Interstate facility, ramps, intersection of ramps with crossroad and local street network (23 CFR 625.2(a) and 655.603(d)). Each request should also include a conceptual plan of the type and location of the signs proposed to support each design alternative (23 U.S.C. 109(d) and 23 CFR 655.603(d)).

Response to Policy Requirement # 1 – The operational analysis conducted for the SIMR confirmed that the proposed improvements to the I-95 mainline and interchange modifications will not have any significant adverse impacts on safety and operations along I-95. The proposed modifications will improve traffic operations and enhance safety. When compared with the No-Build Alternative, the Preferred Alternative significantly improves operations along I-95 and its interchanges.

In the Preferred Alternative, average operating speeds along the northbound direction significantly increased for both peak periods. For the AM peak, the No-Build Alternative experienced areas of congestion in the northbound direction causing operating speeds as low as 26 mph versus 55 mph or higher for the Preferred Build Alternative. For the PM peak, the No-Build reported operating speed in the northbound direction as low as 25 mph while the Build Alternative reported speed as low as 47 mph for one segment that recovered after the peak hour, which is located at the Hollywood Boulevard off-ramp. In the southbound direction, average operating speeds for the AM peak of the No-Build Alternative were as low as 40 mph while the Build Alternative maintained operating speed of 56 mph or more. At the networkwide level, in terms of average speed, the Preferred Alternative shows better performance than the No-Build during both peak periods with speed increases of 14% (AM) and 8% (PM). Network delay time reductions for the Preferred Alternative were 40% (AM) and 29% (PM). Significant improvements were also shown for the latent delay/demand, and total stops.

The additional capacity improvements will provide added operational benefits to support future Bus Services, Emergency Response Services, and improved travel time reliability in and out of the interstate.

Data from historical crash records identified multiple high crash segments and high crash spots along I-95. Traffic congestion along I-95 is a contributing factor for much of the crashes experienced along the corridor. Under the No-Build Alternative, traffic congestion is expected to increase along I-95 in future years with a corresponding increase in crash risk along the corridor. This potential for future increase in crash risk is largely alleviated by the improvements proposed in the Preferred Alternative. In addition, closely spacing between the three interchanges was maximized to minimize the existing substandard weaving segments. Onramp traffic entering I-95 will have a better gap acceptance when merging in with the I-95 mainline traffic.

The Preferred Alternative will enhance safety by addressing the capacity needs and improving the operations and access between the I-95 mainline and interchanges. The proposed improvements will reduce the number of entrances and exits, which improves the overall operations of the I-95 mainline, ramps, and interchanges. The proposed improvements are expected to reduce crashes related to mainline weaving maneuvers. The preferred alternative reduces the number of weaving movements and eliminates speed differentials between the mainline and ramps. The additional ramp terminal capacity and the proposed collector distributor roadway system will provide more off-ramp storage, which eliminates the queue from the ramps extending to the I-95 mainline. The proposed improvements will address the safety issues at the interchange entry and exit points by increasing gaps along the general use lanes providing more space for vehicles entering and exiting I-95 without weaving conflicts and/or last- minute lane changes.

In the case of an evacuation event, I-95 will have additional lanes with the proposed improvements. The additional lanes will make the corridor more effective during emergency evacuation events and emergency response.

Policy #2 – The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access, such as managed lanes (e.g., transit or high occupancy vehicle and high occupancy toll lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2) and 655.603(d)). In rare instances where all basic movements are not provided by the proposed design, the report should include a full-interchange option with a comparison of the operational and safety analyses to the partial interchange option. The report should also include the mitigation proposed to compensate for the missing movements, including wayfinding signage, impacts on local intersections, mitigation of driver expectation leading to wrong-way movements on ramps, etc. The report should describe whether future provision of a full interchange is precluded by the proposed design.

Response to Policy Requirement # 2 – The SIMR proposes no new interchanges within the project limits. All existing interchanges provide access to public roads only. The improvements proposed at the interchanges will maintain full access to I-95 and all movements will be accommodated at all cross streets. The proposed access modifications will be designed to meet or exceed all applicable design standards, to the extent possible. Any design variations or exceptions that are identified, will be processed in accordance with FHWA and FDOT standards.

CONCEPTUAL FUNDING PLAN

The project is included in the 2045 and 2050 Broward Metropolitan Planning Organization (MPO) Metropolitan Transportation Plan (MTP), 2021-2025 Transportation Improvement Program (TIP) and 2021-2025 State Transportation Improvement Program (STIP). The design phase is funded in the 2021-2025 FDOT Work Program under four FPID project numbers:

- FPID# 436903-2-I-95 Southbound between Johnson Street and Pembroke Road
- FPID# 436903-3 I-95 Southbound between Pembroke Road and Ives Dairy Road
- FPID# 436903-4 I-95 Northbound between south of Hallandale Beach Boulevard and Pembroke Road
- FPID# 436903-5 I-95 Northbound between Pembroke Road and Johnson Street

The right of way and construction phases are not currently funded. The project is anticipated to be funded with federal and state funds. The project is proposed to be phased in four projects. A funding plan will be developed based on the results, costs, and recommendations from the PD&E Study. The project is in the 2021-2025 FDOT Five-Year Work Program with funds allocated for the PD&E and Preliminary Engineering phases. Funding for future phases is currently being coordinated to ensure that the project is consistent with the local government comprehensive plans and that required project funding is identified in the MTP, TIP, STIP, and Work Program.

TABLE OF CONTENTS

1.0	PROJECT OVERVIEW	1-1
1.1	Introduction	1-1
1.2	Purpose and Need For the Project	1-2
1.3	Project Description	1-2
1.4	Project Location	1-2
1.5	Related Projects within Study Area	1-2
1.6	Project Manager Information	1-3
2.0	METHODOLOGY	2-1
2.1	Area of Influence	2-1
2.2	Analysis Years	2-2
2.3	Travel Demand Forecasting	2-2
2.4	Traffic Factors	2-5
2.5	Operational Analyses	2-6
2.6	Level of Service Targets	2-8
2.7	Express Lanes Consideration	2-8
3.0	EXISTING CONDITIONS	3-1
3.1	Existing Land Use	3-1
3.2	Existing Roadway Network	3-2
3.3	Existing Traffic Volumes	3-5
3.4	Existing Traffic Operations	3-13
3.	.4.1 I-95 Operational Analysis	3-13
3.	.4.2 Crossing Roadways Operational Analysis	3-17
3.5	Existing Transit Operations	3-22
3.6	Corridor Crash Analysis	3-22
4.0	NEED	
4.1	Capacity	4-1
4.2	·	
4.3	System Linkage	4-1
4.4	Modal Interrelationships	
4.5	·	
4.6	Social Demands and Economic Development	4-2

4.7	Emergency Evacuation	4-2
5.0 F	FUTURE NO-BUILD CONDITIONS	5-1
5.1	Future Land Use	5-1
5.2	No-Build Alternative – Roadway Network	5-2
5.3	No-Build Alternative – 2030 Traffic Forecast	5-6
5.4	No-Build Alternative – 2030 Operational Analysis	5-13
5.4	4.1 I-95 Mainline Operational Analysis	5-13
5.4	4.2 Crossing Roadways Operational Analysis	5-17
5.5	No-Build Alternative – 2045 Traffic Forecast	5-22
5.6	No-Build Alternative – 2045 Operational Analysis	5-29
5.6	6.1 I-95 Mainline Operational Analysis	5-29
5.6	6.2 Crossing Roadways Operational Analysis	5-33
6.0 E	BUILD ALTERNATIVES	6-1
6.1	I-95 Corridor Planning Study	6-1
6.2	Alternatives Considered	6-2
6.2	2.1 Alternative 1 – Braided Ramps	6-2
6.2	2.2 Alternative 2 – Collector Distributor Roadways	6-2
6.2	2.3 Alternative 3 – U-Turn Ramps	6-2
6.2	2.4 Interchange Alternatives	6-9
6.3	Alternatives Eliminated	6-22
6.4	Traffic Volumes and Operational Conditions	6-22
6.5	Selection of Preferred Alternative	6-26
6.6	Preferred Alternative Refinements	6-31
7.0 F	PREFERRED ALTERNATIVE	7-1
7.1	Preferred Alternative Roadway Network	7-1
7.2	Preferred Alternative – 2030 Traffic Forecast	7-5
7.3	Preferred Alternative – 2030 Operational Analysis	7-8
7.3	3.1 I-95 Operational Analysis	7-8
7.3	3.2 Crossing Roadways Operational Analysis	7-12
7.4	Preferred Alternative – 2045 Traffic Forecast	7-17
7.5	Preferred Alternative – 2045 Operational Analysis	7-20
7.5	5.1 I-95 Operational Analysis	7-20

7.5.2 Crossing Roadways Operational Analysis	7-24	Figure 5.1 – Existing Project Corridor Land Use/Land Cover Map	5-1
7.6 No-Build Alternative and Preferred Alternative – Microsimulation Analyses	7-29	Figure 5.2 – No-Build Alternative Roadway Section between Ives Dairy Road and	
7.6.1 Vissim Analysis Procedure		Hallandale Beach Boulevard	5-3
7.6.2 Existing Operational Analysis		Figure 5.3 – No-Build Alternative Roadway Section between Hallandale Beach Boulev	ard
		and Pembroke Road	5-3
7.6.3 2045 Design Year I-95 Operational Analysis		Figure 5.4 – No-Build Alternative Roadway Section between Pembroke Road and	
7.6.4 2045 Design Year Intersections Operational Analysis		Hollywood Boulevard	
7.6.5 2045 Network-Wide Performance	7-46	Figure 5.5 – No-Build Alternative Lane Geometry and Configuration	5-∠
3.0 Safety	8-1	Figure 5.6 – 2030 No-Build Alternative AADT Volumes	
9.0 Other Considerations		Figure 5.7 – 2030 No-Build Alternative Directional Design Hourly Volumes (DDHV)	5-9
9.1 Consistency with Master Plans, LGCP and DRIs		Figure 5.8 – 2030 No-Build Alternative Turning Movement Volumes	. 5-11
		Figure 5.9 – 2030 No-Build Alternative Freeway Analysis Results	. 5-1 <i>5</i>
9.2 Transportation Systems Management and Operations (TSM&O)		Figure 5.10 – 2030 No-Build Alternative Intersection Analysis Results	. 5-20
9.3 Anticipated Design Exceptions and Variations	9-3	Figure 5.11 – 2045 No-Build Alternative AADT Volumes	. 5-23
9.4 Conceptual Signing Master Plan	9-6	Figure 5.12 – 2045 No-Build Alternative Directional Design Hourly Volumes (DDHV)	. 5-25
10.0 JUSTIFICATION FOR PROJECT	10-1	Figure 5.13 – 2045 No-Build Alternative Turning Movement Volumes	. 5-27
10.1 Assessment of FHWA's Policy on Access to Interstate System	10-1	Figure 5.14 – 2045 No-Build Alternative Operational Analysis Results	. 5-31
11.0 CONCEPTUAL FUNDING PLAN		Figure 5.15 – 2045 No-Build Alternative Intersection Analysis Results	. 5-3 <i>€</i>
TI.U CONCERTUAL FUNDING FLAN	-	Figure 6.1 – I-95 Corridor Planning Study Limits	6-1
		Figure 6.2 – I-95 Alternative 1 Lane Geometry and Configuration	6-3
LIST OF FIGURES		Figure 6.3 – I-95 Alternative 2 Lane Geometry and Configuration	6-5
LIST OF FIGURES		Figure 6.4 – I-95 Alternative 3 Lane Geometry and Configuration	6-7
Figure 1.1 - Project Location Map	1-1	Figure 6.5 – Hallandale Beach Boulevard Diamond Interchange Alternative	. 6-10
Figure 2.1 - Area of Influence Map		Figure 6.6 – Pembroke Road Diamond Interchange Alternative	. 6-11
Figure 2.2 - Travel Demand Forecasting Methodology Flowchart		Figure 6.7 – Hollywood Boulevard Diamond Interchange Alternative	. 6-12
Figure 3.1 - Existing Land Use		Figure 6.8 – Hallandale Beach Boulevard Diverging Diamond Interchange Alternative	6-13
Figure 3.2 – Existing Roadway Section between Ives Dairy Road and Hallandale Bea		Figure 6.9 – Pembroke Road Diverging Diamond Interchange Alternative	. 6-14
Boulevard	3-2	Figure 6.10 – Hollywood Boulevard Diverging Diamond Interchange Alternative	. 6-15
Figure 3.3 – Existing Roadway Section between Hallandale Beach Boulevard and		Figure 6.11 – Hallandale Beach Boulevard Displaced Left Turn Lane Interchange	
Pembroke Road	3-2	Alternative	. 6-16
Figure 3.4 – Existing Roadway Section between Pembroke Road and Hollywood		Figure 6.12 – Pembroke Road Displaced Left Turn Lane Interchange Alternative	. 6-17
Boulevard	3-2	Figure 6.13 – Hollywood Boulevard Displaced Left Turn Lane Interchange Alternative	. 6-18
Figure 3.5 - Existing Lane Geometry and Configuration		Figure 6.14 – Hallandale Beach Boulevard Continuous Flow Intersection Interchange	
Figure 3.6 – 2016 Annual Average Daily Traffic (AADT) Volumes	3-6	Alternative	
Figure 3.7 – 2016 Peak-Hour Volumes		Figure 6.15 – Pembroke Road Continuous Flow Intersection Interchange Alternative	. 6-20
Figure 3.8 – 2016 Intersection Turning Movement Volumes		Figure 6.16 – Hollywood Boulevard Continuous Flow Intersection Interchange Alternati	ve
Figure 3.9 – 2016 Existing Freeway Analysis Results			. 6-21
Figure 3.10 – 2016 Existing Intersection Analysis Results		Figure 6.17 – 2040 Alternative 1 Northbound Freeway Analysis Results	. 6-23

Figure 6.18 – 2040 Alternative 1 Southbound Freeway Analysis Results6-24
Figure 6.19 – 2040 Alternative 2 Northbound Freeway Analysis Results6-25
Figure 6.20 – 2040 Alternative 2 Southbound Freeway Analysis Results
Figure 6.21 – Previous Preferred Alternative Schematic Line Diagram
Figure 6.22 – Refined Preferred Alternative Schematic Line Diagram 6-33
Figure 7.1 – Preferred Alternative Roadway Section between Ives Dairy Road and
Hallandale Beach Boulevard7-2
Figure 7.2 – Preferred Alternative Roadway Section between Hallandale Beach Boulevard
and Pembroke Road7-2
Figure 7.3 – Preferred Alternative Roadway Section between Pembroke Road and
Hollywood Boulevard
Figure 7.4 – Preferred Alternative Lane Geometry and Configuration7-3
Figure 7.5 – 2030 Preferred Alternative AADT Volumes7-6
Figure 7.6 – 2030 Preferred Alternative Freeway Analysis Results
Figure 7.7 – 2030 Preferred Alternative Intersection Analysis Results
Figure 7.8 – 2045 Preferred Alternative AADT Volumes
Figure 7.9 – 2045 Preferred Alternative Freeway Analysis Results
Figure 7.10 – 2045 Preferred Alternative Intersection Analysis Results7-27
Figure 7.11 – Existing Conditions Speed Profiles
Figure 7.12 – No-Build Alternative AM Peak Lane Schematic
Figure 7.13 – No-Build Alternative AM Peak Speed and Volume Profiles
Figure 7.14 – No-Build Alternative PM Peak Lane Schematic
Figure 7.15 – No-Build Alternative PM Peak Speed and Volume Profiles7-37
Figure 7.16 – Preferred Alternative AM Peak Lane Schematic
Figure 7.17 – Preferred Alternative AM Peak Speed and Volume Profiles7-39
Figure 7.18 – Preferred Alternative PM Peak Lane Schematic
Figure 7.19 – Preferred Alternative PM Peak Speed and Volume Profiles7-41
Figure 7.20 – Hollywood Boulevard Northbound Off-ramp PM Peak Hour Lane by Lane
Operations

LIST OF TABLES

Table 2.1 – Comparison between Traffic Factors and Diurnal Factors	2-5
Table 2.2 – Truck Factors	
Table 3.1 – 2016 Existing Northbound Freeway Analysis Results	
Table 3.2 – 2016 Existing Southbound Freeway Analysis Results	3-14
Table 3.3 – 2016 Existing Hallandale Beach Boulevard Intersection LOS and Delay R	esults
	3-17
Table 3.4 – 2016 Existing Pembroke Road Intersection LOS and Delay Results	3-18
Table 3.5 – 2016 Existing Hollywood Boulevard Intersection LOS and Delay Results	3-18
Table 3.6 – Existing I-95 Crashes by Year	
Table 3.7 – Existing Crashes by Interchange	
Table 3.8 – Existing Hallandale Beach Boulevard Crashes by Year	3-24
Table 3.9 – Existing Pembroke Road Crashes by Year	3-24
Table 3.10 – Existing Hollywood Boulevard Crashes by Year	3-24
Table 5.1 – Existing Land Use and Cover within the Study Area	5-1
Table 5.2 – 2030 No-Build Alternative Northbound Freeway Analysis Results	5-13
Table 5.3 – 2030 No-Build Alternative Southbound Freeway Analysis Results	5-14
Table 5.4 – 2030 No-Build Alternative Hallandale Beach Boulevard Intersection LOS	and
Delay Results	5-17
Table 5.5 – 2030 No-Build Alternative Pembroke Road Intersection LOS and Delay R	
Table 5.6 – 2030 No-Build Alternative Hollywood Boulevard Intersection LOS and De	
Results	-
Table 5.7 – 2045 No-Build Alternative Northbound Freeway Analysis Results	
Table 5.8 – 2045 No-Build Alternative Southbound Freeway Analysis Results	
Table 5.9 – 2045 No-Build Alternative Hallandale Beach Boulevard Intersection LOS	
Delay Results	
Table 5.10 – 2045 No-Build Alternative Pembroke Road Intersection LOS and Delay	
Table 6.16 2046 Ne Boild / Wichianve Fernicioke Read infersection Lees and Boildy	
Table 5.11 – 2045 No-Build Alternative Hollywood Boulevard Intersection LOS and D	
Results	
Table 6.1 – 2040 Alternative 1 Northbound Freeway Analysis Results	
Table 6.2 – 2040 Alternative 1 Southbound Freeway Analysis Results	
Table 6.3 – 2040 Alternative 2 Northbound Freeway Analysis Results	
Table 6.4 – 2040 Alternative 2 Southbound Freeway Analysis Results	
Table 6.5 – Evaluation Matrix	
Table 7.1 – 2030 Preferred Alternative Northbound Freeway Analysis Results	

Table 7.2 – 2030 Preferred Alternative Southbound Freeway Analysis Results	7-9
Table 7.3 – 2030 Preferred Alternative Hallandale Beach Boulevard Intersection LC	
Delay Results	7-12
Table 7.4 – 2030 Preferred Alternative Pembroke Road Intersection LOS and Delay	
	7-13
Table 7.5 – 2030 Preferred Alternative Hollywood Boulevard Intersection LOS and I	
Results	7-13
Table 7.6 – 2045 Preferred Alternative Northbound Freeway Analysis Results	
Table 7.7 – 2045 Preferred Alternative Southbound Freeway Analysis Results	7-21
Table 7.8 – 2045 Preferred Alternative Hallandale Beach Boulevard Intersection LC	DS and
Delay Results	7-24
Table 7.9 – 2045 Preferred Alternative Pembroke Road Intersection LOS and Delay	/ Results
	7-25
Table 7.10 – 2045 Preferred Alternative Hollywood Boulevard Intersection LOS and	l Delay
Results	7-25
Table 7.11 – 2016 Existing Intersection/Interchange Analysis Summary	7-32
Table 7.12 – 2045 No-Build Alternative Interchange Queue Length	7-42
Table 7.13 – 2045 Preferred Alternative Interchange Queue Length	7-42
Table 7.14 – 2045 Intersection/Interchange Analysis Summary	7-45
Table 7.15 – 2045 Arterial Travel Time	7-45
Table 7.16 – 2045 Arterial Vehicle Throughput (vph)	7-45
Table 7.17 – 2045 Network-Wide Performance	
Table 9.1 – Preferred Alternative Design Variations and Design Exceptions	
Table 9.2 – Existing Design Variations and Design Exceptions	

LIST OF APPENDICES

Appendix A – Methodology Letter of Understanding
Appendix B – Corridor Analysis Technical Memorandum
Appendix C – Design Traffic Technical Memorandum
Appendix D – 2016 Existing Traffic Data
Appendix E – 2016 Existing Output HCS Reports
Appendix F – 2016 Existing Output Synchro Reports
Appendix G – Corridor Base Maps
Appendix H – Transit Services
Appendix I – Future Land Use Maps
Appendix J – 2030 No-Build Output HCS Reports
Appendix K - 2030 No-Build Output Synchro Reports
Appendix L – 2045 No-Build Output HCS Reports
Appendix M – 2045 No-Build Output Synchro Reports
Appendix N – Preferred Alternative Plan Sheets
Appendix O – 2030 Preferred Alternative Output HCS Reports
Appendix P - 2030 Preferred Alternative Output Synchro Reports
Appendix Q - 2045 Preferred Alternative Output HCS Reports
Appendix R - 2045 Preferred Alternative Output Synchro Reports
Appendix S - VISSIM Simulation Results
Appendix T – Safety Study Reports

Appendix U – Transportation Plan

Appendix V – Conceptual Signing Master Plan

1.0 PROJECT OVERVIEW

1.1 INTRODUCTION

The Florida Department of Transportation (FDOT) District Four is conducting a Project Development and Environment (PD&E) Study for Interstate 95 (I-95) from south of Hallandale Beach Boulevard (SR 858) to north of Hollywood Boulevard (SR 820), a distance of approximately three miles (see *Figure 1.1*). The PD&E Study is proposing improvements to the Hallandale Beach Boulevard, Pembroke Road, and Hollywood Boulevard interchanges. The project is located in Broward County, Florida, and is contained within the municipalities of Hallandale Beach, Pembroke Park, and Hollywood.

I-95 is the primary north-south interstate facility that links all major cities along the Atlantic Seaboard and is one of the most important transportation systems in southeast Florida. I-95 is one of the two major expressways, Florida's Turnpike being the other, that connects major employment centers and residential areas within the South Florida tri-county area. I-95 is part of the State's Strategic Intermodal System (SIS), the National Highway System, and is designated as an evacuation route along the east coast of Florida.

I-95, within the project limits, currently consists of eight general use lanes (four in each direction) and four dynamically tolled express lanes (two in each direction). This segment of I-95 is functionally classified as a Divided Urban Principal Arterial Interstate and has a posted speed limit of 65 miles per hour. The access management classification for this corridor is Class 1.2, Freeway in an existing urbanized area with limited access.

There are three existing full interchanges within the project limits located at Hallandale Beach Boulevard, Pembroke Road, and Hollywood Boulevard. All three roadways are classified as Divided Urban Principal Arterials. Hallandale Beach Boulevard consists of four lanes west of I-95 and six lanes east of I-95. Pembroke Road and Hollywood Boulevard each have six lanes west of I-95 and four lanes east of I-95.

This PD&E Study is evaluating the potential modification of existing entrance and exit ramps serving the three interchanges within the project limits. Widening and turn lane modifications at the ramp terminals were evaluated to facilitate the ramp modifications and improve the access and operation of the interchanges.

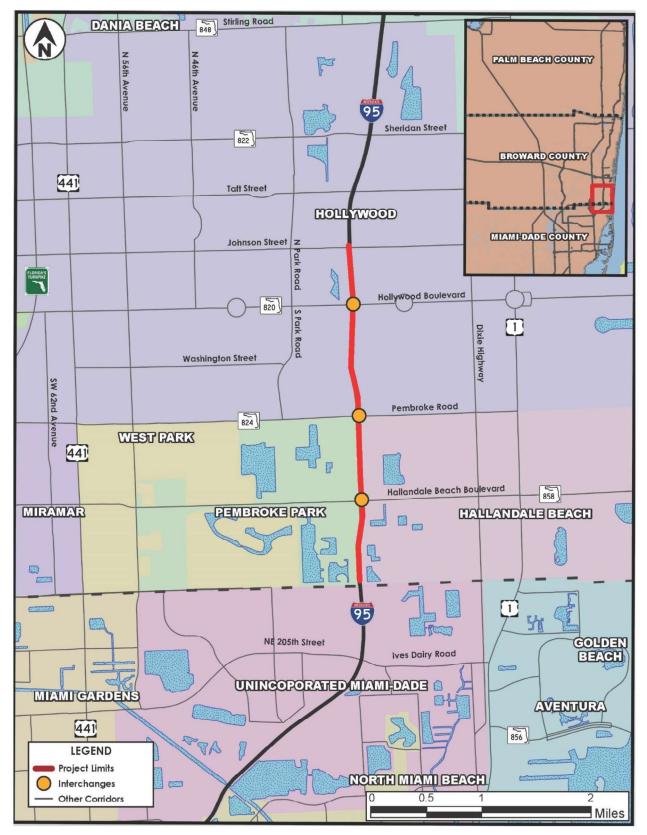


Figure 1.1 - Project Location Map

1.2 Purpose and Need For the Project

The overall goals and objectives of this PD&E Study are described below:

- Evaluate the implementation of potential interchange and intersection improvements that will improve capacity, operations, safety, mobility, and emergency evacuation.
- Identify the appropriate interstate/interchange access improvements that, combined with Transportation Systems Management and Operations (TSM&O) improvements, will service the users of the area, and achieve the Purpose and Need.
- Provide relief from existing and projected traffic congestion.
- Improve the safety of the I-95 mainline corridor by addressing speed differentials and lane weaving deficiencies between interchanges.
- Support the optimal operations of the existing roadway network.
- Maintain consistency with the current I-95 Express Lanes and local projects.
- Prioritize the proposed improvements based on the area needs (short-term vs. long-term), logical segmentation, and funding.

The need for this project is to increase interchange and ramp terminals intersection capacity at Hallandale Beach Boulevard, Pembroke Road and Hollywood Boulevard, while enhancing safety conditions. Below is a summary of the key issues within the I-95 study area.

Existing Conditions – The capacity analysis shows that the northbound basic freeway segment between the Ives Dairy Road on-ramp and the Hallandale Beach Boulevard offramp is operating at LOS F in the PM peak-hour. The northbound Hallandale Beach Boulevard off-ramp, southbound Hallandale Beach Boulevard off-ramp, and southbound Hollywood Boulevard off-ramp were observed occasionally with queues extending to the I-95 mainline.

A total of 2,877 crashes occurred within the study corridor between November 2008 and December 2015. These crashes included 1,250 injury crashes and eight fatal crashes. The study limits were identified as high crash segments in each year between 2009 and 2014. In addition, the following areas were identified as high crash locations in multiple years:

- Northbound exit to Hallandale Beach Boulevard (MP 0.508)
- Southbound exit to Hallandale Beach Boulevard (MP 1.044)
- Southbound exit to Pembroke Road (MP 1.815)

- Northbound exit to Hollywood Boulevard (MP 2.296)
- Northbound entrance from Hollywood Boulevard (MP 2.771)
- Southbound exit to Hollywood Boulevard (MP 2.827)

Future Conditions (No-Build) – The I-95 capacity analysis shows that four locations northbound and three locations southbound will operate at an unacceptable LOS (worst peak period LOS) by the year 2030 within the area of influence. The capacity analysis also shows that four locations northbound and three locations southbound will operate at an unacceptable LOS (worst peak period LOS) by the year 2045 within the area of influence. The 2045 intersection operational analysis results indicate that several ramp terminal intersections will operate at LOS E and/or F. The northbound Hallandale Beach Boulevard off-ramp, southbound Hallandale Beach Boulevard off-ramp, and southbound Hollywood Boulevard off-ramp are expected to continue to have queues extending to the I-95 mainline.

Other considerations for the purpose and need of this project include, system linkage, modal interrelationships, transportation demand, social demands, economic development, and emergency evacuation. An extended discussion of the need for the project is provided under **Section 4** of this SIMR.

1.3 PROJECT DESCRIPTION

The PD&E Study is evaluating the potential modification of existing entrance and exit ramps serving the Hallandale Beach Boulevard, Pembroke Road and Hollywood Boulevard Interchanges within the project limits. Widening and turn lane modifications at the ramp terminals were evaluated to facilitate the ramp modifications and improve the access and operation of the interchanges.

1.4 PROJECT LOCATION

The project location is depicted in *Figure 1.1*. The study area for this I-95 SIMR incorporates the limits of the I-95 PD&E Study from south of Hallandale Beach Boulevard (SR 858) to north of Hollywood Boulevard (SR 820) in Broward County.

1.5 RELATED PROJECTS WITHIN STUDY AREA

This SIMR will maintain consistency with the Broward Metropolitan Planning Organization (MPO) Adopted Metropolitan Transportation Plan (MTP, formerly Long Range Transportation Plan or LRTP), Broward County Comprehensive Plan, Miami-Dade

Transportation Planning Organization (TPO) Adopted LRTP and any approved Development of Regional Impacts (DRI) within the area of influence.

The SIMR will also maintain consistency with the following specific projects:

- Broward Interchanges Master Plan FPID# 432785-2
- I-95/Hallandale Beach Boulevard, Pembroke Road and Hollywood Boulevard Interchange Safety Projects FPID#s 436111-1, 436303-1, and 439911-1
- I-95 FDOT District Four 95 Express Phase 3C Construction Project FPID# 409354-2
- I-95 FDOT District Four Corridor Planning Study (completed under FPID# 436903-1)
- I-95 FDOT District Six Planning Study FPID# 414964-6
- I-95 FDOT District Six PD&E Studies FPID# 414964-7, 414964-8 and 414964-1

Where the request is inconsistent with any plan, steps to bring the plan into consistency will be developed.

1.6 PROJECT MANAGER INFORMATION

The I-95 SIMR has been prepared for the Florida Department of Transportation, District Four. For information on the I-95 PD&E Study and this SIMR, please contact the Department's Project Manager at the following address:

Leslie Wetherell, PE Project Manager FDOT District Four 3400 West Commercial Boulevard Fort Lauderdale, FL 33309

Phone: (954) 777-4438

E-mail: <u>Leslie.Wetherell@dot.state.fl.us</u>

2.0 METHODOLOGY

The methodology applied for this I-95 SIMR is documented in the Methodology Letter of Understanding (MLOU), dated September 2017, and later updated in June 2021. The MLOU was approved by FDOT District Four and FDOT Central Office Systems Implementation. The MLOU outlines the criteria, assumptions, processes, analyses, and documentation requirements for the project. The approved MLOU is included as **Appendix A**. The following sections summarize some of the more prominent issues covered under the MLOU.

2.1 AREA OF INFLUENCE

The area of influence (AOI) along I-95 extends from the I-95 northbound merge/southbound diverge ramp junctions located north of Ives Dairy Road to the I-95 southbound merge/northbound diverge ramp junctions located south of Sheridan Street (see *Figure 2.1*).

There are 16 signalized intersections under consideration within the AOI along the arterials. These intersections are listed below:

- 1. Hallandale Beach Boulevard/Park Road/1st Street
- 2. Hallandale Beach Boulevard/SW 30th Avenue (Directional median opening with a railroad crossing traffic signal)
- 3. I-95/Hallandale Beach Boulevard southbound Ramp Terminal
- 4. I-95/Hallandale Beach Boulevard northbound Ramp Terminal
- 5. Hallandale Beach Boulevard/10th Terrace
- 6. Pembroke Road/Park Road
- 7. Pembroke Road/SW 31st Avenue
- 8. Pembroke Road/SW 30th Avenue (Directional median opening with a railroad crossing traffic signal)
- 9. I-95/Pembroke Road southbound Ramp Terminal
- 10.1-95/Pembroke Road northbound Ramp Terminal
- 11. Pembroke Road/NW 10th Avenue/S 28th Avenue
- 12. Hollywood Boulevard /Entrada Drive
- 13. Hollywood Boulevard/Calle Grande Drive
- 14.1-95/Hollywood Boulevard southbound Ramp Terminal
- 15.I-95/Hollywood Boulevard northbound Ramp Terminal
- 16. Hollywood Boulevard/28th Avenue



Figure 2.1 - Area of Influence Map

2.2 ANALYSIS YEARS

A. Traffic Forecasting

The forecasting years for the project are as follows:

Base year: 2010Horizon year: 2040

B. Traffic Operational Analysis

The 2010 and 2040 base and horizon years were used to produce opening year and design year traffic. The design year for this project is 2045, which was completed by extrapolation. The analysis years for this project are as follows:

Existing year: 2016Opening year: 2030Design year: 2045

2.3 TRAVEL DEMAND FORECASTING

The PD&E Study design traffic was developed based on the design traffic estimates from the I-95 Corridor Planning Study (I-95 CPS). FDOT D4 completed the I-95 CPS between the Golden Glades Interchange (GGI) and Interstate 595 (I-595) in July 2020. As part of the CPS, the design traffic estimates were developed for the I-95 mainline and ramps for the entire study corridor limits. The PD&E Study covers a portion of the I-95 CPS study corridor, including the section between Ives Dairy Road and Sheridan Street. In addition to the I-95 mainline and ramp segments, the PD&E Study area also includes the ramp terminal intersections and adjacent cross-street intersections along Hallandale Beach Boulevard, Pembroke Road and Hollywood Boulevard. Therefore, additional forecasting analysis was needed at the ramp terminal intersections and adjacent intersections as part of the PD&E Study design traffic development. The I-95 CPS calibrated the subarea model and its 2045 forecasts were used in the PD&E Study design traffic development. No additional model runs were performed as part of the PD&E Study.

A. Selected Travel Demand Model

The Southeast Florida Regional Planning Model 7.071 (SERPM 7.071), updated on March 31, 2017, was used to develop the travel demand forecasting for this study. The SERPM model is based on the Coordinated Travel Regional Activity Based Modeling Platform (CT-RAMP). The SERPM 7.071 model is an activity-based time of day model that is capable of forecasting traffic into future years for various highway and transit scenarios. The SERPM model was used to develop the 2040 LRTP. The SERPM 7.071 was the official model for the FDOT District Four region with a 2010 base year and 2040 horizon year. The 2040 horizon year scenario in this model has the approved 2040 Cost Feasible LRTP network, population, and employment forecasts.

The five periods that are modeled in SERPM are as follows:

- 1. Early AM Period (10:00 PM 5:59 AM)
- 2. AM-Peak Period (6:00 AM 8:59 AM)
- 3. Midday Period (9:00 AM 2:59 PM)
- 4. PM-Peak Period (3:00 PM 6:59 PM)
- 5. Evening Period (7:00 PM 9:59 PM)

A detailed subarea model calibration was performed to the SERPM 7.071 regional model as part of the I-95 CPS. The study gathered year 2018 traffic counts from the Florida Transportation Online (FTO) Online and FDOT Districts Four and Six. 2045 No-Build and Build Alternative networks were developed during the modeling process.

The subarea model calibration and forecasting process is described in detail in the *Corridor Analysis Technical Memorandum*, dated July 2020, a companion document to the I-95 CPS (see **Appendix B**).

B. Project Traffic Forecast Development Methodology

The future year traffic volumes were developed using the time of day assignments. Since this study included express lanes, time of day information is critical. Research has shown that peak-to-daily ratios of express lanes are different from general use freeway lanes. Most of the express lanes' utilization is expected to happen during the peak periods. Therefore, the project team used the three-hour AM peak period and four-hour PM peak period volumes to forecast the one-hour AM and one-hour PM peak-hour directional volumes. This peak-hour volume set with the highest demand within the peak period was selected for

the design traffic development. Separate peak-hour volumes for general use and express lanes were developed. Origin-destination matrices were developed for the three-hour AM peak period and the four-hour PM peak period. These matrices were sliced to develop an AM peak-hour matrix and a PM peak-hour matrix. The Annual Average Daily Traffic (AADT) volumes were forecasted from the summation of all the time periods.

The 2045 No-Build and Build scenarios were modeled in the I-95 CPS. AADT and Directional Design Hourly Volumes (DDHV) were obtained from this study.

2045 SERPM No-Build and Build scenarios were developed as part of the future forecasts' development process. The 2045 No-Build scenario was first developed by using the 2040 Cost Feasible LRTP network as baseline. The No-Build scenario development was closely coordinated with FDOT to only include the existing and committed projects on the I-95 corridor. The AADT volume forecasts were compared against the independently developed historical trend line forecasts and the compound growth rates-based forecasts. The population and employment forecasts of the 2-mile corridor subarea were used to develop the compound growth rates after conducting a desktop review of the corridor 2-mile subarea socioeconomic data. The AM and PM peak-hour volumes were determined by using diurnal factors. Since the traffic volumes of the cross streets near I-95 are mainly driven by the I-95 mainline volumes, major emphasis was given to the I-95 traffic profile.

The forecasting approach required extensive subarea validation to match the AM and PM volumes to the traffic counts. A 2018 model scenario was developed for this effort. The detailed 2018 subarea validation approach is described in the next section. The approach primarily focused on post-processing the 2018 model origin-destination matrix to improve the model assigned volumes. The CUBE Analyst origin-destination matrix estimation software was used for this effort. The subarea matrix consisted of internal-internal flows of all traffic analysis zones within the subarea plus the external-internal, internal-external and external-external flows. This matrix was developed using the CUBE Subarea extraction process, which automatically renumbered the matrix zones and extracted the flows from the regional SERPM origin-destination into the subarea SERPM origin destination. Any trips that cross the subarea boundary only once were tabulated into external-internal or internal-external flows. Any trips that cross the subarea boundary twice were tabulated into external-external flows.

Once satisfactory validation results were achieved at the subarea level, the 2018 subarea origin-destination was used as a starting point for the future year forecasting efforts. The growth matrix between the 2018 SERPM origin-destination and the 2045 SERPM origin-

destination matrices was developed by subtraction. The growth was added to the 2018 CUBE Analyst origin-destination at the subarea level.

The model subarea validation ensured reasonable origin-destination flows and good agreement between the volumes and counts. The future year total demand on the corridor was verified against historical and socioeconomic growth trends. Once sufficient confidence was achieved, the split between general use lane and express lane loads was verified. However, the future year express lane volumes in highly congested corridors like I-95 are expected to be at capacity. The future loads were verified against the expected peak period and daily volumes. The project traffic forecasting methodology is illustrated in *Figure 2.2*.

The PD&E Study Design Traffic Technical Memorandum, dated December 2020, and later updated in June 2021, is included as **Appendix C**. This memorandum summarizes the traffic volumes development process, methodologies, and analysis standards as part of the PD&E process. This document describes the diurnal factors development, volumes balancing methods specific to the study, procedures, and results. This memorandum also documents the existing and future traffic data analyses and calculation of the study area AADT, existing peak-hour volumes and DDHV volumes.

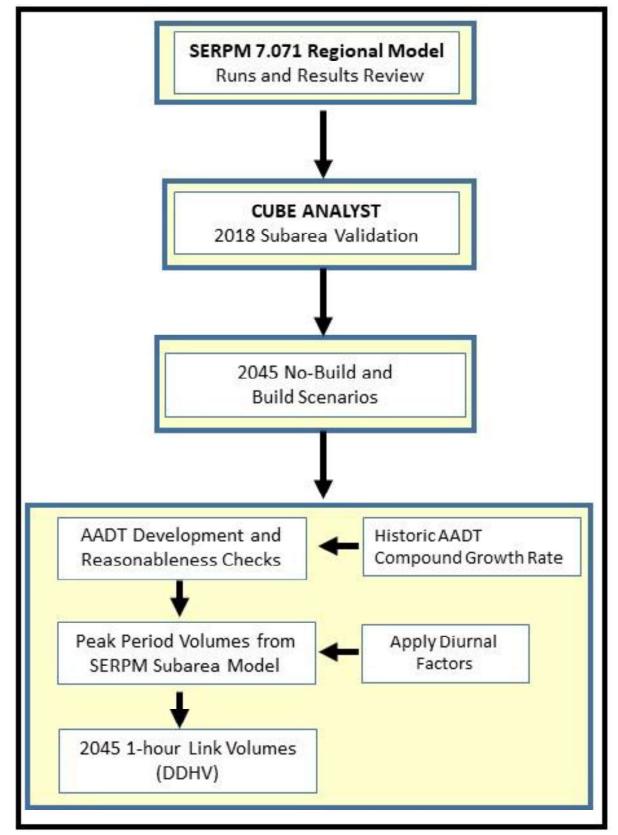


Figure 2.2 - Travel Demand Forecasting Methodology Flowchart

C. Validation Methodology

Several modifications to the travel demand model were performed to refine the subarea forecasts of the I-95 corridor. A tight subarea was defined as part of this task, including I-95 mainline, interchange ramps and the ramp terminal intersections, as part of the I-95 CPS. A 2018 SERPM model scenario was developed using 2018 networks and socioeconomic data. The 2018 socioeconomic data was developed by interpolating between the 2010 and 2040 socioeconomic data sets. The 2018 networks were developed by desktop review of the 2010 network and updating it to 2018 conditions. Time of day traffic counts were coded into the 2018 network for the tight subarea. Within the corridor limits, the existing traffic count data was coded into the network. Various model network attributes, within the subarea, were reviewed and corrected. These included facility types, number of lanes, area types, posted speed, tolls for tolled lanes, geometric connections, turn penalties, centroid location and connections. All the subarea network changes were propagated to the future years. An iterative validation using the CUBE Analyst origin-destination estimation process was conducted as part of this task. The process needs the SERPM 2018 subarea origin-destination matrix and the time of day traffic counts. The origin-destination estimation process was conducted separately for each of the 5-time periods. The resulting origindestination matrix was assigned back to the highway network to verify a satisfactory output of results. Root Mean Square Error (RMSE) and Volume-to-count ratio targets were used to evaluate the model validation outputs in accordance with the FSUTMS CUBE Framework Phase 2.

D. Adjustment Procedures

The model results were post-processed using the FDOT 2019 Project Traffic Forecasting Handbook and NCHRP 765 recommendations. The project team developed a corridor prototype spreadsheet with separate workbooks for AM peak-hour, PM peak-hour and AADT volumes. The existing volumes and traffic counts were verified. It was noted that the model volumes are all within 15% of the traffic counts and no additional post-processing adjustments were needed to this effect. However, during the I-95 CPS forecasts comparison against the 2016 PD&E Study traffic counts comparison, a few ramps with negative growths were observed. The travel demand model future projections did not show growth on the ramps to and from the north. This is because of the I-95 express lane access points reconfiguration. The access point reconfiguration slightly changed the traffic patterns of the area. Additional post-processing adjustments were performed at select locations to ensure the 2045 forecasts were higher than the 2016 traffic counts.

The volumes were balanced and smoothed as needed. The growth rates of the forecasted volumes were compared against the growth trends. Any outlier links were postprocessed. The turning movement forecast was developed from the subarea origin-destination assignments. This way, the subarea origin-destination matrices and the turning movements were ensured to be consistent. The future year turns were forecasted to ensure enough growth between base and future year turns from the subarea traffic assignment model. If by any chance any negative/unreasonable turns were forecasted in the model at few locations, adjustments were performed to the turning movement forecasts to match with the existing 2016 turns. Again, additional growth on these links was not forecasted as most of the intersections operated at capacity in the 2016 conditions. Secondly, if the model has projected volumes slightly less than the 2016 conditions on certain turning movements, this indicated not much demand is expected for those movements in the future conditions. To comply with design traffic forecasting principles, efforts were made to avoid any turning movements with negative growth in the subarea.

2.4 TRAFFIC FACTORS

The corridor design traffic was based on diurnal factors, as opposed to using the traditional K and D factors. The diurnal factors are the peak period to peak-hour conversion factors and were determined based on the traffic data collected. The diurnal factors were compared against the values used in the previous planning study. The corridor traffic count profile by hour was examined within the peak periods as well as the diurnal factors for the various I-95 mainline stations by direction. An average of the factors was considered in the development of the design traffic. The variation in diurnal factors in an urban area is not significant from one station to the other.

A reasonableness check was performed by comparing the DDHV volumes produced by the diurnal factor method with the corresponding DDHV volumes developed using the "traditional approach". The "traditional approach" involves applying K and D traffic factors to the AADT volumes to derive DDHV volumes. The corridor K and D factors were computed using 2018 peak-hour counts and AADT volumes. The average K factor is 6.5% and the average D factor is 51%. The reasonableness check was performed using the 2045 No-Build scenario.

Table 2.1 presents the results comparison between the two approaches. The DDHVs developed using the traditional approach are higher due to this approach not considering the true peak spreading throughout the day. The I-95 corridor is a vibrant corridor that has heavy traffic extending in most hours of the day. The peak-hour forecasts can be more

accurately estimated using the correct time of day distribution. Therefore, the diurnal factor method is deemed more appropriate in this case.

Table 2.1 – Comparison between Traffic Factors and Diurnal Factors

I-95 Segment South	K	D	2045	K Fa Appro		Diurnal Factors			cent ence
of Interchange	Factor	Factor	AADT	SB	NB	SB	NB	SB	NB
				PM	AM	PM	AM	PM	AM
Broward Boulevard	6.5%	51%	334,000	11,072	11,072	10,500	9,889	5.2%	10.7%
Davie Boulevard	6.5%	51%	280,000	9,282	9,282	7,984	8,672	14.0%	6.6%
SR 84	6.5%	51%	230,000	7,625	7,625	7,902	9,017	-3.6%	-18.3%
Griffin Road	6.5%	51%	320,000	10,608	10,608	8,874	11,442	16.3%	-7.9%
Stirling Road	6.5%	51%	342,000	11,337	11,337	10,051	11,314	11.3%	0.2%
Sheridan Street	6.5%	51%	330,000	10,940	10,940	9,605	10,670	12.2%	2.5%
Hollywood Boulevard	6.5%	51%	319,000	10,575	10,575	9,232	10,205	12.7%	3.5%
Pembroke Road	6.5%	51%	316,000	10,475	10,475	9,221	9,842	12.0%	6.0%
Hallandale Beach Boulevard	6.5%	51%	304,000	10,078	10,078	8,829	9,840	12.4%	2.4%
Ives Dairy Road	6.5%	51%	309,000	10,243	10,243	8,996	10,201	12.2%	0.4%
Miami Gardens Drive	6.5%	51%	293,000	9,713	9,713	10,189	8,950	-4.9%	7.9%
GGI	6.5%	51%	286,000	9,481	9,481	9,796	8,501	-3.3%	10.3%

The K and D factors were calculated based on the collected traffic data and forecasted traffic volumes from the PD&E Study and were compared to the ranges specified in the FDOT Project Traffic Forecasting Handbook.

The T₂₄ factor is the adjusted annual 24-hour percentage of truck traffic. The T₂₄ factor was obtained from the classification counts and compared to the factors obtained from the FDOT permanent count stations to assess reasonableness of the data. The Design Hour Truck (DHT) factor is the percentage of truck traffic during the peak-hour in the design year and can be estimated as half of the T₂₄ factor. DHT at the ramp terminals and intersections were determined from the turning movement counts. **Table 2.2** summarizes the T₂₄ and DHT factors. The Peak Hour Factor (PHF) for existing year was based on field collected traffic counts (turning movement counts and mechanical counts) and from the FDOT count stations. PHF for future years was set at 0.95. The PHF is applied to the traffic counts to convert hourly flow to peak 15-minute flow rate for capacity analysis.

Table 2.2 – Truck Factors

Table 2.2 Hook raciois							
I-95 Segment South of Interchange	Daily Trucks (T ₂₄) %	Peak Hour Trucks DHT %					
Broward Boulevard	4.1	2.1					
Davie Boulevard	13.8	6.9					
SR 84	9.0	4.5					
Griffin Road	5.3	2.7					
Stirling Road	4.2	2.1					
Sheridan Street	6.0	3.0					
Hollywood Boulevard	4.0	2.0					
Pembroke Road	8.0	4.0					
Hallandale Beach Boulevard	4.0	2.0					
Ives Dairy Road	6.0	3.0					
Miami Gardens Drive	4.0	2.0					
GGI	5.1	2.6					

2.5 OPERATIONAL ANALYSES

A. Existing Area Type/Traffic Conditions

Aroa Timo	Conditions		
Area Type	Under Saturated	Saturated	
Rural			
Urban Area/Transitioning Area			

B. Existing Area Type/Traffic Conditions

Software		System Component					
		Freeway			Crossroad		
Name	Version	Basic Segment	Weaving	Ramp Merge	Ramp Diverge	Arterials	Intersections
HCS/ HCM	7/ HCM 6 th Edition	\boxtimes	\boxtimes	\boxtimes	\boxtimes		
Synchro*	9 & 11					\boxtimes	\boxtimes
SimTraffic							
CORSIM							
VISSIM	9			\boxtimes			\boxtimes
Other							

^{*}Synchro 9 was used for the existing conditions, completed back in 2018. Synchro 11 was used for the future conditions.

Detailed operational analyses were performed for all analysis years for both AM and PM peak hours. The following operational analyses were conducted utilizing the design traffic forecasts:

- Freeway Analysis
- Freeway Weaving Analysis
- Ramp Merge and Diverge Analysis
- Queuing Analysis
- Intersection Analysis
- Express Lanes Analysis

The HCM Module in Synchro 9 and 11 was used for intersection level of service and queue length analyses. VISSIM 9 models were developed for the 2016 existing year for model calibration and for the 2045 design year to compare the No-Build Alternative against the Preferred Alternative. All other operational analyses (existing year, opening year, and design year) were performed based on the HCM procedures using HCS7 and/or Synchro 9 and 11. The project began in 2016. Due to the length and time frame of the study, the latest Synchro (version 11) at the time of the update was used for all future conditions analysis. Existing conditions using Synchro version 9 remained consistent with the approved methodology.

HCM procedures and analyses were conducted as an initial screening evaluation of the Build Alternatives. HCM results were used to discuss the preliminary results of the proposed improvements with FDOT and local stakeholders for concurrence and approval before performing microsimulation.

C. Calibration Methodology

Traffic microsimulation models were developed using VISSIM, Version 9.0. VISSIM models were developed for the 2016 existing year (for model calibration) and for comparing the 2045 No-Build and preferred alternative. The spatial limits of the VISSIM models included all freeway and arterial segments within the area of influence, including I-95 from north of Ives Dairy Road to south of Sheridan Street.

The simulation calibration incorporated the guidance and criteria from the FDOT's Traffic Analysis Handbook and FHWA's Traffic Analysis Toolbox Volume III. Traffic volume data, travel time data, and field observations were used in the calibration of the VISSIM models. Four-hour AM and PM peak periods analysis were conducted using 15-minute flow rates.

Several calibration measures were used to ensure that the models accurately replicate existing year field conditions. The calibration process consisted of measuring and comparing volume, travel time, and visual audits. The freeway mainline volumes were calibrated using criteria specified in the FHWA Traffic Analysis Toolbox (Volume III). The individual link flow targets are listed below:

- Within 15% of field traffic flows for more than 85% of cases where flows range from 700 veh/hr to 2,700 veh/hr
- Within 100 veh/hr for more than 85% of cases where flows are less than 700 veh/hr
- Within 400 veh/hr for more than 85% of cases where flows are greater than 2,700 veh/hr

Travel time targets were within 15 percent (or 1 minute if higher) of the field measured travel times for more than 85 percent of cases. Travel speed profiles were compared against speed data from the FDOT ITS system with the simulation outputs to ensure that the simulation provided similar trends and areas of congestion.

The major bottlenecks within the study area were calibrated to replicate the capacity and congestion based on field data. Visual audits of the simulation were performed to the analyst's satisfaction to observe speed-flow relationships for individual links and acceptable queuing at intersections and other bottlenecks in the network.

The existing conditions analysis has a simulation duration that allows congestion to build and dissipate, eliminating the potential for unmet demand. Latent demand and delay were reported and compared among the alternatives. To determine the required number of simulations runs, statistical tests were performed using a 95 percent confidence level and an allowable error of 10 percent. VISSIM default vehicle characteristics were used in the model as a starting point. Any parameters that were changed from the default value were documented and justified accordingly.

All future year No-Build and Build models were created from the calibrated 2016 existing model. The calibration process for the arterial roadways consisted of comparing the peak-hour volumes and visual audits. Reasonableness checks were performed by comparing the model simulated peak-hour volumes and the demand peak-hour volumes along the arterial segments.

D. Selection of Measures of Effectiveness (MOE)

Both qualitative and quantitative measures of performance or effectiveness (MOEs) were used to differentiate between the alternatives. The MOEs that were assessed from the VISSIM models include the following:

- Freeway: Volume, Speed and Density
- Intersections: Volume, Delay, and Queue Length
- Network-wide: Total travel time, Total delay time, Vehicle-miles of travel, Average speed, and Latent demand

The volume, delay and queue length were reported for every movement at every intersection.

The VISSIM analysis compared MOEs for the No-Build and preferred alternative. VISSIM MOEs were assessed for a simulation period covering a total of $4 \frac{1}{2}$ hours in the AM period and $4 \frac{1}{2}$

hours in the PM period for each alternative scenario. The simulation periods included the following:

- AM Period: ½ hour seeding + 4-hour AM peak period
- PM Period: ½ hour seeding + 4-hour PM peak period

The MOEs that were assessed from the HCS and Synchro analyses included the following:

- Freeway Analysis: Speed, Density, and LOS
- Intersection Analysis: Total Delay, LOS, volume over capacity ratio, and 95th Percentile queue length.

The freeway analysis includes basic freeway, merge analysis, diverge analysis and weaving analysis.

2.6 LEVEL OF SERVICE TARGETS

FDOT recommends a target LOS D for roadways in urban areas. Therefore, LOS D or better was considered an acceptable LOS.

2.7 EXPRESS LANES CONSIDERATION

The existing year conditions along I-95 have a northbound ingress and a southbound egress express lane access point within the Hallandale Beach Boulevard Interchange. After this PD&E Study was awarded, an additional express lane access point was added by the I-95 Express Lanes Phase 3C project within the AOI. This additional access includes a northbound egress and a southbound ingress within the Hollywood Boulevard Interchange. This new express lane access point is programmed for construction and will be opened prior to the PD&E Study's 2030 opening year. Therefore, this new access point was included in the PD&E Study's 2030/2045 No-Build and Build conditions.

Express lane volumes were obtained from the I-95 CPS. These volumes were established as controlled points around which the I-95 general use lane traffic volumes were balanced. These volumes were cross-checked and reviewed against the 2016 base year counts. The ingress and egress point volumes were calculated by subtracting the link volumes before and after the access point.

The PD&E Study proposes to maintain the existing configuration and proposed designs (by the projects to the north and south of this PD&E Study) of the express lanes system.

Express lanes operations were assessed using the VISSIM microsimulation models. Traffic flows in the express lanes were evaluated in 15-minute increments. Traffic volumes for each 15-minute time interval were estimated based on the traffic flow profiles along the I-95 mainline.

3.0 EXISTING CONDITIONS

3.1 EXISTING LAND USE

The I-95 project corridor segment is located within Broward County and crosses three municipalities (City of Hallandale Beach, Town of Pembroke Park, and the City of Hollywood). Land use was classified using the South Florida Water Management District (SFWMD) land use and cover nomenclature. The project corridor traverses a number of land use categories which are illustrated in *Figure 3.1*. In general, the project study area encompasses the following land uses:

- Residential
- Commercial
- Other Light Industrial
- Educational Facilities
- Golf Courses
- Parks and Recreational Facilities
- Water
- Roads and Highways
- Open Land

The project is located within a completely urban landscape with the above land use comingled throughout.

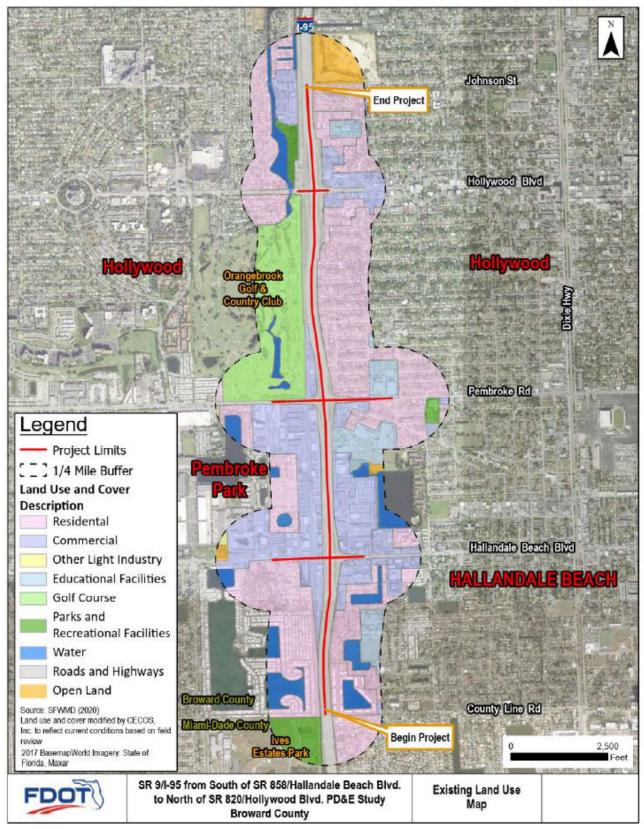


Figure 3.1 - Existing Land Use

3.2 EXISTING ROADWAY NETWORK

The existing I-95 mainline roadway section varies slightly. It consists primarily of four 11-foot wide express lanes (two in each direction) and eight 11-foot to 12-foot wide general use lanes (four in each direction) with 12-foot wide auxiliary lanes at select locations. A 3-foot wide buffer area with pavement markings and express lane markers separates the general use lanes from the express lanes with 5-foot to 12-foot wide inside shoulders, 12-foot wide outside shoulders, and a 2.5-foot wide center barrier wall. One express lane exists in each direction between Miami-Dade County and Hallandale Beach Boulevard in Broward County.

Figures 3.2 – 3.4 show the existing I-95 roadway cross sections within the study limits between interchanges.

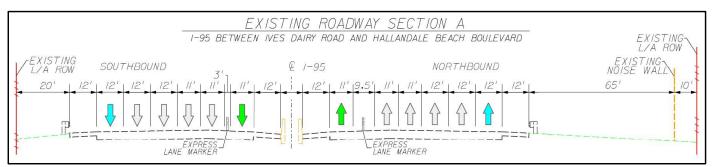


Figure 3.2 – Existing Roadway Section between Ives Dairy Road and Hallandale Beach Boulevard

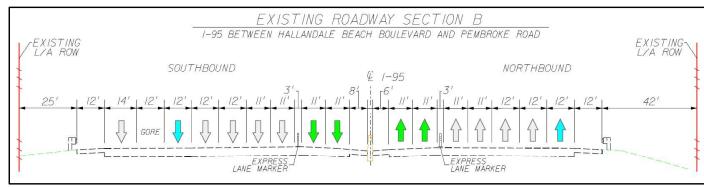


Figure 3.3 – Existing Roadway Section between Hallandale Beach Boulevard and Pembroke Road

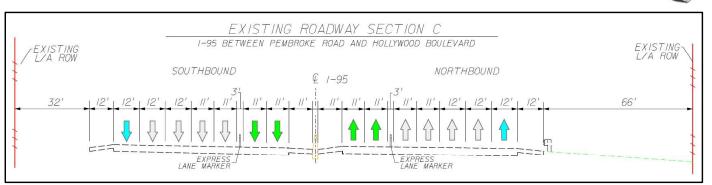
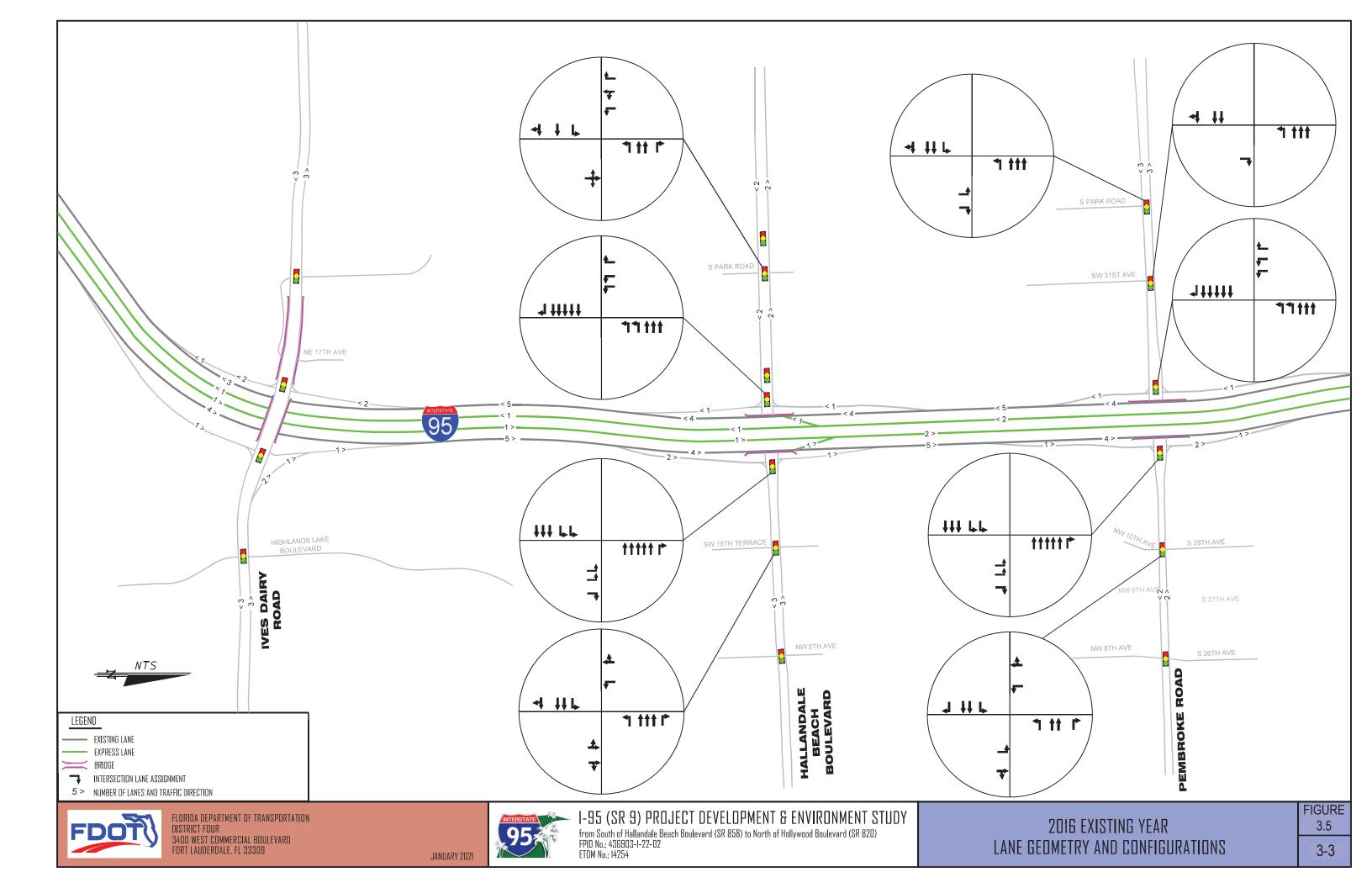
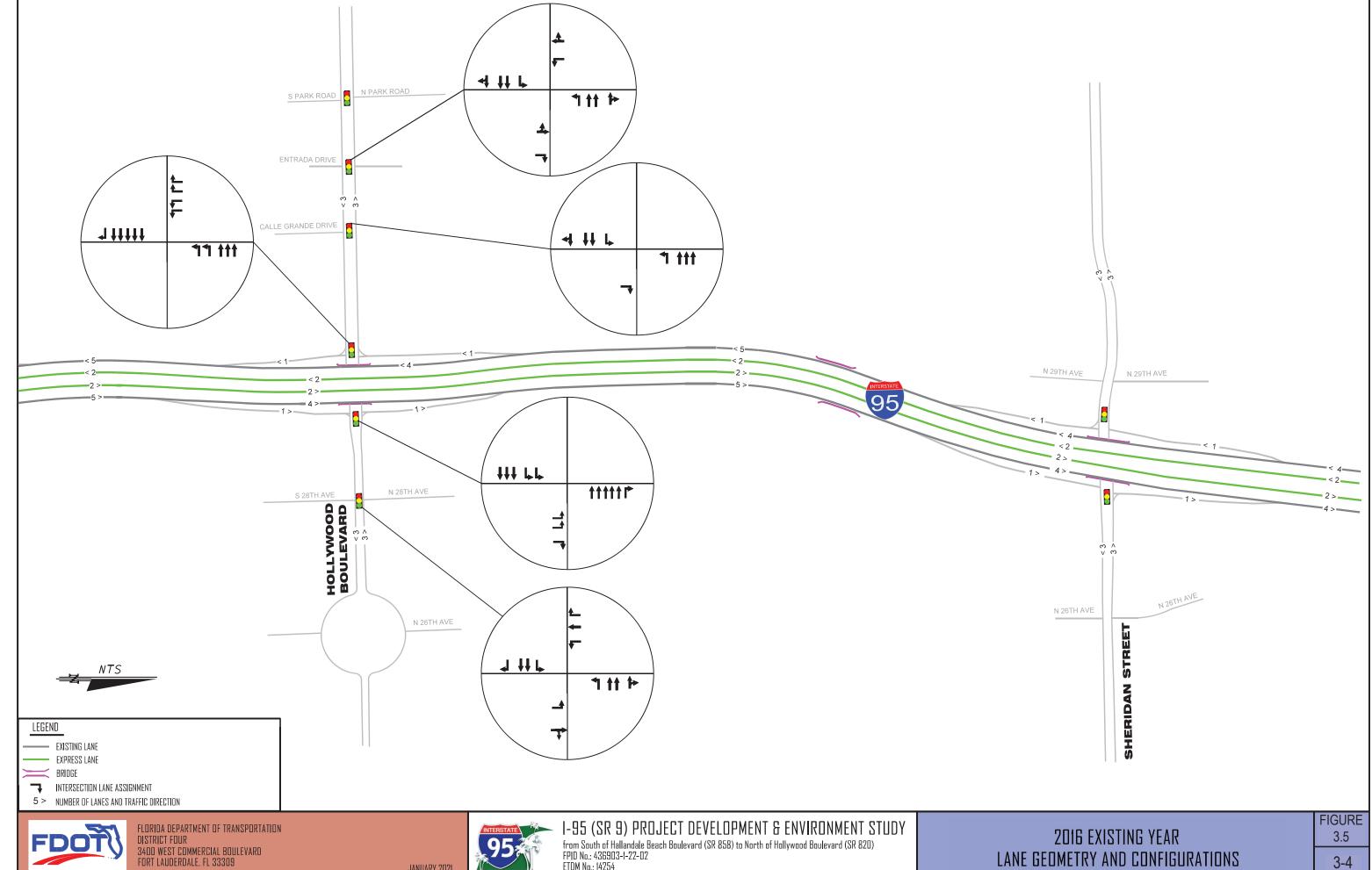


Figure 3.4 – Existing Roadway Section between Pembroke Road and Hollywood Boulevard


Arterial Corridors


There are three existing full interchanges within the project limits. *Figure 3.5* depicts the existing lane geometry and configuration.

Hallandale Beach Boulevard – This corridor consists of four lanes west of I-95 and six lanes east of I-95, with a posted speed of 35 mph west of I-95 and 40 mph east of I-95, and five signalized intersections. Hallandale Beach Boulevard is functionally classified as a Divided Urban Principal Arterial.

Pembroke Road – This corridor consists of six lanes west of I-95 and four lanes east of I-95, with a posted speed of 40 mph west of I-95 and 35 mph east of I-95, and six signalized intersections. Pembroke Road is functionally classified as a Divided Urban Principal Arterial.

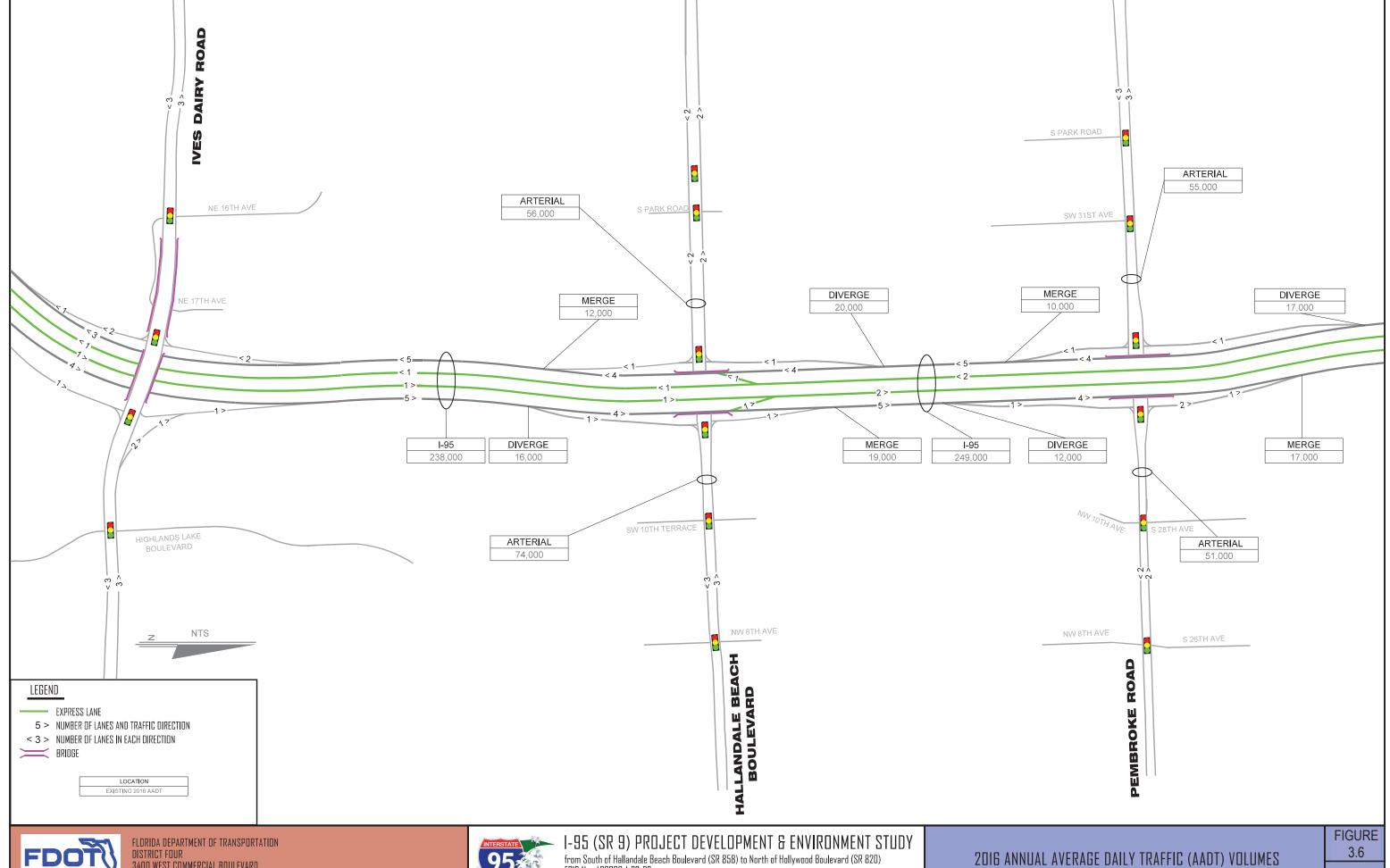
Hollywood Boulevard – This corridor consists of six lanes west of I-95 and four lanes east of I-95, with a posted speed of 35 mph, and five signalized intersections. Hollywood Boulevard is functionally classified as a Divided Urban Principal Arterial.

JANUARY 2021

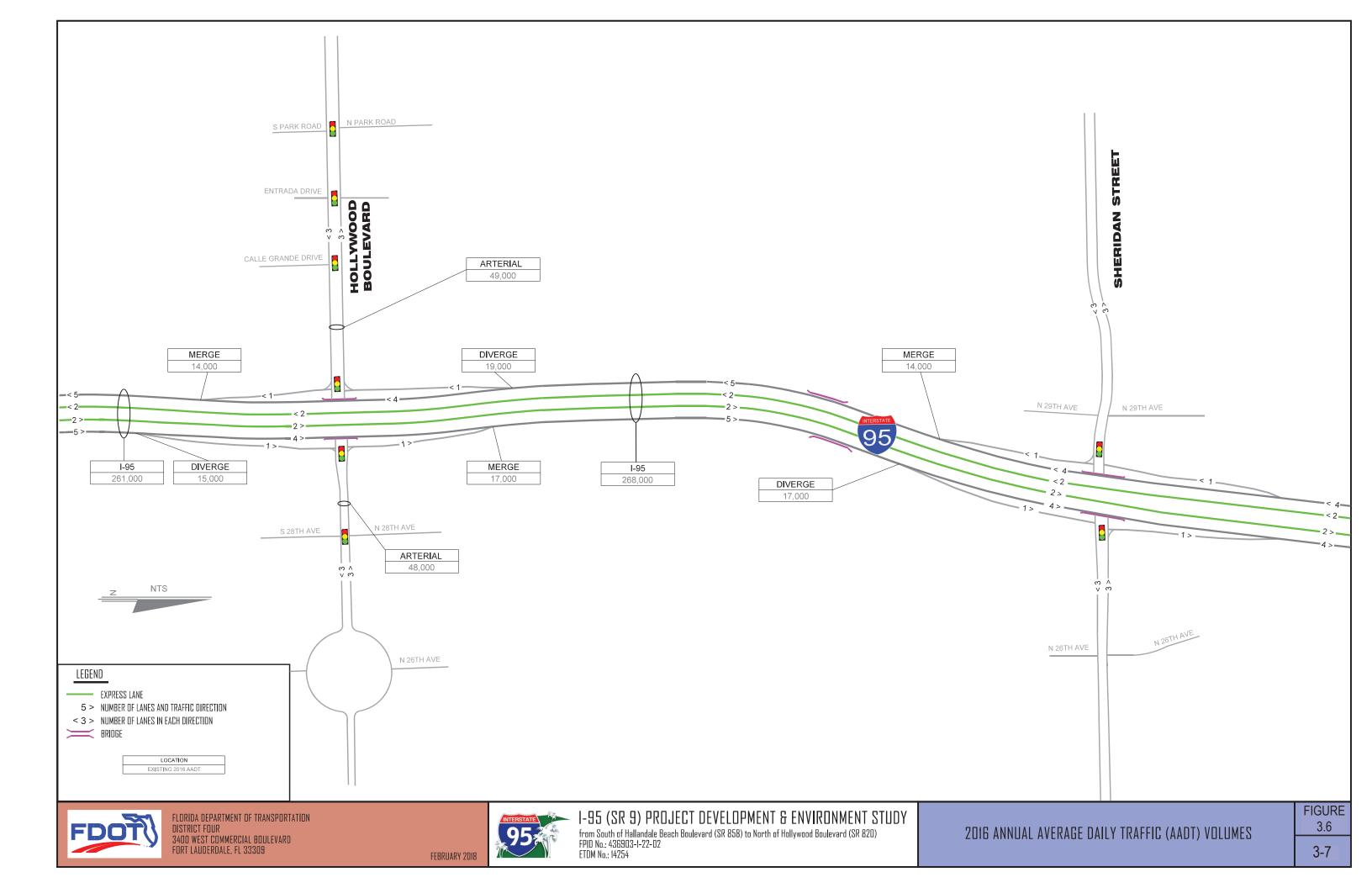
3.3 EXISTING TRAFFIC VOLUMES

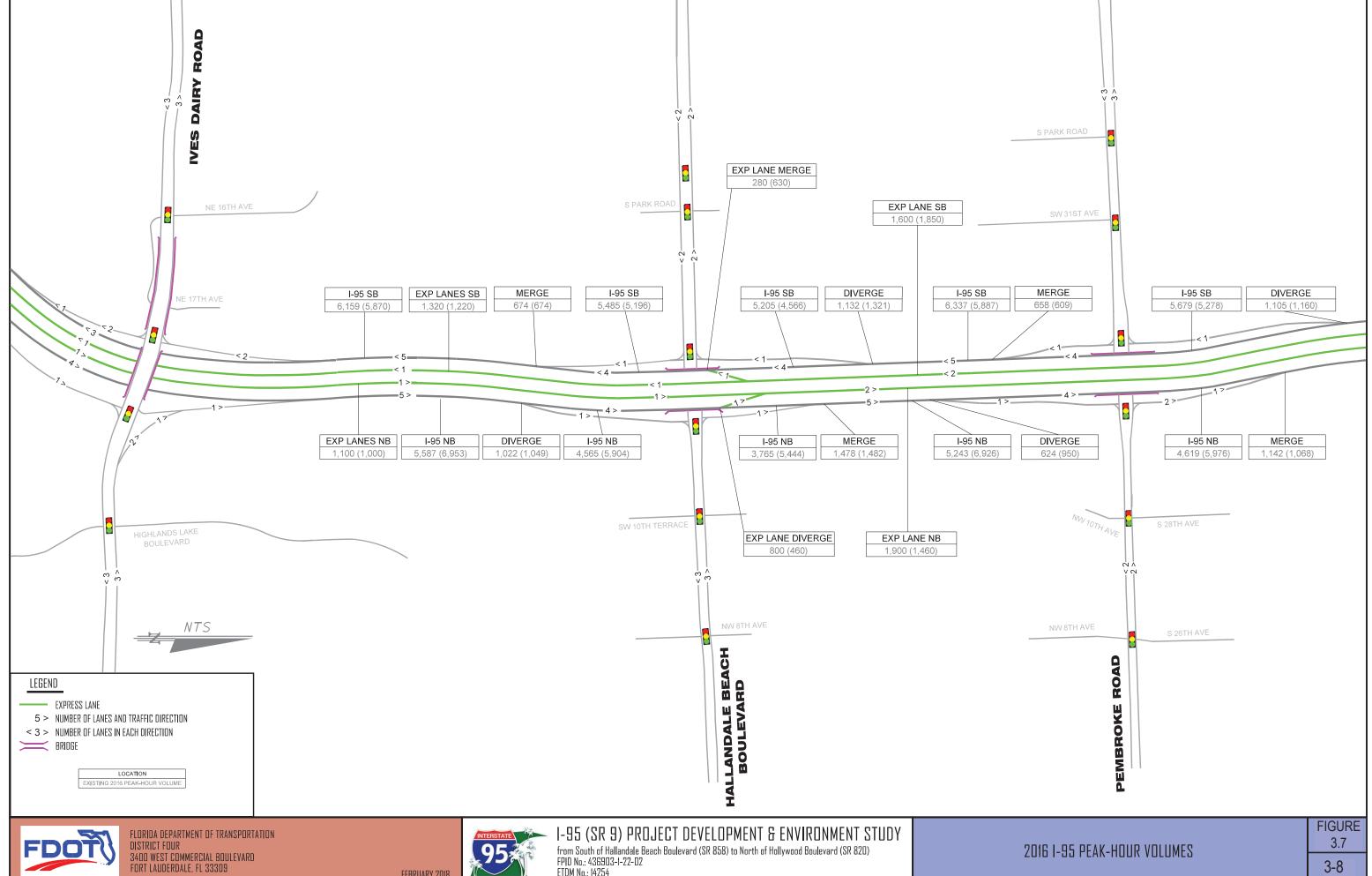
FDOT collected 2016 traffic data prior to the PD&E Study (see **Appendix D**). The collected traffic data documentation included the following information:

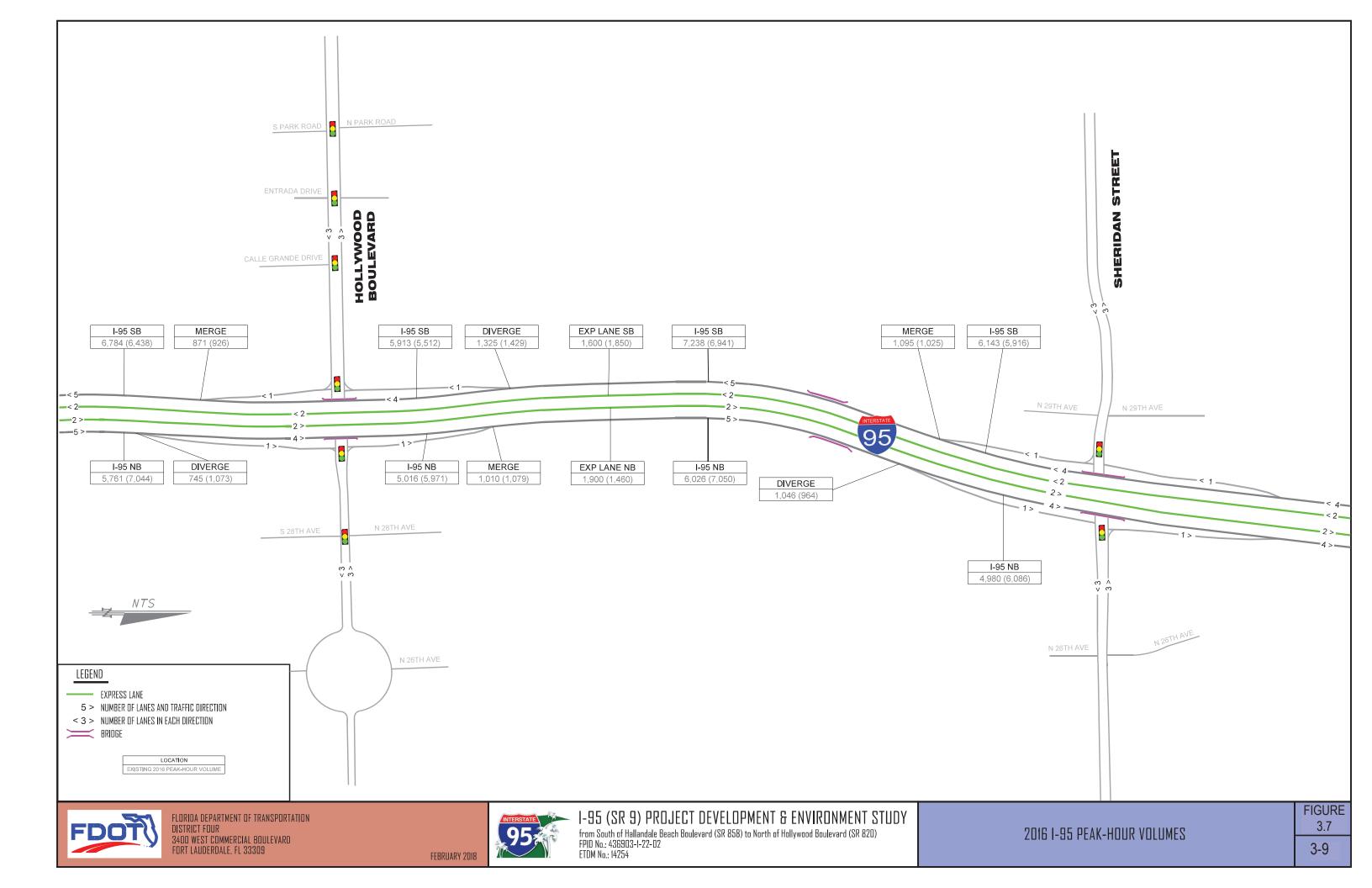
- Traffic data collection efforts
- Existing conditions peak-hour arterial traffic volumes
- Existing conditions peak-hour interchange ramp traffic volumes
- Existing conditions peak-hour interstate mainline traffic volumes (combined express lane and general use lane)
- Existing conditions AADT interstate mainline volumes
- Existing conditions AADT arterials volumes

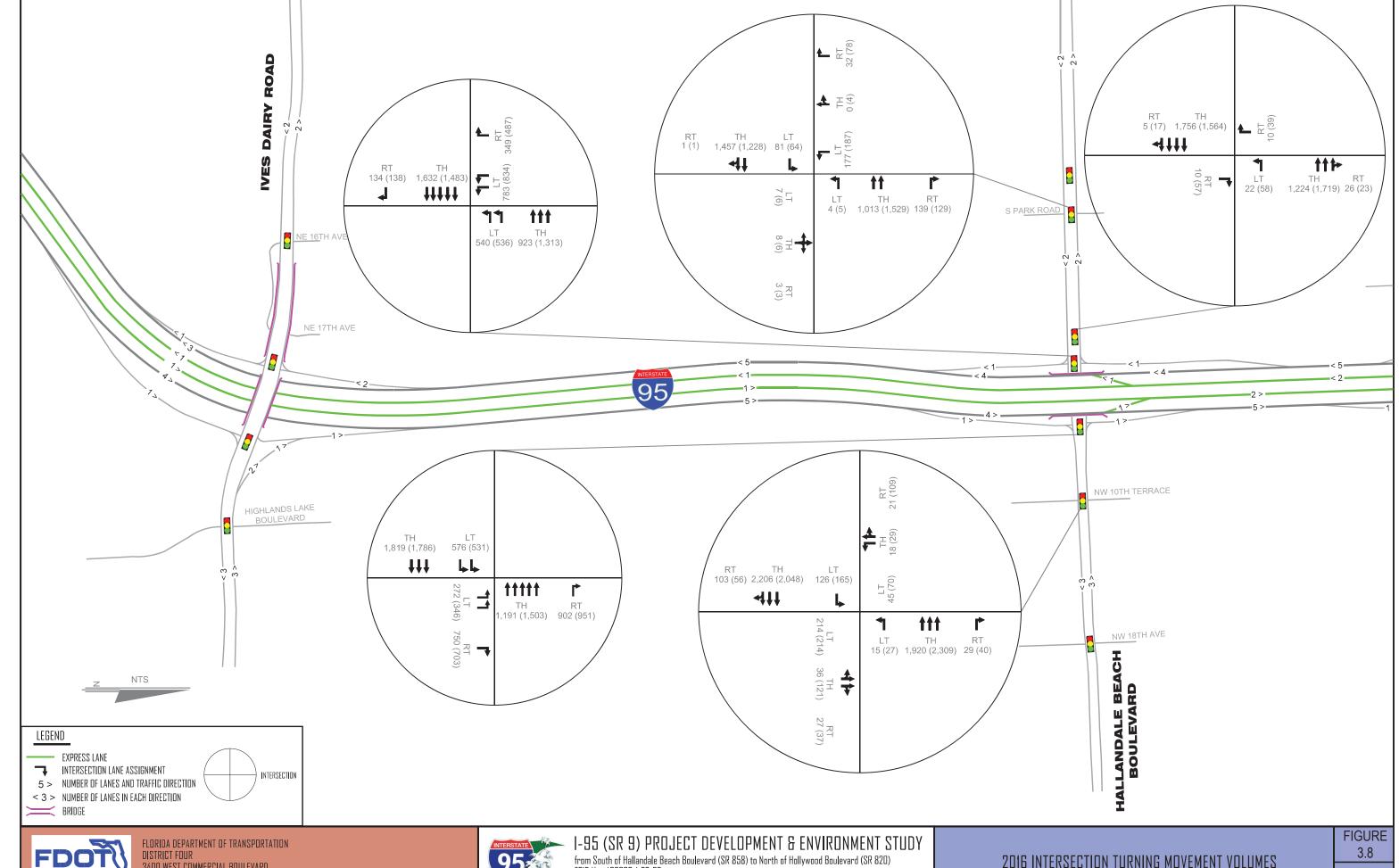

Traffic data from the following sources were obtained during the PD&E Study:

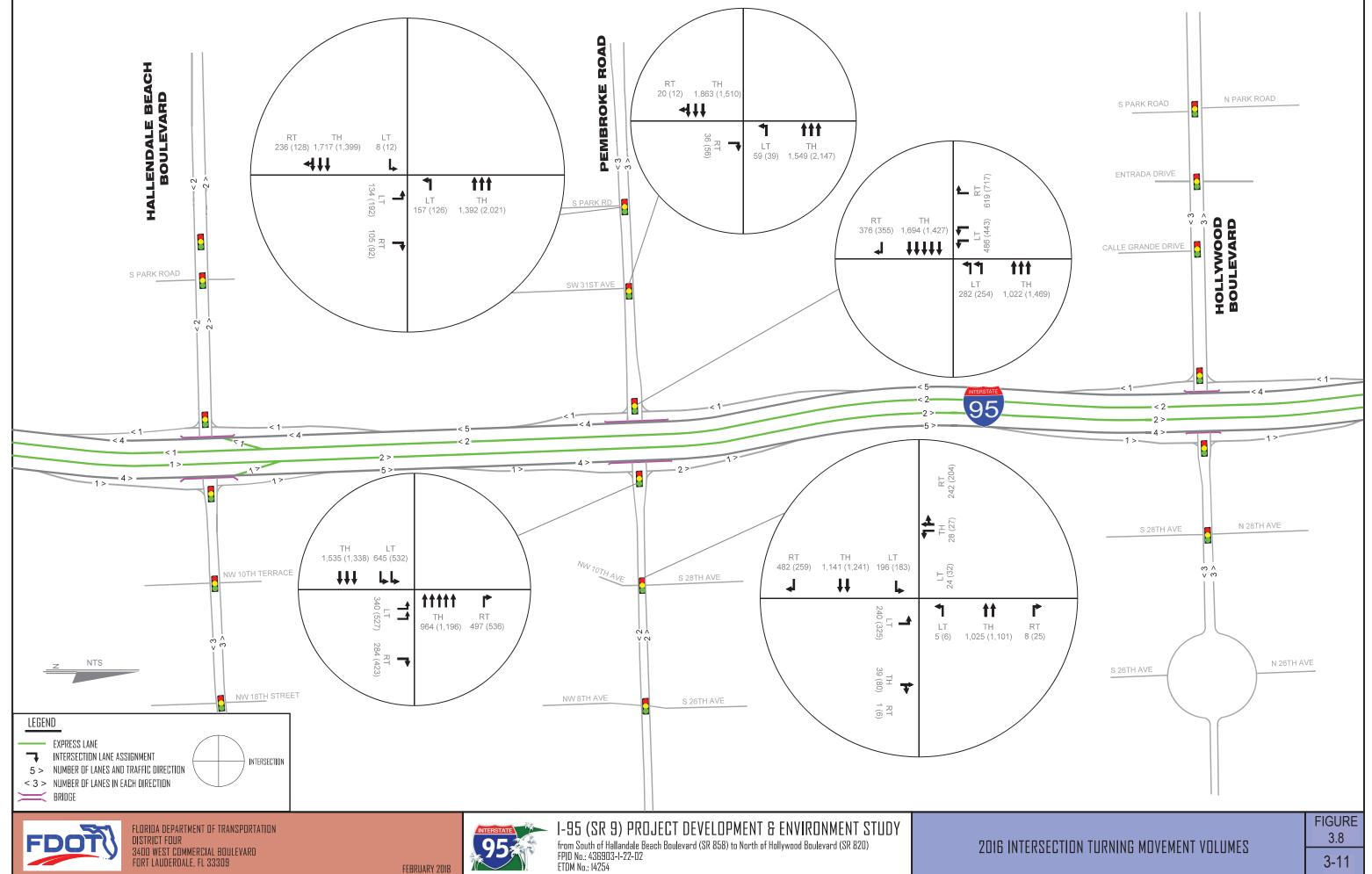
- Telemetered Traffic Monitoring Site (TTMS)
- SunGuide Intelligent Transportation System (ITS)
- Regional Integrated Transportation Information System (RITIS)
- 2015 and 2016 Florida Traffic Online (FTO)

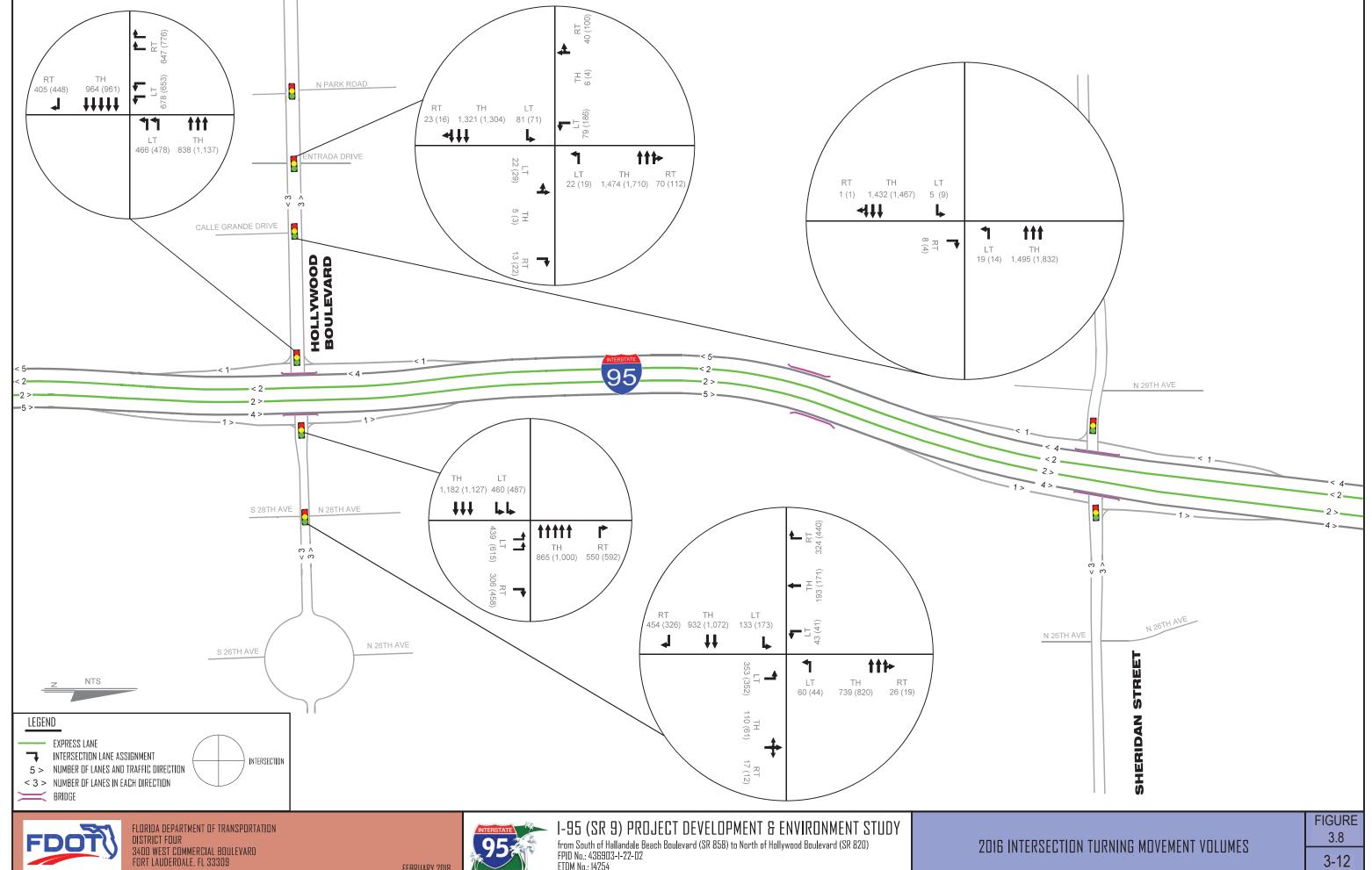

A TTMS dataset received from FDOT included traffic volume data from two TTMS locations (Station ID #862493, and Station ID #862499) for February 15, 2015. These stations were located along I-95 near Davie Boulevard and Sunrise Boulevard, respectively. SunGuide ITS was another data source used for the analysis. This dataset was received from FDOT and had traffic volume data for the January - February 2017 period for northbound traffic only. Because the TTMS and SunGuide ITS traffic data locations were outside the PD&E Study limits and the SunGuide data did not have the southbound traffic volumes, neither of these data sets was utilized in the analysis. Traffic data from RITIS was obtained for the period of January 1 to February 28, 2017.


Seasonal factors and volumes were reviewed for volume development and checks using the 2015 and 2016 FTO (TTMS sites #86-0331 and #86-0384). This effort was completed and documented in the FDOT 2016 traffic data collection efforts prior to the PD&E Study. The existing truck factors along Hallandale Beach Boulevard range between 4.17 – 8.94%, along Pembroke Road between 3.50 – 9.07%, along Hollywood Boulevard between 2.12 – 7.04%, and 5.9% along I-95.


Existing intersection and ramp traffic data were collected from March to April 2016 on typical weekdays (Tuesday, Wednesday, and Thursday). Due to construction activity south of Hallandale Beach Boulevard along I-95, mainline traffic counts were not collected. Traffic data obtained from the I-95 station north of Hallandale Beach Boulevard (TTMS Site: #86-0331) was used as anchor point for the I-95 mainline traffic volume development. Existing AADT volumes are summarized in *Figure 3.6*. Peak-hour traffic volumes and intersection turning movement volumes are summarized in Figure 3.7 and Figure 3.8. The mainline existing peak-hour volumes documented along I-95 combined the express lanes and general use lanes traffic.




FEBRUARY 2018



FEBRUARY 2018

3.4 EXISTING TRAFFIC OPERATIONS

3.4.1 I-95 OPERATIONAL ANALYSIS

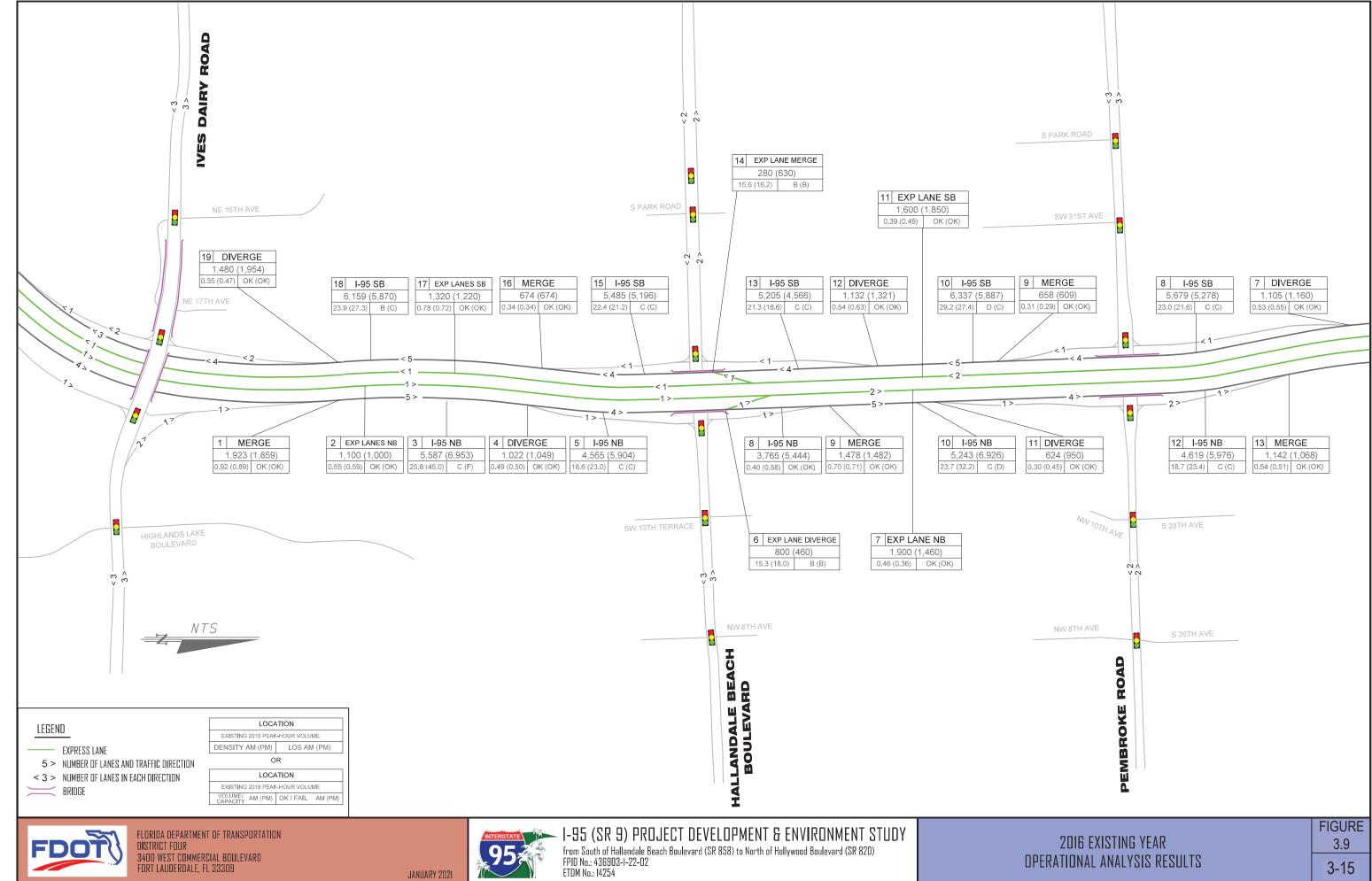
This section presents the Highway Capacity Methodology analysis results for the existing lane configuration under existing traffic conditions. The Highway Capacity Manual (HCM), as well as the Highway Capacity Software (HCS) and Synchro Software were used for the operational analysis in this study. Operational analyses were performed on freeway basic segments, ramp merge/diverge junctions, weaving sections, ramp terminals, express lanes, arterial segments and intersections. The HCS was used for the freeway basic segments, ramp merge/diverge junctions and weaving sections. Synchro was used for the evaluation of the arterial intersections. This software uses the methodology of the HCM to determine intersection capacity and LOS.

An existing traffic operational analysis was conducted for the 2016 base condition for the freeway mainline and interchange ramps. The first part of the analysis consisted of a basic freeway segment analysis used to determine the current conditions under which the freeway mainline is operating. The second part of the analysis consisted of a ramp merge, diverge and weaving analysis used to determine the current operating conditions of the ramps entering and exiting the freeways. Railroad impacts were not considered in the HCM analysis. However, these impacts were considered in the VISSIM analysis documented in **Section 7.6.**

Results – The freeway, weaving and ramp junction analysis results for northbound and southbound directions are summarized in *Table 3.1* and *Table 3.2*. The analysis results are also schematically summarized in *Figure 3.9*. Output HCS reports can be found in *Appendix E*.

Findings – The capacity analysis shows that all basic freeway segments are currently operating at an acceptable LOS D or better except for the I-95 northbound segment between Ives Dairy Road on-ramp and Hallandale Beach Boulevard off-ramp. This segment is operating at LOS F in the PM peak-hour.

Table 3.1 – 2016 Existing Northbound Freeway Analysis Results


	10010 011 2	JIO EXIST	ng itoi	inbound rie	oway / tiral	y sis it essen		
#	I-95 Northbound Segment	Analysis	No. of	Demand vph	Freeway	Ramp	Density	LOS
π	2016 Existing	Type	Lanes	AM(PM)	V/C	Ratio	(pc/mi/ln)	103
19	Sheridan Street Off-Ramp	Diverge	1	1,046 (964)	-	0.50 (0.46)	-	-
18	Hollywood Boulevard On- Ramp to Sheridan Street Off- Ramp	Weave	5	6,026 (7,050)	0.80 (0.79)	-	29.1 (30.6)	D (D)
17	Hollywood Boulevard On- Ramp	Merge	1	1,010 (1,079)	-	0.48 (0.51)	-	-
16	Hollywood Boulevard Off- Ramp to Hollywood Boulevard On-Ramp	Basic	4	5,016 (5,971)	0.62 (0.67)	-	23.5 (23.3)	C (C)
15	Hollywood Boulevard Off- Ramp	Diverge	1	745 (1,073)	-	0.35 (0.51)	-	-
14	Pembroke Road On-Ramp to Hollywood Boulevard Off- Ramp	Weave	5	5,761 (7,044)	0.70 (0.82)	-	25.4 (31.1)	C (D)
13	Pembroke Road On-Ramp	Merge	1	1,142 (1,068)	-	0.54 (0.51)	-	-
12	Pembroke Road Off-Ramp to On-Ramp	Basic	4	4,619 (5,976)	0.52 (0.67)	-	18.7 (23.4)	C (C)
11	Pembroke Road Off-Ramp	Diverge	1	624 (950)	-	0.30 (0.45)	-	-
10	Hallandale Beach Boulevard On-Ramp to Pembroke Road Off-Ramp	Weave	5	5,243 (6,926)	0.77 (0.93)	-	23.7(32.2)	C (D)
9	Hallandale Beach Boulevard On-Ramp	Merge	1	1,478 (1,482)	-	0.70 (0.71)	-	-
8	Express Lane Ingress to Hallandale Beach Boulevard On-Ramp	Basic	4	3,765 (5,444)	0.40 (0.58)	-	-	-
7	Express Lane North of Hallandale Beach Boulevard	Basic	2	1,900 (1,460)	0.46 (0.36)	-	-	-
6	Express Lane Ingress	Diverge	1	800 (460)	0.52 (0.65)	0.39 (0.22)	15.3 (18.0)	B (B)
5	Hallandale Beach Blvd Off- Ramp to Express Lane Ingress	Basic	4	4,565 (5,904)	0.52 (0.67)	-	18.6 (23.0)	C (C)
4	Hallandale Beach Boulevard Off-Ramp	Diverge	1	1,022 (1,049)	-	0.49 (0.50)	-	-
3	Ives Dairy Road On-Ramp to Hallandale Beach Boulevard Off-Ramp	Weave	5	5,587 (6,953)	0.99 (1.08)	-	25.8 (45.0)	C (F)
2	Express Lane South of Hallandale Beach Boulevard	Basic	1	1,100 (1,000)	0.65 (0.59)	-	-	-
1	Ives Dairy Road On-Ramp	Merge	1	1,923 (1,859)	-	0.92 (0.89)	-	-

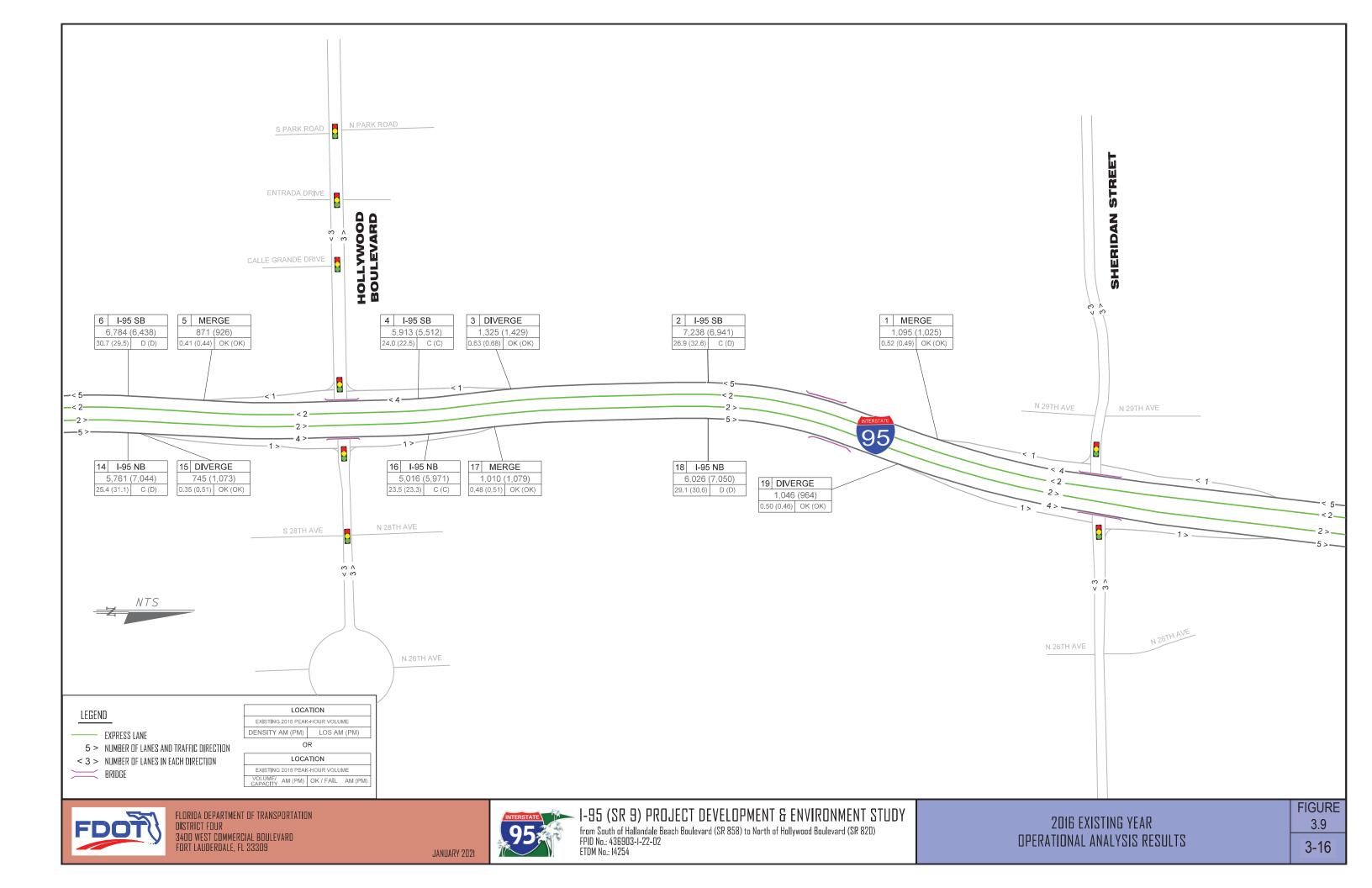

^{# -} segment number

Table 3.2 – 2016 Existing Southbound Freeway Analysis Results

	Table 3.2 – 2010 Existing 300Hb00Hd				ileeway A			
#	I-95 Southbound Segment 2016 Existing	Analysis Type	No. of Lanes	Demand vph AM(PM)	Freeway	Ramp	Density (pc/mi/ln)	LOS
	2010 Existing	2010 Existing Type Edited Time. The		AM(IM)	V/C	Ratio	(pc/iii/iii)	
1	Sheridan Street On-Ramp	Merge	1	1,095 (1,025)	-	0.52 (0.49)	-	-
2	Sheridan Street On-Ramp to Hollywood Boulevard Off- Ramp	Weave	5	7,238 (6,941)	0.87 (0.90)	-	26.9 (32.6)	C (D)
3	Hollywood Boulevard Off- Ramp	Diverge	1	1,325 (1,429)	-	0.63 (0.68)	-	-
4	Hollywood Boulevard Off- Ramp to Hollywood Boulevard On-Ramp	Basic	4	5,913 (5,512)	0.66 (0.62)	-	24.0 (22.5)	C (C)
5	Hollywood Boulevard On- Ramp	Merge	1	871 (926)		0.41 (0.44)	-	-
6	Hollywood Boulevard On- Ramp to Pembroke Road Off-Ramp	Weave	5	6,784 (6,438)	0.74 (0.77)	-	30.7 (29.5)	D (D)
7	Pembroke Road Off-Ramp	Diverge	1	1,105 (1,160)	-	0.53 (0.55)	-	-
8	Pembroke Road Off-Ramp to On-Ramp	Basic	4	5,679 (5,278)	0.63 (0.60)	-	23.0 (21.6)	C (C)
9	Pembroke Road On-Ramp	Merge	1	658 (609)	-	0.31 (0.29)	-	-
10	Pembroke Road On-Ramp to Hallandale Beach Boulevard Off-Ramp	Weave	5	6,337 (5,887)	0.69 (0.73)	-	29.2 (27.4)	D (C)
11	Express Lane North of Hallandale Beach Boulevard	Basic	2	1,600 (1,850)	0.39 (0.45)	-	-	-
12	Hallandale Beach Boulevard Off-Ramp	Diverge	1	1,132 (1,321)	-	0.54 (0.63)	-	-
13	Hallandale Beach Blvd Off- Ramp to Express Lane Ingress	Basic	4	5,205 (4,566)	0.59 (0.52)	-	21.3 (18.6)	C (C)
14	Express Lane Ingress	Merge	1	280 (630)	0.62 (0.59)	0.14 (0.30)	15.6 (16.2)	B (B)
15	Express Lane Ingress to Hallandale Beach Boulevard On-Ramp	Basic	4	5,485 (5,196)	0.62 (0.59)	-	22.4 (21.2)	C (C)
16	Hallandale Beach Boulevard On-Ramp	Merge	1	674 (674)	-	0.34 (0.34)	-	-
17	Express Lane South of Hallandale Beach Boulevard	Basic	1	1,320 (1,220)	0.78 (0.72)	-	-	-
18	Hallandale Beach Boulevard On-Ramp to Ives Dairy Road Off-Ramp	Weave	5	6,159 (5,870)	0.56 (0.96)	-	23.9 (27.3)	B (C)
19	Ives Dairy Road Off-Ramp	Diverge	2	1,480 (1,954)	-	0.35 (0.47)	-	-

^{# -} segment number

3.4.2 CROSSING ROADWAYS OPERATIONAL ANALYSIS

An intersection analysis for ramp terminals and adjacent intersections was performed at all interchanges within the area of influence using existing turning movement volumes, existing lane geometry, signal timing, other relevant information obtained from Broward County and field reviews. The data was input to the Synchro software to determine the LOS and delay using the HCM methodology.

Results – The intersection analysis results are summarized in **Tables 3.3 – 3.5**. The analysis results are also schematically summarized in **Figure 3.10**. Output Synchro reports can be found in **Appendix F**.

Findings – The existing intersection operational analysis results indicate that all intersections are operating at LOS D or better except for the Hallandale Beach Boulevard and I-95 northbound ramp intersection and Hollywood Boulevard and 28th Avenue intersection. They are both operating at LOS E.

Table 3.3 – 2016 Existing Hallandale Beach Boulevard Intersection LOS and Delay Results

Hallandale Beach		AM Pe	eak	PM Pe	eak
Boulevard	Movement	Delay	100	Delay	100
Intersection		(s/veh)	LOS	(s/veh)	LOS
	EBL	9.0	Α	16.0	В
	EBT	12.3	В	10.5	В
	WBL	14.5	В	10.6	В
	WBT	12.3	В	16.3	В
Courtle Dowle Doord*	WBR	8.9	Α	8.6	Α
South Park Road*	NBT	79.1	Е	83.2	F
	SBL	79.1	Е	78.7	Е
	SBT	79.1	Е	79.2	Е
	SBR	59.6	Е	59.3	Е
	Int	17.0	В	18.8	В
	EBT	42.2	D	39.8	D
	EBR	31.4	С	31.4	С
10514/ 15	WBL	72.1	Е	64.6	Е
I-95 West Ramp Terminal*	WBT	17.2	В	20.3	С
	SBL	31.4	С	31.6	С
	SBR	28.2	C	33.4	U
	Int	37.2	D	34.9	U
	EBL	200.2	F	158.6	F
	EBT	17.0	В	16.9	В
1.05 F 1.D	WBT	28.6	С	30.5	С
I-95 East Ramp Terminal*	WBR	41.4	D	53.5	D
TOTTIMICAL	NBL	33.7	С	34.6	С
	NBR	226.6	F	183.6	F
	Int	72.0	E	60.5	Е
	EBL	17.3	В	100.1	F
	EBT	14.9	В	16.1	В
	EBR	15.6	В	14.0	В
	WBL	13.6	В	24.4	С
NW 10th Terrace	WBT	15.4	В	11.8	В
INVV TOTT TETTACE	WBR	9.3	Α	222.2	F
	NBL	88.0	F	59.8	Е
	NBR	56.3	Е	59.6	Е
	SBL	60.8	Е	56.4	Е
	Int	19.8	В	33.8	С

^{*}HCM 2000 results reported

Table 3.4 – 2016 Existing Pembroke Road Intersection LOS and Delay Results

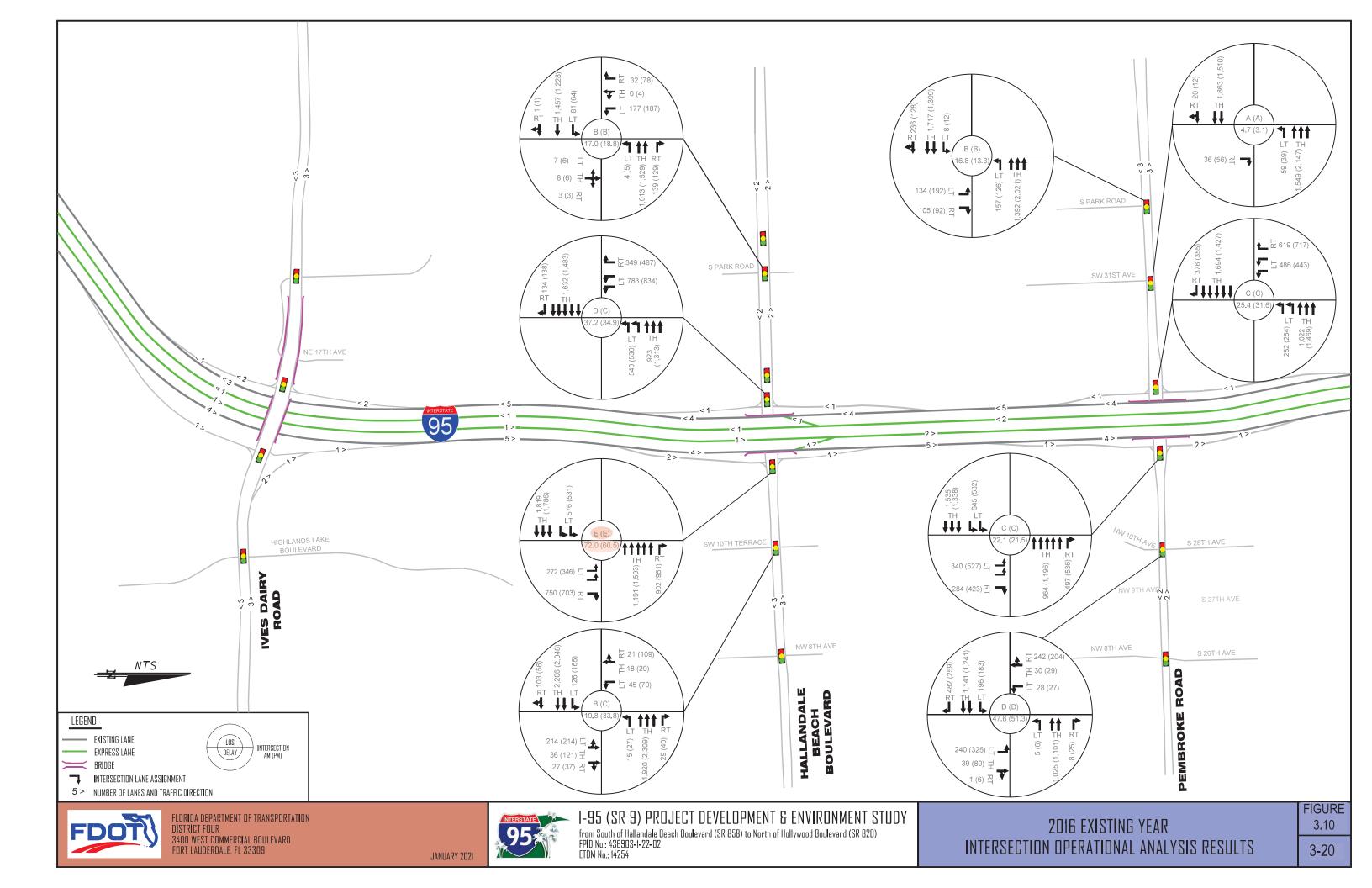
- 2016 Existing Pe	mbroke kod				
Pembroke Road		AM Pe	eak	PM Peak	
Intersection	Movement	Delay	LOS	Delay	LOS
		(s/veh)	103	(s/veh)	
	EBU	9.5	Α	9.6	Α
	EBT	16.3	В	10.5	В
	WBL	44.2	D	8.3	A
Park Road*	WBT NBL	83.8	A F	6.7 86.0	A F
	NBR	64.3	E	60.2	E
	Int	16.8	В	13.3	В
	EBT	3.9	A	2.5	A
	WBL	79.3	E	80.1	F
SW 31st Avenue*	WBT	0.2	A	0.3	A
377 31317 (701100	NBR	72.9	E	73.6	E
	Int	4.7	A	3.1	A
	EBT	26.7	С	24.3	С
	EBR	20.8	С	20.7	С
	WBL	52.7	D	40.6	D
I-95 West Ramp	WBT	7.5	A	11.0	В
Terminal*					
	SBL	19.4	В	19.1	В
	SBR	46.6	D	98.3	F
	Int	25.4	С	31.6	С
	EBL	49.0	D	30.1	С
	EBT	6.0	Α	6.3	Α
I-95 East Ramp	WBT	29.4	С	32.6	С
Terminal*	WBR	27.2	С	27.5	С
	NBL	18.2	В	19.7	В
	NBR	18.4	В	21.6	С
	Int	22.1	С	21.5	С
	EBL	17.4	В	16.7	В
	EBT	12.8	В	12.5	В
	EBR	10.6	В	8.8	Α
	WBL	14.1	В	14.8	В
	WBT	21.1	С	22.7	С
NW 10th Avenue / South 28th Avenue	WBR	13.8	В	14.5	В
300111 20111 AVEITUE	NBL	406.3	F	330.8	F
	NBT	57.4	Е	60.2	Е
	SBL	58.4	Е	62.6	Е
	SBT	76.7	Е	78.1	Е
	Int	47.6	D	51.3	D

*HCM 2000 results reported

Table 3.5 – 2016 Existing Hollywood Boulevard Intersection LOS and Delay Results

Hollywood Boulevard	Mayamant	AM Pe	ak	PM Peak		
Intersection	Movement	Delay	100	Delay	LOS	
		(s/veh)	LOS	(s/veh)		
	EBL	4.6	Α	19.6	В	
	EBT	7.0	Α	14.5	В	
	EBR	7.4	Α	15.0	В	
	WBL	5.2	Α	11.5	В	
	WBT	0.7	Α	31.1	С	
Entranda Drive	WBR	1.1	Α	32.1	С	
	NBL	66.8	Е	55.1	Е	
	NBR	63.1	Е	48.0	D	
	SBL	75.3	Е	70.7	Е	
	SBR	64.9	Е	51.1	D	
	Int	7.2	Α	27.8	С	
	EBU	111.2	F	144.3	F	
	EBT	3.1	Α	0.6	Α	
Calle Grande	WBL	91.2	F	93.7	F	
Drive*	WBT	0.7	Α	2.0	Α	
	NBR	0.5	Α	0.6	Α	
	Int	2.6	Α	2.2	Α	
	EBT	20.8	С	22.1	С	
	EBR	63.7	Е	97.0	F	
	WBL	26.8	С	28.3	С	
I-95 West Ramp Terminal*	WBT	3.8	Α	3.9	Α	
remina	SBL	45.5	D	41.4	D	
	SBR	31.8	С	51.7	D	
	Int	28.2	С	33.6	С	
	EBL	26.8	С	27.7	С	
	EBT	4.5	Α	5.2	Α	
1055 15	WBT	22.6	С	22.5	С	
I-95 East Ramp Terminal*	WBR	156.0	F	142.7	F	
IGITIIIIUI	NBL	25.8	С	29.8	С	
	NBR	30.8	С	30.4	С	
	Int	37.5	D	37.1	D	

*HCM 2000 results reported



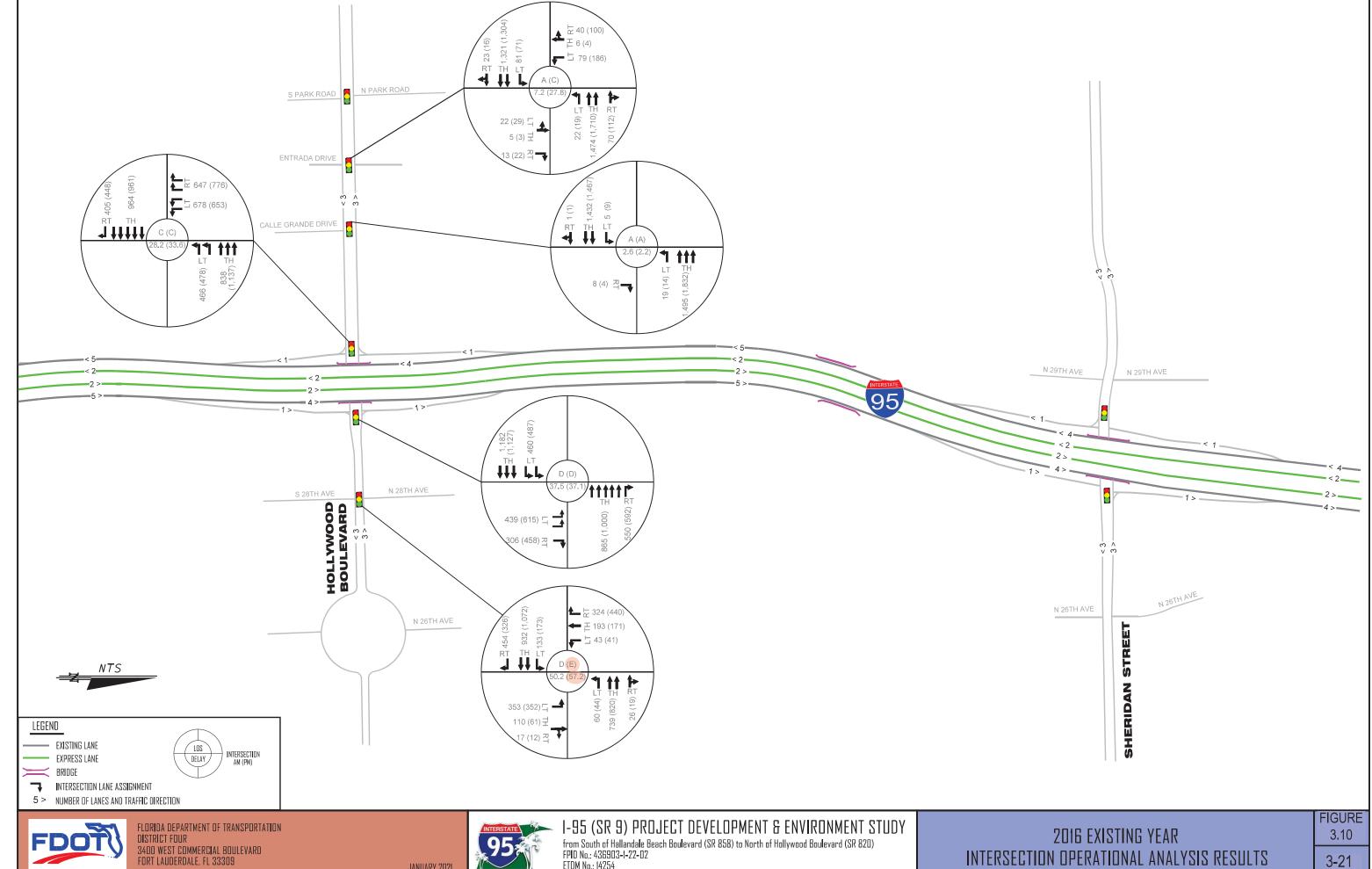

Systems Interchange Modification Report

Table 3.5 – 2016 Existing Hollywood Boulevard Intersection LOS and Delay Results (Continued)

Hollywood Boulevard	Movement	AM Pe	AM Peak		PM Peak	
Intersection	Movemen	Delay	LOS	Delay	LOS	
		(s/veh)	103	(s/veh)	103	
	EBL	26.3	С	32.6	С	
	EBT	39.6	D	37.4	D	
	EBR	34.5	С	27.2	C	
	WBL	33.2	С	33.1	C	
	WBT	39.6	D	39.0	D	
S 28th Avenue*	NBL	88.3	F	128.9	F	
	NBT	83.8	F	128.3	F	
	SBL	198.2	F	187.0	F	
	SBT	62.4	Е	58.3	Е	
	SBR	60.9	Е	92.4	F	
	Int	50.2	D	52.7	E	

^{*}HCM 2000 results reported

3-21

3.5 EXISTING TRANSIT OPERATIONS

Along the corridor, within the study limits, there is a wide variety of modes of public transportation. Some of these modes of public transportation are:

- Transit Services
- Railroads
- Van-Pool/Car-Pool
- Park and Ride Facilities
- Multimodal/Intermodal Facilities
- Private Passenger Services

Appendix G, Corridor Base Maps, depicts the location of these facilities along the corridor within the study limits.

Transit Services – There is a variety of transit services provided within the limits of the study. Within Broward County is Broward County Transit (BCT), which is regionally coordinated by the South Florida Regional Transportation Authority (SFRTA).

The BCT provides fixed-stop bus service within and across the study area. The BCT bus routes 5, 6, 7, 9, 15, 28, 110 and 114 operate within the study limits (see **Appendix H**). BCT also assists the following municipalities with their community bus services.

- City of Hallandale Beach Routes 3 and 4
- City of Hollywood Hollywood Trolley

In addition to general bus service, BCT provides the following services within the study area:

- TOPS The TOPS (Transportation Options Paratransit Service) is for ADA-eligible citizens, on a reservation basis.
- Emergency Services BCT uses their bus fleet for emergency evacuation service during hurricane events.

SFRTA has shuttle bus services (bus routes SS-1 and FLA-1) that originate from selected Tri-Rail stations.

Railroads – The South Florida Rail Corridor is a dual railroad track that runs parallel to the west side of the I-95 project corridor. This railroad line is currently under the jurisdiction of the

SFRTA and owned by the FDOT. It was formerly owned by CSX Transportation and continues to carry CSX freight trains. The SFRTA also operates the commuter rail service called Tri-Rail on these tracks. Within the study limits, there is one Tri-Rail station, Hollywood Boulevard Station.

Amtrak also operates passenger trains on the South Florida Rail Corridor. North of the study limits, the Sheridan Amtrak Station is co-located with the Tri-Rail Station.

Van-Pool/Car-Pool – The FDOT offers a regional commuter assistance program, the South Florida Commuter Services (SFCS) Program, to promote alternatives to drive-alone commuting. SFCS includes car-pool (for 2-4 people) and van-pool (7-12 people) programs. These car-pool and van-pool services use daily the park and ride facilities within the I-95 study corridor.

Park and Ride Facilities – Within the study limits, there is one Park and Ride lot located at the Hollywood Boulevard Trai-Rail Station.

Multimodal/Intermodal Facilities – A multimodal facility is any facility which combines two or more modes of travel, for example from bus to airplane, or from ship to rail. Within the study limits there is one intermodal facility located at the Hollywood Boulevard Tri-Rail Station (Taxi, Amtrak, Park and Ride).

Private Passenger Services – In addition to the public transportation modes noted above, Greyhound bus lines, a private passenger service, also serves the general I-95 project corridor area. The nearest bus terminal is located at the Sheridan Tri-Rail Station.

3.6 CORRIDOR CRASH ANALYSIS

The crash analysis efforts were completed by the FDOT Traffic Operations Office prior to the PD&E Study. Four separate Safety Studies were conducted covering I-95, Hallandale Beach Boulevard, Pembroke Road, and Hollywood Boulevard. More than five years of crash data was collected along I-95 due to the corridor being under construction as part of the I-95 Express Phase 2 project (pre-construction and during construction). Three years of crash data was collected along Hallandale Beach Boulevard, Pembroke Road, and Hollywood Boulevard as part of interim construction projects at each interchange, which had different timelines.

I-95 – The I-95 Safety Study was completed in July 2017 between south of Hallandale Beach Boulevard (MP 0.408) and north of Hollywood Boulevard (MP 2.927). Crash data was obtained from the Department's Crash Analysis Reporting (CAR) Online and organized into the periods of Pre-Construction (November 2008 – October 2011) and During Construction (November 2011 – December 2015) of the I-95 Express Lanes Phase 2 Project. A total of 2,877 crashes occurred within the study corridor between November 2008 and December 2015. These crashes included 1,250 injury crashes and eight fatal crashes. The total number of crashes increased During Construction. However, the proportion of injury crashes decreased during the same period. **Table 3.6** summarizes the number of crashes per year.

Table 3.6 – Existing I-95 Crashes by Year

Year	Crashes
2008 (Nov-Dec)	53
2009	331
2010	303
2011	330
2012	480
2013	523
2014	480
2015	377
Total:	2,877

Notable peak period crash locations are summarized below:

- Hollywood Boulevard southbound off-ramp AM and PM peaks
- Hallandale Beach Boulevard southbound off and on-ramps AM and PM peaks
- Pembroke Road southbound off and on-ramps PM peak
- Hollywood Boulevard northbound on-ramp PM peak
- Hallandale Beach Boulevard northbound off-ramp AM and PM peaks

Overall, 56% of the crashes (1,573 crashes) occurred in the southbound direction and 44% of the crashes (1,232 crashes) occurred in the northbound direction. The most frequent crash types are rear-end (49%), sideswipe (24%), and lane departure crashes (17%). The lane departure crashes include collisions with concrete barrier walls, guardrails, run off road, and other fixed object crashes. Other than a three percent (3%) increase in sideswipe crashes, the proportions of crash types are similar before and during construction periods.

Crashes were grouped by interchange using the straight-line diagram mileposts. The highest number of crashes occurred at the Hallandale Beach Boulevard interchange, followed by the Hollywood Boulevard and Pembroke Road interchanges. After normalizing for crash data periods, the Hallandale Beach Boulevard and Hollywood Boulevard interchanges each experienced a 57% monthly increase in crashes between the Pre-Construction and During Construction periods, whereas the Pembroke Road interchange experienced an 8% monthly increase during the same period. Based on the increasing trend of crashes during the analysis period, the Hallandale Beach Boulevard and Hollywood Boulevard interchanges are priority locations for improvements. *Table 3.7* summarizes the crashes by interchange.

Table 3.7 – Existing Crashes by Interchange

	TUDIC 0.7 EXIS	ing Clusties by	micremange			
Description	Pre- Construction* (36 months)	During Construction** (50 months)	Total	Percentage of Total		
Hallandale Beach Boulevard						
Rear End	190	399	589	54%		
Sideswipe	82	184	266	24%		
Fixed Object	51	106	157	14%		
Other Types	21	63	84	8%		
Total	344	752	1,096			
Pembroke Road						
Rear End	157	234	391	48%		
Sideswipe	62	123	185	23%		
Fixed Object	63	74	137	17%		
Other Types	41	53	94	12%		
Total	323	484	807			
	Holl	lywood Boulevard	d			
Rear End	121	283	404	45%		
Sideswipe	69	160	229	25%		
Fixed Object	55	109	164	18%		
Other Types	38	67	105	12%		
Total	283	619	902			

^{*}Pre-construction period – Nov. '08 – Oct. '11 **During Construction period – Nov. '11 – Dec. '15

The study limits were identified as a high crash segment in each year between 2009 and 2015. In addition, the following mileposts were identified as high crash locations in multiple years:

- Northbound exit to Hallandale Beach Boulevard (MP 0.508)
- Southbound exit to Hallandale Beach Boulevard (MP 1.044)
- Southbound exit to Pembroke Road (MP 1.815)
- Northbound exit to Hollywood Boulevard (MP 2.296)
- Northbound entrance from Hollywood Boulevard (MP 2.771)
- Southbound exit to Hollywood Boulevard (MP 2.827)

Hallandale Beach Boulevard – The Hallandale Beach Boulevard Safety Study was completed in July 2014 covering the interchange limits between MP 2.528 and MP 2.587. Crash data was obtained from the Department's CAR Online and organized for the three-year period from 2009 to 2011. A total of 199 crashes occurred within the three-year period. These crashes included 85 injury crashes and no fatalities. **Table 3.8** summarizes the number of crashes per year.

Table 3.8 – Existing Hallandale Beach Boulevard Crashes by Year

Year	Crashes
2009	63
2010	79
2011	57
Total:	199

The most frequent crash types are rear-end (54%), left-turn (13%), and angle crashes (12%). A review of the crash data indicates that "careless driving" was stated as a contributing cause for 28% of the crashes, followed by "disregarded traffic signal" at 10% and, "followed to closely" at 9.5%, A review of the FDOT High Crash Spot/Segment Lists for the three-year period from 2009 to 2011 indicates that this location was on the High Crash Segment List for the years 2010 and 2011.

Pembroke Road – The Pembroke Road Safety Study was completed in July 2017 covering the interchange limits between MP 5.048 and MP 5.123. Crash data was obtained from the Department's CAR Online and organized for the three-year period from 2013 to 2015. A total of 285 crashes occurred within the three-year period. These crashes included 68 injury crashes and one fatality crash. **Table 3.9** summarizes the number of crashes per year.

Table 3.9 – Existing Pembroke Road Crashes by Year

Year	Crashes
2013	89
2014	108
2015	88
Total:	285

The most frequent crash types are rear-end (56%), sideswipe (22%), and angle crashes (9%). A review of the crash data indicates that "careless or negligent manner" was stated as a contributing cause for 34% of the crashes, followed by "failed to keep in proper lane" at 8.4% and, "followed too closely" at 7.4%. A review of the Department's High Crash Spot Lists for the three-year period indicates that the interchange was identified as a high crash spot for all three years.

Hollywood Boulevard – The Hollywood Boulevard Safety Study was completed in July 2016 covering the interchange limits between MP 16.56 and MP 16.639. Crash data was obtained from the Department's CAR Online and organized for the three-year period from 2010 to 2012. A total of 251 crashes occurred within the three-year period. These crashes included 25 injury crashes and no fatalities. **Table 3.10** summarizes the number of crashes per year.

Table 3.10 – Existing Hollywood Boulevard Crashes by Year

Year	Crashes
2010	58
2011	87
2012	106
Total:	251

The most frequent crash types are rear-end (60%), sideswipes (14%), and left-turn crashes (6%). A review of the crash data indicates a steady increase in crashes from 2020 to 2012. A review of the FDOT High Crash Spot/Segment Lists for the three-year period from 2010 to 2012 indicates that all three intersections were identified as high crash locations.

4.0 NEED

4.1 CAPACITY

The I-95 ramps at Hallandale Beach Boulevard, Pembroke Road, and Hollywood Boulevard are currently congested, and affecting traffic operations along I-95 between the interchange ramps and at the arterial intersections near I-95.

Without future improvements, the driving conditions will continue to deteriorate well below acceptable Level of Service (LOS) standards. The following I-95 freeway segments will operate below LOS D within at least one peak-hour period before the year 2045:

- Ives Dairy Road northbound on-ramp to Hallandale Beach Boulevard northbound off-ramp
- Hallandale Beach Boulevard northbound on-ramp to Pembroke Road northbound off-ramp
- Pembroke Road northbound on-ramp to Hollywood Boulevard northbound off-ramp
- Hollywood Boulevard northbound on-ramp to Sheridan Street northbound off-ramp
- Sheridan Street southbound on-ramp to Hollywood Boulevard southbound off-ramp
- Hollywood Boulevard southbound on-ramp to Pembroke Road southbound off-ramp
- Hallandale Beach Boulevard southbound on-ramp to Ives Dairy Road southbound off-ramp

Additionally, the following intersections will fall below LOS D during at least one peak-hour period before the year 2045:

- Hallandale Beach Boulevard northbound ramp terminal
- Hallandale Beach Boulevard southbound ramp terminal
- Hollywood Boulevard southbound ramp terminal
- Hollywood Boulevard/28th Avenue

The improvements proposed as part of this project will increase the capacity of the interchanges and the ramp terminal intersections.

4.2 SAFETY

The crash safety analysis indicates that the I-95 study area segments have experienced greater overall number of crashes for the years 2012 through 2014 than what would

typically be anticipated on similar facilities. A review of the crash data indicates that traffic operational improvements could address some of the safety issues.

Additional I-95 entry and exit ramp capacity at these interchanges will improve the safety and overall flow of traffic within the project corridor and adjacent intersections.

4.3 SYSTEM LINKAGE

I-95 is part of the State's SIS and the National Highway System. I-95 provides limited access connectivity to other major arterials such as I-595 and Florida's Turnpike. The project is not proposing to change system linkage. However, potential interchange modifications would improve movements within the existing network systems.

4.4 MODAL INTERRELATIONSHIPS

There are sidewalks and bicycle facilities in both directions and public transit routes along Hallandale Beach Boulevard, Pembroke Road, and Hollywood Boulevard.

Hallandale Beach Boulevard – The corridor has a five-foot wide sidewalk along both sides of the roadway and continues through the interchange. Designated pedestrian crossings exist at all the corridor intersections. The corridor has a four-foot wide bicycle lane along both sides of the roadway and continues through the interchange.

Pembroke Road – The corridor has a five-foot wide sidewalk along both sides of the roadway east of the interchange and continues through the interchange. West of the interchange the corridor has five-foot to seven-foot wide sidewalks along both sides of the roadway, which continues through the interchange. Designated pedestrian crossings exist at all the corridor intersections. The corridor has a three to four-foot wide bicycle lane along both sides of the roadway and continues through the interchange.

Hollywood Boulevard – The corridor has a five-foot wide sidewalk along both sides of the roadway west of the interchange and continues through the interchange. East of the interchange the corridor has five-foot to seven-foot wide sidewalks along both sides of the roadway, which continues through the interchange. Designated pedestrian crossings exist at all the corridor intersections. The corridor has a four-foot wide bicycle lane along both sides of the roadway and continues through the interchange.

Additionally, there is a Tri-Rail Station in the northwest quadrant of the I-95/Hollywood Boulevard Interchange.

Capacity improvements within the study area will enhance the mobility of people and goods by alleviating current and future congestion at the interchanges and on the surrounding freight and transit networks. Reduced congestion will serve to maintain and improve viable access to the major transportation facilities and businesses in the area.

4.5 TRANSPORTATION DEMAND

The I-95 PD&E Study phase from south of Hallandale Beach Boulevard to north of Hollywood Boulevard is included in the Broward Metropolitan Planning Organization (MPO) 2045 and 2050 Long Range Transportation Plan (LRTP), Transportation Improvement Program (TIP), FDOT Work Program, FDOT State TIP, and FDOT SIS Five Year Plan.

4.6 SOCIAL DEMANDS AND ECONOMIC DEVELOPMENT

Social and economic demands on the I-95 corridor will continue to increase as population and employment increase. The Broward County MPO MTP predicted that the population would grow from 1.9 million in 2018 to 2.2 million by 2045, an estimated increase of 16 percent. Employment was predicted to increase from 0.9 to 1.2 million during the same period, an increase of 25 percent.

The project intersects the municipalities of Hallandale Beach, Pembroke Park, and Hollywood, the third largest city in Broward County.

4.7 EMERGENCY EVACUATION

The project is anticipated to improve emergency evacuation capabilities by enhancing connectivity and accessibility to major arterials designated on the state evacuation route. I-95, Hallandale Beach Boulevard, Pembroke Road, and Hollywood Boulevard serve as part of the emergency evacuation route network designated by the Florida Division of Emergency Management and by Broward County. Hallandale Beach Boulevard, Pembroke Road, and Hollywood Boulevard move traffic from the east to I-95. I-95 is critical in facilitating traffic during emergency evacuation periods as it connects to other major arterials and highways in the state evacuation route network (i.e., I-595 and the Florida's Turnpike).

5.0 FUTURE NO-BUILD CONDITIONS

5.1 FUTURE LAND USE

The existing land use within and adjacent to the project corridor was mapped using South Florida Water Management District (SFWMD) land use and cover nomenclature (see **Figure 5.1**). **Table 5.1** summarizes the existing land use and cover within the study area. The primary land uses adjacent to the project corridor are residential.

Table 5.1 – Existing Land Use and Cover within the Study Area

Land Use and Cover	% Within Study Area
Channelized Waterways, Canals, Reservoirs	6.19
Commercial and Services	21.21
Educational Facilities	5.09
Golf Courses	9.76
Residential	39.46
Open Land	2.32
Other Light Industry	0.13
Parks/Recreation	2.95
Roads	12.9

These plans include Future Land Use Elements as well as Transportation Elements. Refer to **Appendix I** for each municipality's and Broward County's future land use maps. As the existing corridor is developed, its future land use is anticipated to be very similar to the existing land use. The proposed improvements may result in redevelopment within the proposed study area, but this redevelopment will occur on land previously developed.

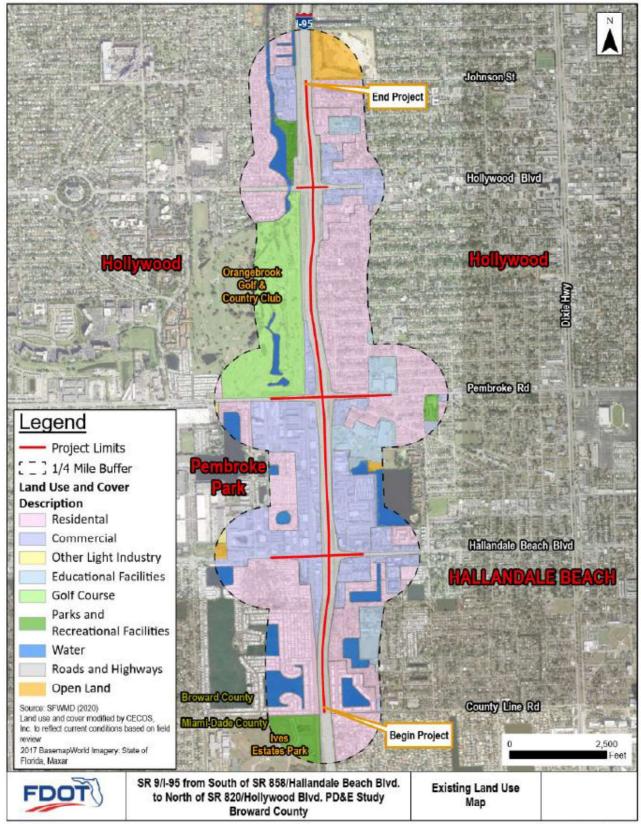


Figure 5.1 – Existing Project Corridor Land Use/Land Cover Map

CR 9) PD&E Study odification Report

As depicted on the City of Hallandale Beach's Future Land Use Map (completed as part of the City's Comprehensive Plan), the existing and future land uses area are similar in that both identify residential, commercial, and educational uses adjacent to I-95. The Town of Pembroke Park's existing land use in the project area is generally residential and commercial uses. As depicted on the City of Hollywood's Future Land Use Map (completed as part of the City's Comprehensive Plan), the project corridor consists of residential, commercial, parks and open space, educational facilities, and Regional Activity Center (RAC). A future RAC is proposed along Hollywood Boulevard, east of I-95 within the study limits. A RAC is a high intensity, high density multi-use area designed as appropriate for growth by the local government or jurisdiction. A RAC is intended to encourage attractive and functional mixed living, working, shopping, education, and recreation centers and encourages mass transit and reduction in auto travel. The existing land use and future land use are similar except for the RAC. Incorporating a potential regional bus service and maintaining the existing shuttle service is consistent with the goals of the City of Hollywood's RAC.

The Broward County Future Land Use Plan was included to show surrounding future land use outside the project area. Overall, the existing and future land use maps of the municipalities are similar, as they both show residential, commercial and activity centers adjacent to the project boundaries.

Based on the above, adverse effects (direct/indirect) to land use are not anticipated as a result of this project.

5.2 NO-BUILD ALTERNATIVE - ROADWAY NETWORK

The No-Build Alternative includes the existing transportation network, and any funded, planned or programmed improvements open to traffic by the design year 2045. The No-Build Alternative includes only those improvements that are elements of the MPO's Transportation Improvement Program, the 2045 Cost Feasible MTP, the FDOT's Adopted Five Year Work Program, any local government comprehensive plans and/or any development mitigation improvement projects that are elements of approved development orders.

The No-Build Alternative includes currently planned and programmed improvements. One of the programmed improvements is the safety short-term interim improvements at the Hallandale Beach Boulevard, Pembroke Road and Hollywood Boulevard interchanges. The No-Build Alternative includes the ongoing District Four I-95 Express Phase 3C Construction Project between south of Hollywood Boulevard and north of I-595. This project will add

additional express lane access points (northbound egress and southbound ingress) within the Hollywood Boulevard Interchange. The No-Build Alternative also includes the District Six I-95 Planning Study between US 1 (Downtown Miami) and the Miami-Dade/Broward County Line. This study is proposing to add mainline capacity and interchange improvements.

In May 2021, District Six began an I-95 PD&E Study, FPID#414964-1-22-01, between south of Miami Gardens Drive (SR 860) and the Miami-Dade/Broward County Line. The objective of the PD&E Study was to evaluate the recommendations from the District Six I-95 Planning Study. The preferred alternative from the District Six PD&E Study was considered part of the No-Build Alternative conditions.

The No-Build Alternative served as a comparison to the proposed Build Alternatives. The No-Build Alternative examines what happens if no improvements other than scheduled maintenance occur. Advantages include no impacts on the social, cultural, physical, or natural environment and no additional right of way or construction cost. Disadvantages include increased congestion, safety issues, and slower emergency evacuation and response times. Furthermore, there are no improvements to the interchange ramp terminal intersections, which cannot accommodate the future growth of the study area. Consequently, the needs of the area will not be satisfied, and existing congested traffic conditions will persist. The No-Build Alternative will not provide relief throughout the study area and will not be consistent with the purpose and need of this project.

The three I-95 No-Build roadway cross sections between interchanges are depicted in *Figures 5.2 – 5.4. Figure 5.5* shows the No-Build Alternative schematic line diagram.

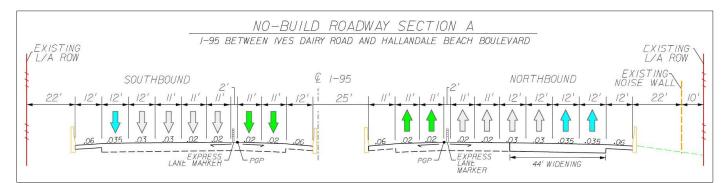


Figure 5.2 – No-Build Alternative Roadway Section between Ives Dairy Road and Hallandale Beach Boulevard

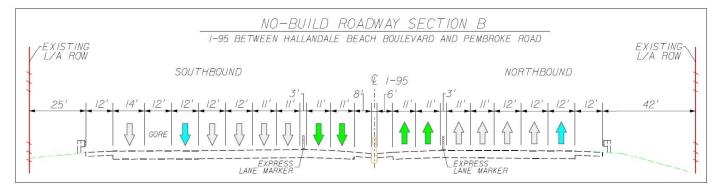
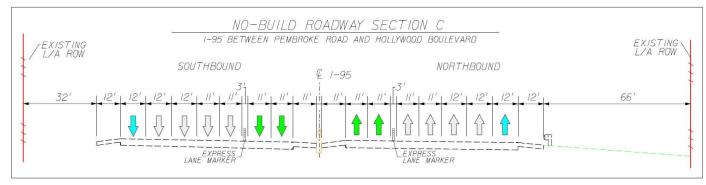
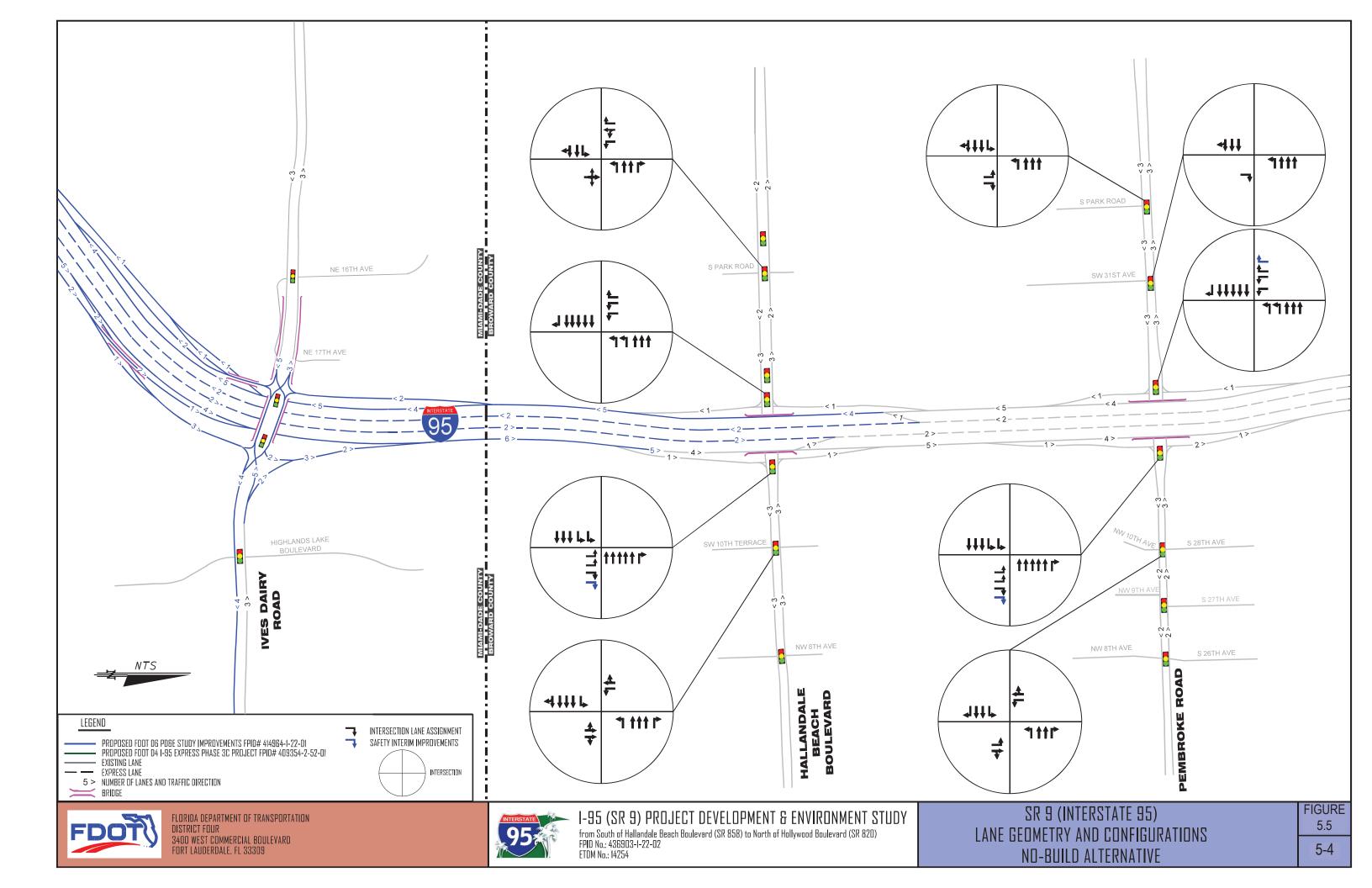
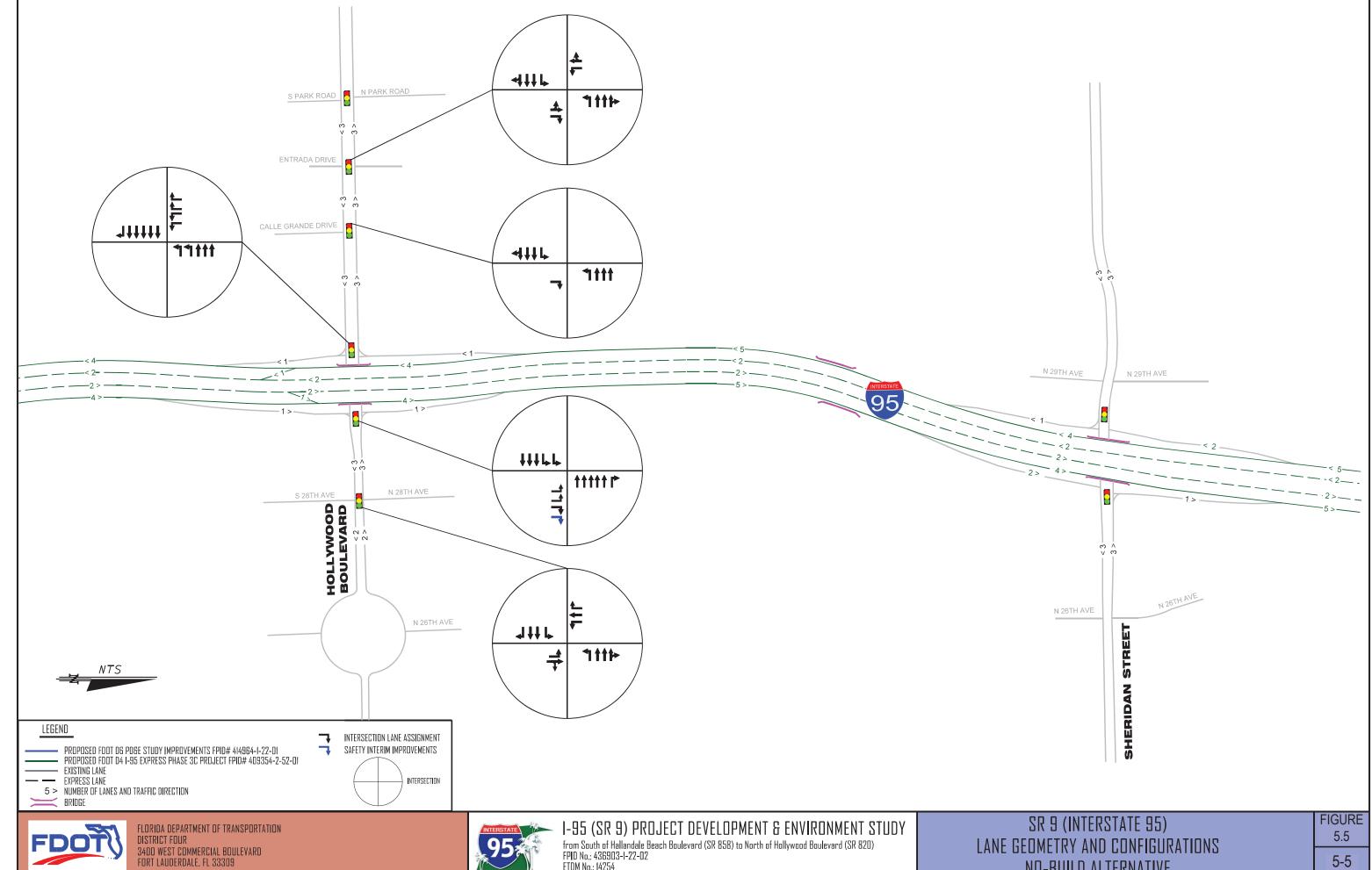
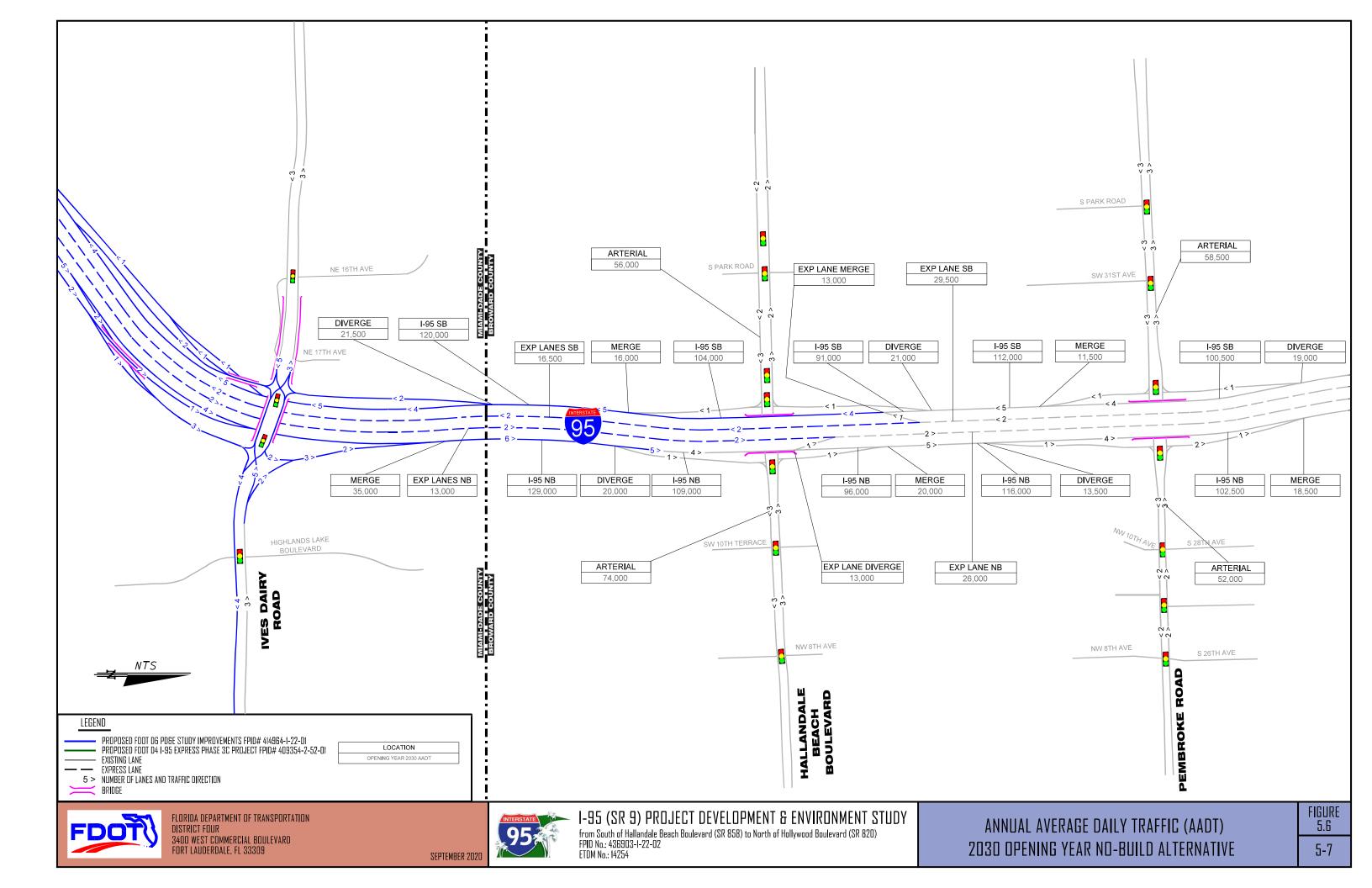
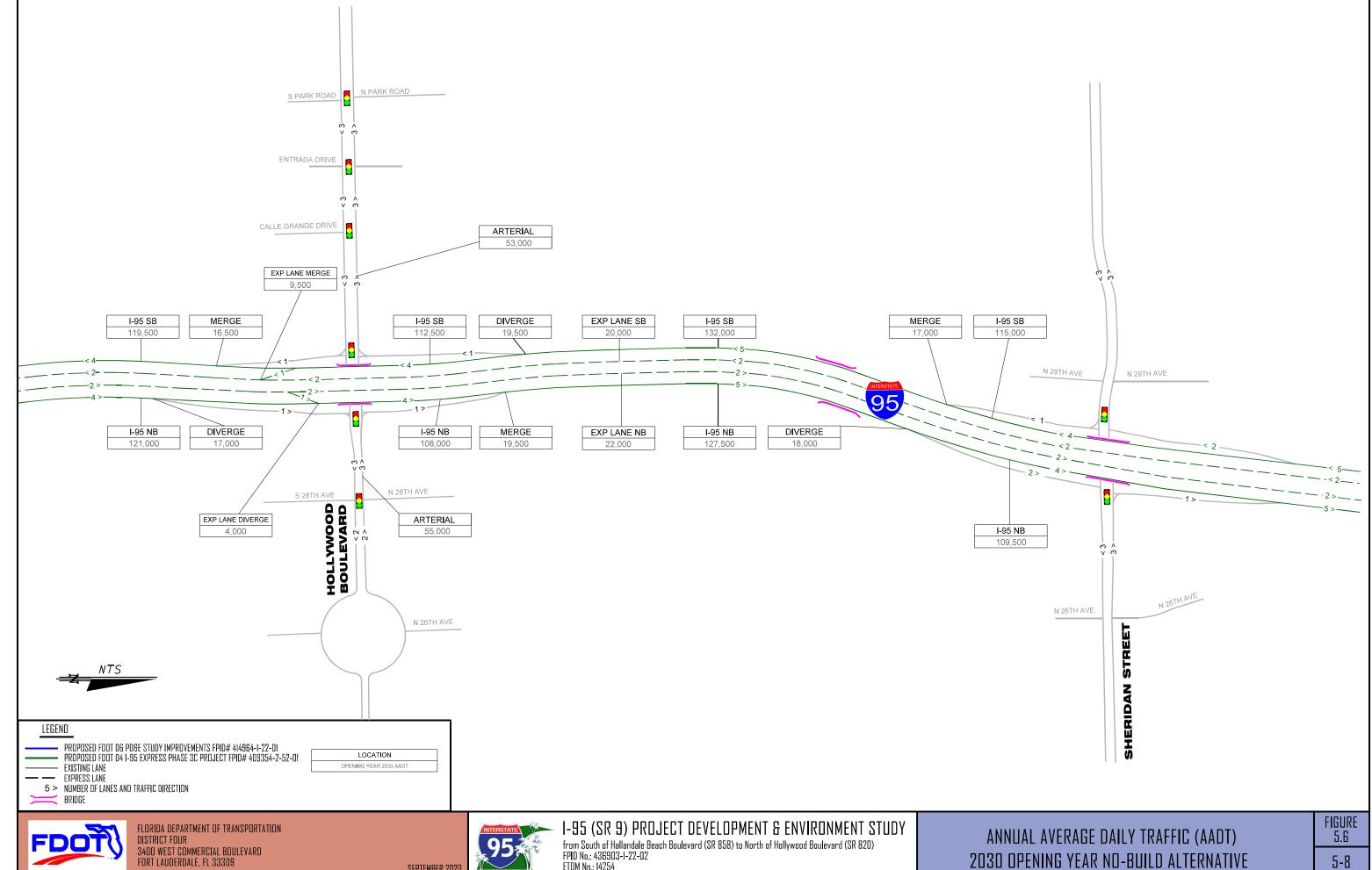


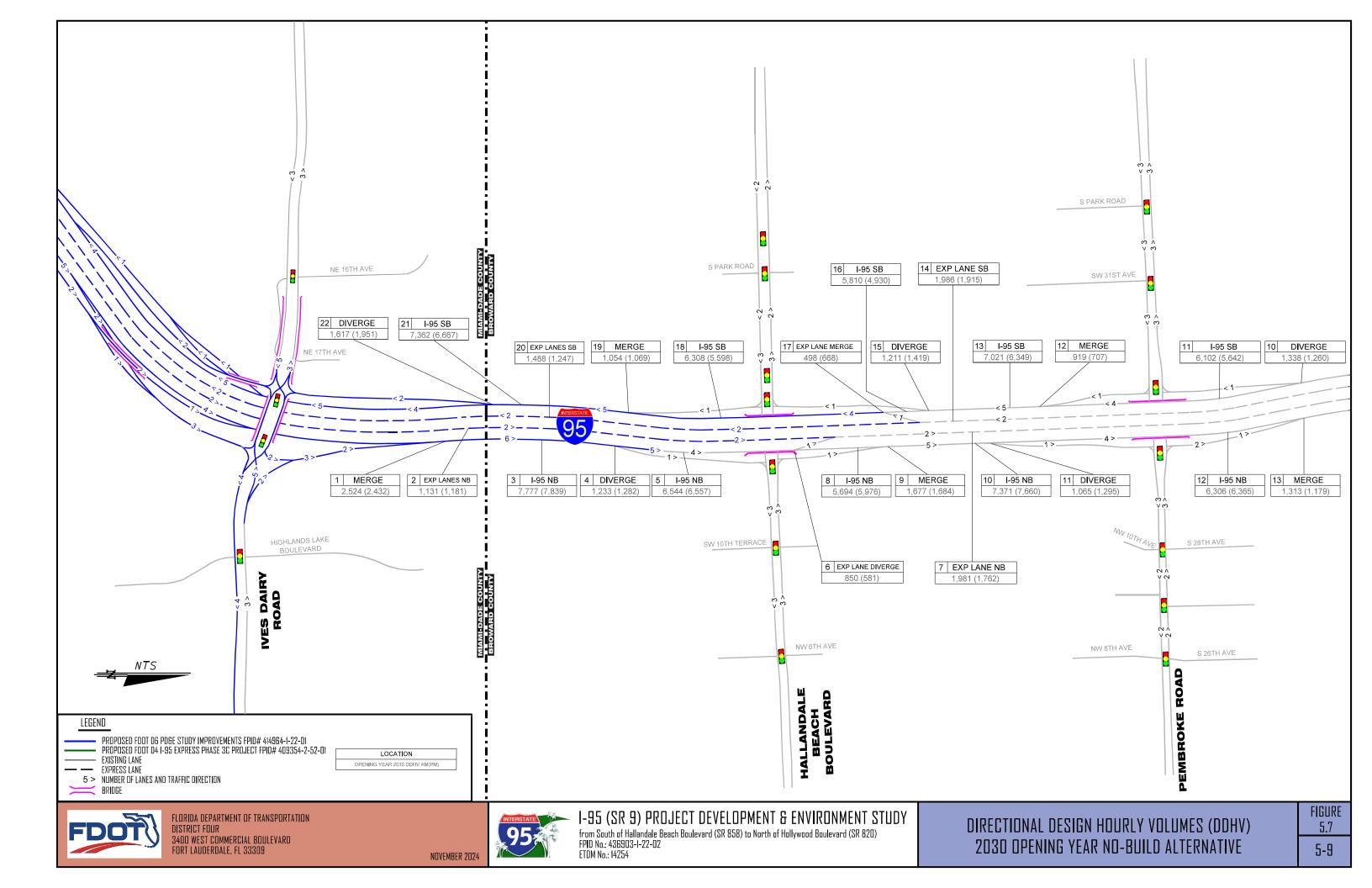
Figure 5.3 – No-Build Alternative Roadway Section between Hallandale Beach Boulevard and Pembroke Road

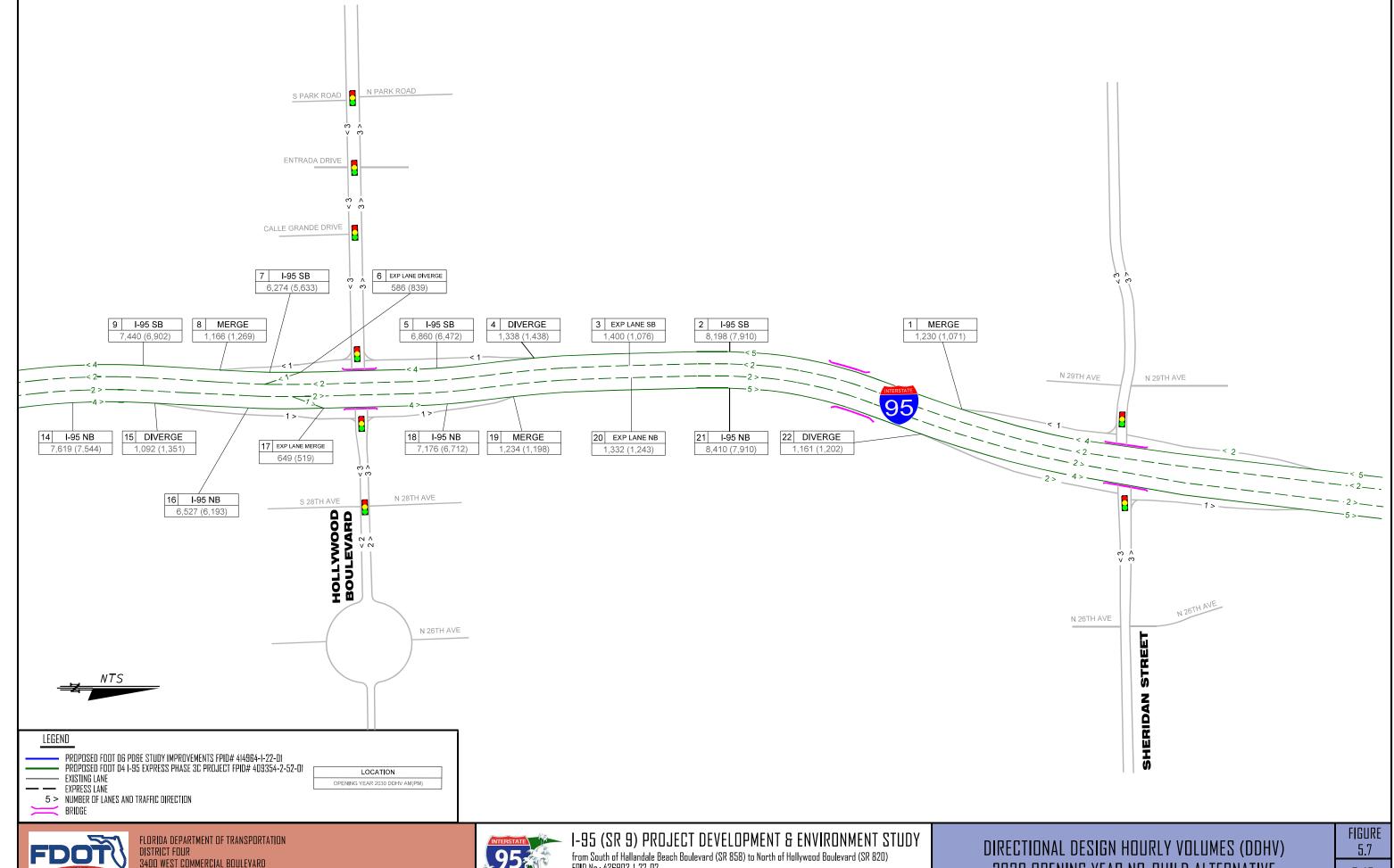





Figure 5.4 – No-Build Alternative Roadway Section between Pembroke Road and Hollywood Boulevard

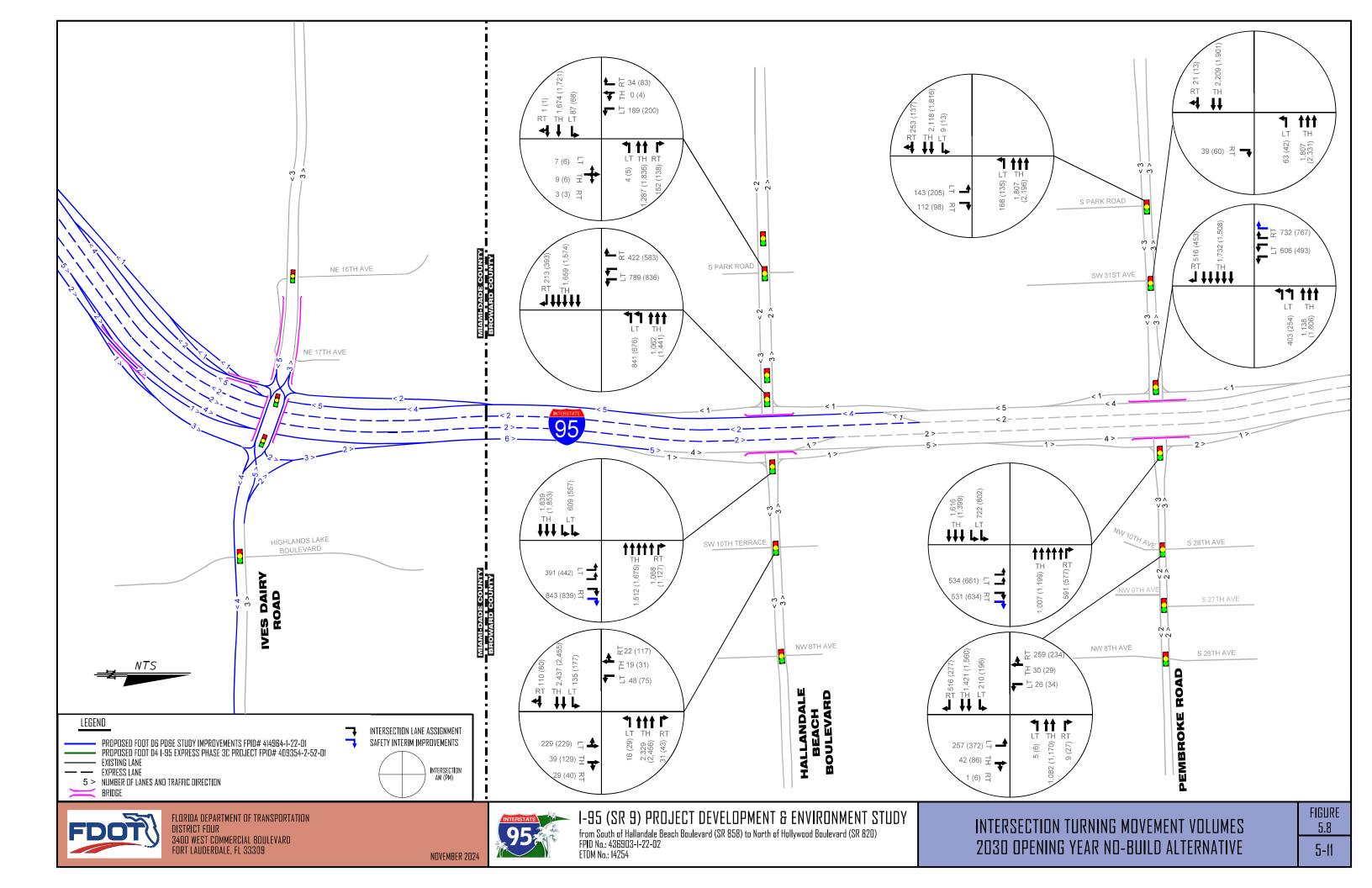


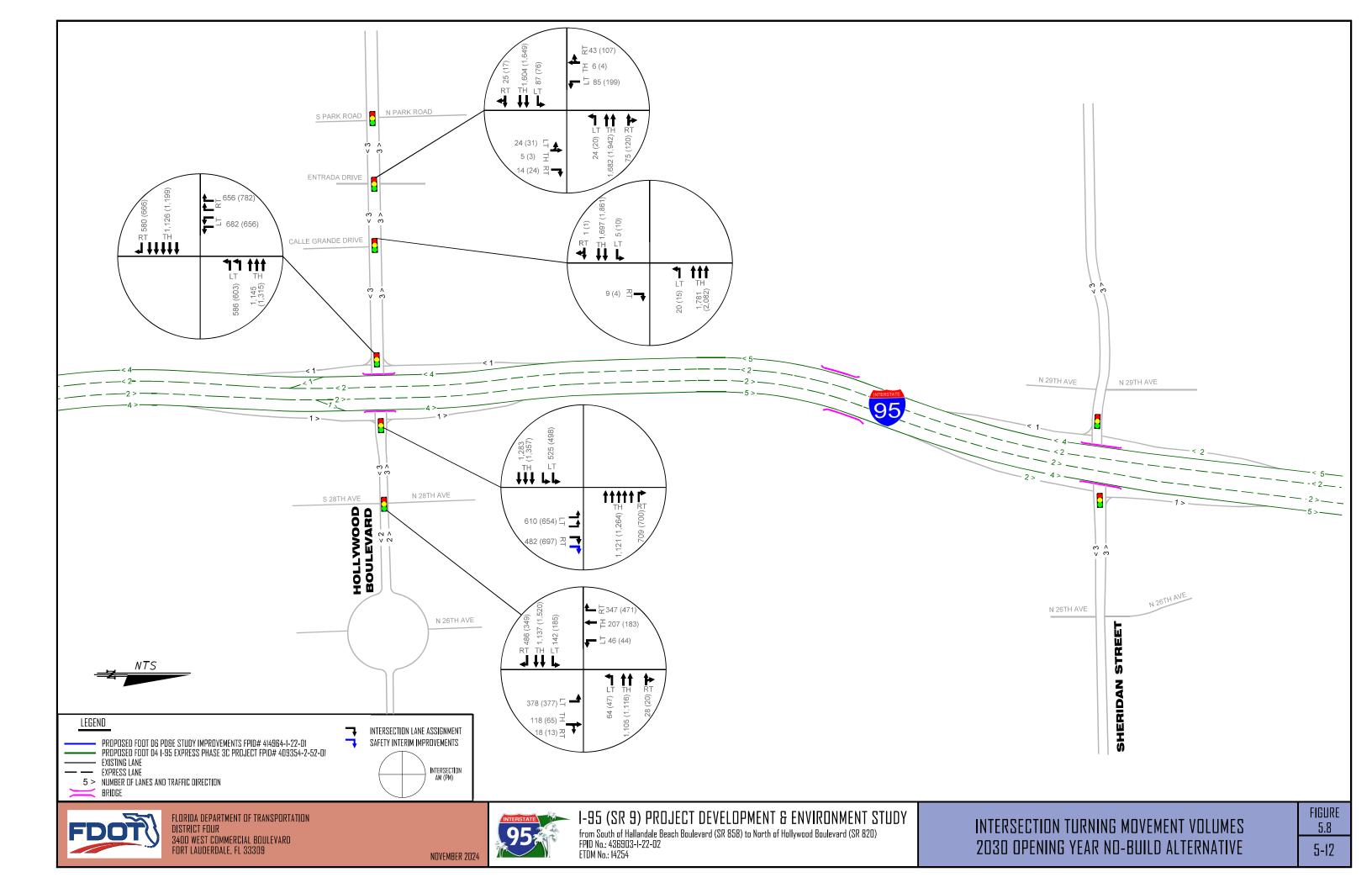
5.3 No-Build Alternative – 2030 Traffic Forecast


A 2030 opening year traffic operational analysis was performed for the AM and PM peak hours. *Figure 5.6* shows the No-Build Alternative 2030 AADT volumes for the study area. *Figure 5.7* shows the No-Build Alternative 2030 DDHV for the study area. *Figure 5.8* shows the No-Build Alternative 2030 turning movement volumes for the study area.



SEPTEMBER 2020





3400 WEST COMMERCIAL BOULEVARD FORT LAUDERDALE, FL 33309

NOVEMBER 2024

5.4 NO-BUILD ALTERNATIVE - 2030 OPERATIONAL ANALYSIS

5.4.1 I-95 Mainline Operational Analysis

Density, volume/capacity ratio, and LOS of each freeway facility were used as MOEs, which is consistent with the existing conditions analysis. The No-Build Alternative 2030 mainline/basic, weaving, and ramp merge/diverge analysis results are summarized in **Tables 5.2 – 5.3**. The analysis results are also schematically summarized in **Figure 5.9**. Output HCS reports are included as **Appendix J**.

Findings – The capacity analysis shows that four locations northbound and three locations southbound will operate at an unacceptable LOS (worst peak period LOS) by the year 2030 within the area of influence.

Table 5.2 – 2030 No-Build Alternative Northbound Freeway Analysis Results

	Table 5.2 = 2030 NO-BC	JIIG AIICITI	diive	TOTTIBOOTIC	, and a second		RC30113	
			No	Domand	Freeway	Ramp		
#	I-95 Northbound Segment 2030 No-Build Alternative	Analysis Type	No. of Lanes	Demand vph AM(PM)		Ratio (PM)	Density (pc/mi/ln)	LOS
22	Sheridan Street Off-Ramp	Diverge	2	1,161(1,202)	-	0.28 (0.29)	-	-
21	Hollywood Boulevard On-Ramp to Sheridan Street Off-Ramp	Weave	5	8,410(7,910)	1.0 (1.01)	-	19.2(16.8)	B (F)
20	Express Lane North of Hollywood Boulevard	Basic	2	1,332(1,243)	0.32 (0.30)	-	-	-
19	Hollywood Boulevard On-Ramp	Merge	1	1,234(1,198)	-	0.59 (0.57)	-	-
18	Express Lane Egress to Hollywood Boulevard On-Ramp	Basic	4	7,176(6,712)	0.73 (0.67)	-	14.5(12.4)	B(B)
17	Express Lane Egress	Merge	1	649(519)	0.73 (0.67)	0.32 (0.26)	15.3 (13.0)	B(B)
16	Hollywood Boulevard Off-Ramp to Express Lane Egress	Basic	4	6,527(6,193)	0.66 (0.61)	-	11.8 (10.2)	B(A)
15	Hollywood Boulevard Off-Ramp	Diverge	1	1,092(1,351)	-	0.52 (0.64)	-	-
14	Pembroke Road On-Ramp to Hollywood Boulevard Off-Ramp	Weave	5	7,619(7,544)	0.99 (1.04)	-	17.8 (17.3)	B (F)
13	Pembroke Road On-Ramp	Merge	1	1,313(1,179)	-	0.63 (0.56)	-	-
12	Pembroke Road Off-Ramp to On- Ramp	Basic	4	6,306(6,365)	0.63 (0.63)	-	11.5 (11.7)	В(В)
11	Pembroke Road Off-Ramp	Diverge	1	1,065(1,295)	-	0.51 (0.62)	-	-
10	Hallandale Beach Boulevard On- Ramp to Pembroke Road Off-Ramp	Weave	5	7,371 (7,660)	1.12 (1.2)	-	18.4 (20.3)	F (F)
9	Hallandale Beach Boulevard On- Ramp	Merge	1	1,677(1,684)	-	0.80 (0.80)	-	-
8	Express Lane Ingress to Hallandale Beach Boulevard On-Ramp	Basic	4	5,694(5,976)	0.61 (0.64)	-	-	-
7	Express Lane North of Hallandale Beach Boulevard	Basic	2	1,981(1,762)	0.48 (0.43)	-	-	-
6	Express Lane Ingress	Diverge	1	850(581)	0.69 (0.69)	0.41 (0.28)	13.7 (13.7)	B(B)
5	Hallandale Beach Blvd Off-Ramp to Express Lane Ingress	Basic	4	6,544(6,557)	0.69 (0.69)	-	13.3 (13.5)	B (B)
4	Hallandale Beach Boulevard Off- Ramp	Diverge	1	1,233(1,282)	-	0.59(0.61)	-	-
3	Ives Dairy Road On-Ramp to Hallandale Beach Boulevard Off- Ramp	Weave	5	7,777(7,839)	1.47 (1.45)	-	20.2(20.7)	F (F)
2	Express Lane South of Hallandale Beach Boulevard	Basic	2	1,131(1,181)	0.28 (0.29)	-	-	-
1 Not	Ives Dairy Road On-Ramp	Merge	2	2,524(2,432)	-	0.57(0.55)	-	-

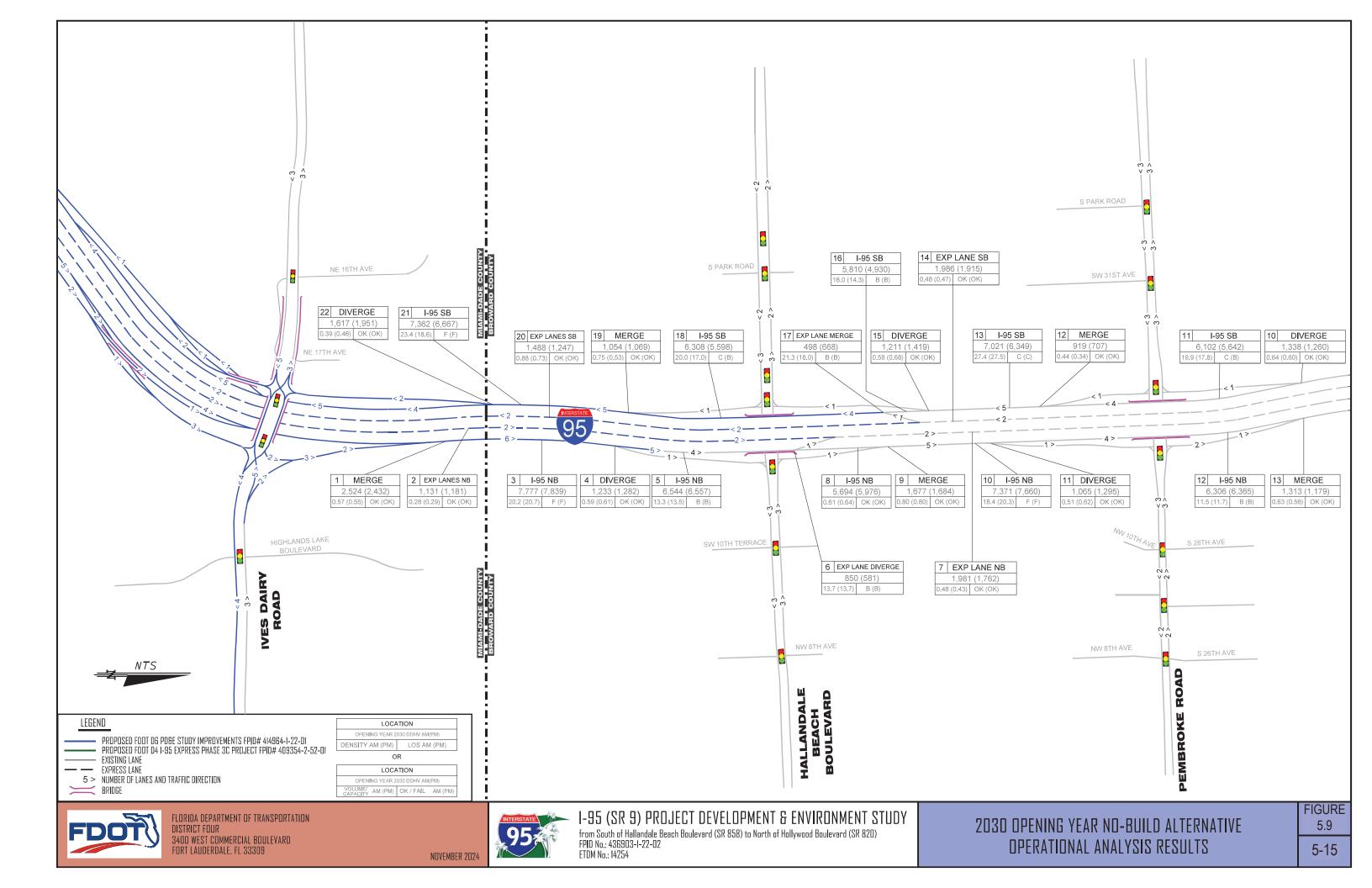
Note:

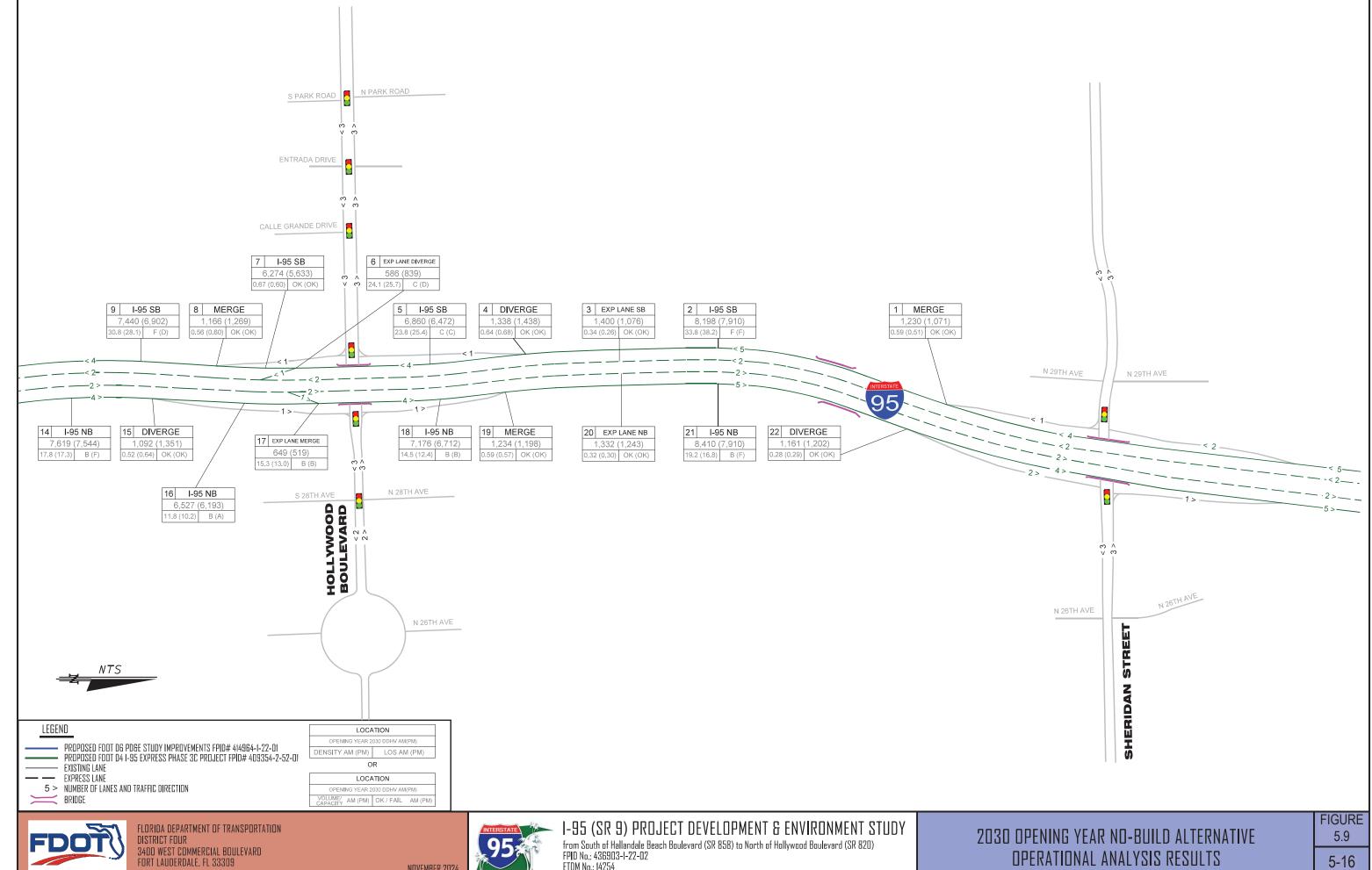
I-95 is operating at over capacity when compared to existing conditions in some locations. The disclaimer in the HCS software indicates that density results from freeway, ramp
merge/diverge are not be reliable for oversaturated conditions. Operational results from Vissim microsimulation software should be considered.

²⁾ Additionally, 2030 conditions include the following improvements: new EL access point over Hollywood Blvd and a two-lane northbound off-ramp to Sheridan Street. The redistribution of traffic and operations between the ELs and GULs are different, with more vehicles bypassing the PD&E Study limits cause 2030 No-Build operating better than existing in some locations.

^{3) # -} segment number

Table 5.3 – 2030 No-Build Alternative Southbound Freeway Analysis Results


					Freeway	Ramp		
#	I-95Southbound Segment 2030 No-Build Alternative	Analysis Type	No. of Lanes	Demand vph AM(PM)	V/C Ratio AM(PM)		Density (pc/mi/ln)	LOS
1	Sheridan Street On-Ramp	Merge	1	1,230(1,071)	-	0.59 (0.51)	-	-
2	Sheridan Street On-Ramp to Hollywood Boulevard Off-Ramp	Weave	5	8,198(7,910)	1.01(1.02)	-	33.8(33.6)	F (F)
3	Express Lane North of Hollywood Boulevard	Basic	2	1,400(1,076)	0.34 (0.26)	-	-	-
4	Hollywood Boulevard Off-Ramp	Diverge	1	1,338(1,438)	-	0.64 (0.68)	-	-
5	Hollywood Boulevard Off-Ramp to Express Lane Ingress	Basic	4	6,860(6,472)	0.74 (0.71)	-	23.8 (22.8)	C (C)
6	Express Lane Ingress	Diverge	1	586(839)	0.74 (0.71)	0.28 (0.40)	24.1 (23.3)	C(D)
7	Express Lane Ingress to Hollywood Boulevard On-Ramp	Basic	4	6,274(5,633)	0.67(0.60)	-	-	-
8	Hollywood Boulevard On-Ramp	Merge	1	1,166(1,269)	-	0.56 (0.60)	-	-
9	Hollywood Boulevard On-Ramp to Pembroke Road Off-Ramp	Weave	5	7,440(6,902)	1.01 (0.95)	-	30.8 (28.1)	F (D)
10	Pembroke Road Off-Ramp	Diverge	1	1,338(1,260)	-	0.64 (0.60)	-	-
11	Pembroke Road Off-Ramp to On-Ramp	Basic	4	6,102(5,642)	0.64 (0.57)	-	19.9 (17.8)	C(B)
12	Pembroke Road On-Ramp	Merge	1	919(707)	-	0.44 (0.34)	-	-
13	Pembroke Road On-Ramp to Hallandale Beach Boulevard Off-Ramp	Weave	5	7,021 (6,349)	0.86 (0.88)	-	27.4 (23.7)	C(C)
14	Express Lane North of Hallandale Beach Boulevard	Basic	2	1,986(1,915)	0.48 (0.47)	-	-	-
15	Hallandale Beach Boulevard Off-Ramp	Diverge	1	1,211(1,419)	-	0.58 (0.68)	-	-
16	Hallandale Beach Blvd Off-Ramp to Express Lane Ingress	Basic	4	5,810(4,930)	0.59 (0.47)	-	18.0 (14.3)	B(B)
17	Express Lane Ingress	Merge	1	498(668)	0.65 (0.55)	0.24 (0.32)	21.3 (18.0)	B(B)
18	Express Lane Ingress to Hallandale Beach Boulevard On-Ramp	Basic	4	6,308(5,598)	0.65 (0.55)	-	20.0 (17.0)	C(B)
19	Hallandale Beach Boulevard On-Ramp	Merge	1	1,504(1,069)	-	0.75 (0.53)	-	-
20	Express Lane South of Hallandale Beach Boulevard	Basic	1	1,488(1,247)	0.88 (0.73)	-	-	-
21	Hallandale Beach Boulevard On-Ramp to Ives Dairy Road Off-Ramp	Weave	5	7,362(6,667)	1.06 (1.18)	-	23.4 (18.6)	F(F)
22	Ives Dairy Road Off-Ramp	Diverge	2	1,617(1,951)	-	0.39 (0.46)	-	-


I-95 is operating at over capacity when compared to existing conditions in some locations. The disclaimer in the HCS software indicates that density results from freeway, ramp

merge/diverge are not be reliable for oversaturated conditions. Operational results from Vissim microsimulation software should be considered.

Additionally, 2030 conditions include the following improvements: new EL access point over Hollywood Blvd and a two-lane northbound off-ramp to Sheridan Street. The redistribution of traffic and operations between the ELs and GULs are different, with more vehicles bypassing the PD&E Study limits cause 2030 No-Build operating better than existing in some

^{3) # -} segment number

5.4.2 CROSSING ROADWAYS OPERATIONAL ANALYSIS

Tables 5.4 – 5.6 and **Figure 5.10** document the intersections operational analysis results by crossing roadway. Synchro output reports are provided in **Appendix K**.

As shown in **Table 5.4**, the 2030 No-Build Alternative intersection operational results indicate three intersections will operate at a LOS D or better and one intersection will operate at a LOS E during the AM peak-period.

As shown in **Table 5.5**, the 2030 No-Build Alternative intersection operational results indicate all five intersections will operate at a LOS D or better.

As shown in **Table 5.6**, the 2030 No-Build Alternative operational results indicate four intersections will operate at a LOS D or better and one intersection will operate at a LOS E during the AM and PM peak-period.

Table 5.4 – 2030 No-Build Alternative Hallandale Beach Boulevard Intersection LOS and Delay Results

Hallandale		No	-Build	ild Alternative			
Beach	Marramant	AM Ped	ık	PM Peal	(
Boulevard	Movement	Delay	100	Delay	100		
Intersection		(s/veh)	LOS	(s/veh)	LOS		
	EBL	11.7	В	24.2	С		
	EBT	13.6	В	11.8	В		
	WBL	6.4	Α	4.6	Α		
	WBT	6.8	Α	9.4	Α		
South Park	WBR	1.9	Α	1.1	Α		
Road*	NBT	77.8	Е	78.9	Е		
	SBL	76.2	Е	76.5	Е		
	SBT	76.5	Е	75.9	Е		
	SBR	55.5	Е	57.0	Е		
	Int	14.7	В	14.9	В		
	EBT	39.1	D	41.8	D		
	EBR	17.0	В	27.6	С		
I-95 West	WBL	73.7	Е	64.1	Е		
Ramp	WBT	12.8	В	30.7	С		
Terminal*	SBL	58.1	Е	43.1	D		
	SBR	53.9	D	90.4	F		
	Int	42.6	D	46.0	D		
	EBL	44.3	D	44.4	D		
	EBT	29.2	С	30.8	С		
I-95 East	WBT	26.9	С	20.5	С		
Ramp	WBR	97.7	F	100.2	F		
Terminal*	NBL	44.3	D	47.2	D		
	NBR	122.4	F	112.6	F		
	Int	55.3	E	53.0	D		
	EBL	72.6	Е	88.8	F		
	EBT	5.1	Α	11.6	В		
	WBL	18.2	В	24.3	С		
	WBT	24.1	С	34.4	С		
NW 10th	WBR	11.9	В	15.0	В		
Terrace	NBL	85.4	F	96.1	F		
	NBT	50.1	D	49.1	D		
	SBL	50.8	D	48.7	D		
	SBT	49.3	D	47.1	D		
	Int	19.7	В	29.4	С		

^{*}HCM 2000 results reported

Table 5.5 – 2030 No-Build Alternative Pembroke Road Intersection LOS and Delay Results

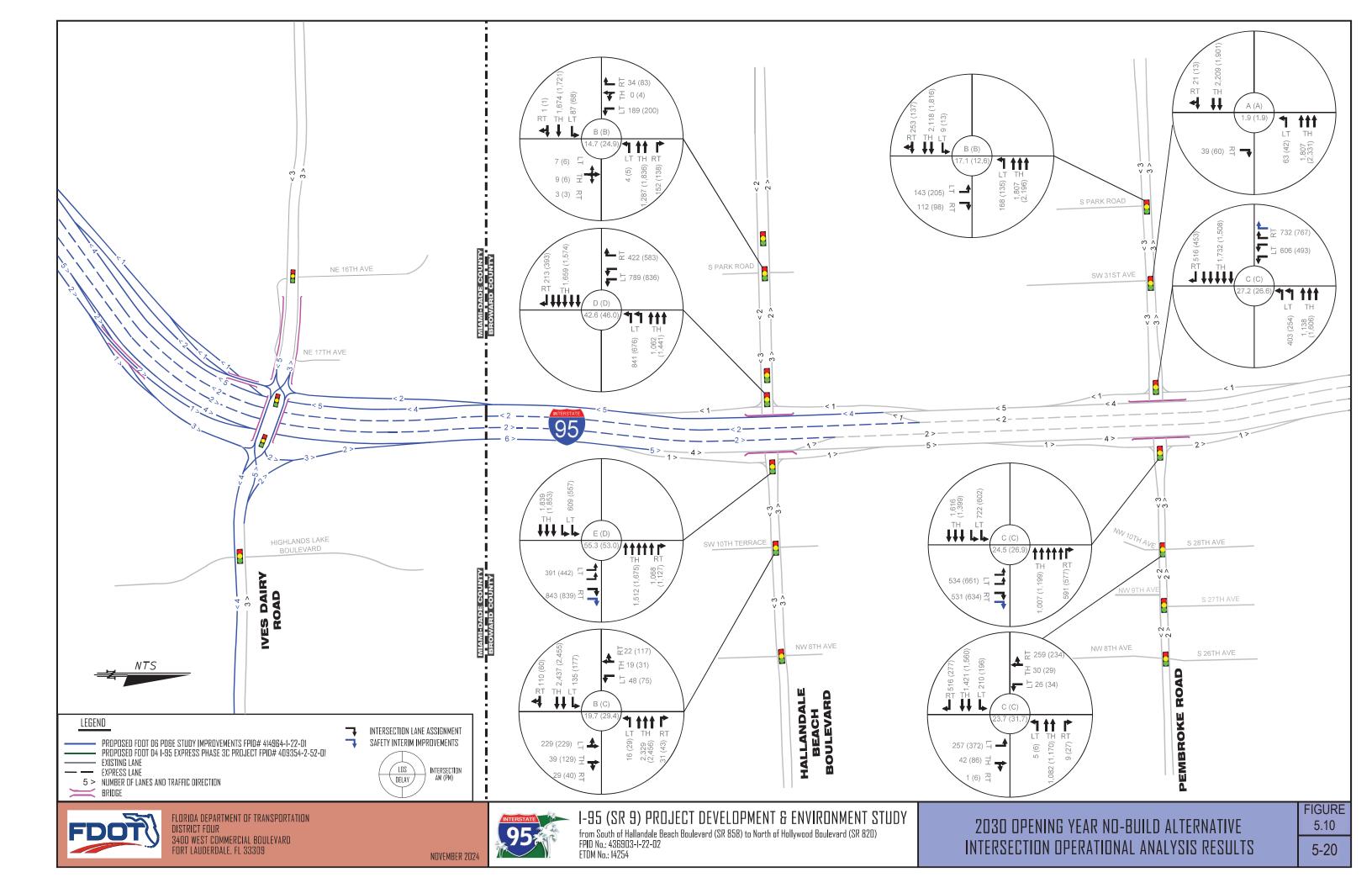
		No	-Build	Alternative	
Pembroke		AM Pec	ık	PM Peak	
Road Intersection	Movement	Delay		Delay	
intersection		(s/veh)	LOS	(s/veh)	LOS
	EBU	10.1	В	14.8	В
	EBT	19.6	В	15.7	В
	WBL	68.3	Е	45.7	D
Park Road*	WBT	4.0	Α	1.9	Α
	NBL	59.5	Е	60.6	Е
	NBR	46.3	D	43.4	D
	Int	17.1	В	12.6	В
	EBT	0.5	Α	0.7	Α
014/01/	WBL	70.1	Е	66.9	Е
SW 31st	WBT	0.2	Α	0.2	Α
Avenue*	NBR	55.0	D	56.5	Е
	Int	1.9	Α	1.9	Α
	EBT	18.4	В	20.2	С
	EBR	22.4	С	11.6	В
I-95 West	WBL	52.2	D	45.4	D
Ramp	WBT	15.3	В	18.4	В
Terminal*	SBL	35.4	D	33.4	С
	SBR	49.3	D	54.7	D
	Int	27.2	С	26.6	С
	EBL	36.1	D	37.9	D
	EBT	10.9	В	13.8	В
I-95 East	WBT	20.4	С	20.0	В
Ramp	WBR	5.2	Α	7.6	Α
Terminal*	NBL	46.1	D	44.5	D
	NBR	57.6	Е	57.3	Е
	Int	24.5	С	26.9	С
	EBL	54.0	D	80.1	F
	EBT	7.8	Α	11.8	В
	WBL	20.2	С	25.9	С
NW 10th	WBT	31.2	С	42.1	D
Avenue /	WBR	18.9	В	22.0	С
South 28th	NBL	55.8	Е	59.0	E
Avenue	NBT	35.6	D	32.0	С
	SBL	46.0	D	47.5	D
	SBT	52.2	D	57.6	Е
	Int	23.7	С	31.7	С
*HCM 2000 resu	Its reported			<u> </u>	

^{*}HCM 2000 results reported

Table 5.6 – 2030 No-Build Alternative Hollywood Boulevard Intersection LOS and Delay Results

		No	-Build	Alternative	
Hollywood		AM Ped	ık	PM Peal	(
Boulevard Intersection	Movement	Delay	100	Delay	
mersection		(s/veh)	LOS	(s/veh)	LOS
	EBL	6.1	Α	18.7	В
	EBT	6.6	Α	12.4	В
	WBL	1.0	Α	3.0	Α
	WBT	1.4	Α	8.0	Α
Entranda Drive	NBT	63.2	Е	55.2	Е
DIIVE	NBR	61.2	Е	53.7	D
	SBL	76.3	Е	83.6	F
	SBT	61.6	Е	56.0	Е
	Int	7.1	Α	15.4	В
	EBU	87.9	F	72.9	Е
	EBT	0.6	Α	1.1	Α
Calle	WBL	93.9	F	79.7	Е
Grande Drive*	WBT	0.7	Α	0.4	Α
21110	NBR	0.6	Α	0.7	Α
	Int	1.3	Α	1.2	Α
	EBT	27.0	С	26.8	С
	EBR	23.5	С	51.3	D
I-95 West	WBL	58.1	Е	81.6	F
Ramp	WBT	12.3	В	19.3	В
Terminal*	SBL	56.7	Е	53.0	D
	SBR	54.9	D	96.2	F
	Int	34.9	С	48.1	D
	EBL	50.2	О	59.0	Е
	EBT	11.2	В	17.4	В
I-95 East	WBT	19.7	В	24.6	С
Ramp	WBR	25.5	С	28.1	С
Terminal*	NBL	65.9	Е	56.1	Е
-	NBR	65.6	Е	84.1	F
	Int	32.3	С	38.5	D

^{*}HCM 2000 results reported



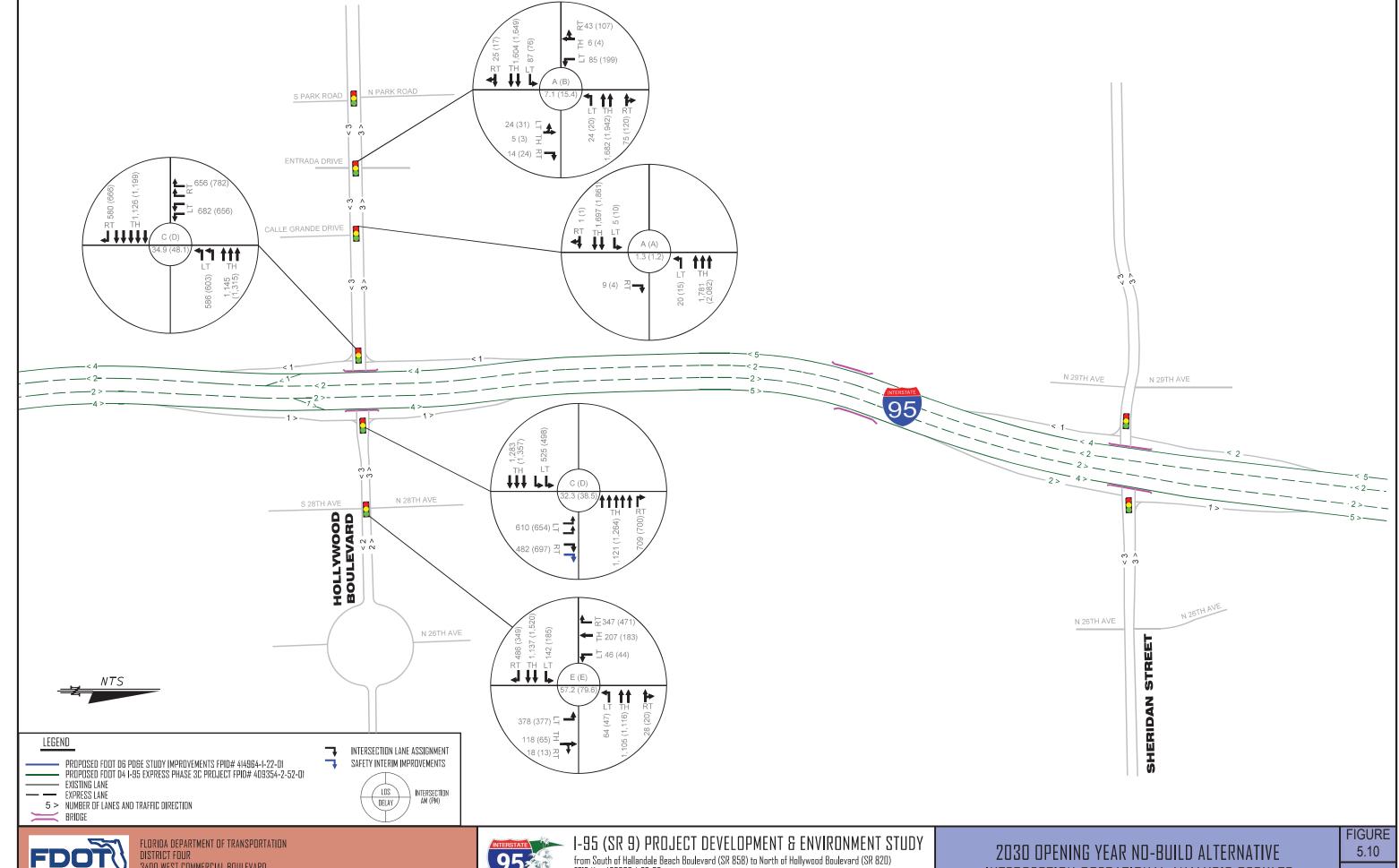
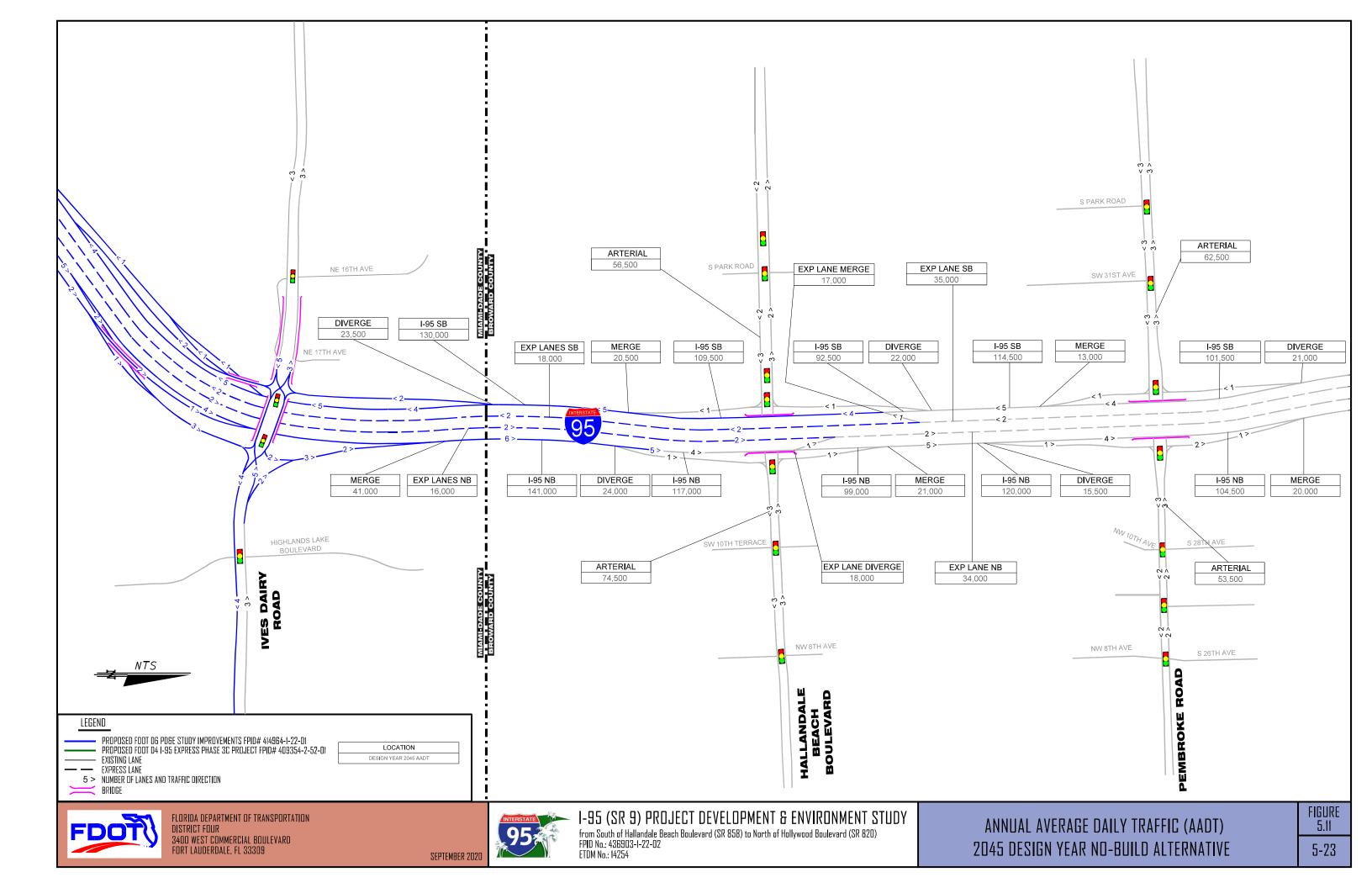
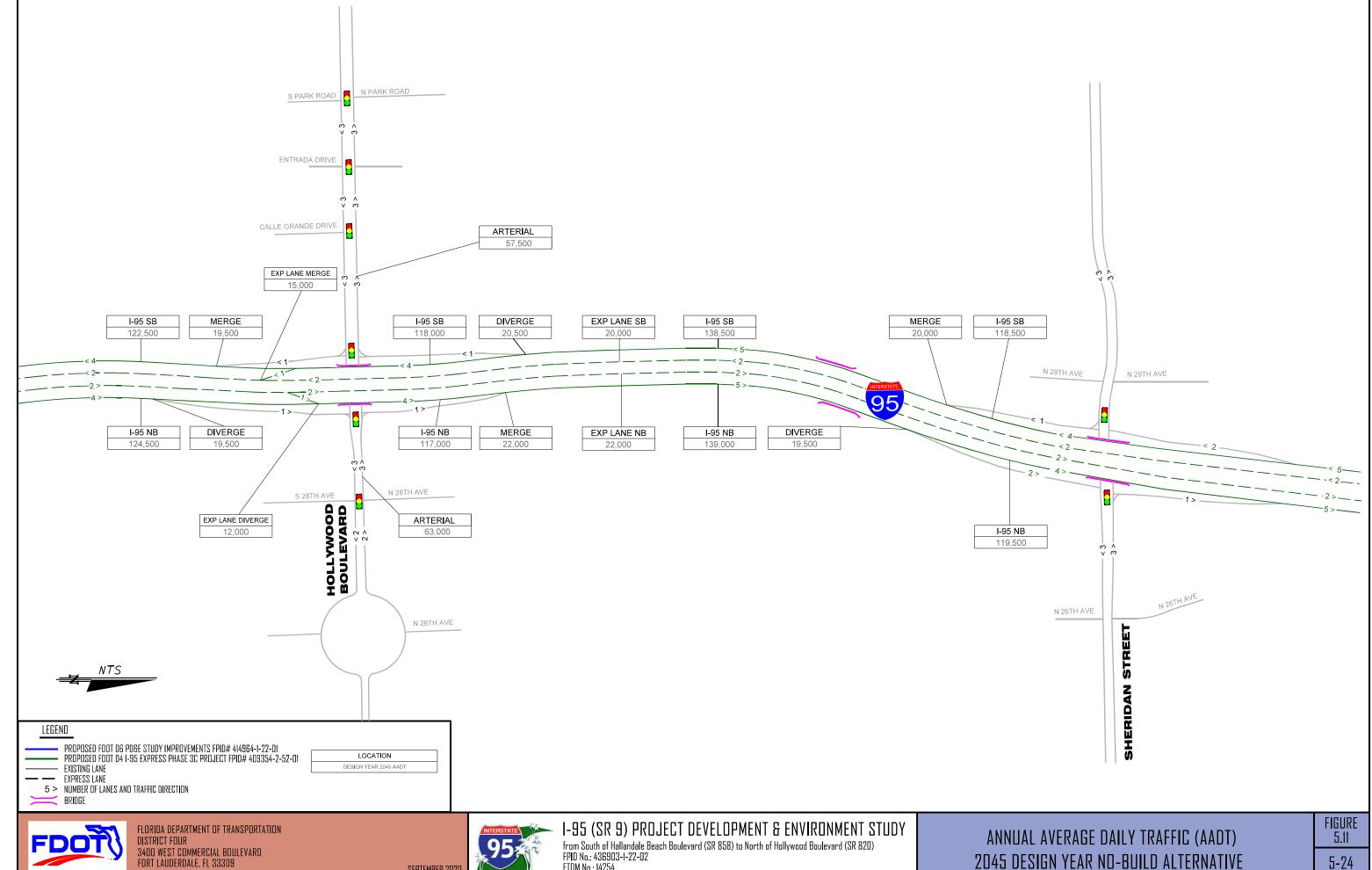

I-95 (SR 9) PD&E Study Systems Interchange Modification Report

Table 5.6 – 2030 No-Build Alternative Hollywood Boulevard Intersection LOS and Delay Results (Continued)

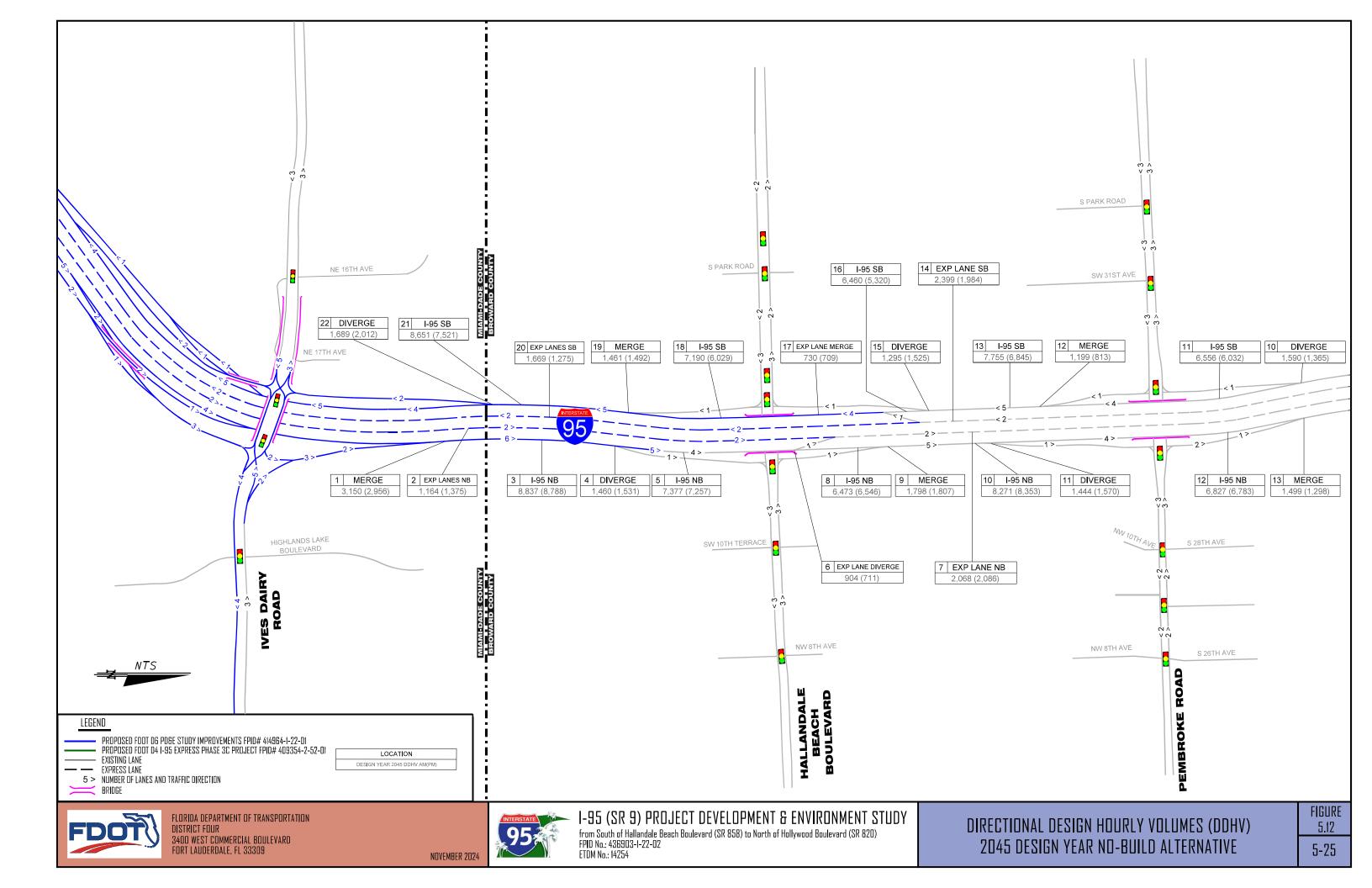
		No	No-Build Alternative				
Hollywood	Movement	AM Pe	ak	PM Peak			
Boulevard Intersection	Movemeni	Delay	LOS	Delay	LOS		
		(s/veh)	LO3	(s/veh)	LO3		
	EBL	37.6	D	48.9	D		
	EBT	45.7	D	75.1	Е		
	EBR	37.1	D	17.2	В		
	WBL	47.1	D	42.3	D		
0.0011	WBT	48.6	D	45.5	D		
S 28th Avenue*	NBL	117.1	F	153.9	F		
Avenue	NBT	110.0	F	154.9	F		
	SBL	177.4	F	210.2	F		
	SBT	52.4	D	59.3	Е		
	SBR	64.8	Е	161.6	F		
	Int	57.2	E	79.6	E		

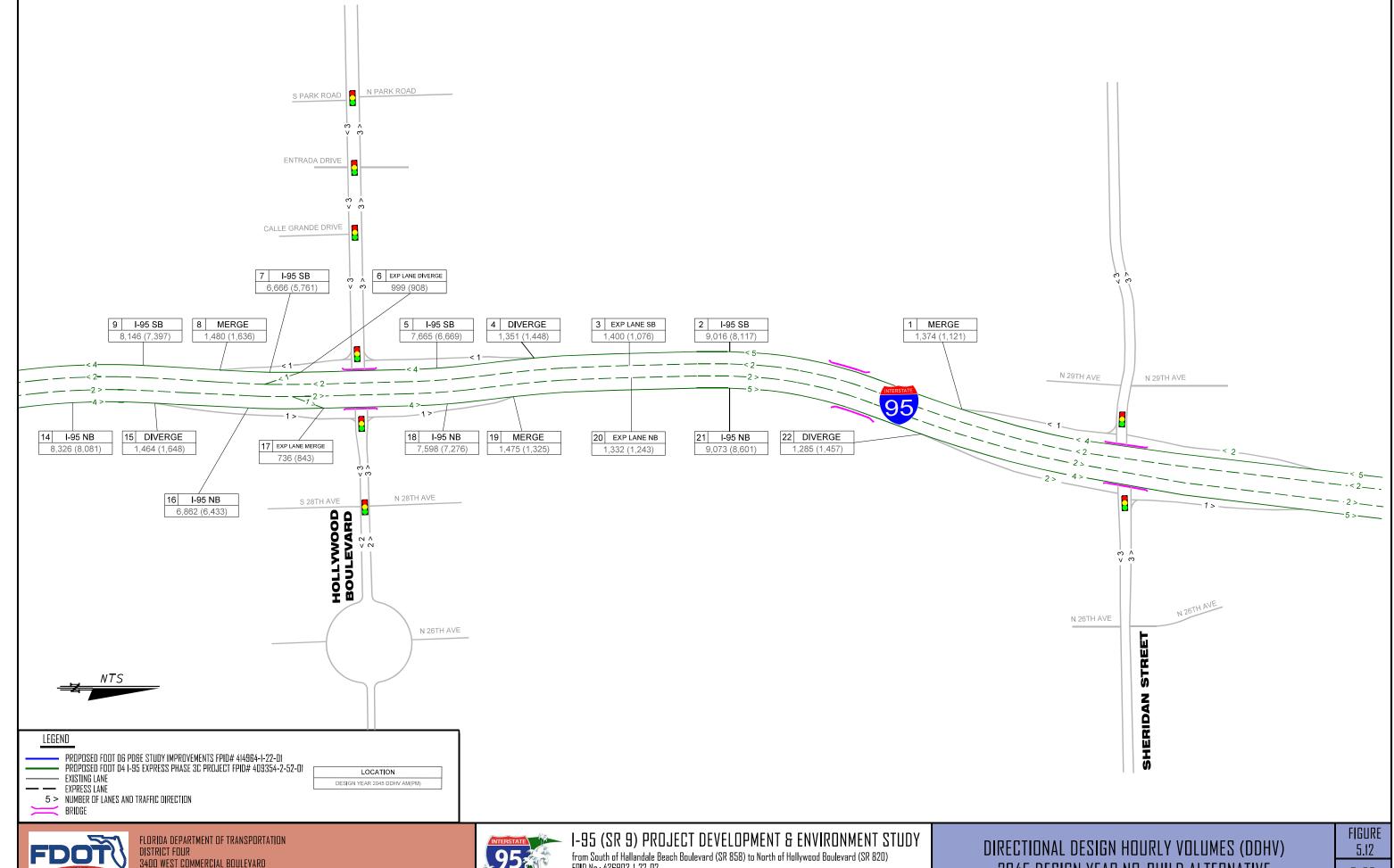
^{*}HCM 2000 results reported

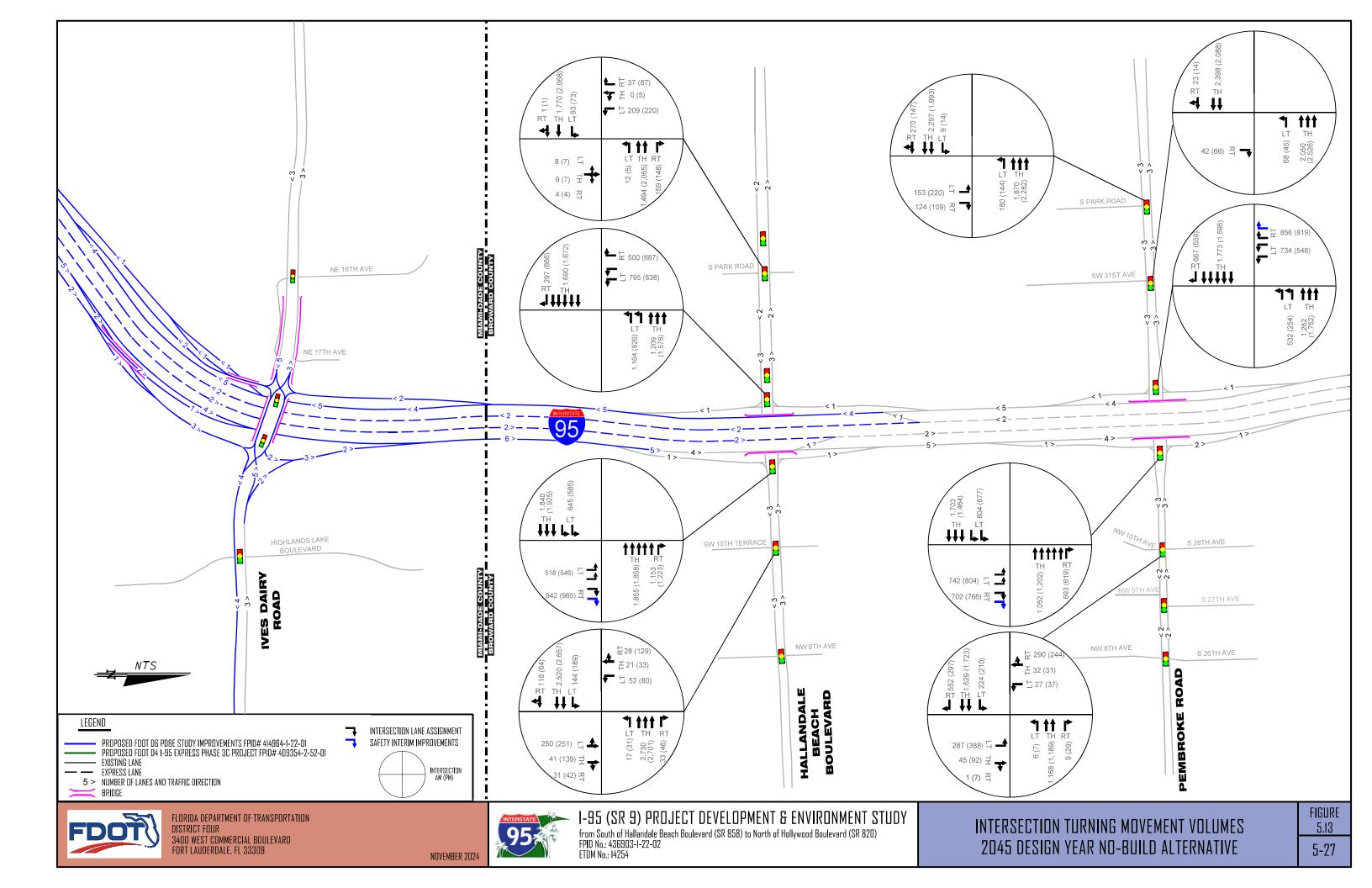


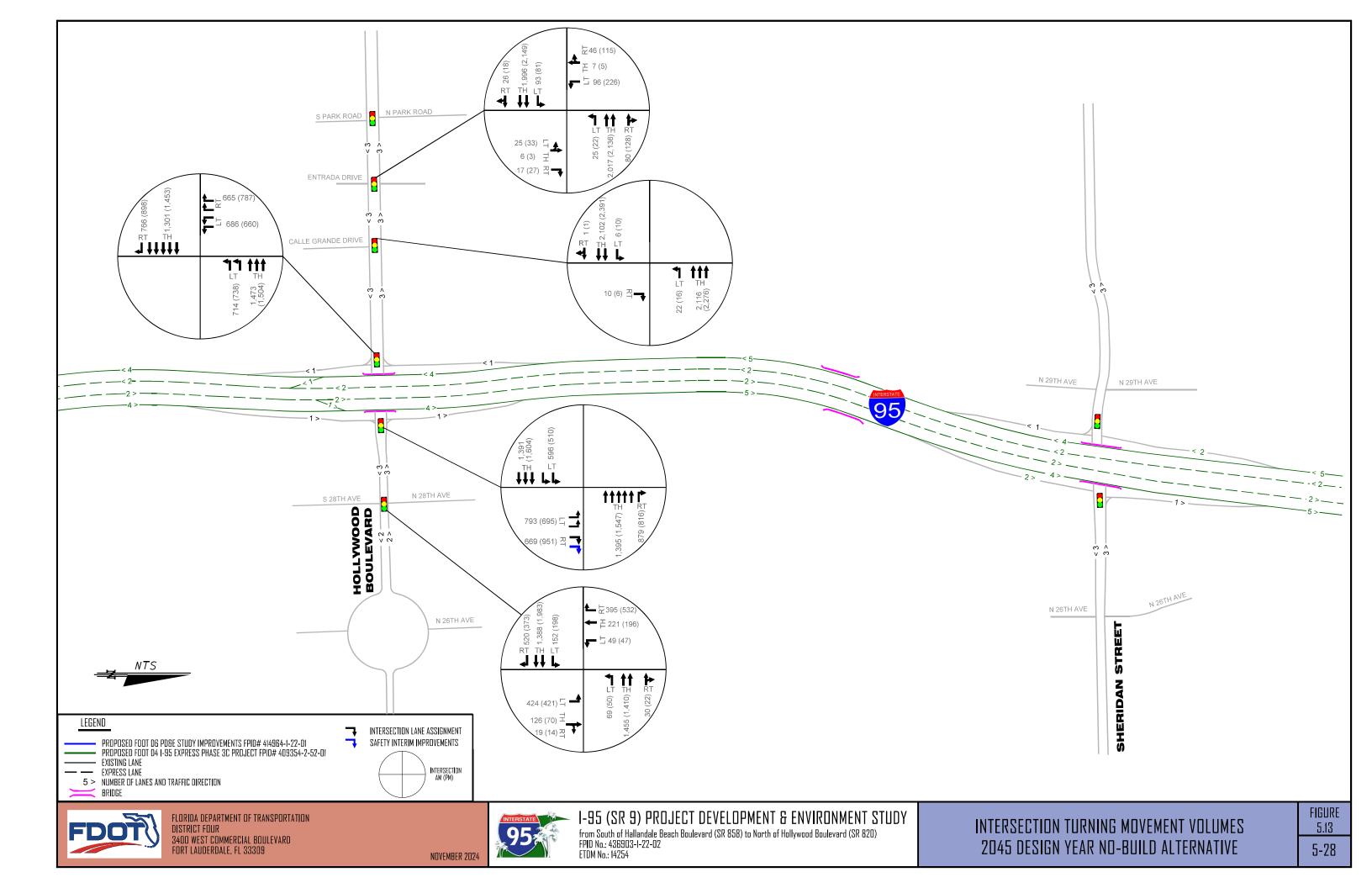


5.5 No-Build Alternative – 2045 Traffic Forecast


A 2045 design year traffic operational analysis was performed for the AM and PM peak hours. Design year 2045 traffic data was obtained from the Design Traffic Technical Memorandum, dated December 2020. **Figure 5.11** shows the No-Build Alternative 2045 AADT volumes for the study area. **Figure 5.12** shows the No-Build Alternative 2045 DDHV for the study area. **Figure 5.13** shows the No-Build Alternative 2045 turning movement volumes for the study area.




SEPTEMBER 2020



5.6 NO-BUILD ALTERNATIVE - 2045 OPERATIONAL ANALYSIS

5.6.1 I-95 Mainline Operational Analysis

Density, volume/capacity ratio, and LOS of each freeway facility were used as MOEs, which is consistent with the existing conditions analysis. The No-Build Alternative 2045 mainline/basic, weaving, and ramp merge/diverge analysis results are summarized in **Tables 5.7 – 5.8**. The analysis results are also schematically summarized in **Figure 5.14**. Output HCS reports are included as **Appendix L**.

Findings – The capacity analysis shows that four locations northbound and three locations southbound will operate at an unacceptable LOS (worst peak period LOS) by the year 2045 within the area of influence.

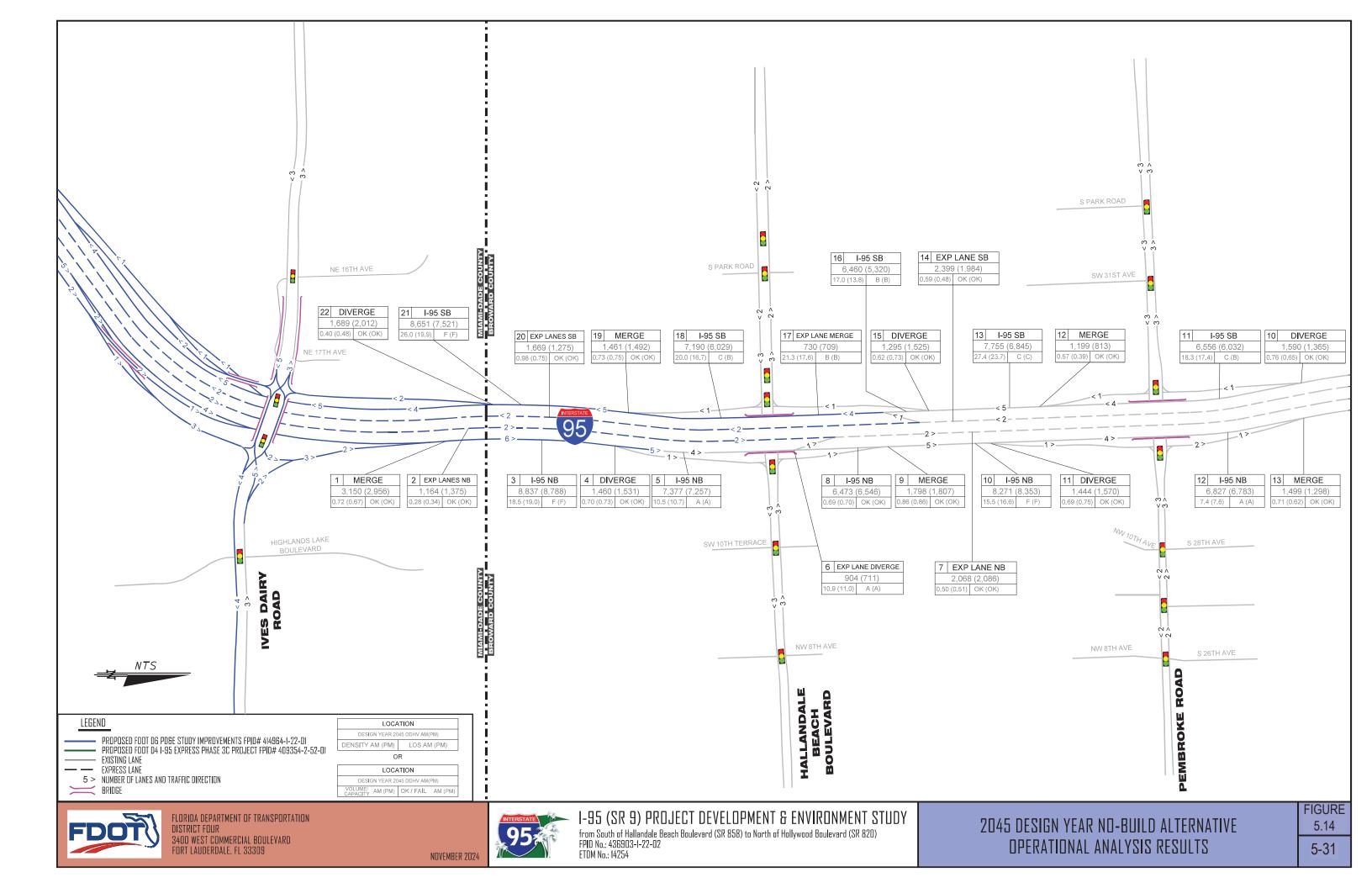
Table 5.7 – 2045 No-Build Alternative Northbound Freeway Analysis Results

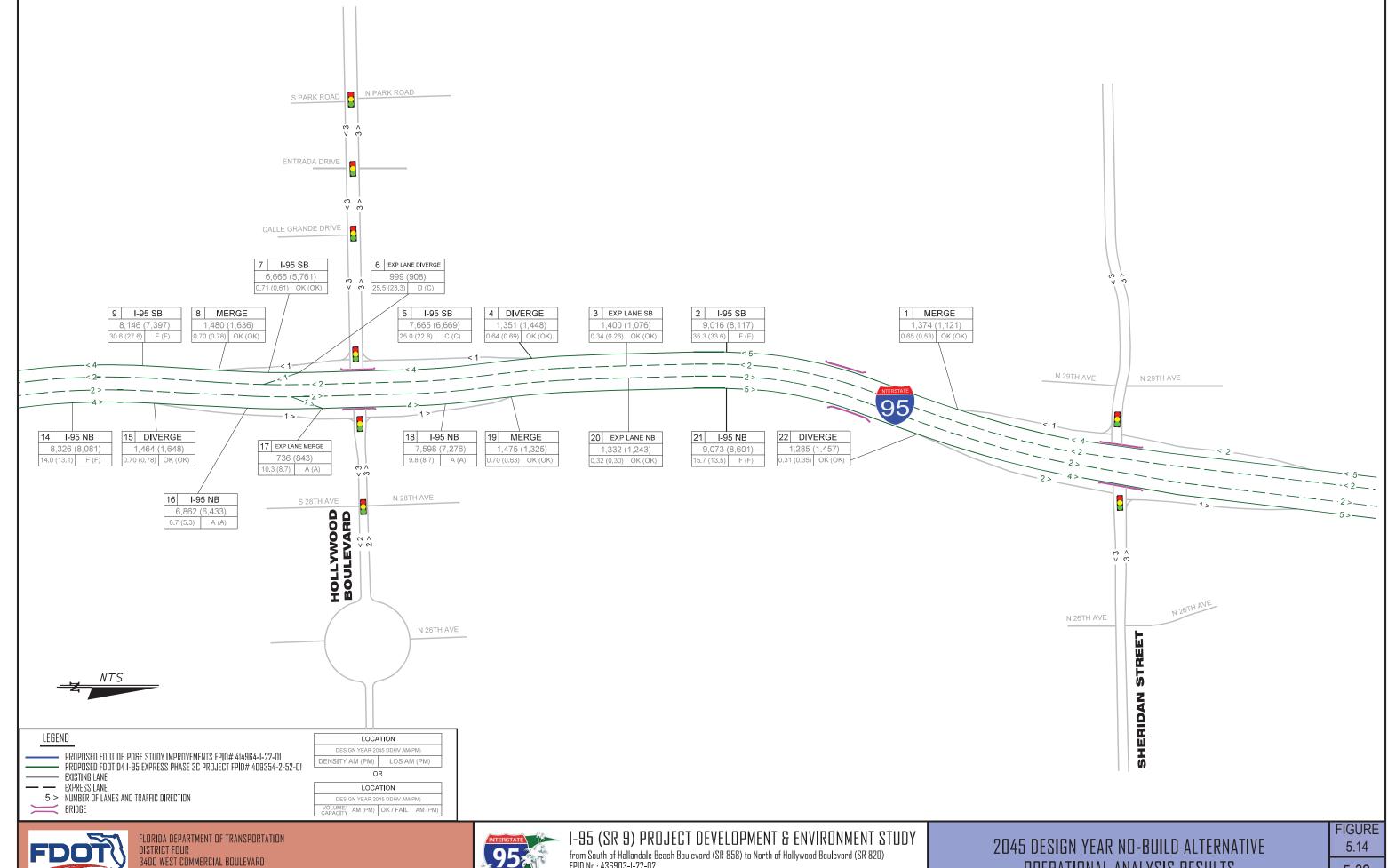
	Table 5.7 – 2045 NO-BC				· ·		Record	
					Freeway	Ramp		
#	I-95 Northbound Segment 2045 No-Build Alternative	Analysis Type	No. of Lanes	Demand vph AM(PM)	V/C Ratio AM(PM)		Density (pc/mi/ln)	LOS
22	Sheridan Street Off-Ramp	Diverge	2	1,285 (1,457)	-	0.31 (0.35)	-	-
21	Hollywood Boulevard On-Ramp to Sheridan Street Off-Ramp	Weave	5	9,073 (8,601)	1.15 (1.14)	-	15.7 (13.5)	F (F)
20	Express Lane North of Hollywood Boulevard	Basic	2	1,332 (1,243)	0.32 (0.30)	-	-	-
19	Hollywood Boulevard On-Ramp	Merge	1	1,475 (1,325)	-	0.70 (0.63)	-	-
18	Express Lane Egress to Hollywood Boulevard On-Ramp	Basic	4	7,598 (7,276)	0.77 (0.70)	-	9.8 (8.7)	A(A)
17	Express Lane Egress	Merge	1	736 (843)	0.77 (0.70)	0.36 (0.40)	10.3 (8.7)	A(A)
16	Hollywood Boulevard Off-Ramp to Express Lane Egress	Basic	4	6,862 (6,433)	0.68 (0.64)	-	6.7 (5.3)	A(A)
15	Hollywood Boulevard Off-Ramp	Diverge	1	1,464 (1,648)	-	0.70 (0.78)	-	-
14	Pembroke Road On-Ramp to Hollywood Boulevard Off-Ramp	Weave	5	8,326 (8,081)	1.23 (1.20)	-	14.0 (13.1)	F (F)
13	Pembroke Road On-Ramp	Merge	1	1,499 (1,298)	-	0.71 (0.62)	-	-
12	Pembroke Road Off-Ramp to On- Ramp	Basic	4	6,827 (6,783)	0.68 (0.67)	-	7.4 (7.6)	A(A)
11	Pembroke Road Off-Ramp	Diverge	1	1,444 (1,570)	-	0.69 (0.75)	-	-
10	Hallandale Beach Boulevard On- Ramp to Pembroke Road Off-Ramp	Weave	5	8271 (8,353)	1.34 (1.37)	-	15.5 (16.6)	F (F)
9	Hallandale Beach Boulevard On- Ramp	Merge	1	1,798 (1,807)	-	0.86 (0.86)	-	-
8	Express Lane Ingress to Hallandale Beach Boulevard On-Ramp	Basic	4	6,473 (6,546)	0.69 (0.70)	-	-	-
7	Express Lane North of Hallandale Beach Boulevard	Basic	2	2,068 (2,086)	0.50 (0.51)	-	-	-
6	Express Lane Ingress	Diverge	1	904 (711)	0.77 (0.76)	0.44(0.34)	10.9 (11.0)	A(A)
5	Hallandale Beach Blvd Off-Ramp to Express Lane Ingress	Basic	4	7,377 (7,257)	0.77 (0.76)	-	10.5 (10.7)	A(A)
4	Hallandale Beach Boulevard Off- Ramp	Diverge	1	1,460 (1,531)	-	0.70 (0.73)	-	-
3	Ives Dairy Road On-Ramp to Hallandale Beach Boulevard Off- Ramp	Weave	5	8,837 (8,788)	1.79 (1.75)	-	18.5 (19.0)	F (F)
2	Express Lane South of Hallandale Beach Boulevard	Basic	2	1,164 (1,375)	0.28 (0.34)	-	-	-
1	Ives Dairy Road On-Ramp	Merge	2	3,150 (2,956)	-	0.72 (0.67)	-	-
Note								

ote:

¹⁾ I-95 is operating at over capacity when compared to existing conditions in some locations. The disclaimer in the HCS software indicates that density results from freeway, ramp merge/diverge are not be reliable for oversaturated conditions. Operational results from Vissim microsimulation software should be considered.

²⁾ Additionally, 2045 No-Build conditions include the following improvements: new EL access point over Hollywood Blvd and a two-lane northbound off-ramp to Sheridan Street. The redistribution of traffic and operations between the ELs and GULs are different, with more vehicles bypassing the PD&E Study limits cause 2045 No-Build operating better than existing in some locations.


^{3) # -} segment number


Table 5.8 – 2045 No-Build Alternative Southbound Freeway Analysis Results

					Freeway	Ramp		
#	I-95 Southbound Segment 2045 No-Build Alternative	Analysis Type	No. of Lanes	Demand vph AM(PM)	V/C Ratio AM(PM)		Density (pc/mi/ln)	LOS
1	Sheridan Street On-Ramp	Merge	1	1,374 (1,121)	-	0.65 (0.53)	-	-
2	Sheridan Street On-Ramp to Hollywood Boulevard Off-Ramp	Weave	5	9,016 (8,117)	1.07 (1.04)	-	35.3 (33.6)	F (F)
3	Express Lane North of Hollywood Boulevard	Basic	2	1,400 (1,076)	0.34 (0.26)	-	-	-
4	Hollywood Boulevard Off-Ramp	Diverge	1	1,351 (1,448)	-	0.64 (0.69)	-	-
5	Hollywood Boulevard Off-Ramp to Express Lane Ingress	Basic	4	7,665 (6,669)	0.83(0.73)	-	25.0 (22.8)	C (C)
6	Express Lane Ingress	Diverge	1	999 (908)	0.83 (0.73)	0.48 (0.44)	25.5 (23.3)	D (C)
7	Express Lane Ingress to Hollywood Boulevard On-Ramp	Basic	4	6,666(5,761)	0.71 (0.61)	-	-	-
8	Hollywood Boulevard On-Ramp	Merge	1	1,480 (1,636)	-	0.70 (0.78)	-	-
9	Hollywood Boulevard On-Ramp to Pembroke Road Off-Ramp	Weave	5	8,146 (7,397)	1.24 (1.22)	-	30.6(27.6)	F (F)
10	Pembroke Road Off-Ramp	Diverge	1	1,590 (1,365)	-	0.76 (0.65)	-	-
11	Pembroke Road Off-Ramp to On-Ramp	Basic	4	6,556 (6,032)	0.68 (0.63)	-	18.3 (17.4)	C(B)
12	Pembroke Road On-Ramp	Merge	1	1,199 (813)	-	0.57 (0.39)	-	-
13	Pembroke Road On-Ramp to Hallandale Beach Boulevard Off-Ramp	Weave	5	7,755 (6,845)	1.0 (0.96)	-	27.4 (23.7)	C(C)
14	Express Lane North of Hallandale Beach Boulevard	Basic	2	2,399 (1,984)	0.59 (0.48)	-	-	-
15	Hallandale Beach Boulevard Off-Ramp	Diverge	1	1,295 (1,525)	-	0.62 (0.73)	-	-
16	Hallandale Beach Blvd Off-Ramp to Express Lane Ingress	Basic	4	6,460 (5,320)	0.65 (0.53)	-	17.0 (13.8)	В(В)
17	Express Lane Ingress	Merge	1	730 (709)	0.73 (0.61)	0.35 (0.34)	21.3 (17.6)	B(B)
18	Express Lane Ingress to Hallandale Beach Boulevard On-Ramp	Basic	4	7,190 (6,029)	0.73 (0.61)	-	20 (16.7)	C(B)
19	Hallandale Beach Boulevard On-Ramp	Merge	1	1,461 (1,492)	-	0.73 (0.75)	-	-
20	Express Lane South of Hallandale Beach Boulevard	Basic	1	1,669 (1,275)	0.98 (0.75)	-	-	-
21	Hallandale Beach Boulevard On-Ramp to Ives Dairy Road Off-Ramp	Weave	5	8,651 (7,521)	1.23 (1.33)	-	26(19.9)	F (F)
22	Ives Dairy Road Off-Ramp	Diverge	2	1,689 (2,012)	-	0.40 (0.48)	-	-

I-95 is operating at over capacity when compared to existing conditions in some locations. The disclaimer in the HCS software indicates that density results from freeway, ramp merge/diverge are not be reliable for oversaturated conditions. Operational results from Vissim microsimulation software should be considered.
 Additionally, 2045 No-Build conditions include the following improvements: new EL access point over Hollywood Blvd and a two-lane northbound off-ramp to Sheridan Street. The redistribution of traffic and operations between the ELs and GULs are different, with more vehicles bypassing the PD&E Study limits cause 2045 No-Build operating better than existing in some locations.

3) # - segment number

3400 WEST COMMERCIAL BOULEVARD FORT LAUDERDALE, FL 33309 NOVEMBER 2024

5.6.2 CROSSING ROADWAYS OPERATIONAL ANALYSIS

Tables 5.9 – 5.11 and **Figure 5.15** document the intersections operational analysis results by crossing roadway. Synchro output reports are provided in **Appendix M**.

As shown in **Table 5.9**, the 2045 No-Build Alternative intersection operational results indicate two intersections will operate at a LOS D or better and two intersections will operate at a LOS E or F.

As shown in **Table 5.10**, the 2045 No-Build Alternative intersection operational results indicate all five intersections will operate at a LOS D or better.

As shown in **Table 5.11**, the 2045 No-Build Alternative operational results indicate three intersections will operate at a LOS D or better and two intersections will operate at a LOS E or F.

Table 5.9 – 2045 No-Build Alternative Hallandale Beach Boulevard Intersection LOS and Delay Results

Hallandale		No-		Alternative	
Beach		AM Pec	ık	PM Pea	k
Boulevard	Movement	Delay		Delay	
Intersection		(s/veh)	LOS	(s/veh)	LOS
	EBL	16.4	В	65.6	Е
	EBT	14.5	В	17.9	В
	WBL	5.6	Α	6.6	Α
	WBT	6.4	Α	12.8	В
South Park	WBR	0.8	Α	1.1	Α
Road*	NBT	97.6	F	94.5	F
	SBL	92.5	F	105.2	F
	SBT	92.5	F	105.2	F
	SBR	66.6	F	68.4	Е
	Int	16.0	В	21.3	С
	EBT	43.9	D	41.3	D
	EBR	33.5	С	37.2	D
I-95 West	WBL	167.6	F	235.2	F
Ramp	WBT	10.9	В	40.5	D
Terminal*	SBL	106.5	F	54.1	D
	SBR	150.7	F	206.7	F
	Int	80.0	F	86.0	F
	EBL	59.8	Е	54.5	D
	EBT	36.6	D	40.6	D
I-95 East	WBT	31.4	С	28.2	С
Ramp	WBR	115.5	F	175.9	F
Terminal*	NBL	54.5	D	57.1	Е
	NBR	168.3	F	214.3	F
	Int	69.6	Е	87.0	F
	EBL	106.1	F	153.5	F
	EBT	14.2	В	18.3	В
	WBL	22.5	С	36.7	D
	WBT	33.0	С	57.0	Е
NW 10th	WBR	13.3	В	17.9	В
Terrace	NBL	107.1	F	134.4	F
	NBT	59.3	Е	56.2	Е
	SBL	60.0	Е	55.6	Е
	SBT	58.2	Е	54.1	D
	Int	30.2	С	45.9	D

^{*}HCM 2000 results reported

Table 5.10 – 2045 No-Build Alternative Pembroke Road Intersection LOS and Delay Results

No-Build Alternative Pembroke AM Peak PM Peak Road Movement Delay Delay Intersection LOS LOS (s/veh) (s/veh) EBU 10.7 В 18.2 В EBT 22.7 С 18.2 В Ε 55.2 WBL 96.0 Α Park Road* **WBT** 0.5 Α 2.8 82.2 62.1 Ε NBL D NBR 58.6 Ε 42.8 В 14.6 В Int 19.7 0.5 0.5 Α EBT Α Е WBL 81.6 65.6 SW 31st Α 0.2 Α WBT 0.2 Avenue* 68.2 Е 59.2 Е NBR 2.2 Α 1.8 Α Int В С 19.5 EBT 24.4 В **EBR** 10.4 В 10.3 F D I-95 West WBL 98.2 46.7 17.1 В 15.9 В Ramp WBT Terminal* SBL D 36.1 D 49.6 F F SBR 101.8 84.5 D 29.9 С Int 42.5 EBL 63.7 Е 48.5 D В В EBT 16.4 15.7 С С WBT 25.6 27.2 I-95 East Ramp WBR 7.6 Α 4.7 Α Terminal* D Е NBL 64.1 44.8 Е NBR 96.5 66.2 С D 39.8 32.2 Int F EBL 71.1 105.6 С EBT В 25.9 15.4 WBL 28.0 С 26.7 С D D WBT 40.7 43.6 NW 10th С С WBR 23.7 22.1 Avenue / South 28th NBL 66.8 Е 79.1 Е Avenue D С NBT 41.5 31.8 D SBL 58.0 46.3

Е

D

64.7

41.2

*HCM 2000 results reported

SBT

Int

71.0

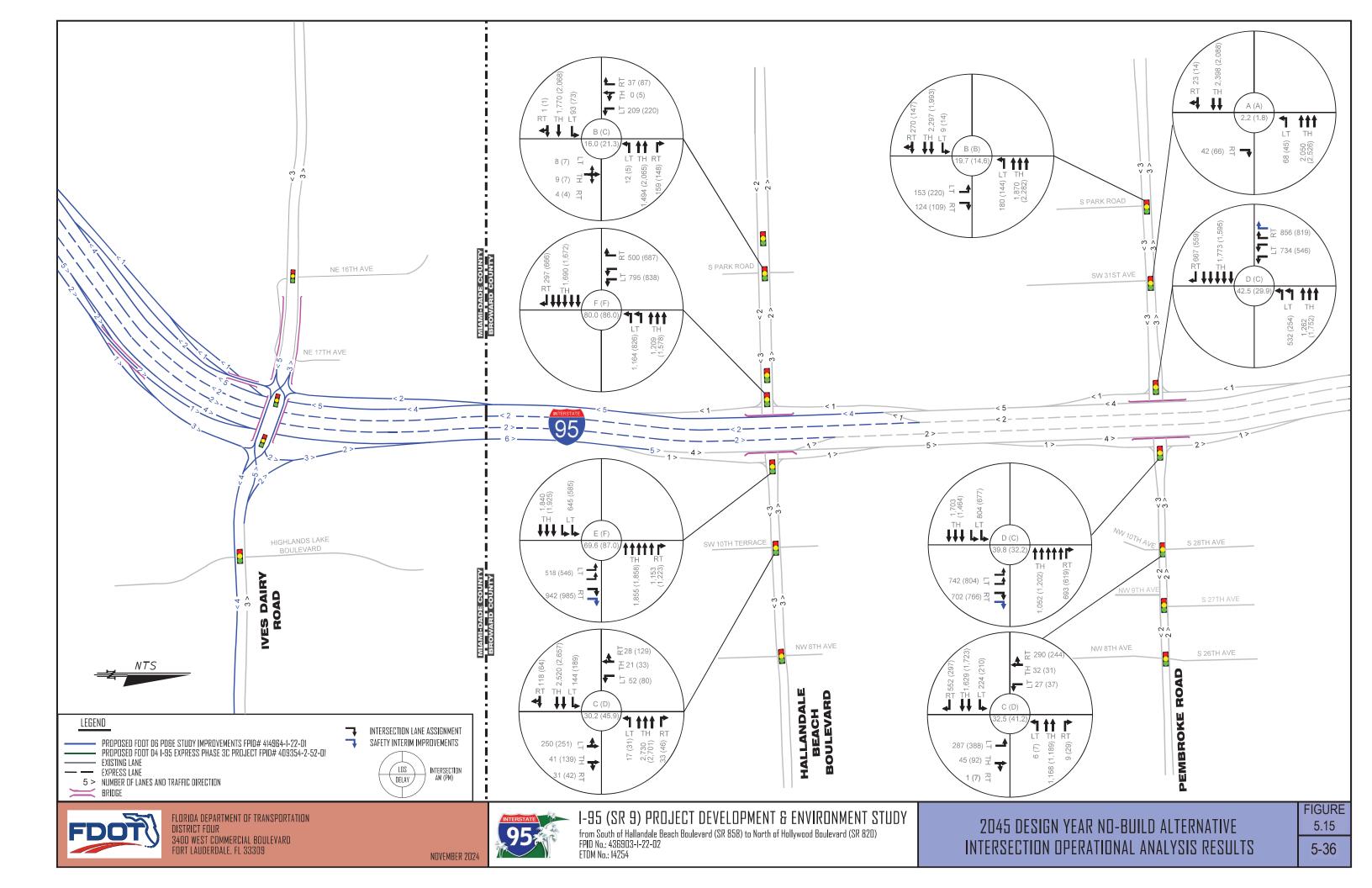
32.5

С

Table 5.11 – 2045 No-Build Alternative Hollywood Boulevard Intersection LOS and Delay Results

		No-Build Alternative					
Hollywood Boulevard	Mayamant	AM Peal	•	PM Peak			
Intersection	Movement	Delay	5	Delay			
		(s/veh)	LOS	(s/veh)	LOS		
	EBL	18	В	48.4	D		
	EBT	8.3	Α	17.2	В		
	WBL	2.7	Α	7.6	Α		
	WBT	2.2	Α	7.0	Α		
Entranda Drive	NBT	61.9	Е	59.5	Е		
Dilve	NBR	60	Е	57.9	Е		
	SBL	77.3	Е	93.1	F		
	SBT	60.5	Е	60.4	Е		
	Int	8.3	Α	18.0	В		
	EBU	87.6	F	97.2	F		
	EBT	0.7	Α	0.7	Α		
Calle Grande	WBL	93.2	F	107.7	F		
Drive*	WBT	1	Α	0.9	Α		
	NBR	0.6	Α	0.6	Α		
	Int	1.5	Α	1.4	Α		
	EBT	23.9	С	22.1	С		
	EBR	26.1	С	42.2	D		
I-95 West	WBL	70.2	Е	173.2	F		
Ramp	WBT	11.1	В	20.4	С		
Terminal*	SBL	74.1	Е	73.5	Е		
	SBR	67.9	Е	190.9	F		
	Int	38.1	D	70.8	Е		
	EBL	50.7	D	62.5	Е		
	EBT	13.6	В	25.9	С		
I-95 East	WBT	23.2	С	32.8	С		
Ramp	WBR	46.3	D	26.8	С		
Terminal*	NBL	78.6	Е	56.1	Е		
	NBR	91.8	F	144.9	F		
	Int	43	D	52.7	D		

^{*}HCM 2000 results reported



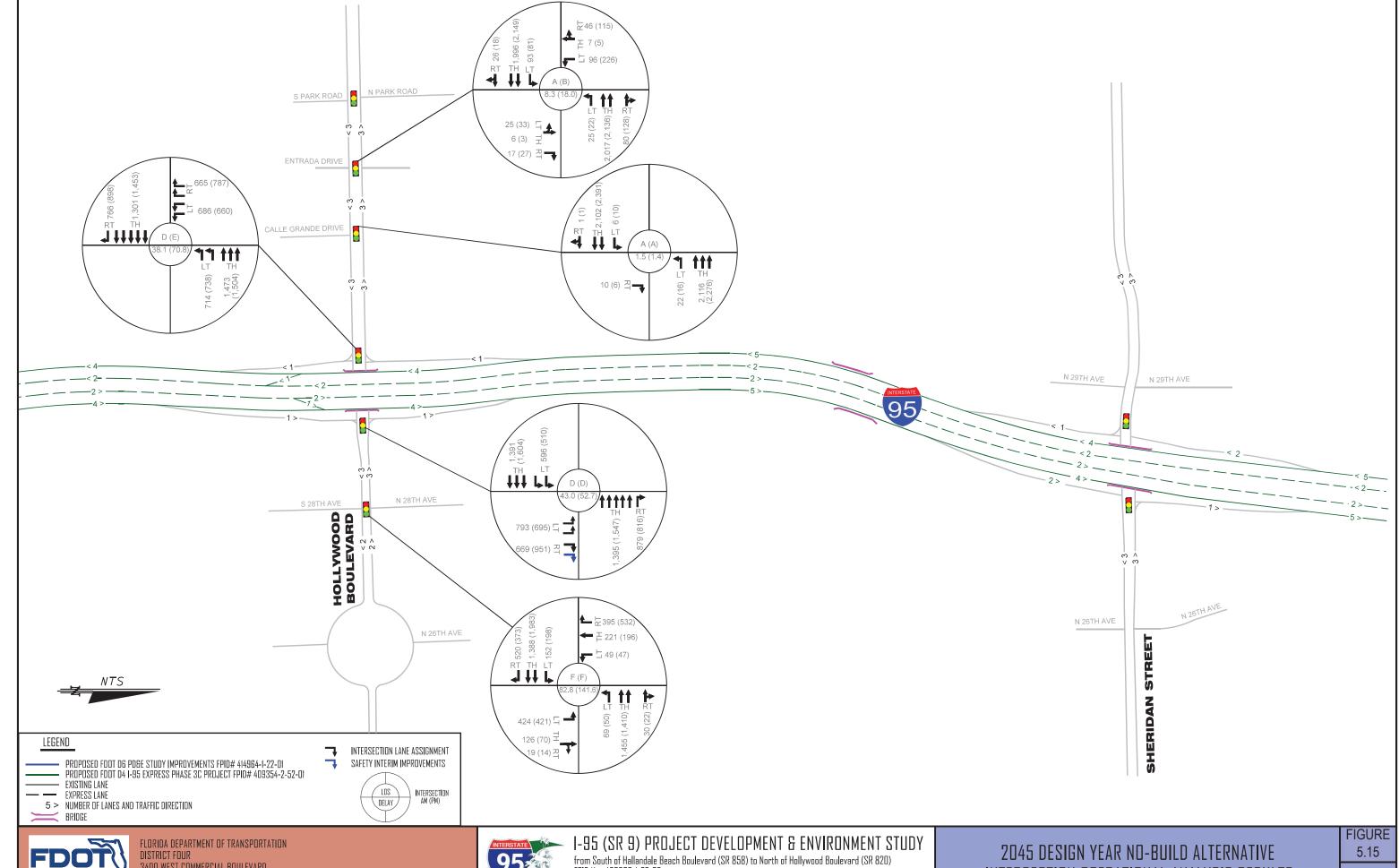


Table 5.11 – 2045 No-Build Alternative Hollywood Boulevard Intersection LOS and Delay Results (Continued)

		No-Build Alternative					
Hollywood Boulevard	Movement	AM Pea	k	PM Peak			
Intersection	Movemen	Delay	LOS	Delay	LOS		
		(s/veh)	103	(s/veh)	103		
	EBL	89.5	F	96.0	F		
	EBT	90.9	F	199.1	F		
	EBR	35.1	D	19.5	В		
	WBL	44.2	D	53.4	D		
	WBT	53.5	D	57.6	Е		
S 28th Avenue*	NBL	168.3	F	194.5	F		
Avenue	NBT	163.4	F	193.6	F		
	SBL	206.4	F	274.7	F		
	SBT	55.8	Е	63.6	Е		
	SBR	111.2	F	231.6	F		
	Int	82.8	F	141.6	F		

^{*}HCM 2000 results reported

6.0 BUILD ALTERNATIVES

The objective of this PD&E Study is to evaluate interchange alternatives that will address existing and projected traffic operating deficiencies along this section of I-95. In order to keep up with the growing traffic demand within the study area, three build alternatives (Alternatives 1, 2 and 3) were considered in this PD&E Study. All three alternatives propose potential modifications to the existing entrance and exit ramps serving the three interchanges within the project limits. Ramp terminal intersection modifications were evaluated at Hallandale Beach Boulevard, Pembroke Road, and Hollywood Boulevard to improve the access and operations to and from I-95.

6.1 I-95 CORRIDOR PLANNING STUDY

In April 2019, FDOT District Six completed an I-95 Planning Study between US 1 (Downtown Miami) and the Miami-Dade/Broward County Line. Around the same time, FDOT District Four was moving forward with geometric changes from an Alternative Technical Concept (ATC) as part of the I-95 Express Phase 3C Construction Project, which covers from south of Hollywood Boulevard to north of Interstate 595 (I-595). Because of the overlapping limits of these two projects with the I-95 PD&E Study and changes to the I-95 Express Lanes access points by both districts, FDOT District Four decided to put the I-95 PD&E Study on hold and perform an I-95 Corridor Planning Study (CPS) to evaluate how these three projects will interact with each other.

The FDOT District Four CPS began in December 2019 and was completed by April 2020. The limits of the study were from the Golden Glades Interchange (GGI) in Miami-Dade County to I-595 in Broward County (see *Figure 6.1*). The study had two objectives: 1) The evaluation of converting the I-95 Express Lanes at-grade access points to elevated braided ramps over the I-95 mainline and understand the traffic demand along the corridor with all potential I-95 future projects in place in Miami-Dade and Broward Counties.

Alternative 1A was chosen as the CPS recommended alternative. This alternative connects and combines all the improvements from the three projects: District Six Planning Study, District Four PD&E Study, and District Four Construction Project. The I-95 PD&E Study restarted in June 2020 and consisted of the same purpose and need. However, the main difference is that the study now assumes that both projects, District Six I-95 Planning Study and District Four I-95 Express Phase 3C improvements, will be in-place by the design year 2045. The I-95 PD&E Study restart approach was to design an alternative to fit within the CPS Alternative 1A footprint and be compatible with the future projects north and south of the study limits.

Figure 6.1 – I-95 Corridor Planning Study Limits

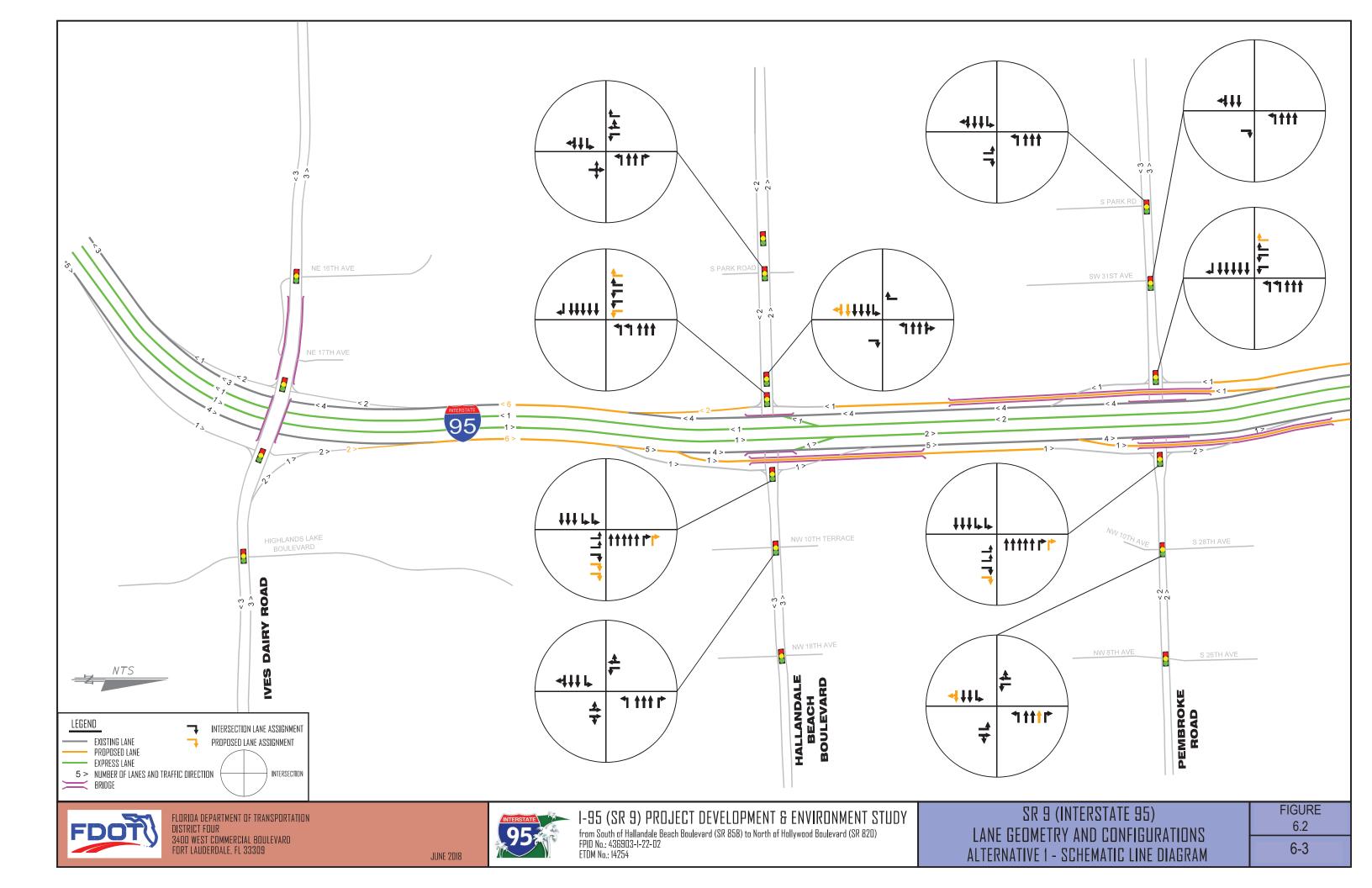
6.2 ALTERNATIVES CONSIDERED

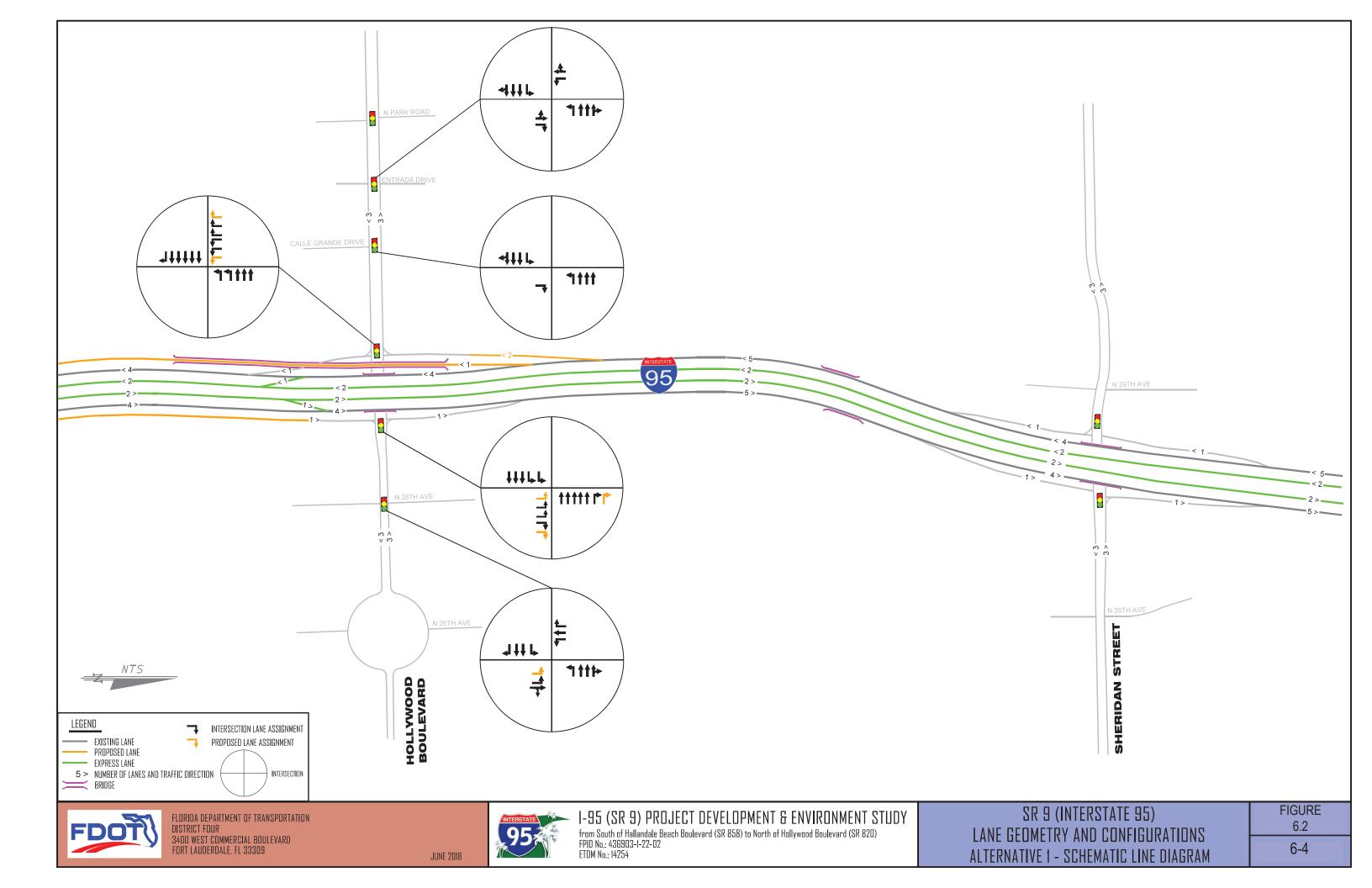
The PD&E Study Build Alternatives analysis and evaluation were performed and completed between September 2016 and December 2018, prior to the hold of the study in 2019 (as discussed in **Section 6.1**). Therefore, the analysis documented in this section did not include the FDOT District Six I-95 Planning Study, District Four I-95 CPS, and the recent changes to the I-95 Express Phase 3C Project.

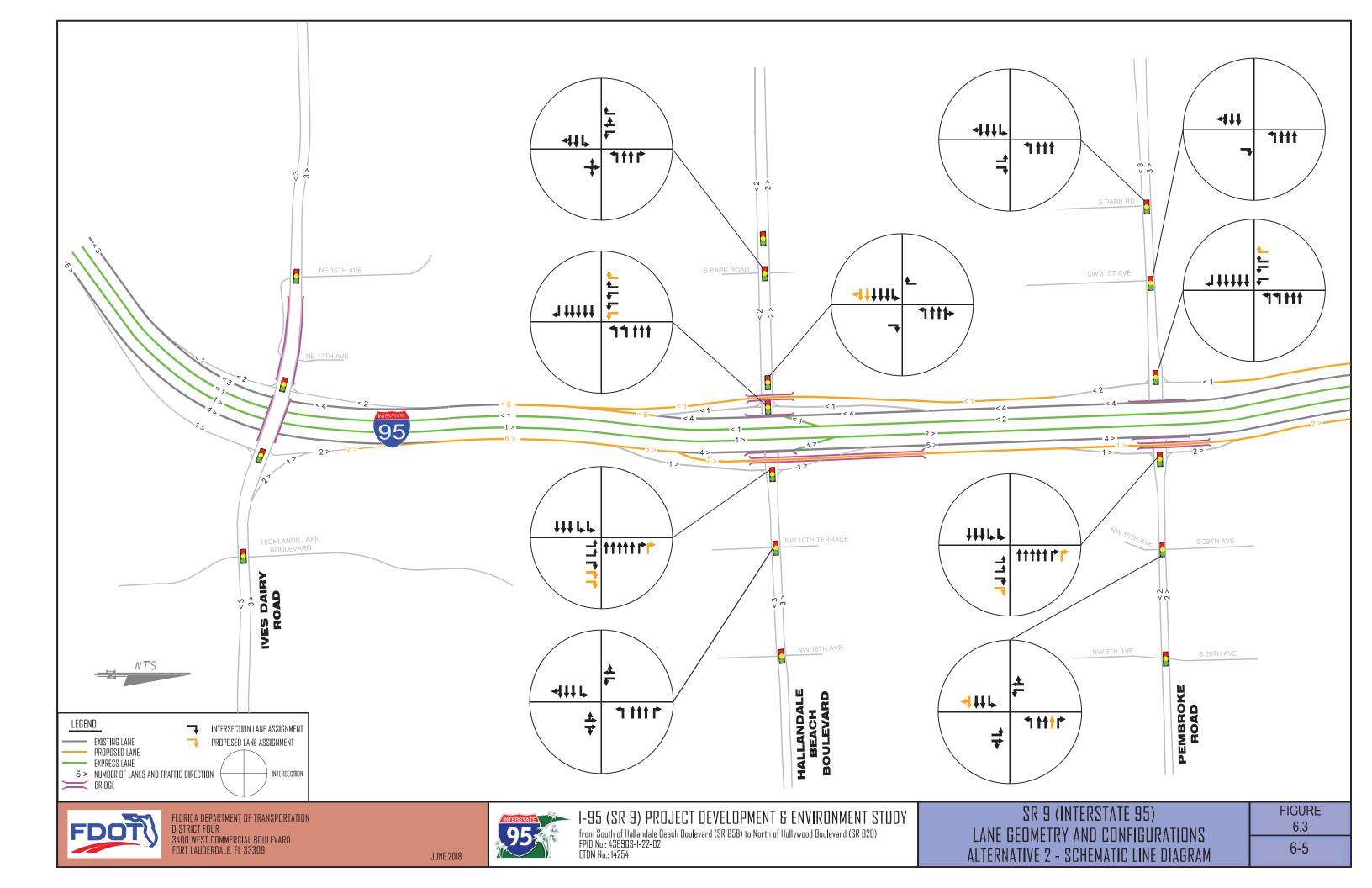
Three alternatives were considered in the PD&E Study. All three alternatives examined interchange alternatives and ramp alternatives. The evaluation of the alternatives considered relocating interchange ramps and added exclusive turn lanes at the ramp terminal intersections.

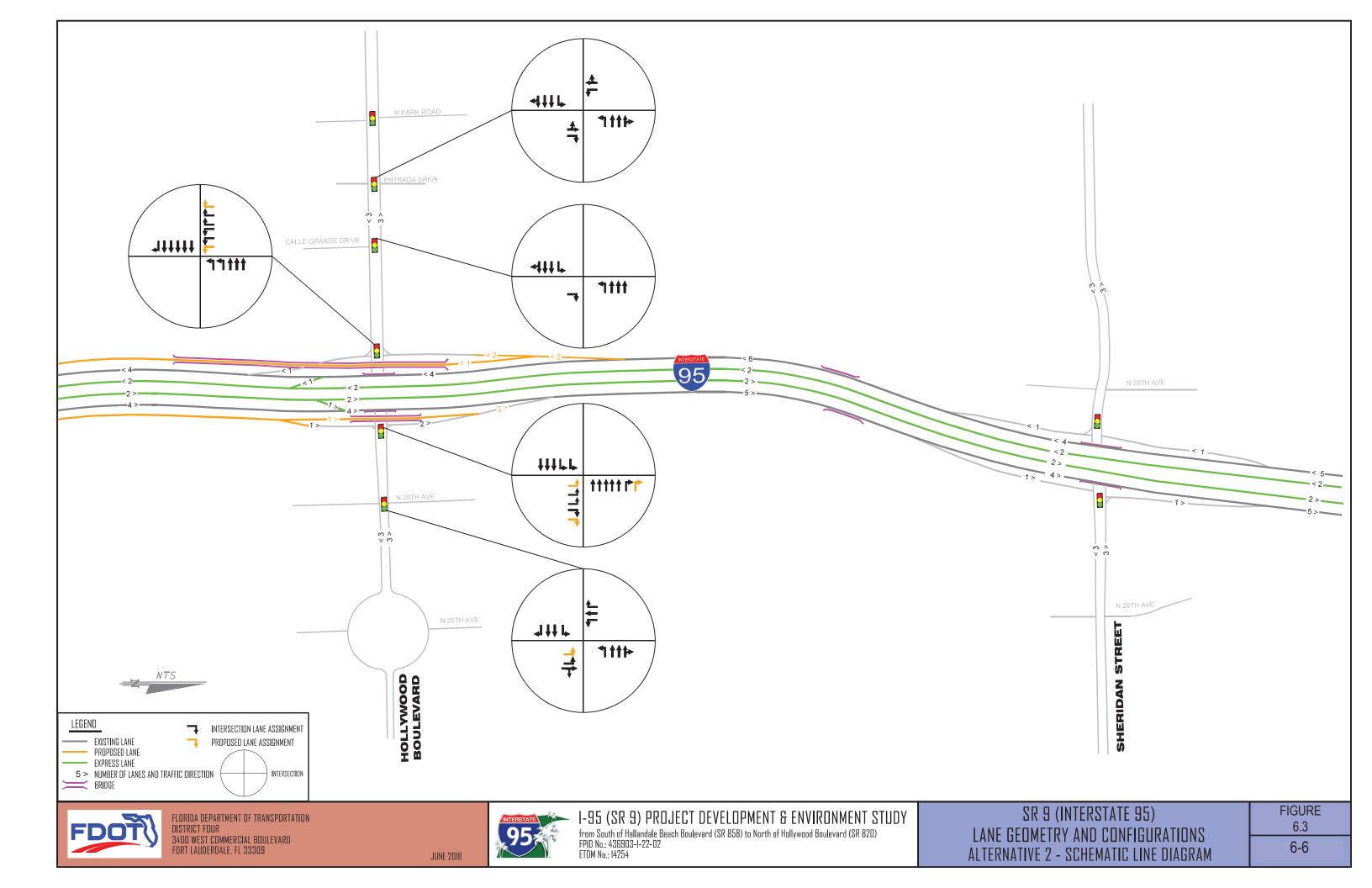
6.2.1 ALTERNATIVE 1 – BRAIDED RAMPS

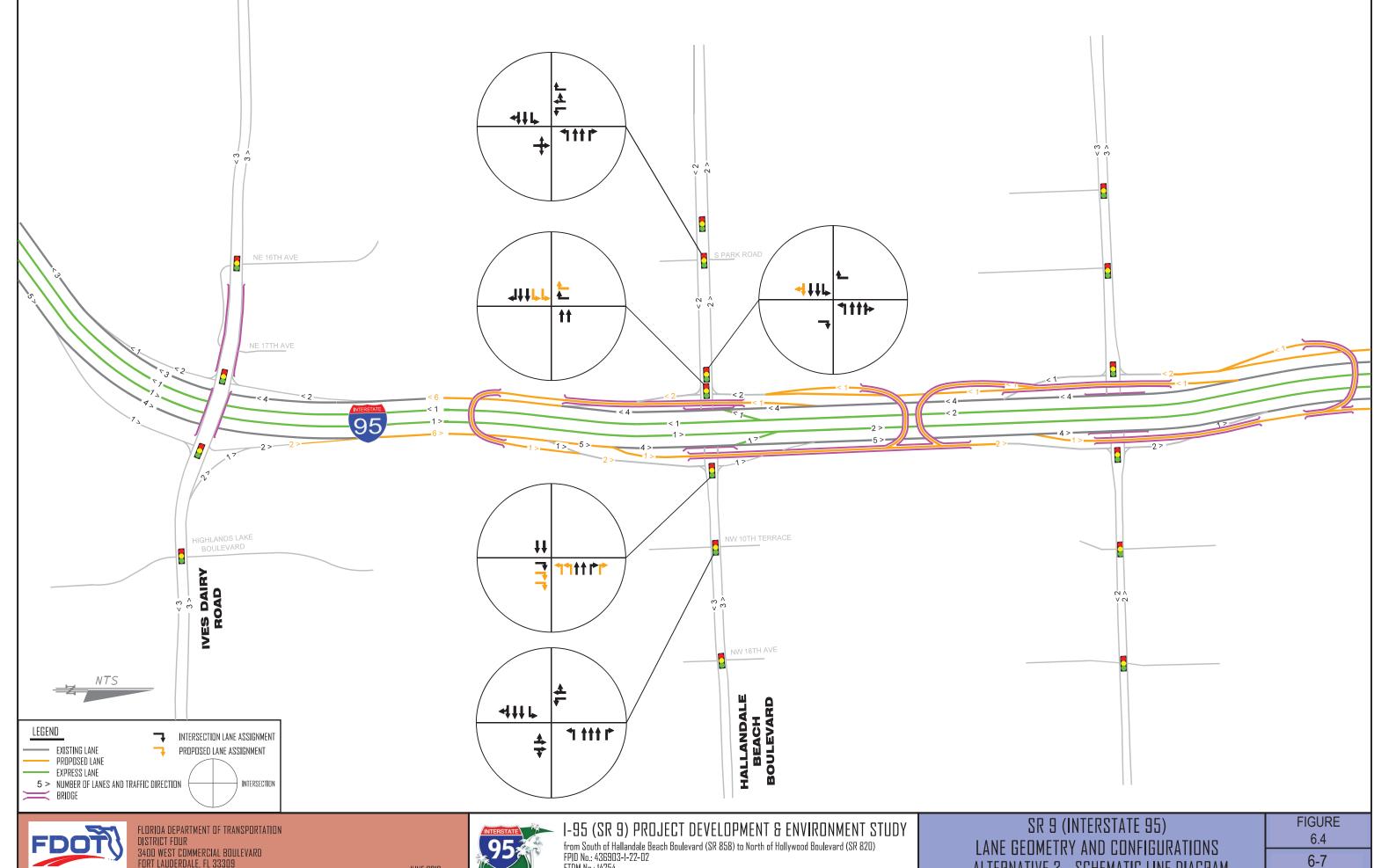
Alternative 1 proposes braided ramps between interchanges to improve the substandard weaving movements along I-95. In this alternative, the on-ramps from each interchange will remain unchanged. However, the off-ramps to Pembroke Road and Hollywood Boulevard in the northbound direction and to Pembroke Road and Hallandale Beach Boulevard in the southbound direction will be located one interchange prior to the destination interchange. For example, travelers destined northbound to Pembroke Road would use an exit ramp located just south of the Hallandale Beach Boulevard corridor right after the Hallandale Beach Boulevard off-ramp. The new exit ramp will continue separated from the I-95 mainline braiding over the Hallandale Beach Boulevard on-ramp and continuing along the right of way line until reaching the cross-street ramp terminal. This new exit ramp bypasses and avoids conflicts with the Hallandale Beach Boulevard on-ramp. The same design continues northbound to Hollywood Boulevard and southbound to Pembroke Road and Hallandale Beach Boulevard. *Figure 6.2* shows the schematic geometric layout of Alternative 1.

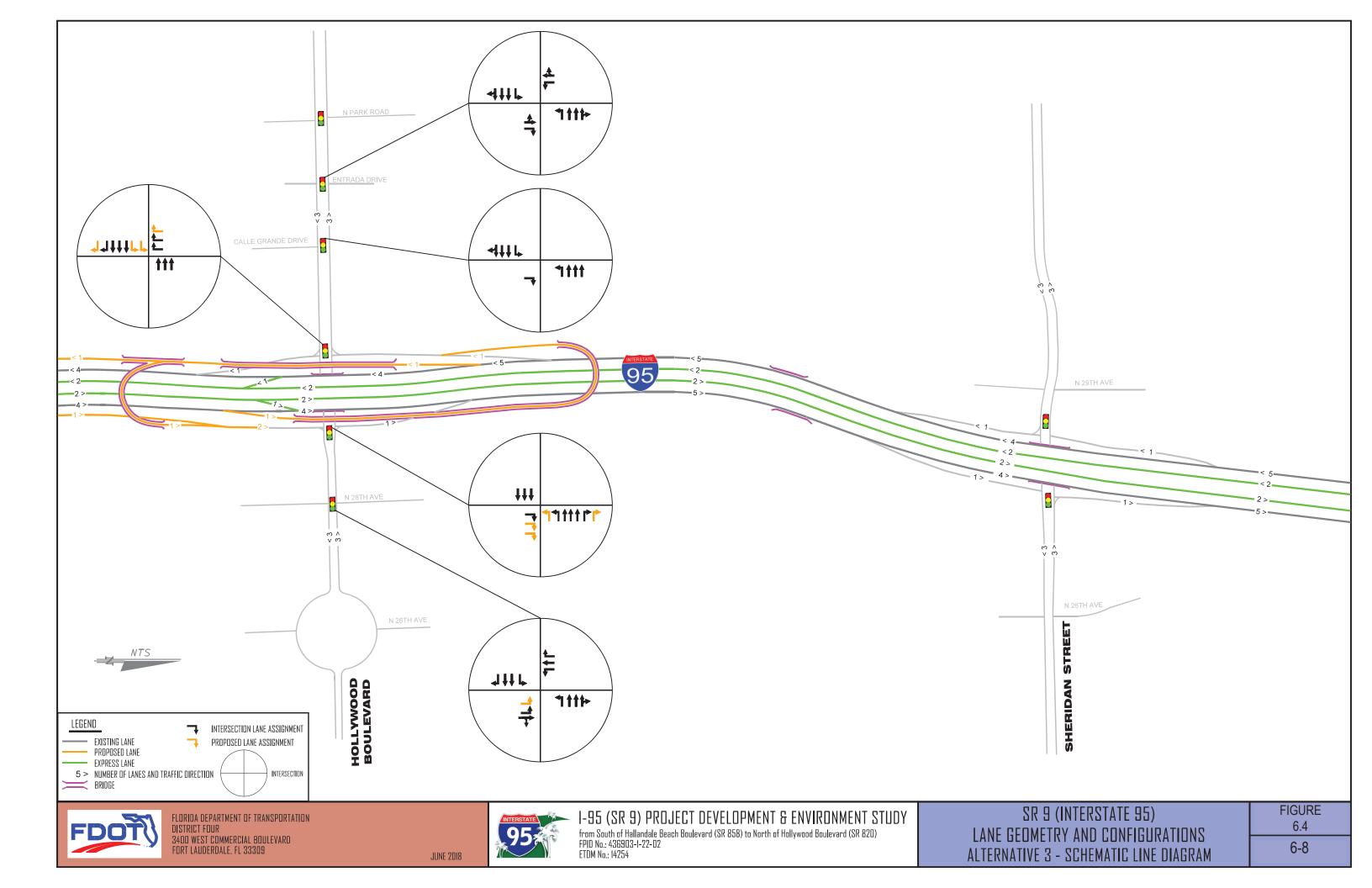

6.2.2 ALTERNATIVE 2 – COLLECTOR DISTRIBUTOR ROADWAYS

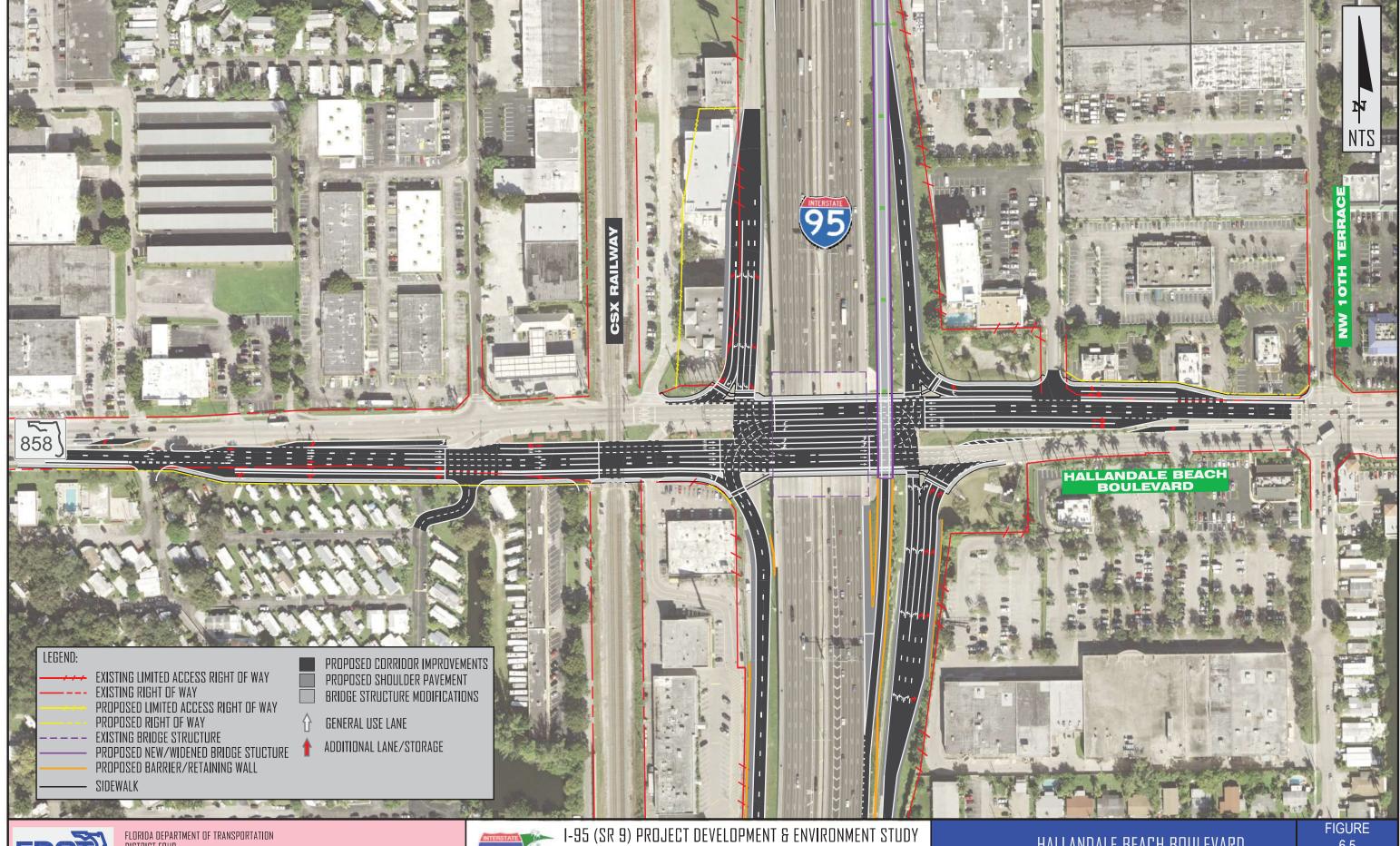

Alternative 2 proposes a collector distributor roadway system within the I-95 mainline project area. The collector distributor roadway system will remove the Pembroke Road Interchange from directly interacting with the I-95 mainline. In the northbound direction, all exiting traffic to Pembroke Road and Hollywood Boulevard will utilize a new collector distributor off-ramp just south of Hallandale Beach Boulevard. The collector distributor roadway system will extend to just north of Hollywood Boulevard serving the exit traffic to Pembroke Road, entry traffic from Pembroke Road, exit traffic to Hollywood Boulevard, and entry traffic from Hollywood Boulevard. In the southbound direction, the new collector


distributor roadway system will not be continuous, it will end and begin at Pembroke Road. The first section combines the off-ramps to Hollywood Boulevard and Pembroke Road and the second section moves the Pembroke Road on-ramp to enter I-95 south of the Hallandale Beach Boulevard on-ramp. *Figure 6.3* shows the schematic geometric layout of Alternative 2.


6.2.3 ALTERNATIVE 3 – U-TURN RAMPS


Alternative 3 proposes to eliminate all left-turn movements from the off-ramp terminal intersections. The left-turn movements will be converted to right-turn movements by relocating the left-turn movements to a successive off-ramp that becomes a U-turn ramp over the interstate touching down to the opposite ramp terminal intersection. For example, the northbound exiting freeway traffic destined westbound will conventionally use the northbound off-ramp and make a left turn. However, in this alternative, the northbound exiting freeway traffic destined westbound will use the freeway U-turn off-ramp to access the southbound off-ramp right-turn movement. This alternative reduces the number of phases needed at the interchange ramp terminals. **Figure 6.4** shows the schematic geometric layout of Alternative 3.

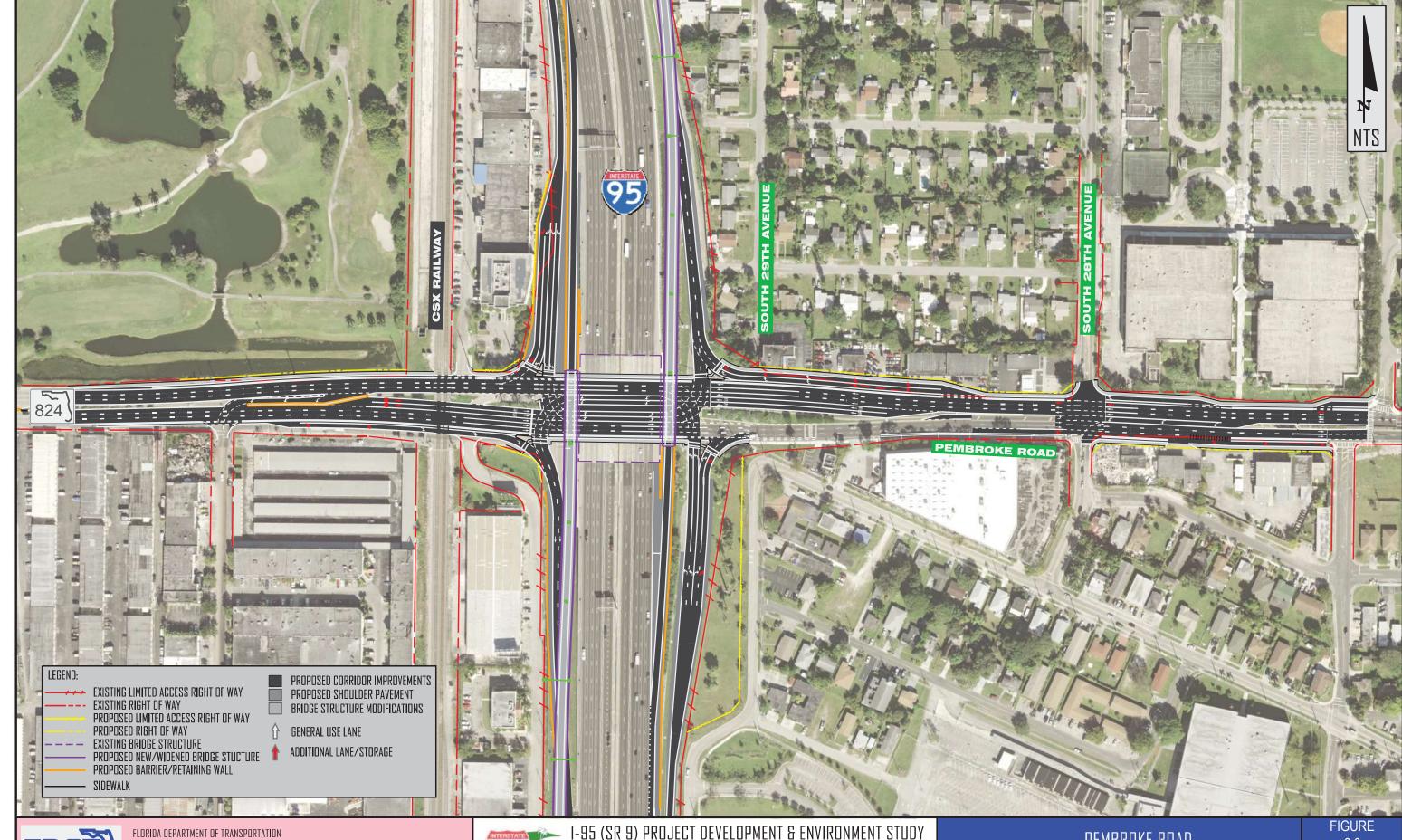


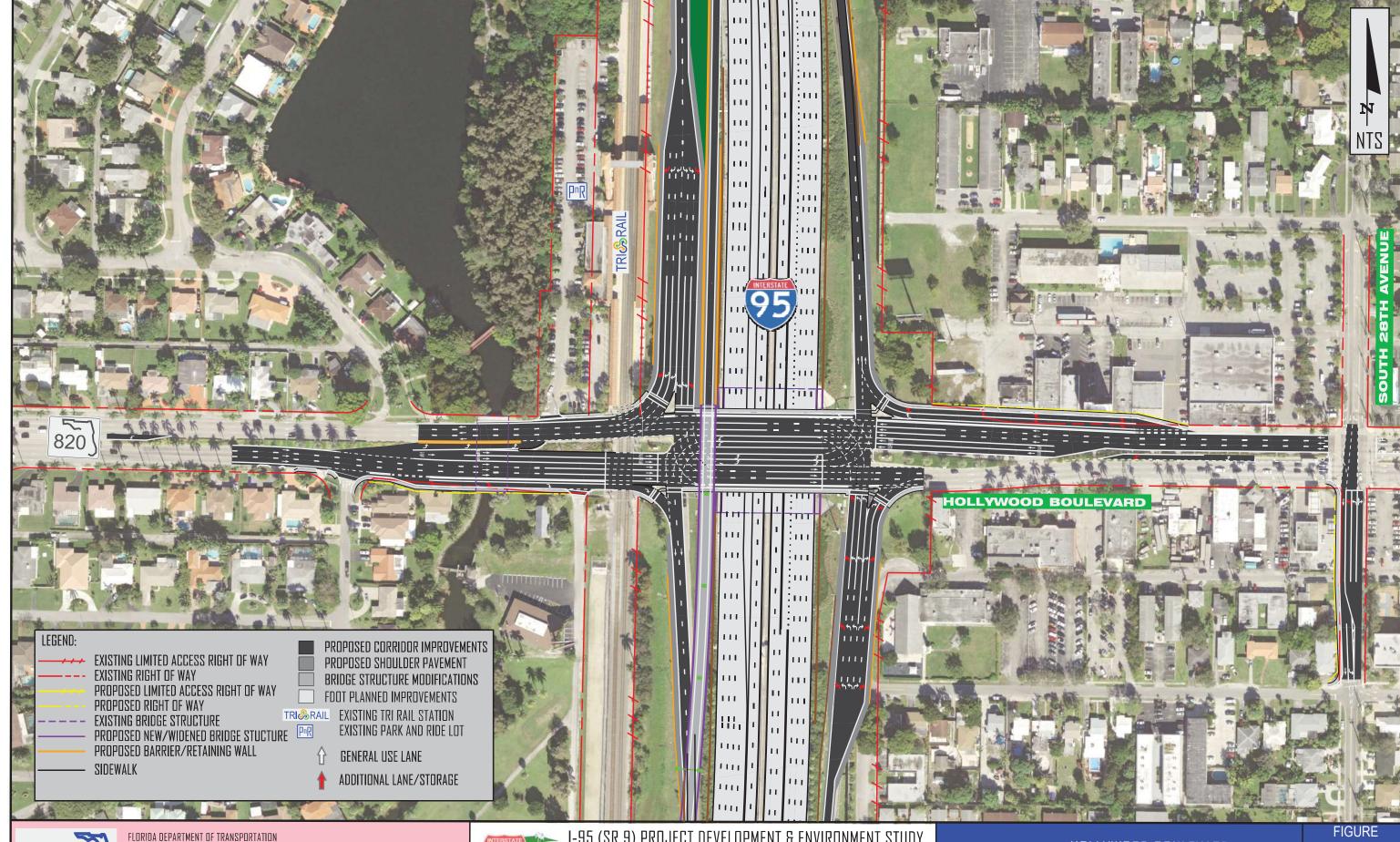


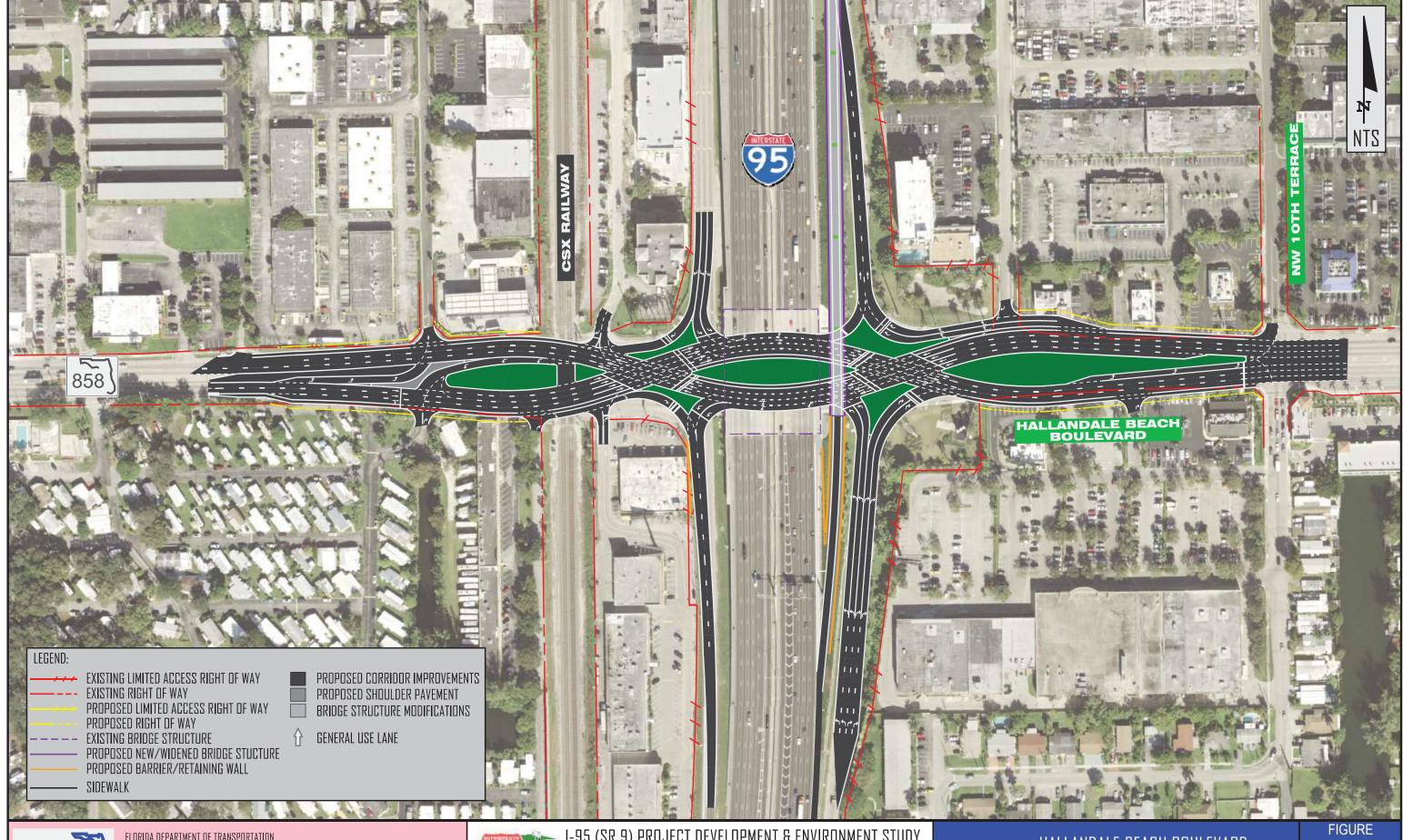
6.2.4 INTERCHANGE ALTERNATIVES

Four types of interchange configurations were evaluated along each cross street for each I-95 interchange at Hallandale Beach Boulevard, Pembroke Road and Hollywood Boulevard.

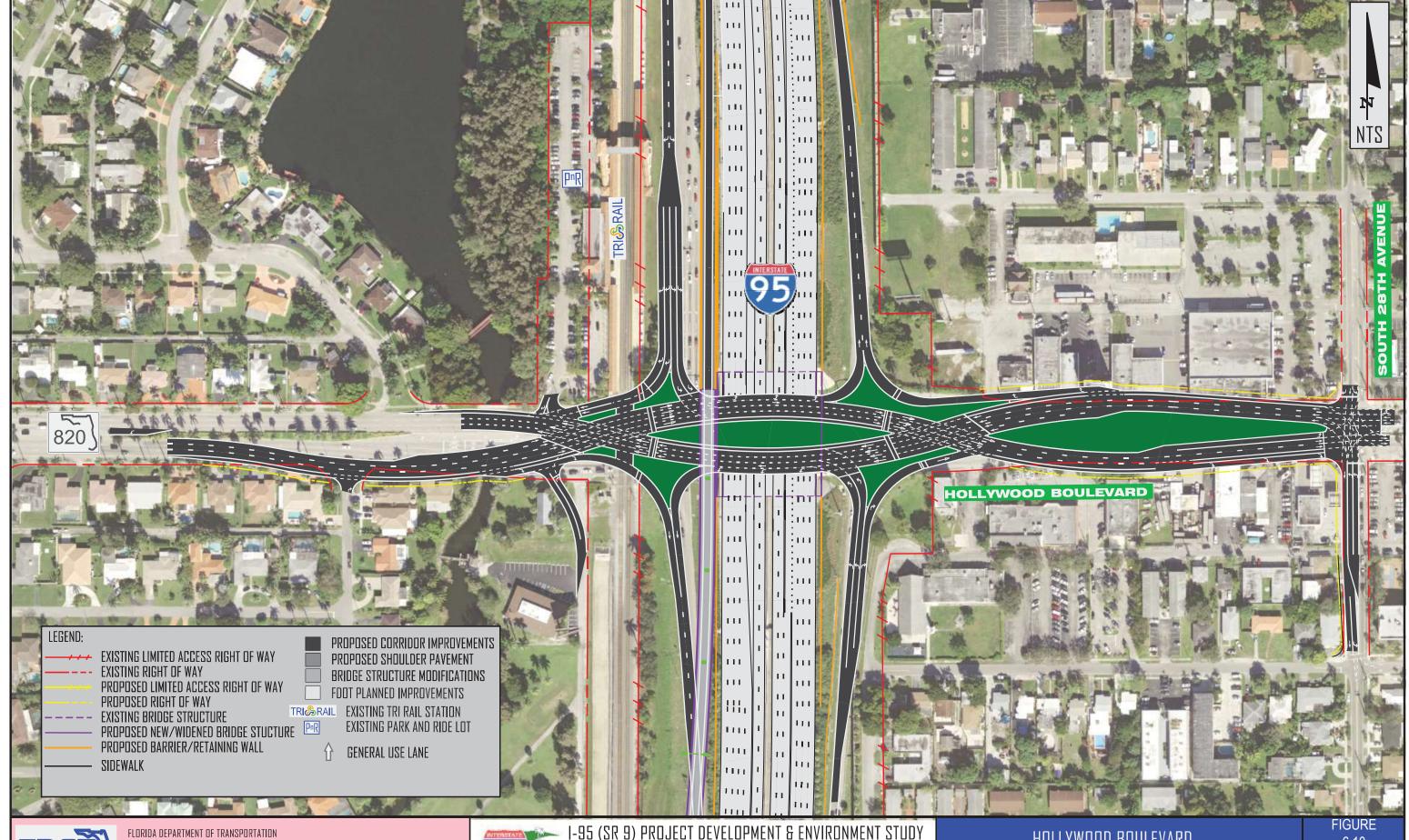
- **Diamond Interchange** This interchange configuration maintains the existing interchange layout but with additional turn lanes, through lanes and/or extended storage bays. *Figures 6.5 6.7* show the proposed improvements at each interchange. The red arrows depict the locations were additional turn lanes, through lanes and/or extended storage bays are being proposed. This interchange configuration is compatible with mainline Alternatives 1 and 2.
- **Diverging Diamond Interchange (DDI)** This interchange configuration eliminates the need for on-ramp left-turning vehicles to cross the paths of approaching through vehicles, reducing signal phases at each ramp terminal, and improving safety. The two directions of traffic along the arterials cross to the opposite side on both sides of the bridge at the freeway. **Figures 6.8 6.10** show the proposed improvements at each interchange. This interchange configuration is compatible with mainline Alternatives 1 and 2.
- Displaced Left-Turn Lane Interchange This interchange configuration main geometric feature is the removal of the left-turn movements from the main intersection to an upstream signalized location. Traffic that would turn left at the main intersection in a conventional design now has to cross opposing through lanes at a signal-controlled intersection several hundred feet upstream and then travel on a new roadway parallel to the opposing lanes. This traffic is now able to execute the left-turn simultaneously with the through traffic at the main intersection. Figures 6.11 6.13 show the proposed improvements at each interchange. This interchange configuration will work with mainline Alternatives 1 and 2.
- Continuous Flow Intersection (CFI) This interchange configuration reduces signal phases at the ramp terminal intersections by displacing the on-ramp left-turn movements and by removing the off-ramp left-turn movements. The incoming arterial through traffic only encounters a single signal through the interchange.
 Figures 6.14 6.16 show the proposed improvements at each interchange. This interchange configuration will work with mainline Alternative 3 only.

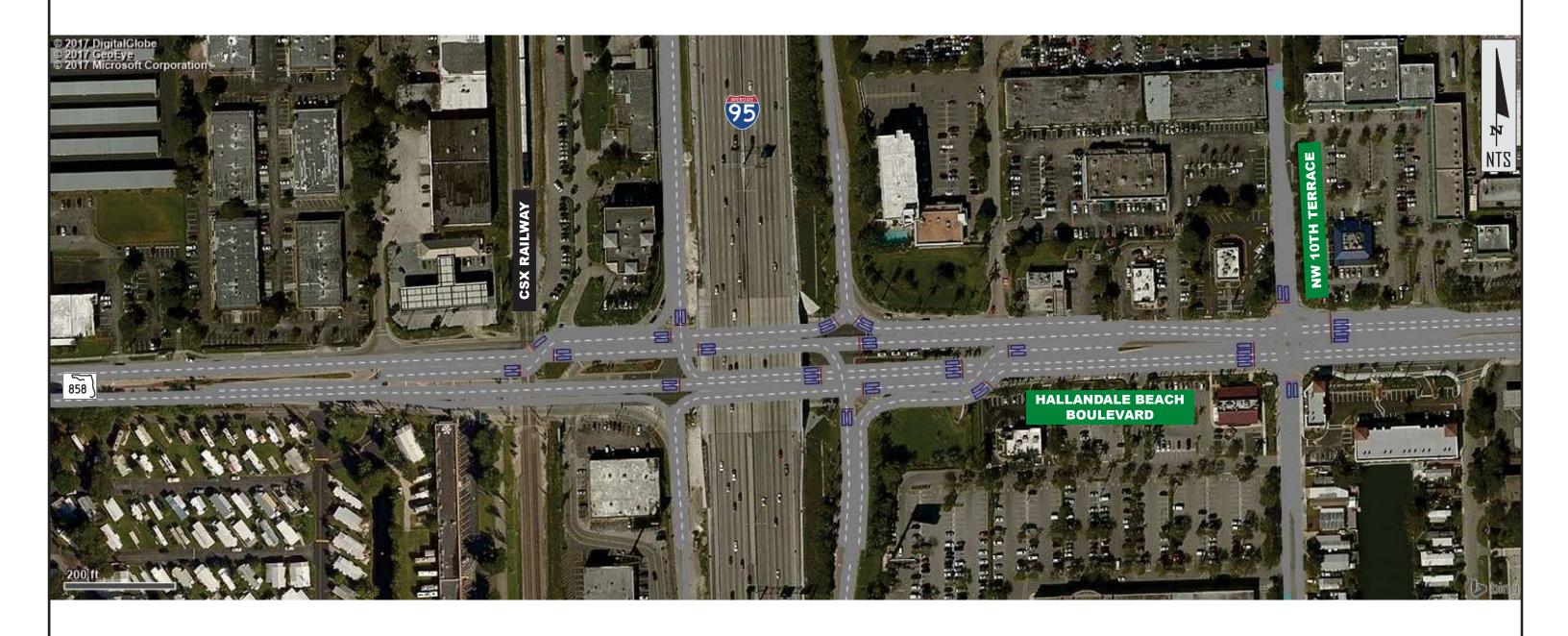

All the interchange alternatives considered are at-grade under the I-95 corridor. The only exception are the U-turn ramps that are part of the CFI configuration. As described under Alternative 3, the U-turn ramps go over the interstate touching down on the opposite ramp terminal intersection.


FLORIDA DEPARTMENT OF TRANSPORTATION DISTRICT FOUR 3400 WEST COMMERCIAL BOULEVARD FORT LAUDERDALE, FL 33309



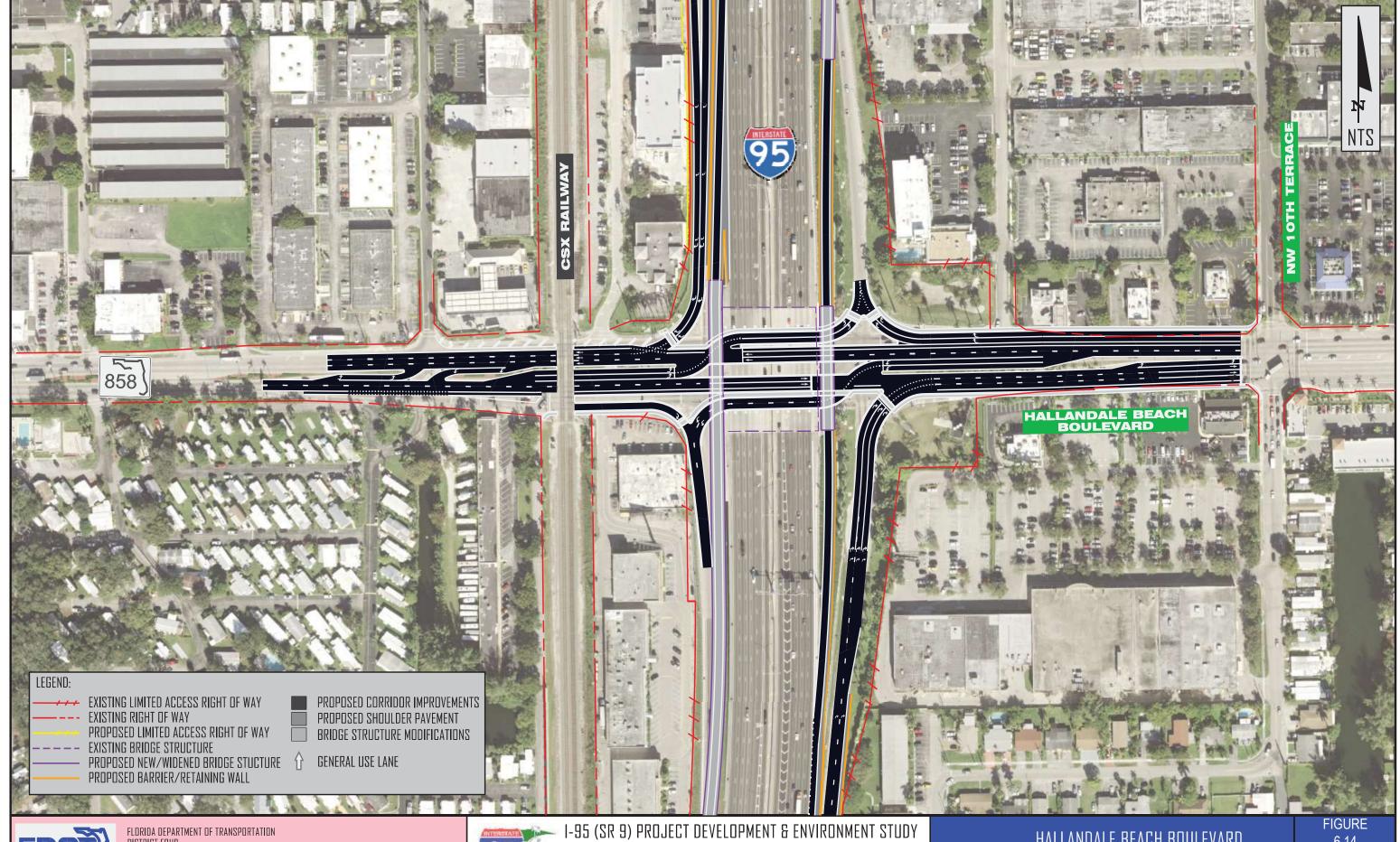
JUNE 2018

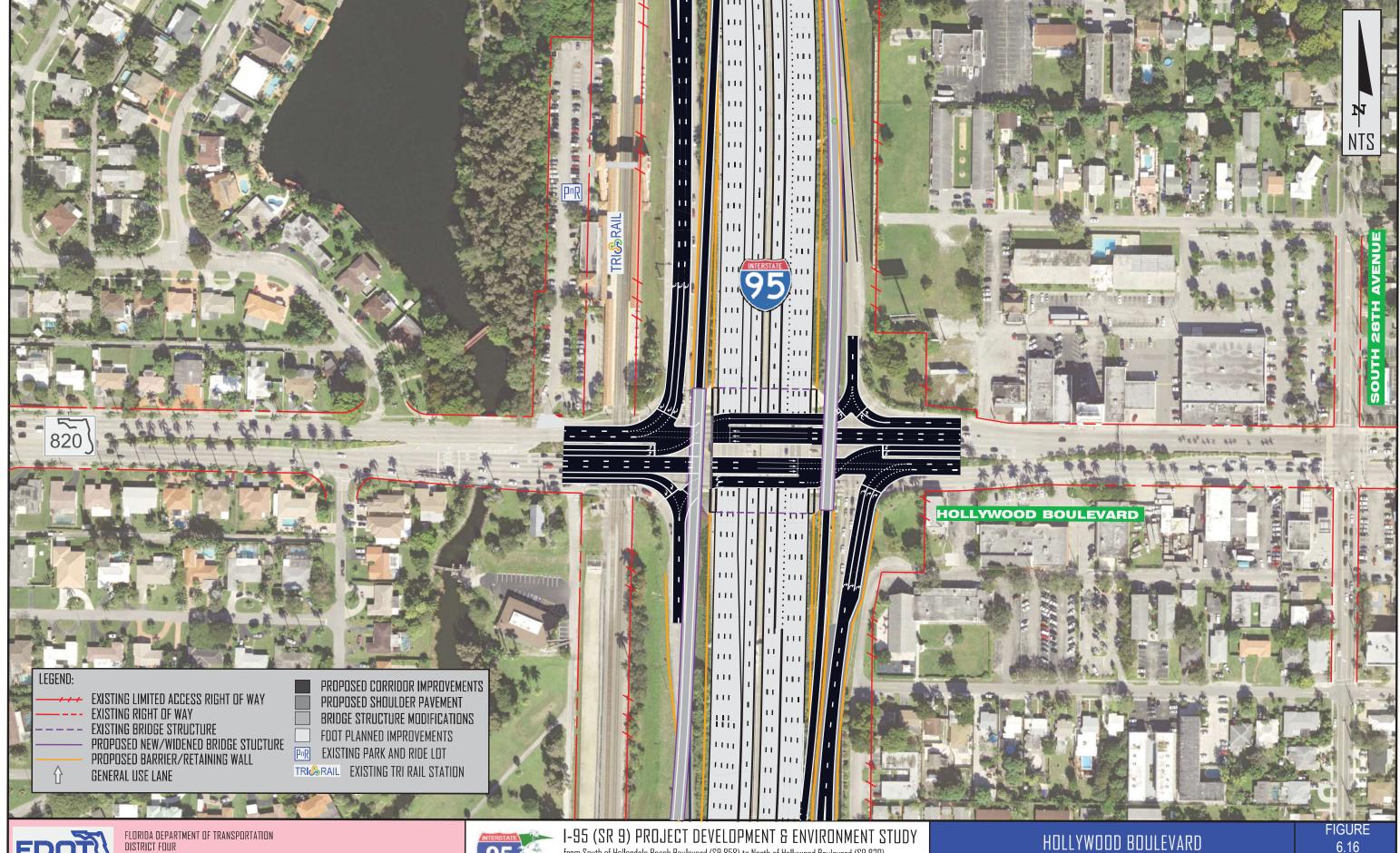



JUNE 2018



JUNE 2018




FLORIDA DEPARTMENT OF TRANSPORTATION DISTRICT FOUR 3400 WEST COMMERCIAL BOULEVARD FORT LAUDERDALE, FL 33309

6.3 ALTERNATIVES ELIMINATED

During the alternative analysis and geometrics evaluation, the following alternatives were eliminated from further consideration:

- **Alternative 3 –** This alternative was eliminated from the PD&E Study for the following reasons:
 - o Low U-turn ramp design speed (20 MPH).
 - o U-turn bridge ramps will need median piers, which will require a complex maintenance of traffic along I-95. The maintenance of traffic will impact the operations of the express lanes system.
 - o Interchange design is not uniform with the other interchanges, upstream, downstream and throughout the corridor, which impacts driver expectancy and a potential increase in crashes.
 - o Interchange design footprint is not compatible with the future I-95 projects north and south of the study limits.
- **Diverging Diamond Interchange –** This alternative was eliminated from the PD&E Study for the following reasons:
 - Low crossing lanes path design speed (30-35 MPH).
 - o Railroad at-grade crossing is too close to the crossing lanes path, which could create wrong way vehicle maneuvers and a complex operation of the railroad crossing gates.
- **Displaced Left-Turn Lane Interchange –** This alternative was eliminated from the PD&E Study for the following reasons:
 - Requires a larger footprint within the off-ramp interchange quadrants, which increases right of way impacts.
 - Railroad at-grade crossing is too close to the new upstream intersection on the west side.
 - o The design requires additional railroad crossing gates and a more complexed crossing gate operation.

Continuous Flow Intersection (CFI) – This alternative was eliminated from the PD&E Study because this interchange configuration will work with mainline Alternative 3 only, which was eliminated from the PD&E Study.

6.4 Traffic Volumes and Operational Conditions

The PD&E Study Build Alternatives analysis and evaluation were performed and completed between September 2016 and December 2018, prior to the hold of the study in 2019 (as discussed in **Section 6.1**). Prior to the hold of the study, the design year of the PD&E Study was 2040. Therefore, the information presented in this section is a summary of the 2040 design year traffic operational analysis completed as part of the alternative's analysis. Also, the analysis documented in this section did not include the FDOT District Six I-95 Planning Study, District Four I-95 CPS, and the recent changes to the I-95 Express Phase 3C Project, which were added later to the PD&E Study in 2020.

The purpose of the operational analysis is to present the preliminary results of the future traffic conditions proposed as part of the PD&E process. The objective of the operational analysis is to document the analysis and the screening process of the alternatives considered. This analysis followed the same process and methodology as the existing traffic operational analysis.

The Highway Capacity Manual (HCM), 6th Edition, as well as the Highway Capacity Software Version 7 (HCS7) were used for the operational analysis in this study. Operational analyses were performed on freeway basic segments, ramp merge/diverge junctions, and weaving sections. *Tables 6.1 – 6.4* and *Figures 6.17 – 6.20* summarize the future operational analysis results as well as link-by-link traffic volumes.

Findings – The I-95 capacity analysis shows that the corridor will operate at LOS D or better by the year 2040 within the area of influence for both Alternatives 1 and 2.

Table 6.1 – 2040 Alternative 1 Northbound Freeway Analysis Results

				Freeway		Ramp	Density	
#	I-95 Northbound Segment 2040 Alternative 1	Analysis Type	No. of Lanes	Demand* vph AM (PM)	No. of Lanes	Demand vph AM (PM)	pc/mi/ln AM (PM)	LOS AM (PM)
11	North of Sheridan St	Basic	4	6,198 (7,007)	-	-	25.3 (30.6)	C (D)
10	Hollywood Blvd On-Ramp to Sheridan St Off-Ramp	Weaving	5	6,201 (6,912)	-	-	30.1 (34.2)	D (D)
9	EL Egress to Hollywood Blvd On-Ramp	Basic	4	5,429 (5,918)	1	772 (994)	25.7 (24.3)	C (C)
8	Pembroke Rd On-Ramp to EL Egress	Basic	4	5,429 (5,918)	-	-	22.2 (24.3)	C (C)
7	Pembroke Rd On-Ramp	Merge	4	4,174 (4,411)	1	1255 (1507)	28.2 (31)	D (D)
6	Hollywood Blvd Off-Ramp to Pembroke Rd On-Ramp	Basic	4	4,174 (4,411)	-	-	17 (18)	B (B)
5	EL Ingress	Weave	5	3,304 (3,600)	-	-	22.1 (25.7)	C (C)
4	Pembroke Rd Off-Ramp	Diverge	4	4,554 (4,579)	1	1250 (979)	23.6 (22.2)	C (C)
3	Hallandale Beach Blvd Off-Ramp to Pembroke Rd Off-Ramp	Diverge	4	5,238 (5,617)	1	684 (1038)	28.6 (32)	D (D)
2	Ives Dairy Rd On-Ramp to Hallandale Beach Blvd Off-Ramp	Weave	6	4,272 (4,816)	-	-	29.8 (25.2)	D (C)
1	South Ives Dairy Rd	Basic	4	4,272 (4,816)	_	-	17.4 (19.7)	B (C)

^{*}freeway demand entering segment / # - segment number

Table 6.2 – 2040 Alternative 1 Southbound Freeway Analysis Results

				Freeway		Ramp			
#	I-95 Southbound Segment 2040 Alternative 1	Analysis Type	No. of Lanes	Demand* vph AM (PM)	No. of Lanes	Demand vph AM (PM)	Density pc/mi/ln AM (PM) 31.1 (30.3) 34.8 (23.1) 31.4 (29.4) 29 (28) 19.7 (21.1) 34.3 (34.7) 18.5 (18.5) 21.1 (20.7) 21.4 (21.2) 19.8 (20.8) 24.9 (25.4)	LOS AM (PM)	
1	North of Sheridan St	Basic	4	7,184 (7,061)	-	-	31.1 (30.3)	D (D)	
2	Sheridan St On-Ramp to Hollywood Blvd Off-Ramp	Weave	5	7,184 (7,061)	-	-	34.8 (23.1)	D (C)	
3	Pembroke Rd Off-Ramp	Diverge	4	6,959 (6,614)	1	1282 (1166)	31.4 (29.4)	D (D)	
4	EL Ingress	Diverge	4	5,677 (5,448)	1	775 (782)	29 (28)	D (C)	
5	Hollywood On-Ramp	Merge	4	4,902 (4,666)	1	943 (1220)	19.7 (21.1)	B (C)	
6	Hallandale Off-Ramp	Diverge	4	5,845 (5,886)	1	1307 (1357)	34.3 (34.7)	D (D)	
7	Hallandale Off-Ramp to Pembroke Rd On-Ramp	Basic	4	4,538 (4,529)	-	-	18.5 (18.5)	C (C)	
8	Pembroke Rd On-Ramp	Merge	4	4,538 (4,529)	1	706 (659)	21.1 (20.7)	C (C)	
9	Pembroke Rd On-Ramp to EL Egress	Basic	4	5,244 (5,188)	-	-	21.4 (21.2)	C (C)	
10	EL Egress	Merge	4	5,244 (5,188)	1	805 (957)	19.8 (20.8)	B (C)	
11	EL Egress to Hallandale Beach Blvd On-Ramp	Basic	4	6,049 (6,145)	-	-	24.9 (25.4)	C (C)	
12	Hallandale Beach Blvd On- Ramp to Ives Dairy Rd Off- Ramp	Weave	6	6,049 (6,145)	-	-	26.4 (27.2)	C (C)	
13	South of Ives Dairy Rd	Basic	4	5,033 (4,703)	-	-	20.6 (19.2)	C (C)	

^{*}freeway demand entering segment / # - segment number

#	Segment	Length	Max Weave Length	AM Demand* in vph	AM Density (LOS)	PM Demand* in vph	PM Density (LOS)]				61!	98 (7007	7)					
11	Basic North of Sheridan St	500'	-	6198	25.3 (C)	7007	30.6 (D)		EL	ш	4	1	2	3	4	/	2	Exit to	500'	Sheridan
10	Weaving Hollywood Blvd On-Ramp to Sheridan St Off-Ramp	5860'	5127'	6201	30.1 (D)	6912	34.2 (D)		EL	u.	4	1111111	2	H		5		Sheridan St 1106 (1082) Entry from	5860'	Interchange Hollywood
9	Basic EL Egress	1500'	-	5429	22.2 (C)	5918	24.3 (C)			,	† /	1111111	2 1	3	4		•	Hollywood Blvd 1103 (1177) EL Egress 772 (994)	1500'	Interchange
8	Basic Pembroke Rd On-Ramp to EL Egress	2000	-	5429	22.2 (C)	5918	24.3 (C)		EL	=	1	1	2 1	3	4				2000'	
7	Merge Pembroke Rd On-Ramp	1500'		4174	28.2 (D)	4411	31 (D)		EF		1	111111	2	l		5	_		1500'	Pembroke
6	Basic Hollywood Blvd Off-Ramp to Pembroke Rd On- Ramp	2300'	-	4174	17 (B)	4411	18 (B)		EL	=		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	1				Entry from Pembroke Rd 1255 (1507)	2300'	Interchange
5	Weave EL Ingress	3100'	6536'	3304	22.1 (C)	3600	25.7 (C)		EF	ш	4	111111	2			5	<i></i>	Hollywood Blvd 790 (1087)	3100'	
4	Diverge Pembroke Rd Off-Ramp	850'	-	4554	23.6 (C)	4579	22.2 (C)		EL	ľ			2	3	4	1	7	Entry from Hallandale Beach Blvd 1660 (1898) EL Ingress 1250 (979)	850'	
3	Diverge Hallandale Beach Blvd Off-Ramp to Pembroke Rd Off-Ramp	1300'	-	5238	28.6 (D)	5617	32 (D)	_	EL			1	2		Н	5	*	Exit to Pembroke Rd 684 (1038)	1300'	
2	Weave Ives Dairy Rd On-Ramp to Hallandale Beach Bivd Off-Ramp	5000	5228'	4272	29.8 (D)	4816	25.2 (C)		EL			111111	2	3	4	5	6	Exit to Hallandale Beach Blvd 1229 (1245)	5000'	Hallandale Interchange
1	Basic South of Ives Dairy Rd	500'		4272	17.4 (B)	4816	19.7 (C)		EL		9	1	ਰ 	GP	4 d9		5.5	Entry from Ives Dairy Rd 2195 (2046)	500'	Ives Dairy Interchange

Figure 6.17 – 2040 Alternative 1 Northbound Freeway Analysis Results

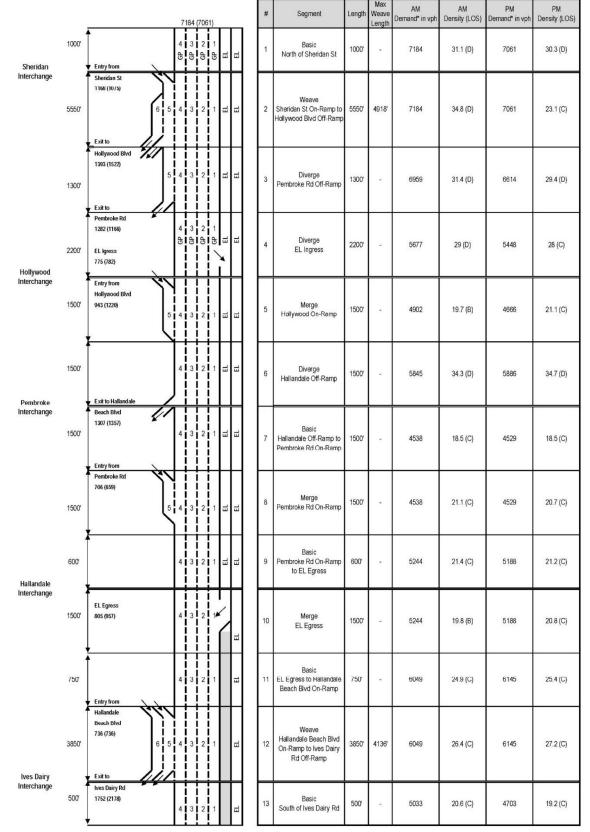


Figure 6.18 – 2040 Alternative 1 Southbound Freeway Analysis Results

Table 6.3 – 2040 Alternative 2 Northbound Freeway Analysis Results

			F	reeway		Ramp	Density	
#	I-95 Northbound Segment 2040 Alternative 2	Analysis Type	No. of Lanes	Demand* vph AM (PM)	No. of Lanes	Demand vph AM (PM)	pc/mi/ln AM (PM)	LOS AM (PM)
13	North of Sheridan St	Basic	4	6,198 (7,007)	-	=	25.6 (30)	C (D)
12	Sheridan St Off-Ramp	Diverge	4	7,304 (8,089)	2	1106 (1082)	25.5 (28.5)	C (D)
11	C-D/Hollywood Blvd On-Ramp to Sheridan St Off-Ramp	Basic	5	7,304 (8,089)	-	-	24 (27)	C (D)
10	C-D/Hollywood Blvd On-Ramp	Basic	4	4,946 (5,405)	2	2358 (2684)	31.8 (22.1)	D (C)
9	EL Egress to C-D/Hollywood Blvd On-Ramp	Basic	4	4,946 (5,405)	-	-	20.2 (22.1)	C (C)
8	EL Egress	Merge	4	4,174 (4,411)	1	772 (994)	22.3 (18.5)	C (B)
7	Hallandale Beach Blvd On-Ramp to EL Egress	Basic	4	4,174 (4,411)	-	-	17 (18)	B (B)
6	Hallandale Beach Blvd On-Ramp	Merge	4	2,514 (2,513)	1	1660 (1898)	17.4 (19.3)	B (B)
5	EL Ingress to Hallandale Beach Blvd On-Ramp	Basic	4	2,514 (2,513)	-	-	10.3 (10.3)	A (A)
4	EL Ingress	Diverge	4	3,764 (3,492)	1	1250 (979)	23.3 (20.6)	C (C)
3	C-D	Diverge	4	5,238 (5,617)	2	1474 (2125)	26.6 (31.9)	C (D)
2	Ives Dairy Rd On-Ramp to Hallandale Beach Blvd Off-Ramp	Weave	6	4,272 (4,816)	-	-	22.9 (25.2)	C (C)
1	South of Ives Dairy Rd	Basic	4	4,272 (4,816)	-	-	17.4 (19.7)	B (C)

^{*}freeway demand entering segment

Table 6.4 – 2040 Alternative 2 Southbound Freeway Analysis Results

			F	reeway		Ramp	Density pc/mi/ln AM (PM) 31.1 (30.3) 34 (32.8) 23.3 (22.2) 29 (28) 20 (19) 19.7 (21.1) 24 (24.2)	
#	I-95 Southbound Segment 2040 Alternative 2	Analysis Type	No. of Lanes	Demand* vph AM (PM)	No. of Lanes	Demand vph AM (PM)	pc/mi/ln	LOS AM (PM)
1	North of Sheridan St	Basic	4	7,184 (7,061)	-	-	31.1 (30.3)	D (D)
2	Sheridan St On-Ramp to Hollywood Blvd Off-Ramp	Weave	5	7,184 (7,061)	-	-	34 (32.8)	D (D)
3	Hollywood Blvd Off-Ramp to EL Ingress	Basic	4	5,677 (5,448)	-	ı	23.3 (22.2)	C (C)
4	EL Ingress	Diverge	4	5,677 (5,448)	1	775 (782)	29 (28)	D (C)
5	EL Ingress to Hollywood On- Ramp	Basic	4	4,902 (4,666)	-	-	20 (19)	C (C)
6	Hollywood On-Ramp	Merge	4	4,902 (4,666)	1	943 (1220)	19.7 (21.1)	B (C)
7	Hollywood On-Ramp to Hallandale Beach Blvd Off-Ramp	Basic	4	5,845 (5,886)	-	-	24 (24.2)	C (C)
8	Hallandale Beach Blvd Off-Ramp	Diverge	4	5,845 (5,886)	1	1307 (1357)	23.5 (23.9)	C (C)
9	Hallandale Beach Blvd Off-Ramp to EL Egress	Basic	4	4,538 (4,529)	-	-	18.5 (18.5)	C (C)
10	EL Egress	Merge	4	4,538 (4,529)	1	805 (957)	21.8 (23)	C (C)
11	Hallandale Beach Blvd On-Ramp	Basic	4	5,343 (5,486)	1	736 (736)	21.8 (22.4)	C (C)
12	Pembroke Rd On-Ramp to Ives Dairy Rd Off-Ramp	Weave	6	6,079 (6,222)	-	-	23.3 (22.9)	C (C)
13	South of Ives Dairy Rd	Basic	4	5,033 (4,703)	-	-	20.6 (19.2)	C (C)

^{*}freeway demand entering segment

^{# -} segment number

^{# -} segment number

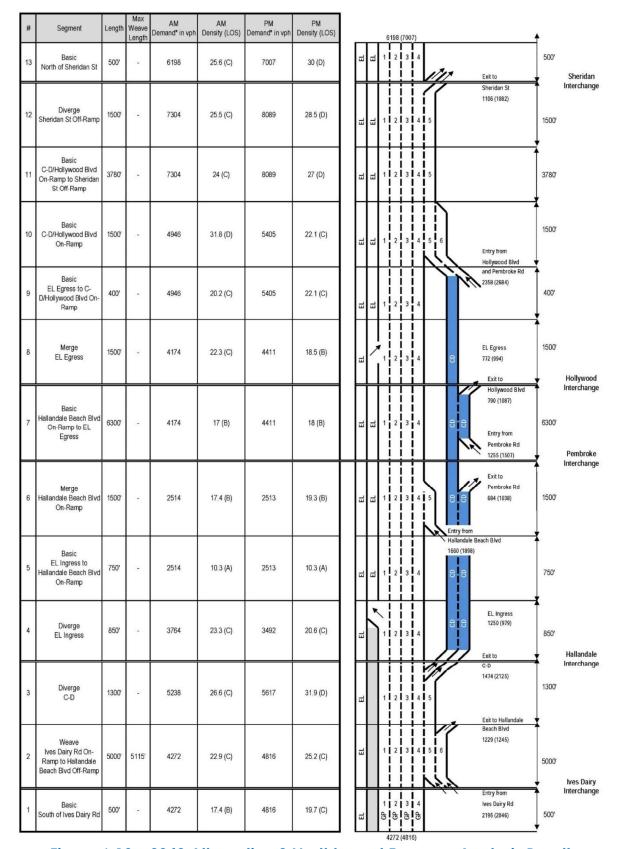


Figure 6.19 – 2040 Alternative 2 Northbound Freeway Analysis Results

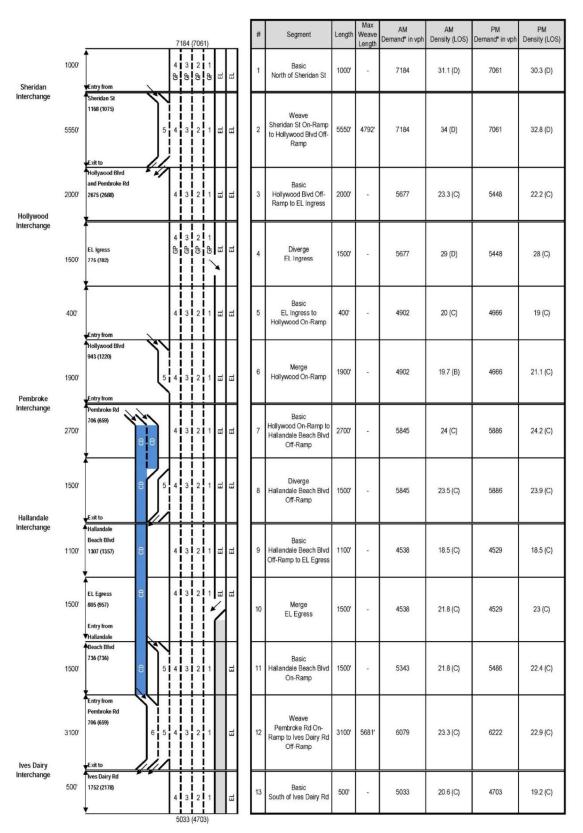


Figure 6.20 – 2040 Alternative 2 Southbound Freeway Analysis Results

6.5 SELECTION OF PREFERRED ALTERNATIVE

Alternative 2 was selected as the preferred alternative based on the alternatives alignment analysis and the evaluation results documented during the PD&E Study. The evaluation methodology used in this study involved a combination of both comparative qualitative and quantitative analyses to determine a preferred alternative, which focused on engineering, traffic, socio-economic, environmental and project cost (see **Table 6.5** – Evaluation Matrix). The evaluation matrix was completed in 2019 during the alternative analysis process. Alternative 2 was later refined in 2023. The key components of the alternatives analysis were purpose and need, travel demand forecasting, geometrics, right of way impacts, construction cost and operational analysis. The alternatives analysis was geared to determine which capacity improvements were necessary to improve traffic operations, safety, interchange access, system linkage, modal interrelationships, social demand, economic development and emergency evacuation. Alternative 2 is the most prudent when compared with Alternative 1 for the following reasons:

 Capacity - The collector distributor roadway system removes I-95 mainline traffic, which provides more capacity to several mainline segments of I-95. Alternative 2 will add the capacity improvements necessary to improve traffic operations of the I-95 mainline and interchanges.

In Alternative 2, average operating speeds along the northbound direction (AM peak, peak direction) increase by at least 10 mph (from 30-45 mph to 55 mph). In the southbound direction (PM peak, peak direction), average operating speeds show an increase of at least 21 mph (from 20-35 mph to 56 mph). At the networkwide level, in terms of average speed, Alternative 2 shows better performance than the No-Build during both peak periods with speed increases of 8% (AM) and 5% (PM). Network delay time reductions were 29% (AM) and 24% (PM).

The operational analysis conducted in the PD&E Study confirmed that the proposed improvements to the I-95 mainline and interchange modifications will not have any significant adverse impacts on safety and operations along I-95. The proposed modifications will improve traffic operations and enhance safety. When compared with the No-Build Alternative, Alternative 2 significantly improves operations along I-95 and its interchanges.

• **Safety –** Reduces the number of entrances and exits to and from I-95, which improves the overall operations of the I-95 mainline, ramps, and interchanges. Reduces long-term crashes related to heavy congestion, mainline weaving maneuvers, mainline

and ramp speed differentials, and interstate access. Provides more off-ramp storage and requires less signage on the mainline due to less access points.

Alternative 2 will enhance safety by addressing the capacity needs and improving the operations and access between the I-95 mainline and interchanges. The proposed improvements will reduce the number of entrances and exits to and from I-95 from 12 to 8, which improves the overall operations of the I-95 mainline, ramps, and interchanges. The proposed improvements are expected to reduce crashes related to mainline weaving maneuvers. Alternative 2 reduces the number of weaving movements from 8 to 3 and eliminates speed differentials between the mainline and ramps. The additional ramp terminal capacity and the proposed collector distributor roadway system will provide more off-ramp storage, which eliminates the queue from the ramps extending to the I-95 mainline. Adding the proposed collector distributor roadway system and parallel on and off-ramps will require less signage on the I-95 mainline between interchanges due to less proposed access points. Removing the Pembroke Road Interchange and combining interchange exit and entry ramps improves interchange spacing from 0.7 to 1.8 miles. The proposed improvements will address the safety issues at the interchange entry and exit points by increasing gaps along the general use lanes providing more space for vehicles entering and exiting I-95 without weaving conflicts and/or last-minute lane changes.

Data from historical crash records identified multiple high crash segments and high crash spots along I-95. Traffic congestion along I-95 is a contributing factor for much of the crashes experienced along the corridor. The potential for future increase in crashes is largely alleviated by the improvements proposed by Alternative 2. Closely spacing between the three interchanges was maximized to eliminate the existing substandard weaving segments. On-ramp traffic entering I-95 will have a better gap acceptance when merging in with the I-95 mainline traffic.

- System Linkage Alternative 2 will match the planned improvements for the adjacent projects south and north of the project limits. Removing the Pembroke Road interchange from directly interacting with I-95 improves the mobility and access in and out of Pembroke Road and adjacent roadways.
- **Modal Interrelationships** The additional capacity provides the ability to enhance/improve bus service, which offers an alternative to auto travel and addresses needs of low-income users and disadvantaged groups.

Table 6.5 – Evaluation Matrix

		EVALUATION MAT	RIX		
Versional on / Descriptions	No Build Albamadica	Duiled Albamanhing 1	Duild Albamadica O	Best Build	Alternative
Variables/Parameters	No-Build Alternative	Build Alternative 1	Build Alternative 2	Alternative 1	Alternative 2
		Engineering			
Geometric Compliance to Design Criteria	No change	Meets criteria Substandard interchange spacing Relocation of off-ramps impacts uniformity of the corridor	Meets criteria Combines ramps improving interchange spacing Maintains ramp uniformity		✓
Multimodal Facilities	No change	Provides the ability to enhance bus service operations Improves bicycle and pedestrian facilities Impacts public transportation shuttle route between Pembroke Road and Hollywood Boulevard	Provides the ability to enhance bus service operations Improves bicycle and pedestrian facilities Impacts public transportation shuttle route between Pembroke Road and Hollywood Boulevard	√	✓
Mobility	Increased congestion	Adds capacity Improves the traffic operations of the area	Adds capacity Improves the traffic operations of the area Removing the Pembroke Road interchange from directly interacting with I-95 improves the mobility and access in and out of Pembroke Road		✓
Safety Improvements	Includes planned/ programmed ramp terminal safety improvements	Reduces long-term crashes related to heavy congestion, mainline weaving maneuvers, mainline and ramp speed differentials and interstate access	Reduces long-term crashes related to heavy congestion, mainline weaving maneuvers, mainline and ramp speed differentials and interstate access Reduces the number of entrances and exits to/from I-95		✓
Drainage Analysis	No impact	Less impacts than Alternative 2 Alternative 1 requires a smaller roadway footprint	More impacts than Alternative 1 Alternative 2 requires a larger roadway footprint	✓	
Structures Analysis	No change	New bridges = 4 Bridge widenings = 2 Less new bridges than Alternative 2	New bridges = 5 Bridge widenings = 2 More new bridges than Alternative 1	✓	
Utility Impacts	No impact	5 Major impacts, 7 Minor impacts	5 Major impacts, 7 Minor impacts	✓	✓
Maintenance of Traffic	No impact	Moderate impacts during construction Less impacts than Alternative 2	Moderate impacts during construction More impacts than Alternative 1	√	
Purpose and Need	Does not meet	Meets	Meets	✓	✓

Table 6.5 – Evaluation Matrix (Continued)

		EVALUATION MAT	RIX		
Variables/Parameters	No-Build Alternative	Build Alternative 1	Build Alternative 2	Best Build	Alternative
variables/raiameters	No-Build Allemanive	build Allemative 1	build Allemative 2	Alternative 1	Alternative 2
		Traffic			
I-95 Mainline Weave Locations	Northbound = 4 Southbound = 4	Northbound = 3 Southbound = 2	Northbound = 1 Southbound = 2 Alternative 2 has less weave locations than Alternative 1		✓
I-95 Locations with better than LOS D by 2040 AM (PM)	15 (14) = 29	15 (17) = 32	22 (20) = 42 More locations with LOS A, B & C		✓
I-95 Locations with LOS D by 2040 AM (PM)	5 (6) = 11	9 (7) = 16 More locations with LOS D	4 (6) = 10	✓	
I-95 Locations with LOS E/F by 2040 AM (PM)	4 (4) = 8	0 (0) = 0	0 (0) = 0	✓	✓
Number of mainline access points	6 locations Northbound 6 locations Southbound	6 locations Northbound 6 locations Southbound	4 locations Northbound 4 locations Southbound Less mainline access points		✓
Northbound Mainline Access	Hallandale to Pembroke access maintained Pembroke to Hollywood access maintained	Hallandale to Pembroke access not provided Pembroke to Hollywood not provided	Hallandale to Pembroke access not provided Pembroke to Hollywood access maintained via CD Pembroke to Hollywood access is maintained		✓
Southbound Mainline Access	Hollywood to Pembroke access maintained Pembroke to Hallandale access maintained	Hollywood to Pembroke not provided Pembroke to Hallandale not provided	Hollywood to Pembroke not provided Pembroke to Hallandale not provided	✓	✓
*Northbound Off-Ramp Storage	Hallandale ~ 1,550 ft Pembroke ~ 1,760 ft Hollywood ~ 1,920 ft	Hallandale ~ 1,800 ft Pembroke ~ 4,575 ft Hollywood ~ 5,950 ft	Hallandale ~ 2,100 ft Pembroke ~ 4,575 ft Hollywood > 5,950 ft Provides more storage for off-ramps		✓
*Southbound Off-Ramp Storage	Hollywood ~ 1,875 ft Pembroke ~ 2,050 ft Hallandale ~ 1,950 ft	Hollywood ~ 2,625 ft Pembroke ~ 6,500 ft Hallandale ~ 4,880 ft Overall Alternative 1 has more storage when compared to Alternative 2.	1. Hollywood ~ 2,575 ft 2. Pembroke ~ 7,800 ft 3. Hallandale ~ 1.950 ft	✓	
Mainline Traffic	No change	Some traffic is removed from the mainline with the relocation of the off-ramps	More traffic is removed from the mainline with the addition of the C-D system		✓

Table 6.5 – Evaluation Matrix (Continued)

		EVALUATION MATE	RIX		
Variables/Parameters	No-Build Alternative	Build Alternative 1	Build Alternative 2	Best Build	Alternative
Variables/Parameters Mainline Signage Right of Way Impacts Social and Neighborhood Impacts Economic, Mobiity and Employment Impacts Community Services/Features Air Quality	No-Build Alternative	bulla Alfernative 1	bulla Alfernative 2	Alternative 1	Alternative 2
Mainline Signage	No change	Similar to No-Build	Less signage on mainline due to less access points		✓
		Socio-Economic			
Right of Way Impacts	None	Total Number of Parcels Affected = 32 Commercial = 27 Residential = 2 Vacant = 3 Less right of way impacts than Alternative 2	Total Number of Parcels Affected = 35 Commercial = 27 Residential = 5 Vacant = 3	√	
	None/No change	Provides the ability to enhance/improve bus service which offers an alternative to auto travel and addresses needs of low-income users and disadvantaged groups. Aesthetic effects anticipated to the Highland Garden neighborhood, which is adjacent to an elevated on-ramp	Provides the ability to enhance/improve bus service which offers an alternative to auto travel and addresses needs of low-income users and disadvantaged groups. Aesthetic effects not anticipated to the Highland Garden neighborhood		~
The state of the s	No change	Improves mobility, throughput, travel speeds and travel time for this vital SIS facility and cross streets Supports economic development and reduces congestion	Improves mobility, throughput, travel speeds and travel time for this vital SIS facility and cross streets Supports economic development and reduces congestion	√	✓
	No change	Government facilities and public parks are located adjacent to the corridor but no disruption in their function and/or the services provided are anticipated; Service access to St. John's Lutheran Church will be modified. No other access conflicts anticipated, no impacts to emergency services anticipated.	Government facilities and public parks are located adjacent to the corridor but no disruption in their function and/or the services provided are anticipated. Service access to St. John's Lutheran Church will be modified. No other access conflicts anticipated; No impacts to emergency services anticipated.	✓	✓
		Environment			
Air Quality	Project is located within an attainment area. Minimal potential impacts may occur from increased congestion.	The project is located within an attainment area, no significant air quality impacts are anticipated. Project is anticipated to decrease congestion.	The project is located within an attainment area, no significant air quality impacts are anticipated. Project is anticipated to decrease congestion.	✓	✓
Contamination	No change	6-High and 6-Medium known/potentially contaminated sites Less impacts than Alternative 2	8-High and 6 -Medium known/potentially contaminated sites	✓	

Table 6.5 – Evaluation Matrix (Continued)

		EVALUATION MAT	RIX		
Versienblee / Description	No Duild Albamatica	Duile Albertative 1	Duild Albertachine O	Best Build	Alternative
Variables/Parameters	No-Build Alternative	Impacts to OSW 4, OSW 5, and Swale 1 Less impacts than Alternative 2 Equivalent water quality treatment will be provided to meets state water quality criteria Potential for improvement possible based on the proposed drainage system 3 National Register– eligible historic resources No adverse effects Cost	Build Alternative 2	Alternative 1	Alternative 2
Listed Species/Wetland Impacts	No impact	· · · · · · · · · · · · · · · · · · ·	Impacts to OSW 4, OSW 5, Swale 1 and Swale 2	✓	
Water Quality	No impact/No improvement (portions of Hollywood Boulevard, Pembroke Road and Hallandale Beach Boulevard are not permitted by SFWMD)	Potential for improvement possible based on the	Equivalent water quality treatment will be provided that meets state water quality criteria Potential for improvement possible based on the proposed drainage system.	✓	✓
Cultural/Historic/ Archaeological Impacts	No impact		3 National Register– eligible historic resources No adverse effects	✓	√
		Cost			
Construction Cost	No construction, No cost involved = \$0	\$127 Million	\$105 Million Lower cost when compared to Alternative 1		√
Right of Way/Business Damages	None = \$0	\$53 Million	\$57 Million	√	
			Totals	19	22

• **Transportation Demand** – Alternative 2 adds capacity to I-95. The additional auxiliary lanes, collector distributor roadway system and interchange ramps address the transportation demand within the study limits. These improvements are consistent with the local and State transportation plans.

The additional capacity improvements will provide added operational benefits to support future Bus Services, Emergency Response Services and improved travel time reliability in and out of the interstate. Significant improvements were also shown for the latent delay/demand, and total stops.

- Social Demand and Economic Development Social and economic demands within the study limits will continue to increase as population and employment increase. The proposed improvements will add the necessary capacity to improve access to the municipalities of Hallandale Beach, Pembroke Park, and Hollywood, which will allow the economic development to take advantage of the added capacity to reach the destinations of I-95 and surrounding cities.
- **Evacuation Route** In the case of an evacuation event, I-95 will have additional lanes with Alternative 2. The additional lanes will make the corridor more effective during emergency evacuation events and emergency response.

Based on the evaluation conducted and documented in this report, it is clear that Alternative 2 will meet the purpose and need of the project and the overall project objectives of this PD&E Study.

The preferred alternative was selected in early 2019 prior to FDOT District Four decided to put the I-95 PD&E Study on hold and perform the I-95 CPS (see **Section 6.1** for details). The I-95 CPS was completed in April 2020. The I-95 PD&E Study restarted in June 2020 and consisted of the same purpose and need. However, the main difference was that the study assumed that both projects, District Six I-95 Planning Study and District Four I-95 Express Phase 3C improvements, will be in-place by the design year 2045. The I-95 PD&E Study restart approach was to redesign the preferred alternative to fit within the I-95 CPS Alternative 1A footprint and be compatible with the future projects north and south of the study limits.

6.6 Preferred Alternative Refinements

On September 8, 2021, shortly after the Public Hearing, the Town Commission of the Town of Pembroke Park submitted a resolution to FDOT requesting to remove the impacts to the existing business properties at the I-95/Hallandale Beach Boulevard Interchange within the Town of Pembroke Park from the I-95 PD&E Study proposed improvements. The resolution also requested to consider other improvements that do not include impacts to these properties within the Town's limits.

On September 14, 2021, the City Commission of the City of Hollywood submitted a resolution rejecting the I-95 PD&E Study preferred alternative recommendations. The resolution recommended to move forward with the No-Build Alternative or modify the preferred alternative recommendations. The City had the following concerns with respect to the preferred alternative:

- Elimination of the direct access between Hallandale Beach Boulevard, Pembroke Road and Hollywood Boulevard with I-95 and the impact on local roadway network.
- Elimination of the City of Hollywood emergency vehicle access to this segment of the I-95 corridor.
- FDOT's drainage needs for the new improvements and their intention to utilize approximately eight acres of the newly acquired Sunset Property or Orangebrook Golf Course.

In 2023, modifications to the preferred alternative were made and presented to the local municipalities. A resolution from the City of Hollywood was then passed on April 4, 2023, supporting FDOT's new preferred alternative. The City of Hallandale Beach sent a letter supporting the project on July 10, 2023. The Town Commission of the Town of Pembroke Park passed a resolution on December 13, 2023, agreeing with the proposed project improvements. Therefore, all concerns and issues raised by the local municipalities were addressed by FDOT. *Figures 6.21 and 6.22* show the schematic geometric layout of the previous and refined Preferred Alternatives respectively.

The preferred alternative refinements and further analyses are documented in **Section 7.0**.

Figure 6.21 – Previous Preferred Alternative Schematic Line Diagram

Figure 6.22 – Refined Preferred Alternative Schematic Line Diagram

7.0 PREFERRED ALTERNATIVE

7.1 Preferred Alternative Roadway Network

The preferred alternative roadway typical section varies slightly. It consists primarily of four 11-foot wide express lanes (two in each direction), eight 11 to 12-foot wide general use lanes (four in each direction), a two to four-foot wide buffer area with pavement markings and express lane markers separating the general use lanes from the express lanes, eight to 12-foot wide inside shoulders, 12-foot wide outside shoulders, 12-foot wide auxiliary lanes at select locations, and a 2.5-foot wide center barrier wall.

Modifications along the mainline result from the FDOT District Six I-95 PD&E Study and FDOT District Four 95 Express 3C Construction project. The three I-95 roadway cross sections between interchanges are depicted in **Figure 7.1 – Figure 7.3**.

The PD&E Study proposes a combination of ramp modifications and collector distributor roads adjacent to the I-95 mainline lanes.

Between Ives Dairy Road and Hallandale Beach Boulevard, the PD&E Study proposes relocating the Pembroke Road southbound on-ramp to enter south of Hallandale Beach Boulevard. This roadway section includes a one-lane 15-foot wide ramp/bridge with 6-foot wide inside and outside shoulders parallel to I-95.

Between Hallandale Beach Boulevard and Pembroke Road, the PD&E Study proposes relocating the Pembroke Road southbound on-ramp to enter south of Hallandale Beach Boulevard. This roadway section includes a one-lane 15-foot wide ramp/bridge with 6-foot wide inside and outside shoulders parallel to I-95 and grade separated over the Hallandale Beach Boulevard southbound off-ramp.

In the northbound direction, the PD&E Study proposes relocating the Pembroke Road northbound off-ramp to enter south of Hallandale Beach Boulevard. The off-ramp crosses over the on-ramp from Hallandale Beach Boulevard and stays elevated until reaching Pembroke Road. The preferred alternative is proposing a new local ramp connection between Hallandale Beach Boulevard and Pembroke Road. This connection will allow local traffic to travel northbound between the two crossing roadways without entering the I-95 mainline lanes. This roadway section includes a one-lane 15-foot wide ramp/bridge with 6-foot wide inside and outside shoulders parallel to I-95 and grade separated over the

local connection. The local connection has a one-lane 15-foot wide roadway with inside and outside shoulders varying from 0 – 6 foot wide, parallel to I-95.

Between Pembroke Road and Hollywood Boulevard, the PD&E Study proposes a northbound collector distributor road. The existing off-ramp to Hollywood Boulevard is relocated from south of Hollywood Boulevard to just north of the I-95/Pembroke Road bridge overpass. The on-ramp from Pembroke Road merges with the off-ramp to Hollywood Boulevard, becoming a two-lane collector distributor road. This roadway section includes two 12-foot wide lanes with an eight-foot wide inside shoulder and 12-foot wide outside shoulder.

In the southbound direction, the preferred alternative also proposes a collector distributor road between north of Hollywood Boulevard and Pembroke Road. This roadway section includes a one-lane 15-foot wide ramp/bridge with 6-foot wide inside and outside shoulders parallel to I-95.

The preferred alternative is proposing interchange, ramp and intersection improvements to support the optimal operations of the corridor. The express lane access points at Hollywood Boulevard are currently under construction by the 95 Express Phase 3C project. **Figure 7.4** depicts all the improvements proposed by the preferred alternative. **Appendix N** shows the Preferred Alternative Concept Plans.

The approach to evaluate the proposed interchange improvements is summarized below:

- Maintain the existing interchange configuration and interstate bridge structures by adding capacity to the ramps and ramp terminal intersections.
- Additional lane capacity was determined by incrementally increasing the number of lanes until the desired LOS was achieved. This process was limited based on impacts to the right of way, adjacent properties, and impacts to the existing interstate bridge structures.
- The maximum allowed number of intersection turn lanes was set to three left turn lanes and three right turn lanes.
- Most of the arterial improvements beyond the ramp terminal intersections were removed from the Preferred Alternative at the request of FDOT due to public opposition to right of way impacts. Improvements along the arterials were focused on interstate/interchange access improvements at the ramp terminals.

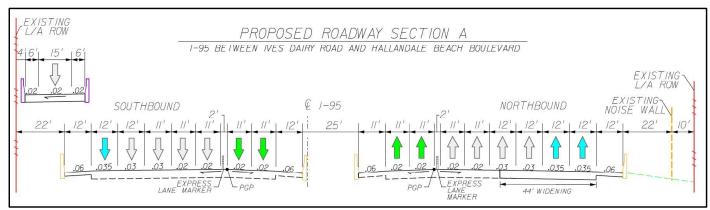


Figure 7.1 – Preferred Alternative Roadway Section between Ives Dairy Road and Hallandale Beach Boulevard

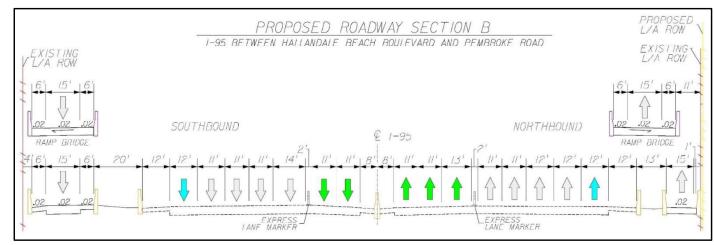


Figure 7.2 – Preferred Alternative Roadway Section between Hallandale Beach Boulevard and Pembroke Road

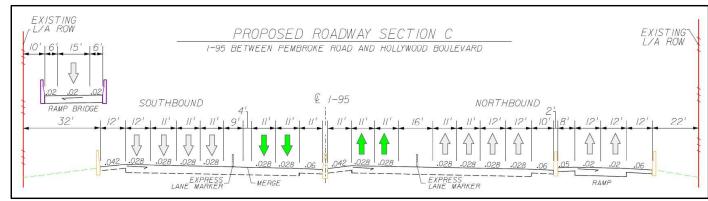
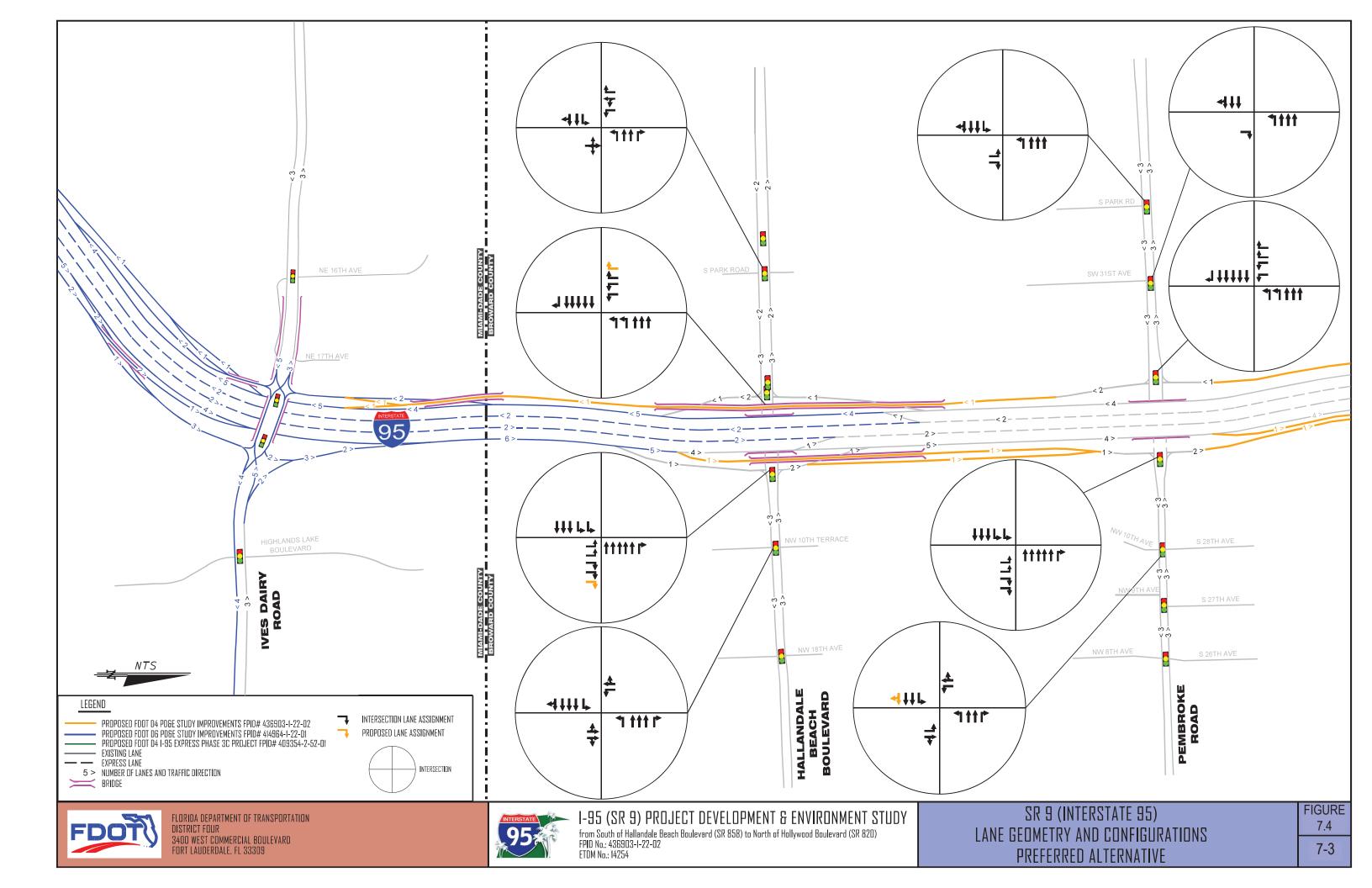
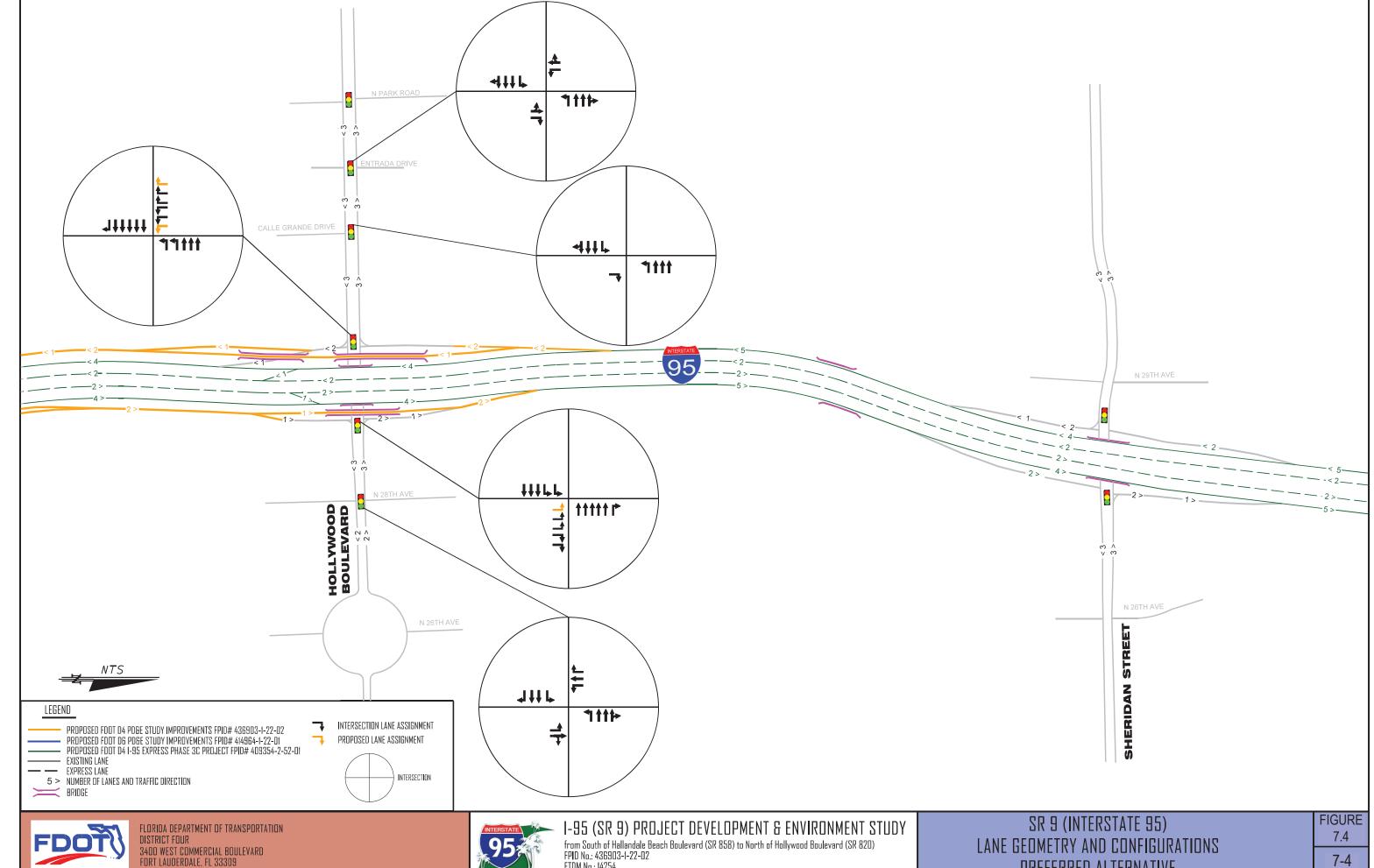
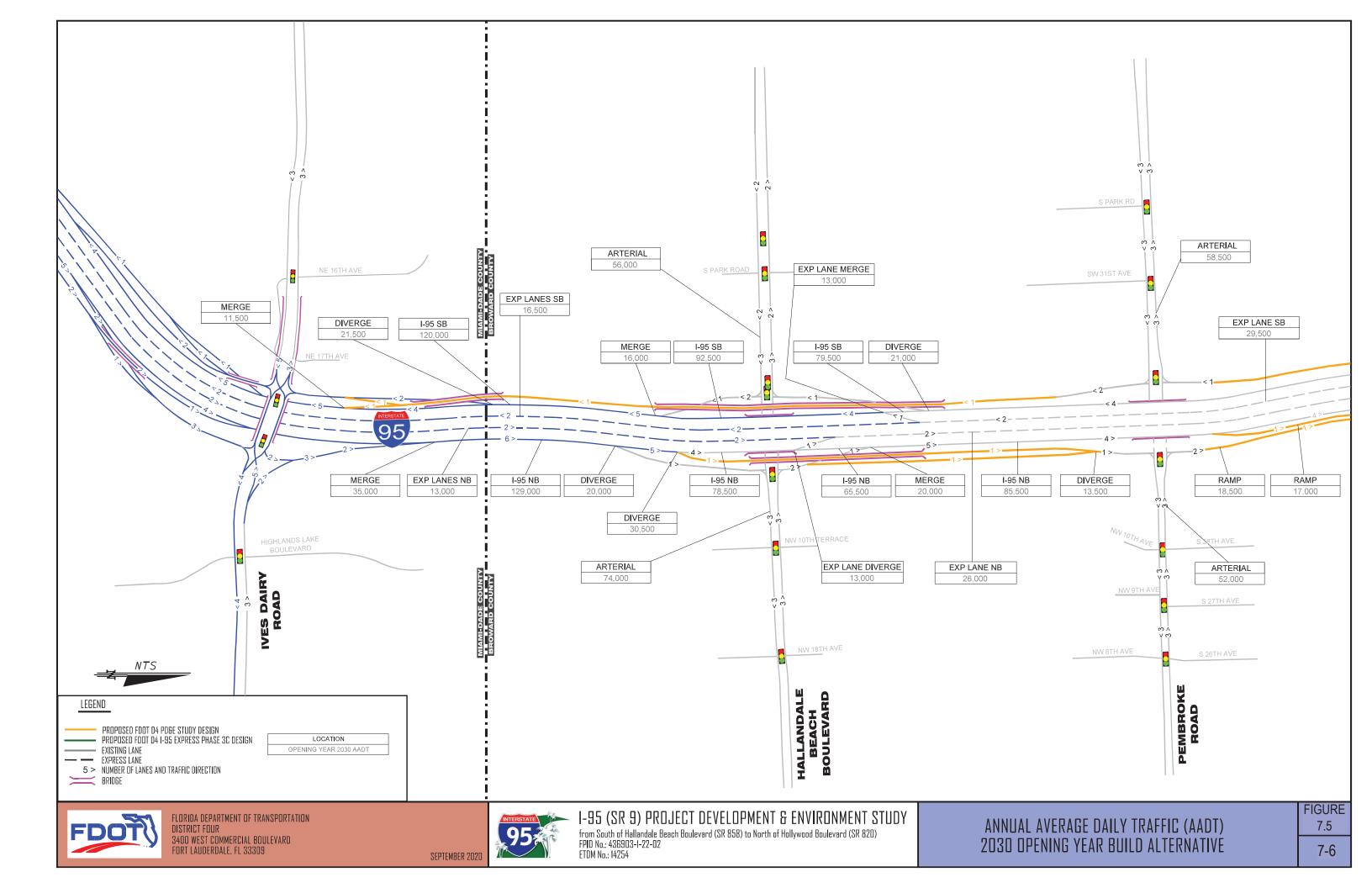
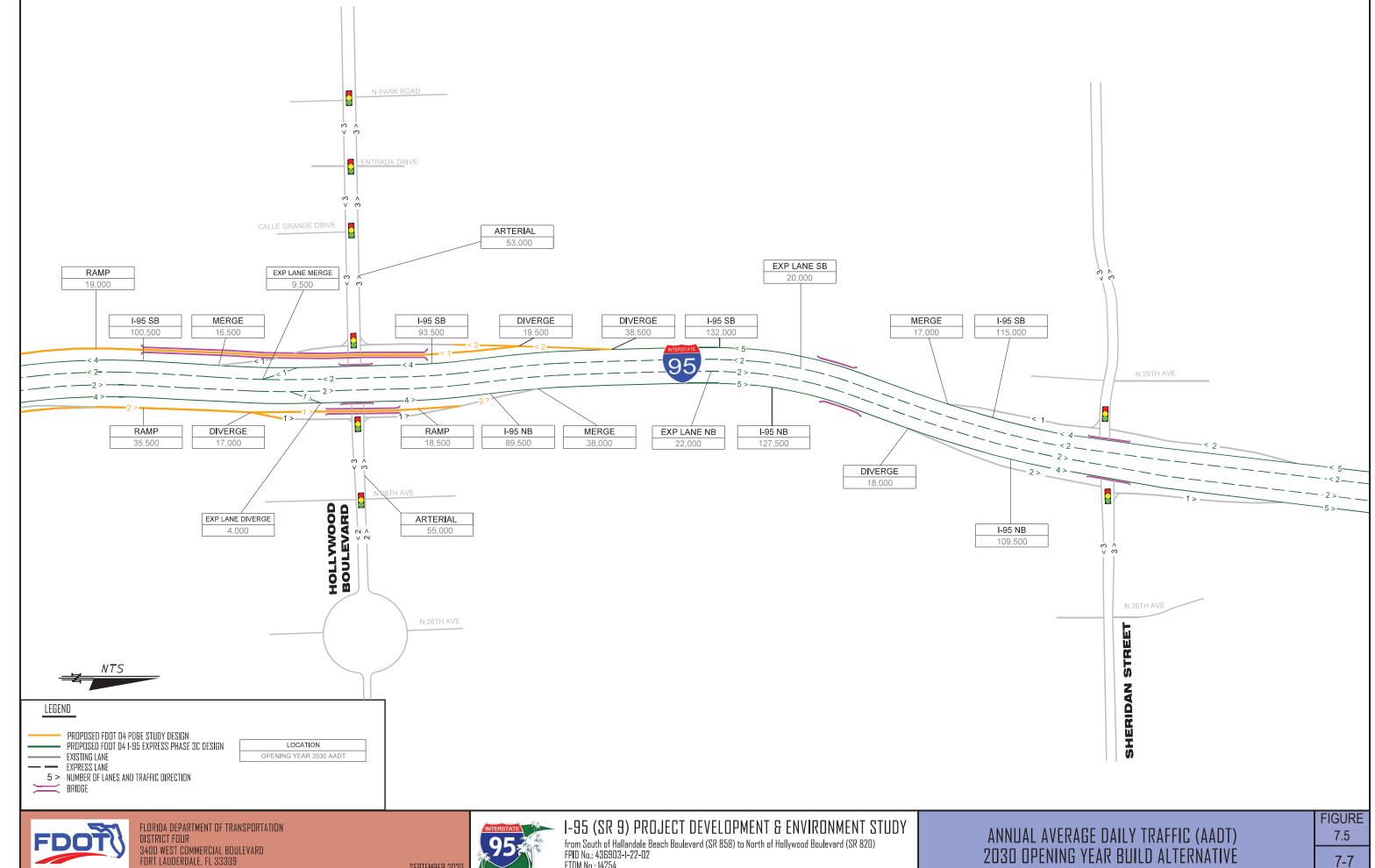




Figure 7.3 – Preferred Alternative Roadway Section between Pembroke Road and Hollywood Boulevard





7.2 Preferred Alternative – 2030 Traffic Forecast

Opening year 2030 traffic forecast was developed for the Preferred Alternative consistent with the methodology defined in **Section 2.0** of this SIMR. Opening year traffic was developed by interpolation between the years 2016 and 2045. **Figure 7.5** shows the Preferred Alternative 2030 AADT volumes for the study area.

SEPTEMBER 2020

7.3 Preferred Alternative – 2030 Operational Analysis

7.3.1 I-95 OPERATIONAL ANALYSIS

Density, volume/capacity ratio, and LOS of each freeway facility were used as MOEs, which is consistent with the existing conditions analysis. The Preferred Alternative 2030 mainline/basic, weaving, and ramp merge/diverge analysis results are summarized in **Tables 7.1 – 7.2**. The analysis results are also schematically summarized in **Figure 7.6**. Output HCS reports are included as **Appendix O**.

Findings – The capacity analysis shows that all locations will operate at LOS D or better by the year 2030 within the area of influence.

This HCM analysis was conducted as an initial screening evaluation of the Preferred Alternative refinements. HCM results were used to discuss the preliminary results of the refinements with FDOT and local stakeholders for concurrence and approval before performing microsimulation.

Table 7.1 – 2030 Preferred Alternative Northbound Freeway Analysis Results

	Table 7.1 – 2030 Preferred	Aiternati	ve no	rinbouna i	rreeway <i>P</i>	inaiysis ke	SUITS	
	I-95 Northbound Segment	Analysis	No.	Demand	Freeway	Ramp	Density	
#	2030 Preferred Alternative	Туре	of Lanes	vph AM(PM)	V/c Ratio	AM(PM)	(pc/mi/ln)	LOS
25	Sheridan Street Off-Ramp	Diverge	2	1,161(1,202)	0.72(0.59)	0.30(0.31)	21.7(19.0)	C(C)
24	Hollywood Boulevard On-Ramp to Sheridan Street Off-Ramp	Basic	5	8,410(7,909)	0.72 (0.59)	-	26.4(21.5)	D(C)
23	Hollywood Boulevard/Collector Distributor Road On-Ramp	Merge	2	2,474(2,303)	0.60(0.50)	0.64(0.59)	20.7(16.7)	D(C)
22	Express Lane Egress to Hollywood Boulevard On-Ramp	Basic	4	5,936(5,606)	0.62 (0.48)	-	22.3(17.4)	C(B)
21	Express Lane North of Hollywood Boulevard	Basic	2	1,332(1,244)	0.32 (0.33)	-	-	-
20	Express Lane Egress	Merge	1	649(518)	0.62 (0.48)	0.32 (0.26)	24.1(18.6)	B (B)
19	Collector Distributor Road north of Hollywood Boulevard	Ramp	1	1,240(1,105)	-	0.65 (0.58)	-	-
18	Collector Distributor off-ramp into Hollywood Boulevard	Diverge	1	1,092(1,351)	-	0.52(0.64)	-	-
17	Collector Distributor Road south of Hollywood Boulevard	Ramp	2	2,332(2,456)	-	0.61 (0.65)	-	-
16	Collector Distributor Road north of Pembroke Road	Ramp	1	1,313(1,179)	-	0.69 (0.62)	-	-
15	Pembroke Off-ramp to Express Lane Egress	Basic	4	5,287(5,088)	0.54 (0.42)	-	19.6(15.3)	C(B)
14	Pembroke Off-ramp	Diverge	1	1,019(1,277)	0.64(0.55)	0.53(0.66)	25.2(22.0)	D(C)
13	On-ramp into Collector Distributor Road north of Hallandale Beach Boulevard	Ramp	1	93(93)	-	0.05(0.05)	-	-
12	From Hallandale Beach Blvd to Pembroke Rd Off-ramp	Basic	4	6,306(6,365)	0.64(0.55)		23.1 (20.0)	C(C)
11	Hallandale Beach Boulevard On-Ramp	Merge	1	1,584(1,591)	0.66(0.57)	0.8(0.8)	26.1(22.3)	C(C)
10	Express Lane Ingress to Hallandale Beach Boulevard On-Ramp	Basic	4	4,722(4,774)	0.48(0.39)	-	17.3(14.0)	B(B)
9	Express Lane North of Hallandale Beach Boulevard	Basic	2	1,981(1,762)	0.48 (0.43)	-	-	-
8	Express Lane Ingress	Diverge	1	850(581)	0.58(0.45)	0.41 (0.28)	21.2(16.6)	C(C)
7	Collector-Distributer Off-ramp to Express Lane Ingress	Diverge	4	5,572(5,355)	0.59(0.57)	-	-	-
6	Collector Distributor Road Off-ramp	Diverge	1	972(1,202)	-	0.46(0.57)	-	-
5	Collector Distributor Road Diverge Area	Diverge	5	6,544(6,557)	0.55(0.47)	0.25(0.30)	17.2(14.9)	C(C)
4	Hallandale Beach Boulevard Off-Ramp	Diverge	1	1,233(1,282)	-	0.59 (0.61)	-	-
3	Ives Dairy Road On-Ramp to Hallandale Beach Boulevard Off-Ramp	Weave	6	7,777(7,839)	0.99(0.72)	-	31.4(33.2)	D(D)
2	Express Lane South of Hallandale Beach Boulevard	Basic	2	1,131(1,181)	0.28 (0.29)	-	-	-
1	Ives Dairy Road On-Ramp	Merge	2	2,524(2,432)	-	0.60 (0.58)	-	-

Notes: # - segment number

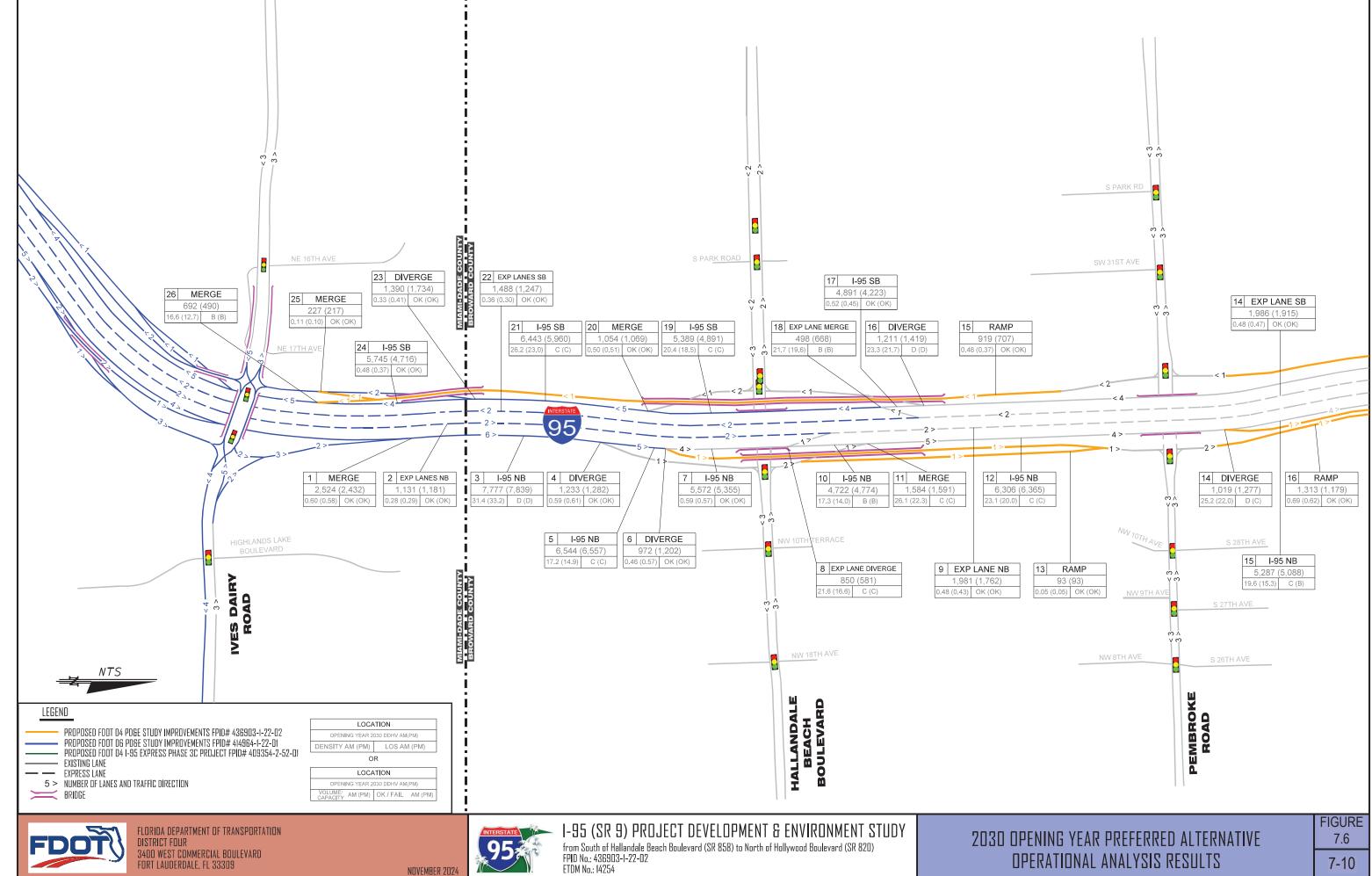
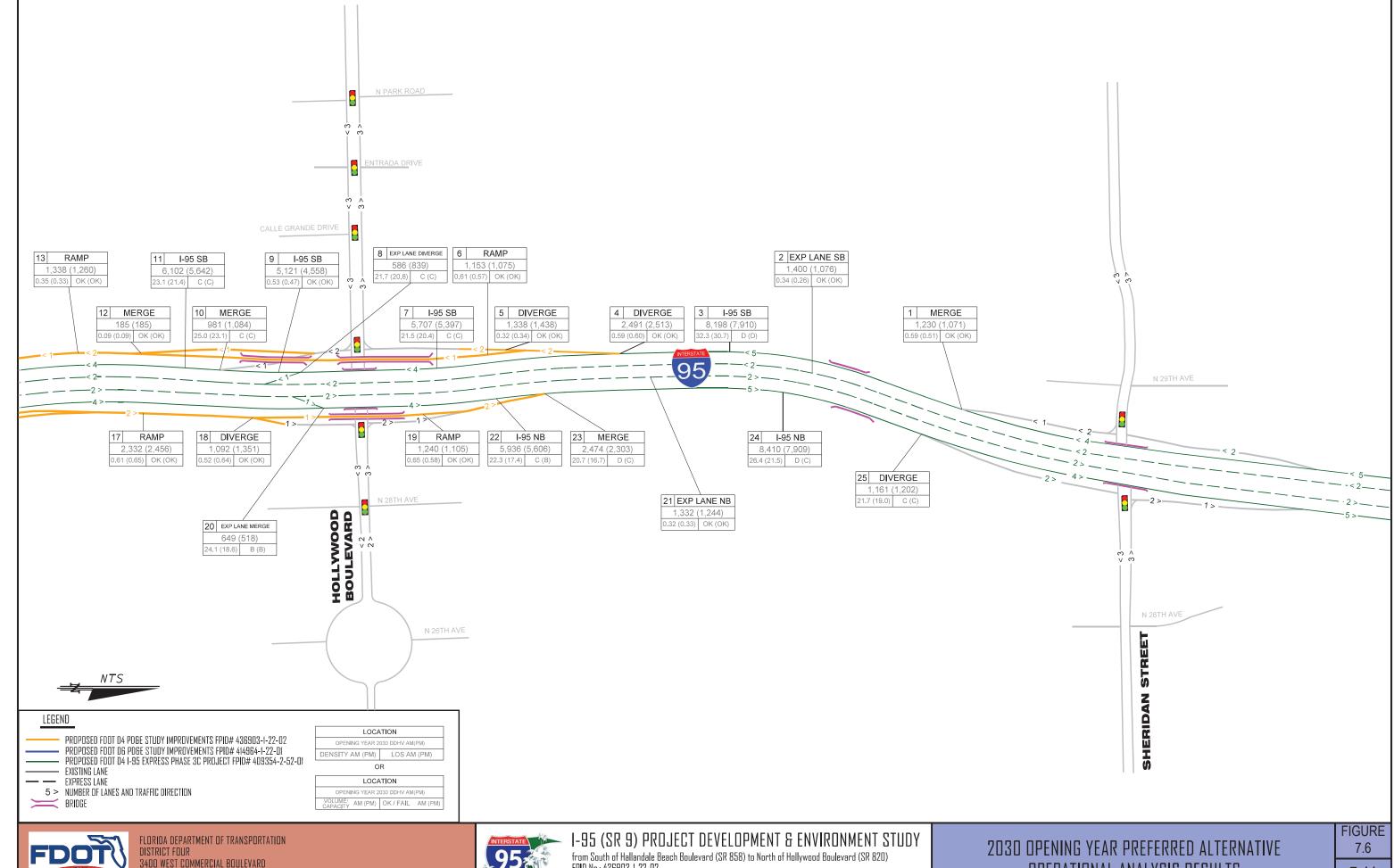

Ramp volume to capacity ratios were provided for merge/diverge areas for information only.

Table 7.2 – 2030 Preferred Alternative Southbound Freeway Analysis Results

			No.	Demand	Freeway	Ramp		
#	I-95 Southbound Segment 2030 Preferred Alternative	Analysis Type	of Lanes	vph AM(PM)	V/C I AM(Density (pc/mi/ln)	LOS
1	Sheridan Street On-Ramp	Merge	1	1,230(1,071)	-	0.59 (0.51)	-	-
2	Express Lane North of Hollywood Boulevard	Basic	2	1,400(1,076)	0.34 (0.26)	-	-	-
3	Sheridan Street On-Ramp to Hollywood Boulevard Off-Ramp	Weave	5	8,198(7,910)	0.98(0.95)	-	32.3(30.7)	D (D)
4	Hollywood Boulevard Off-ramp	Diverge	2	2,491(2,513)	-	0.59(0.60)	-	-
5	Off-Ramp from Collector-Distributor into Hollywood Boulevard	Diverge	2	1,338(1,438)	-	0.32(0.34)	-	-
6	Collector Distributor Road from North to south of Hollywood Boulevard	Ramp	1	1,153(1,075)	-	0.61 (0.57)	-	-
7	Hollywood Boulevard Off-Ramp to Express Lane Ingress	Basic	4	5,707(5,397)	0.59(0.56)	-	21.5(20.4)	C (C)
8	Express Lane Ingress	Diverge	1	586(839)	0.59(0.56)	0.28(0.40)	21.7(20.8)	C (C)
9	Express Lane Ingress to Hollywood Boulevard On-ramp	Basic	4	5,121(4,558)	0.53(0.47)	-	ı	C(B)
10	Hollywood Boulevard On-Ramp	Merge	1	981 (1,084)	0.64(0.59)	0.49(0.54)	25.0(23.1)	C (C)
11	Hollywood Boulevard On-Ramp to Hallandale Beach Off-Ramp	Basic	4	6,102(5,642)	0.64 (0.59)	-	23.1 (21.4)	C (C)
12	On-ramp into Collector Distributer from Hollywood Boulevard	Merge	1	185(185)	-	0.09(0.09)	-	-
13	Collector- Distributor from Hollywood Boulevard to Pembroke Road	Ramp	1	1,338(1,260)	-	0.35 (0.33)	1	-
14	Express Lane North of Hallandale Beach Boulevard	Basic	2	1,986(1,915)	0.48 (0.47)	-	1	-
15	Collector Distributor Road south of Pembroke Road	Ramp	1	919(707)	0.48 (0.37)	-	-	-
16	Hallandale Beach Boulevard Off-Ramp	Diverge	1	1,211(1,419)	0.63(0.58)	0.57(0.66)	23.3(21.7)	D(D)
17	From Hallandale Off-ramp to Express lane Egress	Basic	4	4,891 (4,223)	0.52(0.45)			
18	Express Lane Egress	Merge	1	498(668)	0.56 (0.51)	0.24 (0.32)	21.7(19.6)	B (B)
19	Express Lane Egress to Hallandale Beach Boulevard On-Ramp	Basic	4	5,389(4,891)	0.56 (0.51)	-	20.4(18.5)	C (C)
20	Hallandale Beach Boulevard On-Ramp	Ramp	1	1,054(1,069)	-	0.50(0.51)	-	-
21	Hallandale Beach Boulevard On-Ramp to Ives Off-ramp	Weave	5	6,443(5,960)	0.66(0.71)	-	26.2(23.0)	C(C)
22	Express Lane South of Hallandale Beach Boulevard	Basic	2	1,488(1,247)	0.36 (0.30)	-	-	-
23	Ives Dairy Road Off-Ramp	Diverge	2	1,390(1,734)	-	0.33(0.41)	-	-
24	Ives Dairy Road Off-Ramp to Collector Distributor Road On-Ramp to	Basic	4	5,745(4,716)	0.48(0.37)	-	-	B (B)
25	Collector-distributor Off-ramp into Ives Dairy Road	Ramp	1	227(217)	-	0.11(0.10)	-	-
26	Collector Distributor Road On-Ramp	Merge	1	692(490)	0.46(0.35)	0.37(0.26)	16.6(12.7)	B(B)


Notes: # - segment number

Ramp volume to capacity ratios were provided for merge/diverge areas for information only.

ETDM No.: 14254

OPERATIONAL ANALYSIS RESULTS

NOVEMBER 2024

7.3.2 CROSSING ROADWAYS OPERATIONAL ANALYSIS

Tables 7.3 – 7.5 and *Figure 7.7* document the intersections operational analysis by crossing roadway. Synchro output reports are provided in *Appendix P*.

As shown in **Table 7.3**, the 2030 preferred alternative intersection operational results indicate all four intersections will operate at a LOS D or better.

As shown in **Table 7.4**, the 2030 preferred alternative intersection operational results indicate all five intersections will operate at a LOS D or better.

As shown in **Table 7.5**, the 2030 preferred alternative intersection operational results indicate all five intersections will operate at a LOS D or better.

Several movements are expected to operate at LOS E or F. However, the Preferred Alternative continues to perform better than the No-Build Alternative. Ramp queues do not spill over to the interstate and are not impacting adjacent intersections. A microsimulation analysis (see **Section 7.6**) evaluated these locations further in the design year 2045, confirming that the queues from these ramps do not impact the I-95 mainline. Therefore, no adverse impacts on the interstate are anticipated.

Table 7.3 – 2030 Preferred Alternative Hallandale Beach Boulevard Intersection LOS and Delay Results

Hallandale	DCI			Alternative	
Beach		AM Pe		PM Pec	ak
Boulevard	Movement	Delay		Delay	
Intersection		(s/veh)	LOS	(s/veh)	LOS
	EBL	10.5	В	46.5	D
	EBT	12.4	В	12.9	В
	WBL	5.5	Α	7.7	Α
	WBT	5.7	Α	11.4	В
South Park	WBR	2.8	Α	1.8	Α
Road*	NBT	72.1	Е	90.7	F
	SBL	68.5	Е	86.8	F
	SBT	68.9	Е	85.9	F
	SBR	52.6	D	57.7	Е
	Int	13.2	В	17.3	В
	EBT	47.5	D	50.5	D
	EBR	36.4	D	43.3	D
I-95 West	WBL	31.2	С	37.6	D
Ramp	WBT	7.7	Α	20.4	С
Terminal*	SBL	50.7	D	48.4	D
	SBR	50.8	D	53.6	D
	Int	36.6	D	40.5	D
	EBL	28.9	С	39.0	D
	EBT	23.4	С	33.6	С
I-95 East	WBT	21.7	С	24.3	С
Ramp	WBR	76.3	Е	81.6	F
Terminal*	NBL	49.5	D	56.6	Е
	NBR	88.3	F	112.4	F
	Int	42.9	D	51.7	D
	EBL	65.7	Е	103.4	F
	EBT	5.5	Α	24.6	С
	WBL	16.0	В	51.2	D
	WBT	21.7	С	37.8	D
NW 10th	WBR	10.8	В	16.2	В
Terrace	NBL	71.4	Е	10.7.9	F
	NBT	48.0	D	51.9	D
	SBL	48.7	D	51.2	D
	SBT	47.3	О	49.0	D
	Int	18.0	В	37.6	D

^{*}HCM 2000 results reported

Table 7.4 – 2030 Preferred Alternative Pembroke Road Intersection LOS and Delay Results

Table 7.5 – 2030 Preferred Alternative Hollywood Boulevard Intersection LOS and Delay
Results

elelled Alle				Iternative	
Pembroke		AM Pec	ık	PM Pe	ak
Road Intersection	Movement	Delay		Delay	
mersection		(s/veh)	LOS	(s/veh)	LOS
	EBU	10.1	В	13.3	В
	EBT	19.6	В	14.0	В
	WBL	67.6	Е	35.9	D
Park Road*	WBT	4.2	Α	1.3	Α
	NBL	59.5	Е	52.4	D
	NBR	46.3	D	41.7	D
	Int	17.2	В	10.9	В
	EBT	0.5	Α	0.6	Α
014.01	WBL	69.0	Е	62.8	Е
SW 31st Avenue*	WBT	0.2	Α	0.2	Α
Avenue	NBR	55.0	D	53.3	D
	Int	1.9	Α	1.7	Α
	EBT	18.1	В	19.3	В
	EBR	23.8	С	9.8	Α
I-95 West	WBL	52.2	D	43.3	D
Ramp	WBT	15.4	В	18.5	В
Terminal*	SBL	35.4	D	31.0	С
	SBR	49.3	D	44.7	D
	Int	27.2	С	24.4	С
	EBL	36.1	D	35.7	D
	EBT	10.9	В	14.1	В
I-95 East	WBT	19.7	В	19.4	В
Ramp	WBR	7.9	Α	5.2	Α
Terminal*	NBL	46.1	D	40.1	D
	NBR	57.6	Е	46.7	D
	Int	24.7	С	24.4	С
	EBL	27.8	С	36.7	D
	EBT	7.3	Α	7.8	Α
	WBL	23.8	С	26.6	С
NW 10th	WBT	27.4	С	31.4	С
Avenue /	WBR	20.5	С	22.7	С
South 28th	NBL	41.2	D	36.5	D
Avenue	NBT	34.0	С	28.5	С
	SBL	47.0	D	44.3	D
	SBT	50.7	D	49.3	D
	Int	20.2	С	22.4	С

*HCM	2000	results	re	ported	d
------	------	---------	----	--------	---

		Prefe	erred A	lternative	
Hollywood Boulevard	Movement	AM Ped	ık	PM Pe	ak
Intersection	Movement	Delay	100	Delay	100
		(s/veh)	LOS	(s/veh)	LOS
	EBL	6.3	Α	18.7	В
	EBT	6.7	Α	12.4	В
	WBL	5.0	Α	2.0	Α
	WBT	8.8	Α	5.8	Α
Entranda Drive	NBT	63.2	Е	55.2	Е
DIIVC	NBR	61.2	Е	53.7	D
	SBL	76.3	Е	83.6	F
	SBT	61.6	Е	56.0	Е
	Int	10.6	В	14.3	В
	EBU	10.6	В	55.3	Е
	EBT	32.1	С	7.8	Α
Calle Grande	WBL	9.1	Α	73.9	Е
Drive*	WBT	32.2	С	1.1	Α
20	NBR	12.4	В	5.5	Α
	Int	32.0	С	4.7	Α
	EBT	28.6	С	14.8	В
	EBR	29.7	С	64.4	Е
I-95 West	WBL	56.0	Е	72.7	Е
Ramp	WBT	13.1	В	18.9	В
Terminal*	SBL	52.0	D	53.0	D
	SBR	60.1	Е	72.7	Е
	Int	36.0	D	42.3	D
	EBL	56.8	Е	62.8	Е
	EBT	11.5	В	17.3	В
I-95 East	WBT	18.6	В	23.1	С
Ramp	WBR	29.4	С	34.1	С
Terminal*	NBL	49.3	D	45.8	D
	NBR	56.6	Е	64.6	Е
	Int	30.4	С	35.4	D

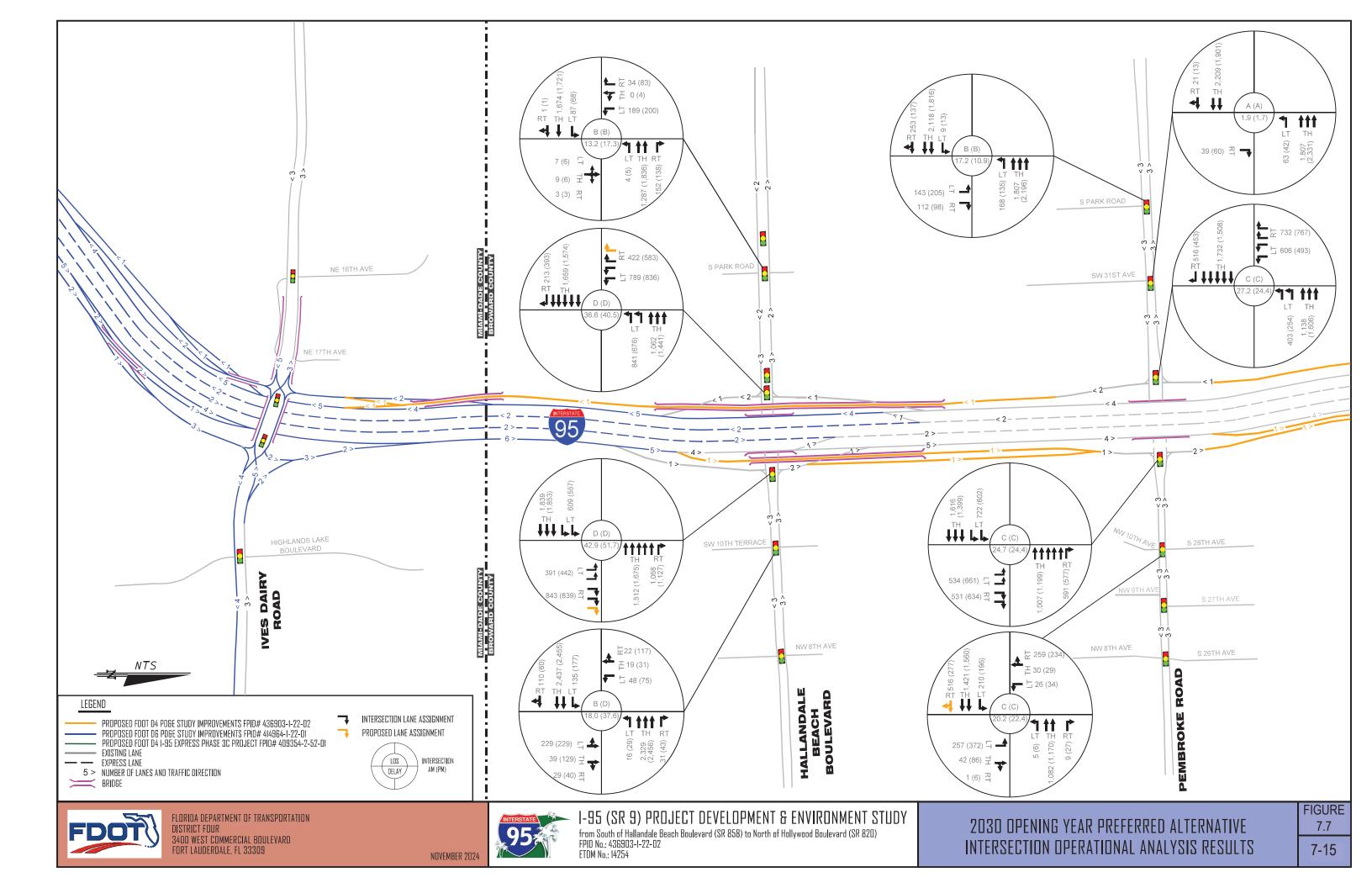
^{*}HCM 2000 results reported

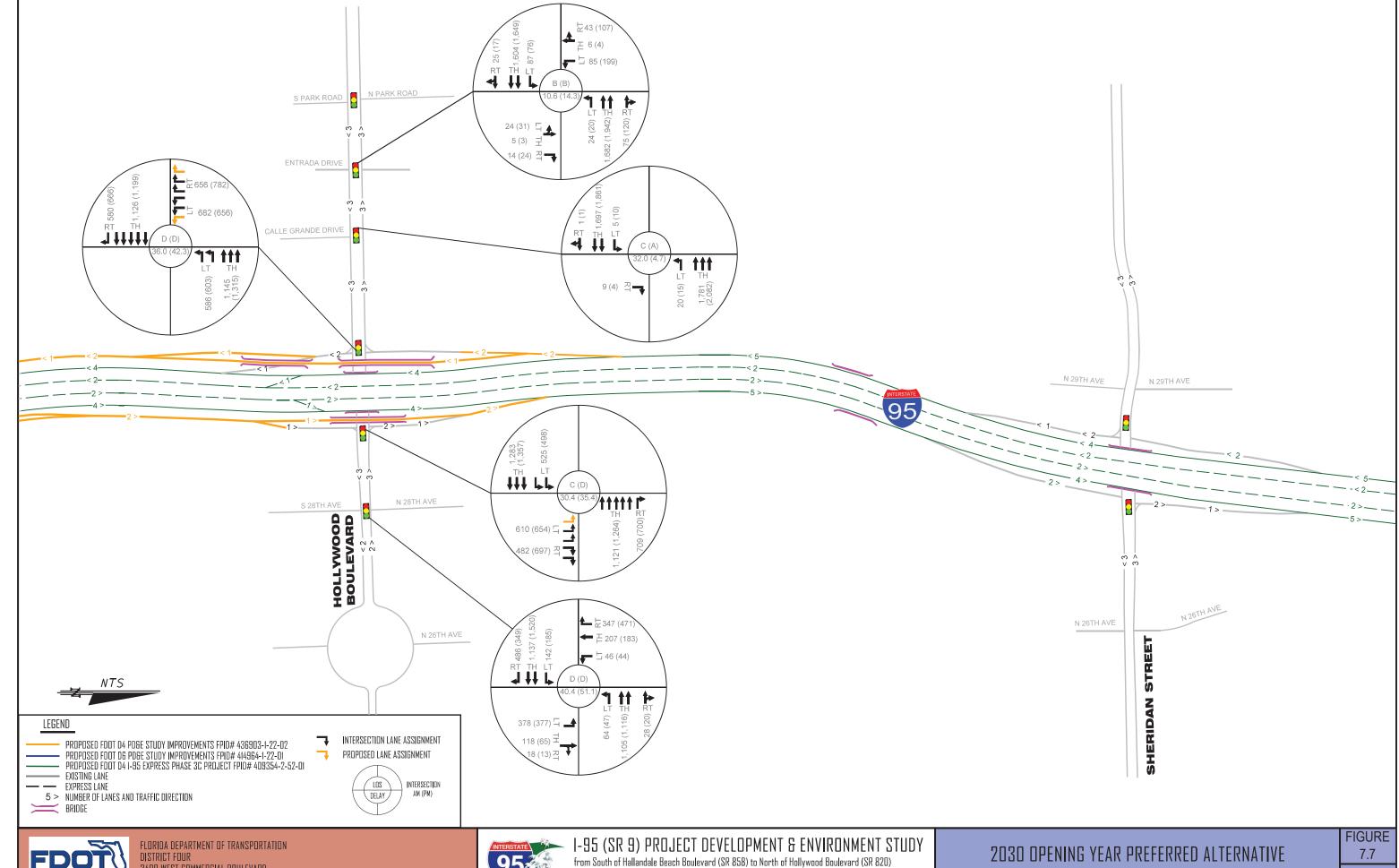
Table 7.5 – 2030 Preferred Alternative Hollywood Boulevard Intersection LOS and Delay Results (Continued)

		Prefe	erred A	lternative		
Hollywood	Movement	AM Ped	ık	PM Peak		
Boulevard Intersection	Movemeni	Delay LOS		Delay	LOS	
		(s/veh)	103	(s/veh)	103	
	EBL	22.2	С	36.9	D	
	EBT	17.4	В	32.3	С	
	EBR	16.0	В	12.2	В	
	WBL	33.0	С	41.0	D	
0.0011	WBT	48.3	D	49.4	D	
S 28th Avenue*	NBL	68.2	Е	74.0	Е	
Avenue	NBT	59.7	Е	61.3	Е	
	SBL	53.9	D	53.5	D	
	SBT	65.7	Е	58.8	Е	
	SBR	78.8	Е	128.2	F	
	Int	40.4	D	51.1	D	

^{*}HCM 2000 results reported

The Hallandale Beach Boulevard interchange ramp terminals 95th percentile queue lengths and storage are summarized below:

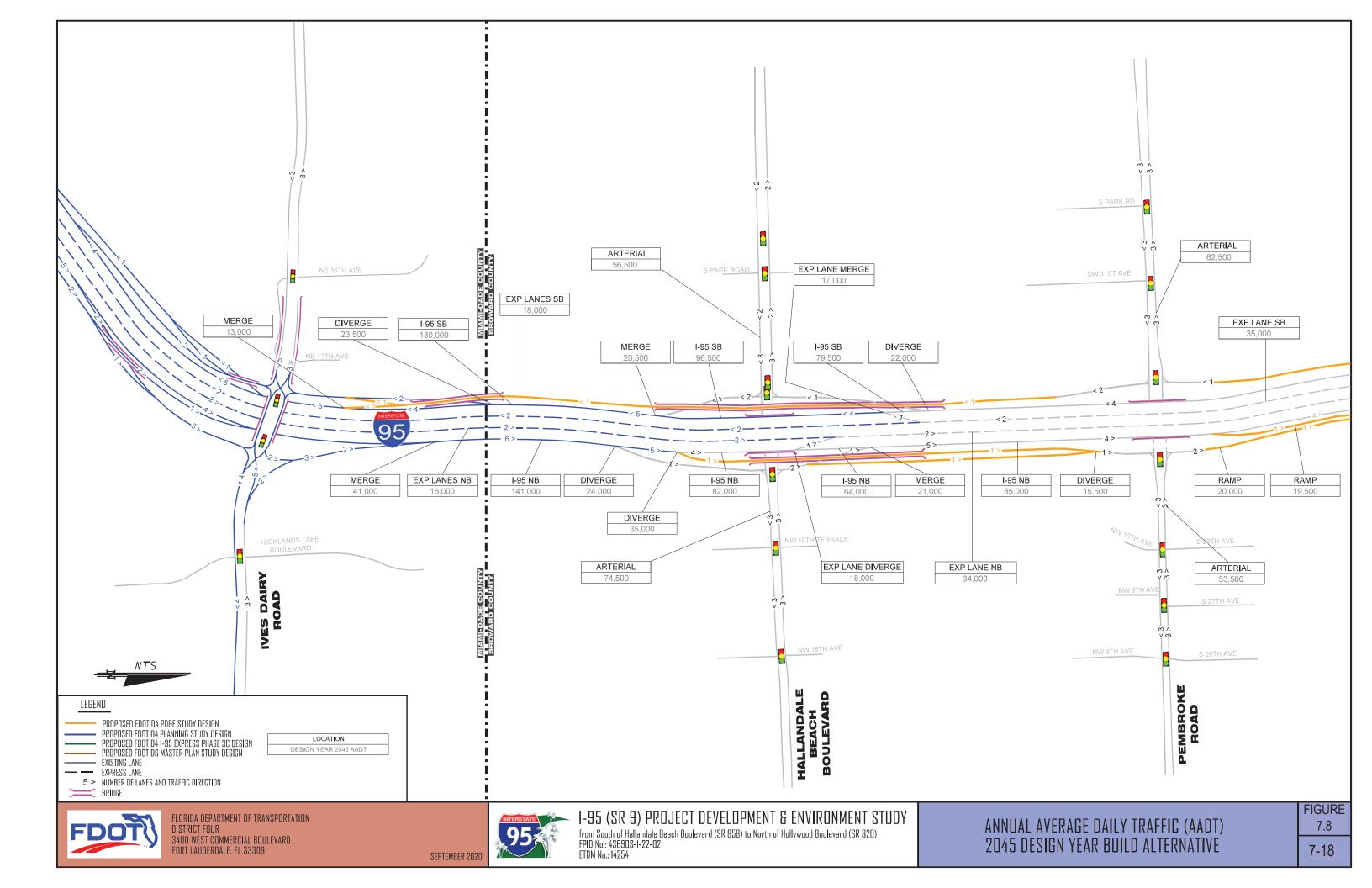

- Northbound Off-Ramp AM Peak/PM Peak queue lengths: 495 feet / 550 feet
- Northbound Off-Ramp AM Peak/PM Peak storage: 1,500 feet / 1,500 feet
- Southbound Off-Ramp AM Peak/PM Peak queue lengths: 269 feet / 381 feet
- Southbound Off-Ramp AM Peak/PM Peak storage: 1,500 feet / 1,500 feet

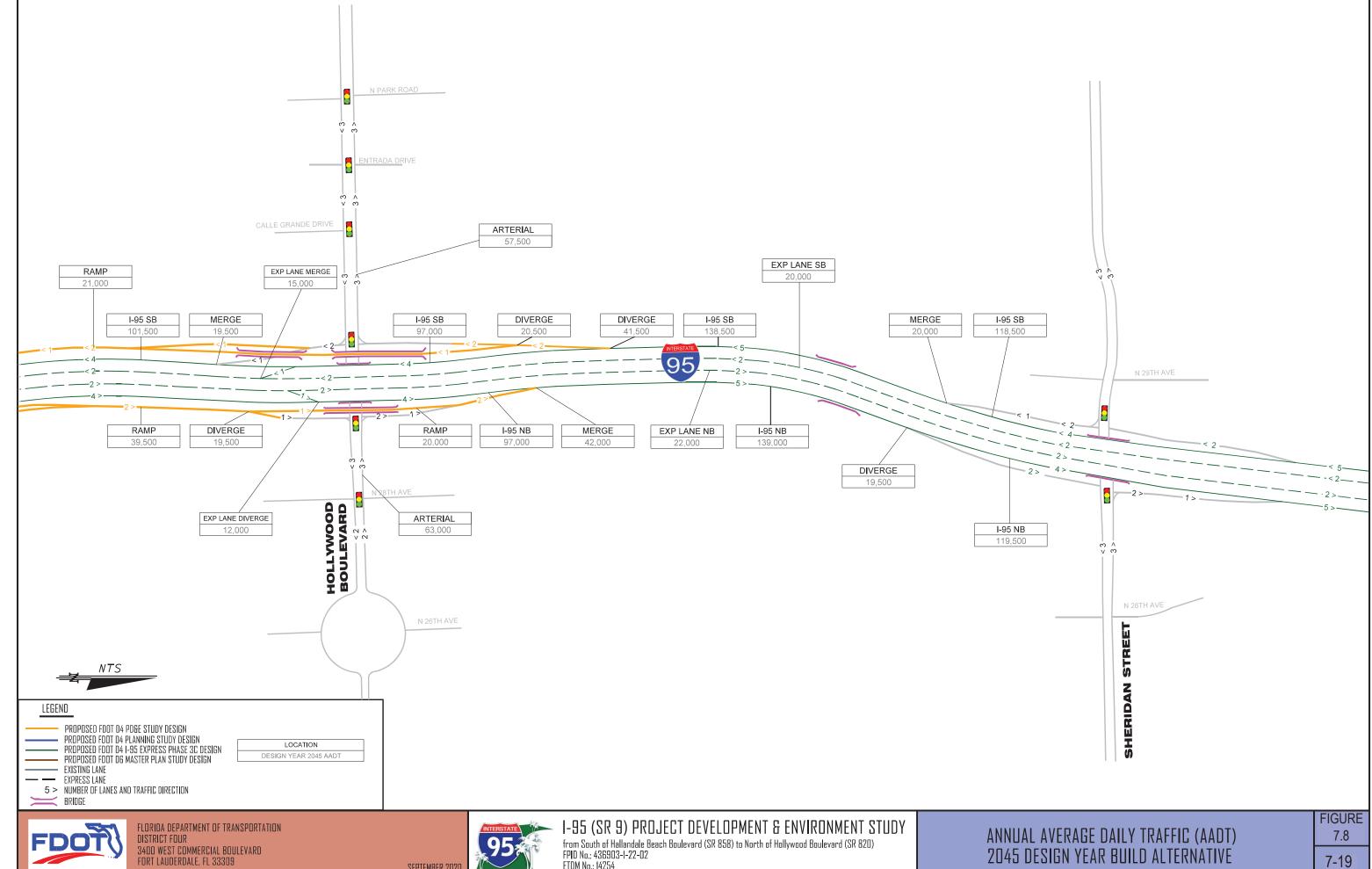

The Pembroke Road interchange ramp terminals 95th percentile queue lengths and storage are summarized below:

- Northbound Off-Ramp AM Peak/PM Peak queue lengths: 337 feet / 360 feet
- Northbound Off-Ramp AM Peak/PM Peak storage: 1,400 feet / 1,400 feet
- Southbound Off-Ramp AM Peak/PM Peak queue lengths: 441 feet / 431 feet
- Southbound Off-Ramp AM Peak/PM Peak storage: 1,500 feet / 1,500 feet

The Hollywood Boulevard interchange ramp terminals 95th percentile queue lengths and storage are summarized below:

- Northbound Off-Ramp AM Peak/PM Peak queue lengths: 336 feet / 538 feet
- Northbound Off-Ramp AM Peak/PM Peak storage: 1,050 feet / 1,050 feet
- Southbound Off-Ramp AM Peak/PM Peak queue lengths: 338 feet / 463 feet
- Southbound Off-Ramp AM Peak/PM Peak storage: 1,300 feet / 1,300 feet


3400 WEST COMMERCIAL BOULEVARD FORT LAUDERDALE, FL 33309



NOVEMBER 2024

7.4 Preferred Alternative – 2045 Traffic Forecast

Design year 2045 traffic forecast was developed for the Preferred Alternative consistent with the methodology defined in **Section 2.0** of this SIMR. **Figure 7.8** shows the Preferred Alternative 2045 AADT volumes for the study area.

7.5 Preferred Alternative – 2045 Operational Analysis

7.5.1 I-95 OPERATIONAL ANALYSIS

Density, demand/capacity (D/C) ratio, and LOS of each freeway facility were used as MOEs, which is consistent with the existing conditions analysis. The Preferred Alternative 2045 mainline/basic, weaving, and ramp merge/diverge analysis results are summarized in **Tables 7.6 – 7.7**. The analysis results are also schematically summarized in **Figure 7.9**. Output HCS reports are included as **Appendix Q**.

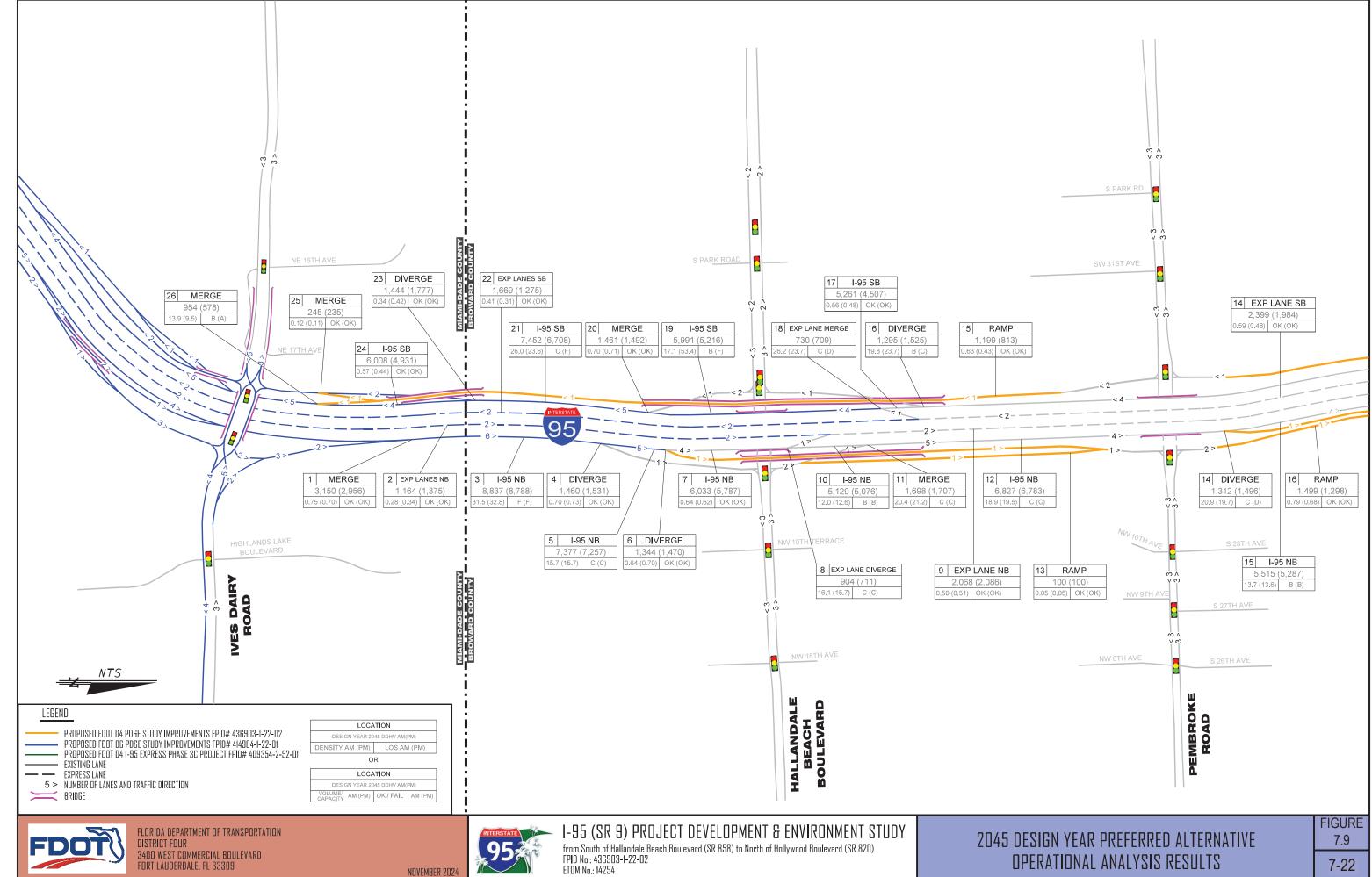
Findings – The capacity analysis shows that one location northbound and three locations southbound will operate below LOS D (worst peak period LOS) by the year 2045 within the area of influence.

The four locations operating below LOS D will operate better than the No-Build Alternative. A microsimulation analysis (see **Section 7.6**) evaluated these locations further confirming that the operation of these areas is better and do not impact the I-95 mainline.

This HCM analysis was conducted as an initial screening evaluation of the Preferred Alternative refinements. HCM results were used to discuss the preliminary results of the refinements with FDOT and local stakeholders for concurrence and approval before performing microsimulation.

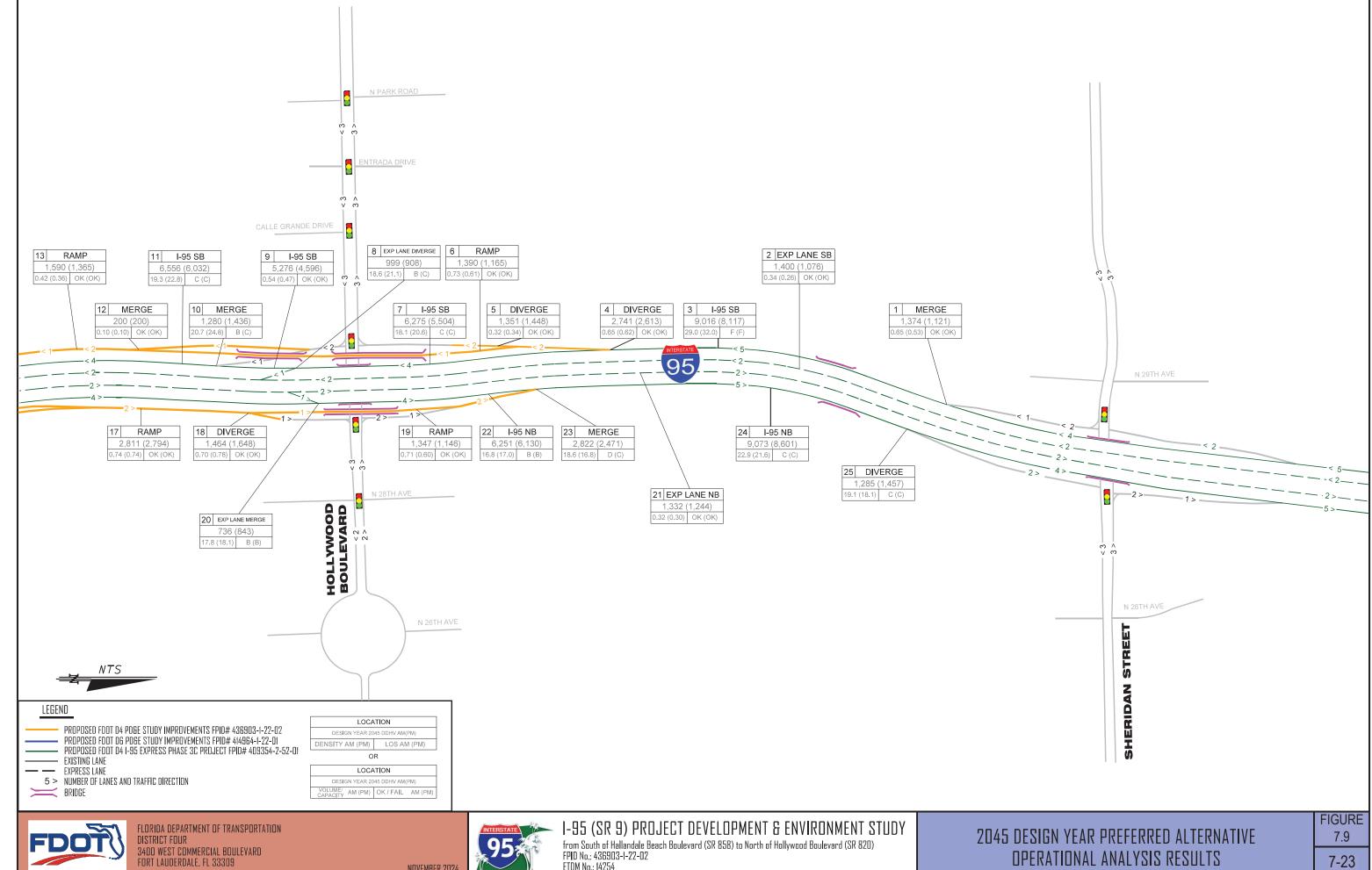
Table 7.6 – 2045 Preferred Alternative Northbound Freeway Analysis Results

	Tuble 7.0 = 2043 Fieleliet	Allellik	alive i	TOTTIDOUTIA	rice way F	Alluly 313 K	COUID	
#	I-95 Northbound Segment 2045 Preferred Alternative	Analysis Type	No. of	Demand vph AM(PM)	Freeway D/C Ratio	Ramp	Density (pc/mi/ln)	LOS
	20 10 110101104 / 1110111411170		Lanes					
25	Sheridan Street Off-Ramp	Diverge	2	1,285 (1,457)	0.77(0.73)	0.33(0.36)	19.1(18.1)	C(C)
24	Hollywood Boulevard On-Ramp to Sheridan Street Off-Ramp	Basic	5	9,073 (8,601)	0.77 (0.73)	-	22.9 (21.6)	C(C)
23	Hollywood Boulevard/Collector Distributor Road On-Ramp	Merge	2	2,822 (2,471)	0.64(0.61)	0.73(0.62)	18.6(16.8)	D(C)
22	Express Lane Egress to Hollywood Boulevard On-Ramp	Basic	4	6,251 (6,130)	0.64 (0.63)	-	16.8(17.0)	В(В)
21	Express Lane North of Hollywood Boulevard	Basic	2	1,332 (1,244)	0.32 (0.30)	-	-	-
20	Express Lane Egress	Merge	1	736 (843)	0.64 (0.63)	0.36 (0.40)	17.8 (18.1)	B (B)
19	Collector Distributor Road north of Hollywood Boulevard	Ramp	1	1,347 (1,146)	-	0.71 (0.60)	-	
18	Collector Distributor off-ramp into Hollywood Boulevard	Diverge	1	1,464(1,648)	-	0.70(0.78)	1	-
17	Collector Distributor Road south of Hollywood Boulevard	Ramp	2	2,811 (2,794)	-	0.74 (0.74)	-	-
16	Collector Distributor Road north of Pembroke Road	Ramp	1	1,499 (1,298)	-	0.79 (0.68)	-	-
15	Pembroke Off-ramp to Express Lane Egress	Basic	4	5,515 (5,287)	0.56 (0.54)	-	13.7(13.6)	В(В)
14	Pembroke Off-ramp	Diverge	1	1,312(1,496)	0.68(0.67)	0.68(0.77)	20.9(19.7)	C(D)
13	On-Ramp into Collector Distributor Road north of Hallandale Beach Boulevard	Ramp	1	100(100)	-	0.05(0.05)	-	-
12	From Hallandale Beach Blvd to Pembroke Rd Off-ramp	Basic	4	6,827(6,783)	0.68(0.69)		18.9(19.5)	C(C)
11	Hallandale Beach Boulevard On-Ramp	Merge	1	1,698 (1,707)	0.70(0.71)	0.86(0.86)	20.4(21.2)	C(C)
10	Express Lane Ingress to Hallandale Beach Boulevard On-Ramp	Basic	4	5,129 (5,076)	0.51 (0.51)	-	12.0(12.6)	В(В)
9	Express Lane North of Hallandale Beach Boulevard	Basic	2	2,068 (2,086)	0.50 (0.51)	-	-	-
8	Express Lane Ingress	Diverge	1	904 (711)	0.61 (0.59)	0.44 (0.34)	16.1 (15.7)	C(C)
7	Collector-Distributer Off-ramp to Express Lane Ingress	Diverge	4	6,033(5,787)	0.64(0.62)	-	-	ı
6	Collector Distributor Road Off-Ramp	Diverge	1	1,344 (1,470)	-	064(0.7)	1	-
5	Collector Distributor Road Diverge Area	Diverge	5	7,377 (7,257)	0.61 (0.61)	0.34(0.37)	15.7(15.7)	C(C)
4	Hallandale Beach Boulevard Off-Ramp	Diverge	1	1,460 (1,531)	-	0.70 (0.73)	-	-
3	Ives Dairy Road On-Ramp to Hallandale Beach Boulevard Off-Ramp	Weave	6	8,837 (8,788)	1.22 (1.2)	-	31.5 (32.8)	F (F)
2	Express Lane South of Hallandale Beach Boulevard	Basic	2	1,164 (1,375)	0.28 (0.34)	-	-	-
1	Ives Dairy Road On-Ramp	Merge	2	3,150 (2,956)	-	0.75 (0.7)	-	-
Nat	es: # - seament number					•		•


Notes: # - segment number

Ramp volume to capacity ratios were provided for merge/diverge areas for information only.

Table 7.7 – 2045 Preferred Alternative Southbound Freeway Analysis Results


					Freeway	Ramp		
#	I-95 Southbound Segment	Analysis	No. of	Demand vph		Ratio	Density	LOS
	2045 Preferred Alternative	Type	Lanes	AM(PM)		(PM)	(pc/mi/ln)	
1	Sheridan Street On-Ramp	Merge	1	1,374 (1,121)	-	0.65 (0.53)	-	-
2	Express Lane North of Hollywood Boulevard	Basic	2	1,400 (1,076)	0.34 (0.26)	-	-	-
3	Sheridan Street On-Ramp to Hollywood Boulevard Off-Ramp	Weave	5	9,016 (8,117)	1.08 (0.99)	-	29.0(32.0)	F (D)
4	Hollywood Boulevard Off-Ramp	Diverge	2	2,741 (2,613)	-	0.65(0.62)	-	-
5	Off-Ramp from Collector-Distributor into Hollywood Boulevard	Diverge	2	1,351 (1,448)	-	0.32(0.34)	-	-
6	Collector Distributor Road from North to south of Hollywood Boulevard	Ramp	1	1,390 (1,165)	-	0.73 (0.61)	-	-
7	Hollywood Boulevard Off-Ramp to Express Lane Ingress	Diverge	4	6,275 (5,504)	0.65(0.57)	-	18.1(20.6)	C (C)
8	Express Lane Ingress	Diverge	1	999 (908)	0.65 (0.57)	0.48(0.43)	18.6(21.1)	B (C)
9	Express Lane Ingress to Hollywood Boulevard On-Ramp	Basic	4	5,276(4,596)	0.54(0.47)	-	-	В(В)
10	Hollywood Boulevard On-Ramp	Merge	1	1,280 (1,436)	0.68(0.63)	0.64(0.72)	20.7(24.8)	B (C)
11	Hollywood Boulevard On-Ramp to Hallandale Beach Off-Ramp	Basic	4	6,556 (6,032)	0.68 (0.63)	-	19.3 (22.8)	C (C)
12	On-ramp into Collector Distributor from Hollywood Boulevard	Merge	1	200(200)	-	0.10(0.10)	-	-
13	Collector Distributor from Hollywood Boulevard to Pembroke Road	Ramp	1	1,590(1,365)	-	0.42 (0.36)	-	-
14	Express Lane North of Hallandale Beach Boulevard	Basic	2	2,399 (1,984)	0.59 (0.48)	-	-	-
15	Collector Distributor Road south of Pembroke Road	Ramp	1	1,199 (813)	0.63 (0.43)	-	-	-
16	Hallandale Beach Boulevard Off-Ramp	Diverge	1	1,295 (1,525)	0.67(0.62)	0.61(0.71)	19.8(23.7)	
17	From Hallandale Off-ramp to Express lane Egress	Basic	4	5,261 (4,507)	0.56(0.48)	-	-	-
18	Express Lane Egress	Merge	1	730 (709)	0.68 (0.61)	0.35 (0.34)	26.2 (23.7)	C (D)
19	Express Lane Egress to Hallandale Beach Boulevard On-Ramp	Basic	4	5,991 (5,216)	0.63 (0.55)	-	17.1 (53.4)	B (F)
20	Hallandale Beach Boulevard On-Ramp	Ramp	1	1,461 (1,492)	-	0.70(0.71)	-	-
21	Hallandale Beach Boulevard On-Ramp to Ives Off-Ramp	Weave	5	7,452(6,708)	0.77(1.12)	-	26.0(23.6)	C(F)
22	Express Lane South of Hallandale Beach Boulevard	Basic	2	1,669 (1,275)	0.41 (0.31)	-	-	-
23	Ives Dairy Road Off-Ramp	Diverge	2	1,444 (1,777)	-	0.34(0.42)	-	-
24	Ives Dairy Road Off-Ramp to Collector Distributor Road On-Ramp to	Basic	4	6,008 (4,931)	0.57(0.44)	-	-	B (B)
25	Collector-distributor Off-ramp into Ives Dairy Road	Ramp	1	245(235)	-	0.12(0.11)	-	-
26	Collector Distributor Road On-Ramp	Merge	1	954 (578)	0.56(041)	0.51(0.31)	13.9(9.5)	B(A)

Notes: # - segment number Ramp volume to capacity ratios were provided for merge/diverge areas for information only.

NOVEMBER 2024

ETDM No.: 14254

7.5.2 CROSSING ROADWAYS OPERATIONAL ANALYSIS

Tables 7.8 – 7.10 and **Figure 7.10** document the intersections operational analysis by crossing roadway. Synchro output reports are provided in **Appendix R**.

As shown in **Table 7.8**, the 2045 preferred alternative intersection operational results indicate three intersections will operate at a LOS D or better and one intersection will operate over capacity.

As shown in **Table 7.9**, the 2045 preferred alternative intersection operational results indicate all five intersections will operate at a LOS D or better.

As shown in **Table 7.10**, the 2045 preferred alternative operational results indicate four intersections will operate at a LOS D or better and one intersection will operate over capacity.

Several movements are expected to operate at LOS E or F. However, the Preferred Alternative continues to perform better than the No-Build Alternative. Ramp queues do not spill over to the interstate and are not impacting adjacent intersections. A microsimulation analysis (see **Section 7.6**) evaluated these locations further, confirming that the queues from these ramps do not impact the I-95 mainline. Therefore, no adverse impacts on the interstate are anticipated.

Table 7.8 – 2045 Preferred Alternative Hallandale Beach Boulevard Intersection LOS and Delay Results

Hallandale		Pre	erred A	Alternative	
Beach	Movement	AM Pe	eak	PM Pe	ak
Boulevard	Movemeni	Delay	-0	Delay	100
Intersection		(s/veh)	LOS	(s/veh)	LOS
	EBL	16.4	В	57.0	Е
	EBT	14.5	В	15.8	В
	WBL	9.1	Α	6.9	Α
	WBT	7.5	Α	11.6	В
South Park	WBR	1.2	Α	1.4	Α
Road*	NBT	97.6	F	87.6	F
	SBL	92.5	F	95.1	F
	SBT	92.5	F	95.1	F
	SBR	66.6	Е	66.2	Е
	Int	16.5	В	19.1	В
	EBT	54.9	D	49.0	D
	EBR	90.8	F	47.6	D
I-95 West	WBL	74.1	Е	54.2	D
Ramp	WBT	8.8	Α	25.5	С
Terminal*	SBL	67.2	Е	51.4	D
	SBR	76.3	Е	62.0	Е
	Int	54.5	D	45.4	D
	EBL	57.5	Е	34.1	С
	EBT	35.3	D	33.6	С
I-95 East	WBT	25.3	C	20.9	С
Ramp	WBR	107.6	F	128.8	F
Terminal*	NBL	61.4	Е	62.4	Е
	NBR	120.3	F	138.2	F
	Int	60.1	Е	63.3	Е
	EBL	113.9	F	136.8	F
	EBT	8.2	Α	18.4	В
	WBL	22.5	С	34.9	С
	WBT	33.0	С	49.5	D
NW 10th	WBR	13.3	В	16.8	В
Terrace	NBL	107.1	F	122.0	F
	NBT	59.3	Е	53.3	D
	SBL	60.0	Е	52.9	D
	SBT	58.2	Е	51.5	D
	Int	27.7	С	41.6	D

*HCM 2000 results reported

Table 7.9 – 2045 Preferred Alternative Pembroke Road Intersection LOS and Delay Results

		Prefe	erred A	Alternative)
Pembroke	Marramant	AM Pe	ak	PM Pe	ak
Road Intersection	Movement	Delay	100	Delay	1.00
micracchon		(s/veh)	LOS	(s/veh)	LOS
	EBU	10.7	В	18.2	В
	EBT	22.7	С	18.2	В
	WBL	96.4	F	54.6	D
Park Road*	WBT	0.5	Α	1.9	Α
	NBL	82.2	F	62.1	Е
	NBR	58.6	Е	42.8	D
	Int	19.7	В	14.2	В
	EBT	0.5	Α	1.1	Α
0,4,0,1,1	WBL	82.7	F	63.3	Е
SW 31st Avenue*	WBT	0.2	Α	0.3	Α
Avenue	NBR	68.2	Е	59.4	Е
	Int	2.2	Α	2.0	Α
	EBT	23.5	С	22.7	С
	EBR	12.2	В	12.9	В
I-95 West	WBL	98.8	F	46.7	D
Ramp	WBT	17.6	В	16.1	В
Terminal*	SBL	49.6	D	36.1	D
	SBR	101.8	F	84.5	F
	Int	42.6	D	31.2	С
	EBL	63.9	Е	48.2	D
	EBT	16.5	В	15.4	В
I-95 East	WBT	23.6	С	25.8	С
Ramp	WBR	13.1	В	5.0	Α
Terminal*	NBL	64.1	Е	44.8	D
	NBR	96.5	F	66.2	Е
	Int	40.2	D	31.8	С
	EBL	36.1	D	49.6	D
	EBT	13.0	В	13.4	В
	WBL	30.4	С	29.3	С
NW 10th	WBT	32.8	С	34.7	С
Avenue /	WBR	24.1	С	24.7	С
South 28th	NBL	56.3	Е	47.1	D
Avenue	NBT	40.2	D	30.4	С
	SBL	58.0	Е	48.4	D
	SBT	69.7	Е	51.6	D
	Int	27.5	С	27.5	С

^{*}HCM 2000 results reported

The delay at the Pembroke Road ramp terminals is slightly greater than the No-Build Alternative. This is due to minor differences in the overall signal optimization between the two alternatives. The Preferred Alternative overall intersection is LOS D or better, which meets the LOS target. The microsimulation analysis (see **Section 7.6**) also shows that the overall intersection delay in the Preferred Alternative is better than the No-Build Alternative. Therefore, no further improvements are necessary at this location.

Table 7.10 – 2045 Preferred Alternative Hollywood Boulevard Intersection LOS and Delay Results

		Prefe	erred A	Alternative	•
Hollywood		AM Pe	ak	PM Pe	ak
Boulevard Intersection	Movement	Delay		Delay	1.00
mersection		(s/veh)	LOS	(s/veh)	LOS
	EBL	18	В	48.4	D
	EBT	8.3	Α	17.2	В
	WBL	3.1	Α	4.7	Α
Entranda	WBT	2.1	Α	6.2	Α
Drive	NBT	61.9	Е	59.5	Е
DIIVC	NBR	60	Е	57.9	Е
	SBL	77.3	Е	93.1	F
	SBT	60.5	Е	60.4	Е
	Int	8.2	Α	17.6	В
	EBU	48.4	D	65.7	Е
Calle	EBT	8.8	Α	8.1	Α
Grande	WBL	70.2	Е	77.8	F
Drive*	WBT	1.0	Α	1.2	Α
20	NBR	5.9	Α	5.2	Α
	Int	5.3	Α	5.1	Α
	EBT	14	В	20.2	С
	EBR	27.8	С	75.4	Е
I-95 West	WBL	84	F	90.9	F
Ramp	WBT	13.8	В	26.2	С
Terminal*	SBL	57.4	Е	62.3	Е
	SBR	78.1	Е	95.5	F
	Int	37.7	D	52.9	D
	EBL	61.2	Е	72.8	Е
	EBT	14	В	24.2	С
I-95 East	WBT	19.6	В	29.2	С
Ramp	WBR	43.6	D	24.9	С
Terminal*	NBL	49.5	D	51.2	D
	NBR	77	Е	158.7	F
	Int	37.1	D	53.6	D

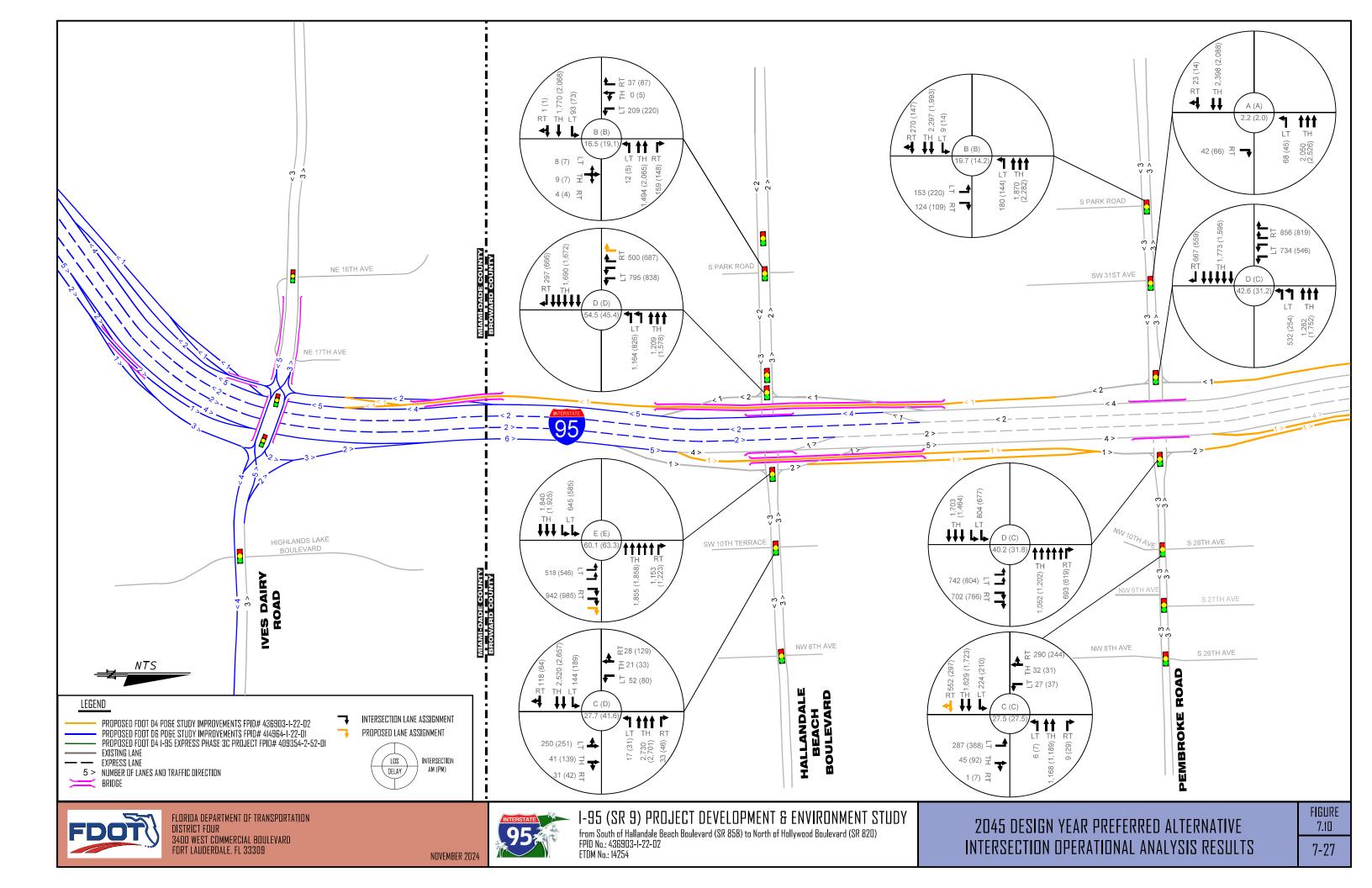
*HCM 2000 results reported

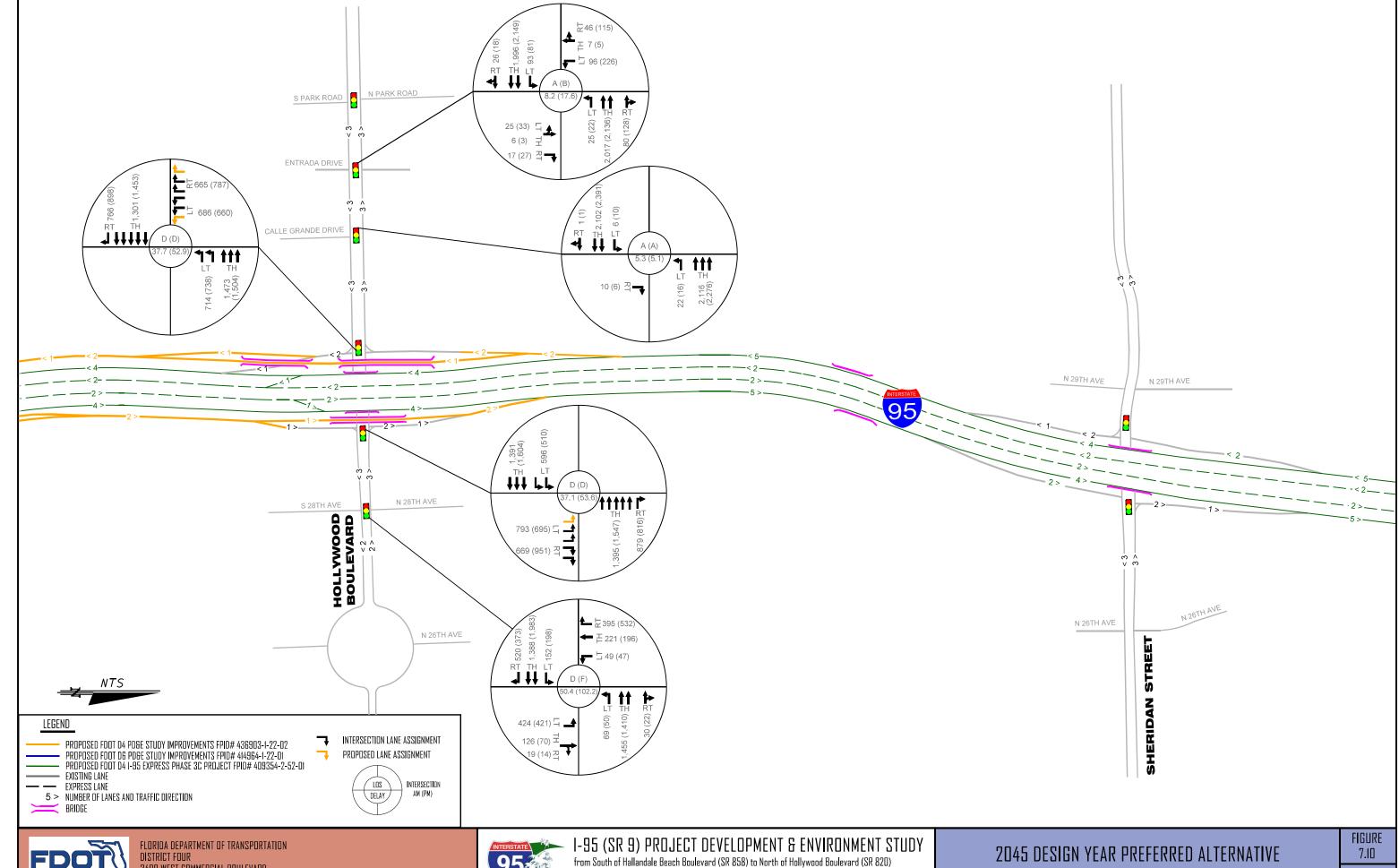
Table 7.10 – 2045 Preferred Alternative Hollywood Boulevard Intersection LOS and Delay Results (Continued)

		Prefe	erred A	Alternative		
Hollywood Boulevard	Movement	AM Pe	ak	PM Peak		
Intersection	Movemeni	Delay	LOS	Delay	LOS	
		(s/veh)	103	(s/veh)	103	
	EBL	46.2	D	78.0	Е	
	EBT	36.2	D	133.0	F	
	EBR	21.3	С	11.4	В	
	WBL	40.3	D	52.9	D	
0.0011	WBT	55.7	Е	55.3	Е	
S 28th Avenue*	NBL	66.9	Е	86.3	F	
Avenue	NBT	57.8	Е	68.3	Е	
	SBL	50.2	D	57.7	Е	
	SBT	58.5	Е	63.6	Е	
	SBR	97.5	F	227.7	F	
	Int	50.4	D	102.2	F	

^{*}HCM 2000 results reported

The Hallandale Beach Boulevard interchange ramp terminals 95th percentile queue lengths and storage are summarized below:


- Northbound Off-Ramp AM Peak/PM Peak queue lengths: 668 feet / 721 feet
- Northbound Off-Ramp AM Peak/PM Peak storage: 1,500 feet / 1,500 feet
- Southbound Off-Ramp AM Peak/PM Peak queue lengths: 419 feet / 517 feet
- Southbound Off-Ramp AM Peak/PM Peak storage: 1,500 feet / 1,500 feet


The Pembroke Road interchange ramp terminals 95th percentile queue lengths and storage are summarized below:

- Northbound Off-Ramp AM Peak/PM Peak queue lengths: 569 feet / 496 feet
- Northbound Off-Ramp AM Peak/PM Peak storage: 1,400 feet / 1,400 feet
- Southbound Off-Ramp AM Peak/PM Peak queue lengths: 698 feet / 549 feet
- Southbound Off-Ramp AM Peak/PM Peak storage: 1,500 feet / 1,500 feet

The Hollywood Boulevard interchange ramp terminals 95th percentile queue lengths and storage are summarized below:

- Northbound Off-Ramp AM Peak/PM Peak queue lengths: 527 feet / 957 feet
- Northbound Off-Ramp AM Peak/PM Peak storage: 1,050 feet / 1,050 feet
- Southbound Off-Ramp AM Peak/PM Peak queue lengths: 396 feet / 547 feet
- Southbound Off-Ramp AM Peak/PM Peak storage: 1,300 feet / 1,300 feet

3400 WEST COMMERCIAL BOULEVARD FORT LAUDERDALE, FL 33309

NOVEMBER 2024

7.6 NO-BUILD ALTERNATIVE AND PREFERRED ALTERNATIVE – MICROSIMULATION ANALYSES

7.6.1 VISSIM ANALYSIS PROCEDURE

The operational analysis for this study was performed using Vissim 9 (Release 9.00-10) and Synchro 11. Vissim microsimulation was used to assess the study area on a network-wide basis. Microsimulation was used to assess the traffic operation conditions of individual facilities, such as freeway mainline, ramps, and signalized intersections. Synchro 11 was used primarily to aid in signal timing optimization for future year scenarios. It should be noted that the microsimulation models were calibrated for existing year 2016, utilizing the latest versions of the software models and applicable calibration criteria that were available at the time when the study was initiated.

The microsimulation analysis using the Vissim software was conducted to evaluate the system-wide operational performance. Microsimulation analysis enhances the capability of capturing the network-wide vehicular interaction between the individual roadway elements (mainline segments, ramp junctions and arterial intersections). The microsimulation model was calibrated to the existing year traffic counts and speeds obtained from StreetLight Data. The simulation model was modified accordingly to reflect future conditions. A four-hour AM and PM peak period analysis was conducted using 15-minute flow rates with microsimulation for the 2016 existing year. The microsimulation was performed consistently with guidelines provided in the FDOT 2014 Traffic Analysis Handbook. Ramp, mainline, and entry volumes were calibrated to within 10% of counts. Travel time was calibrated to within 15% for all the study locations using the StreetLight collected travel time data.

Vissim is a stochastic model that produces different results by changing the random seed numbers. To ensure model variation does not skew the results, a certain number of model runs is required. A sample size of ten runs was used for the initial test and the results from these runs were averaged. The number of required runs was calculated from the Student's t-test using a 95% confidence level with 10% allowable error. The results of the 2016 existing year statistical analyses are provided in **Appendix S**. The existing and design year analyses averaged ten model runs, which satisfied the Student's t-test in each case.

The following sections document the modeling methodology used for performing the Vissim microsimulation operational analysis for this study.

Modeling Analysis Years and Alternatives – The Vissim models were developed for the AM and PM peak periods for the following analysis years and alternatives:

- 2016 Existing Year
- 2045 No-Build Alternative Design Year
- 2045 Preferred Alternative Design Year

Model Traffic Volumes – All Vissim model scenarios include AM and PM peak period volumes using 15-minute volume intervals. The 15-minute volumes were developed using volume profiles from the 2016 existing year. Traffic was distributed via the I-95 mainline, I-95 express lanes, and arterials using static routes based on the 2045 design year peak-hour demand volumes.

Model Spatial Limits – The Vissim model spatial limits are based on the area of influence. The area of influence covers the area that could be affected by the construction of the proposed project and/or future improvements. For this study, the influence area for the Vissim analysis includes I-95 from Ives Dairy Road to south of Sheridan Street.

Model Temporal Limits – The temporal limits of the modeling period relate to the location of the project, the length of peak periods, and the duration of the expected congestion. The model temporal limit assumed for this study was a four-hour AM and four-hour PM peak period for existing calibration and four-hour AM and four-hour PM peak period for future year models. The four-hour AM and PM peak period models were achieved by developing "shoulder hours" to the AM and PM peaks, which were based on the existing traffic counts in the study area. The shoulder hours allowed the modeling to capture the buildup to the congestion, the potential failure, and the recovery of the transportation network in the area of influence for this study. A 30-minute seed period was used to load traffic prior to the start of the four-hour period. Fifteen-minute volumes were developed for each hour of the peak period.

Model Calibration – A calibration of the existing models was performed by adjusting the driving behavior parameter sets such that travel time results along the facility reasonably replicate travel time data. The calibration efforts used criteria from the FDOT's Traffic Analysis Handbook, and all reasonable efforts were made to calibrate the Vissim model to the proposed criteria. The calibration efforts are summarized in the Vissim Existing Conditions Model Development and Calibration Report (see **Appendix S**).

Vissim Measures of Effectiveness – The MOEs used in the Vissim analysis results to evaluate the operational performance of the study elements are listed and described below:

- Operating speed, volume, and density were provided for the freeway mainline segments of the general use lanes and express lanes.
- Speed and volume information were provided in hourly speed and volume profiles.
- Lane schematics provide speed, volume throughput and density along the freeway mainline segments.
- Intersection/interchange performance were assessed using delay, volume, and maximum queue lengths.
- Network-wide MOEs (average speed, total delay, latent delay, latent demand, total travel time, total stops, and vehicles arrived) were used to evaluate and compare network-wide operational performance between the alternatives.

Traffic volume throughput was included as one of the MOEs for freeway segments as significant differences in demand volumes (observed volume or throughput in the field) vs. simulated volumes from Vissim can indicate operational deficiencies and/or congestion on upstream freeway segments or at arterial intersections. The key MOEs listed above were used to assess the traffic operation conditions for the various alternatives by comparing MOEs between the No-Build and Preferred Alternatives.

7.6.2 EXISTING OPERATIONAL ANALYSIS

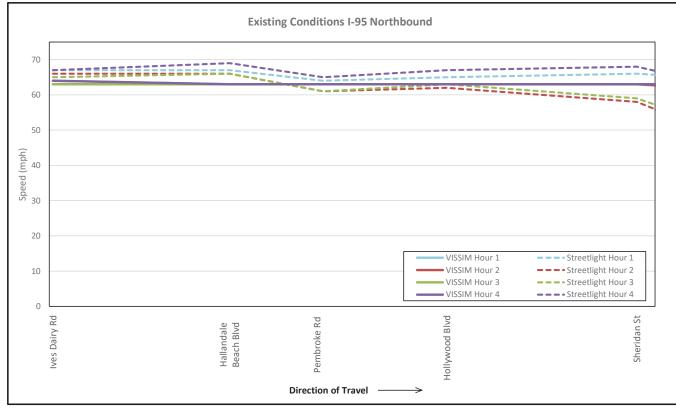
A detailed microsimulation analysis using Vissim 9 (Revision 9.00-10) was conducted to evaluate the system-wide operational performance. Vissim models were prepared for the 2016 existing year AM and PM peak periods. The primary objective of the existing conditions analysis was to establish the current operational conditions along I-95 and the study interchanges and intersections.

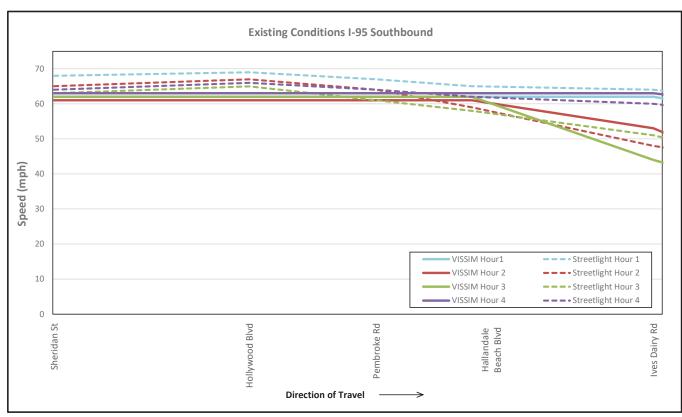
Speed data summarized from StreetLight Data was used to plot speed profiles for the AM and PM peak periods. These speed profiles were used in the calibration of the existing peak period models. Simulated speeds for AM and PM peak periods were plotted against the StreetLight Data speeds to evaluate how well the Vissim models replicate existing operations.

Fifteen-minute volume profiles were developed for the analysis area and input into Vissim for the four-hour AM and PM peak periods with an additional 30-minute seed time. The volume profiles were developed from the 15-minute variation in traffic observed in the

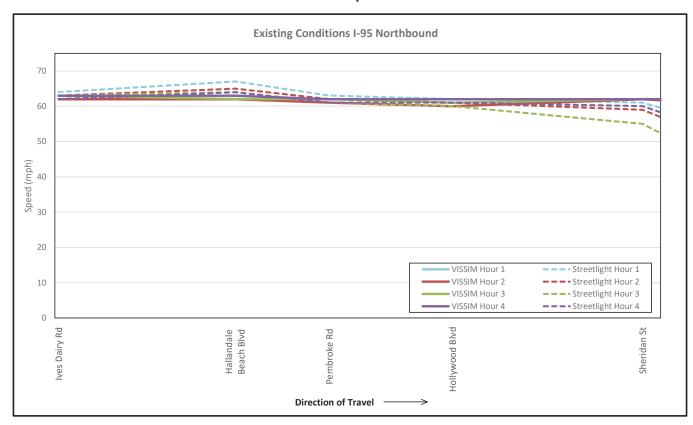
traffic counts collected for this project. The signal timing and phasing data for the AM and PM peak periods were provided by Broward and Miami-Dade Counties.

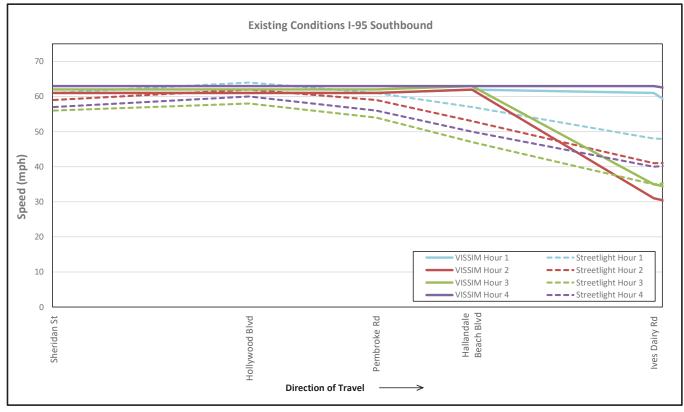
Ten model iterations with different random seed numbers were executed for the AM and PM peak periods. The results provided in this report represent an average of the ten simulation runs. This section provides a summary of the results of the existing Vissim operational analysis. Additional information on the existing conditions calibration effort is provided in **Appendix S**.


Existing Speed Profiles – The speed profiles (derived from Vissim travel time output) for the 2016 existing AM and PM peak periods can be found in *Figure 7.11*, which presents the average speed output from Vissim for each of the four hours along with the StreetLight speed data and show that the final calibration parameters provide reasonable speed/congestion trends in both the AM and PM peak periods.


During the AM peak period, the northbound direction operates near free-flow speed, which is between 60 and 65 mph. The southbound direction experienced congestion south of Hallandale Beach Boulevard, which originates outside of the project study area. Average speeds approach 50 mph during the peak-hour, and speeds lower than 45 mph are observed during hour 3. Full recovery to free-flow conditions is observed during hour 4.

During the PM peak period, the northbound direction operates near free-flow speed, which is between 60 and 65 mph. The southbound direction experienced congestion south of Pembroke Road, which originates outside of the project study area. Average speeds approach 30 mph in the peak-hour and recover to approximately 35 mph during hour 3. Full recovery to free-flow conditions is observed during hour 4.


Existing Study Intersection Operations – The existing conditions intersection operational analysis results are shown in *Table 7.11*. The results indicate that the study intersections operate under acceptable delay time (<80 seconds/vehicle) in the existing conditions. The I-95 northbound on-ramp from Ives Dairy Road is near capacity, approximately 1,950 vehicles per lane, causing congestion on Ives Dairy Road at the interchange.


2016 AM Peak Period Speed Profiles for I-95

2016 PM Peak Period Speed Profiles for I-95

Figure 7.11: Existing Conditions Speed Profiles

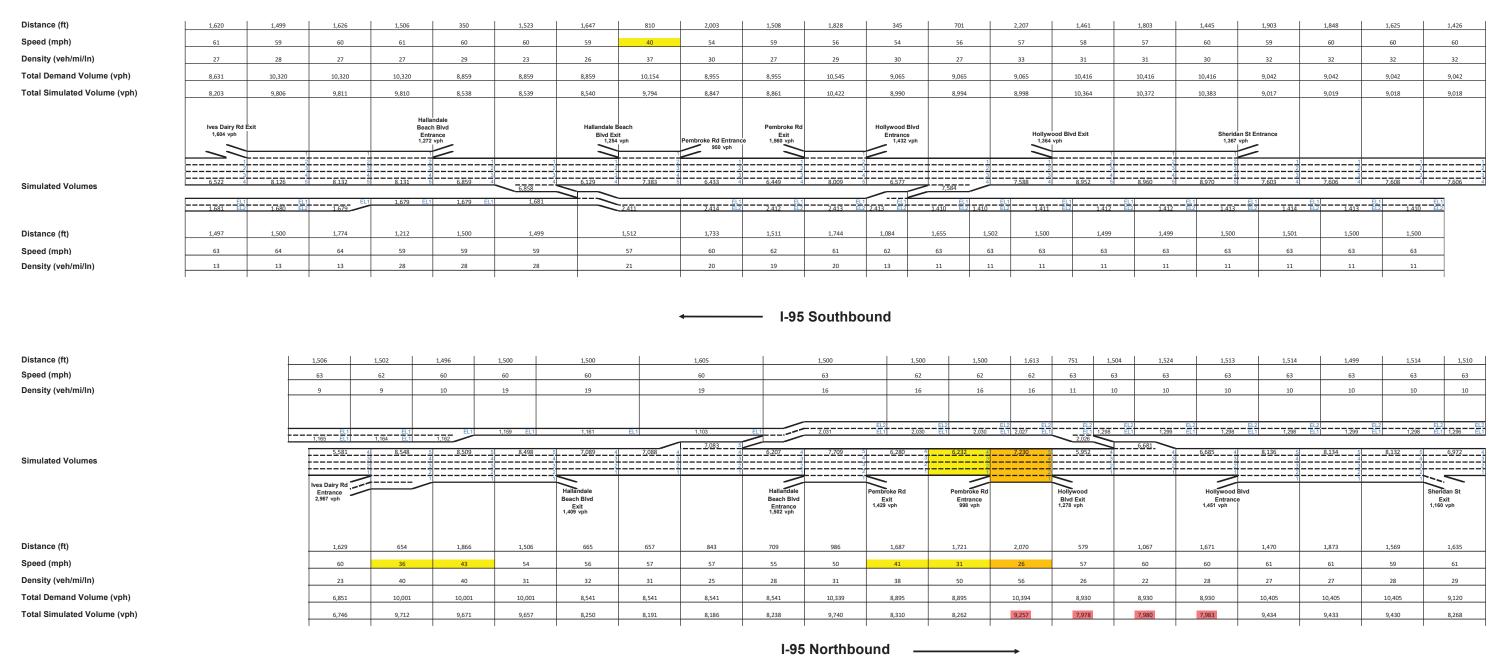
Table 7.11 – 2016 Existing Intersection/Interchange Analysis Summary

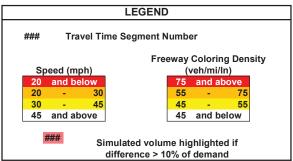
Intersection Location	Delay (seco	nds/vehicle)
intersection foculion	AM Peak	PM Peak
Hallandale Beach Boulevard and Park Road	25.5	17.2
Hallandale Beach Boulevard and SW 30th Avenue	54.0	30.0
Hallandale Beach Boulevard and I-95 Ramps	31.6	33.6
Hallandale Beach Boulevard and 10th Terrace	14.8	20.8
Pembroke Road and Park Road	17.6	11.3
Pembroke Road and SW 31st Avenue	26.2	9.8
Pembroke Road and SW 30th Avenue	16.8	12.9
Pembroke Road and I-95 Ramps	23.2	26.3
Pembroke Road and NW 10th Avenue/S. 28th Avenue	21.3	58.0
Hollywood Boulevard and Entrada Drive	6.6	10.6
Hollywood Boulevard and Calle Grande Drive	0.9	1.6
Hollywood Boulevard and Tri-Rail Station	23.6	22.2
Hollywood Boulevard and I-95 Ramps	41.2	63.0
Hollywood Boulevard and SW 28th Avenue	37.5	34.2

7.6.3 2045 DESIGN YEAR I-95 OPERATIONAL ANALYSIS

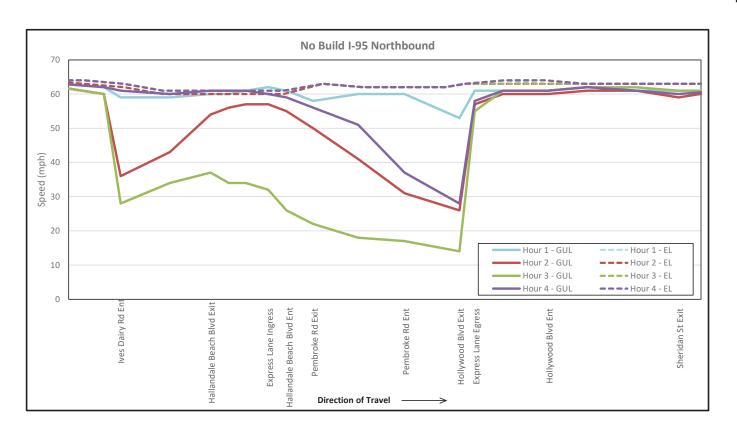
The 2045 design year Vissim models analyzed four-hour AM and PM peak periods. Fifteen-minute flow rates based on the trends observed in the existing conditions data collection were used to develop the four-hour AM and PM peak period Vissim models. The 2045 design year simulation model parameters are based on those used for the 2016 existing year calibrated model. The simulation time consisted of a 30-minute seed time to load traffic into the network, followed by a 4-hour peak period consisting of a preceding shoulder hour, the peak-hour, and two subsequent off-peak hours. The purpose of the off-peak hours was to allow all or most of the congestion built during the peak-hour to subside during the simulation period. Traffic was distributed using static routes based on the 2045 design year peak-hour demand volumes.

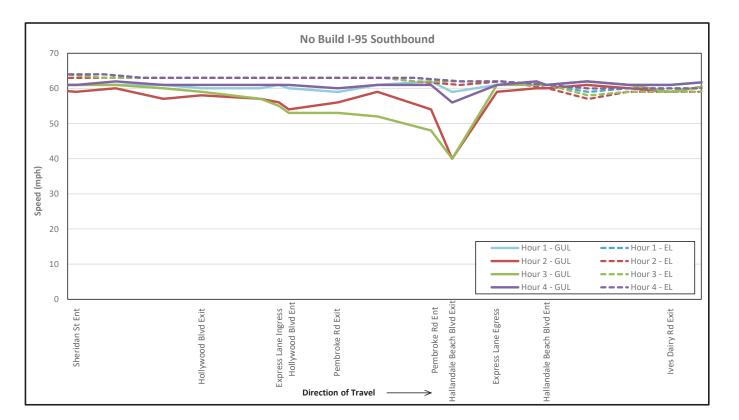
The following MOEs were used to evaluate the network's operational performance:

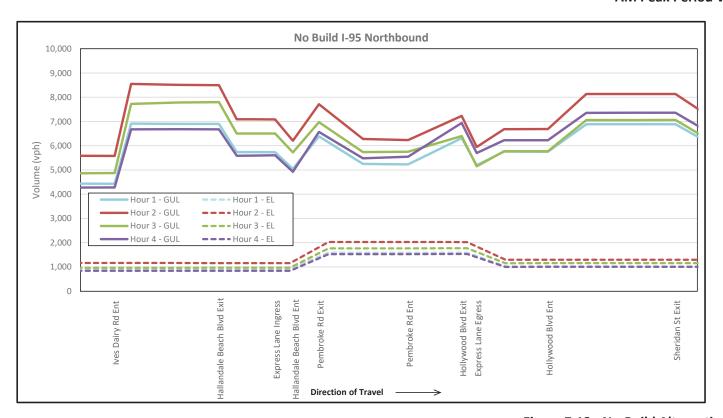

- Freeways
 - Travel Speed
 - Simulated (Throughput) Volume
 - Density
- Intersections
 - Intersection Delay
 - Simulated Volume


- Queue Length
- Travel Time
- Network-Wide Performance
 - Total Network Delay
 - Average Network Speed
 - Latent Demand
 - o Travel Time
 - Vehicle Miles Traveled (VMT)

The MOEs listed above were used to compare the operational performance of the 2045 No-Build and Preferred Alternatives. **Appendix S** contains supplemental simulation output related to the intersection performance for each analysis alternative. The following sections provide a summary of the operational performance based on the Vissim modeling results.


2045 Peak Period Analysis – The lane schematics presented in the following discussion provide an operational overview of the freeway facilities during the peak hours of each simulation. Therefore, the speed, density and throughput presented in these figures only represents data collected during the peak-hour (Hour 2) of the simulations. The speed and volume profiles also presented in the following discussion provide operational results for all four hours of simulation to illustrate buildup and dissipation of the congestion that occurs during the peak period.


2045 No-Build Alternative Results – Figure 7.12 shows the 2045 No-Build results for the AM peak hour. During the AM peak hour, two areas of congestion are present on I-95 in the northbound direction. Between Ives Dairy Road and Hallandale Beach Boulevard, the high demand volume coupled with weaving maneuvers between the two interchanges cause congestion and speeds between 36-43 mph to occur. The Hallandale Beach Boulevard northbound off-ramp also queues on the mainline. During Hour 3, the congestion at the Ives Dairy Road merge remains similar to the peak hour with low speeds of 28 mph which recover to 60 mph in Hour 4 (see **Figure 7.13**). Additionally, speeds as low as 26 mph are observed in Hour 2 at the Hollywood Boulevard northbound off-ramp, extending upstream within the Pembroke Road interchange. This occurs because the northbound off-ramp turning movements experience significant delay and queueing. The congestion and queueing from the Hollywood Boulevard off-ramp worsen in Hour 3 and reaches a mainline speed of approximately 14 mph. Operations upstream of Hollywood Boulevard in Hour 4 only recover to speeds of 28 mph or better.



AM Peak Period Speed Profiles for I-95

AM Peak Period Volume Profiles for I-95

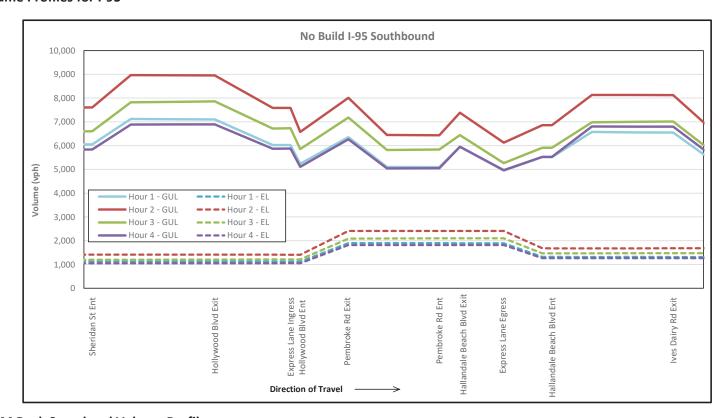
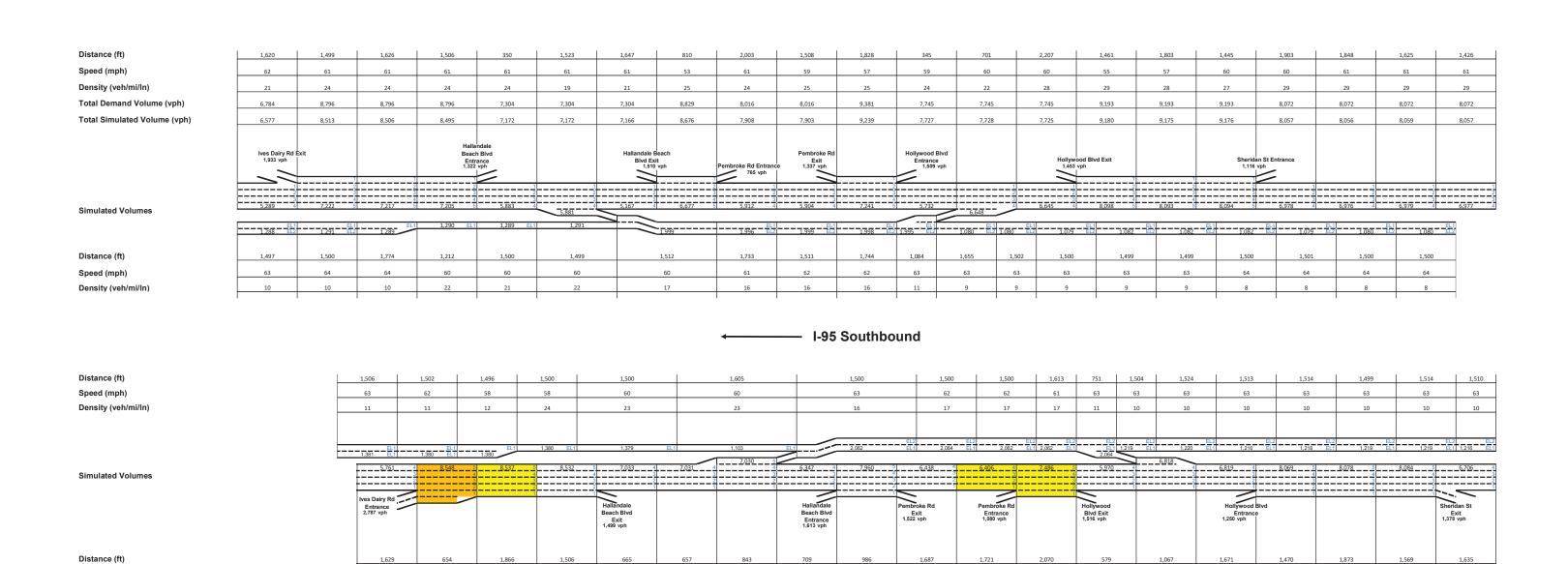


Figure 7.13 - No-Build Alternative AM Peak Speed and Volume Profiles

In the southbound direction there is congestion in Hour 2 originating within the 800-footlong weave segment between Pembroke Road and Hallandale Beach Boulevard with an approximate mainline speed of 40 mph. The southbound off-ramp at Hallandale Beach Boulevard queues onto the mainline causing operational issues within the short weave segment. This location maintains a speed of 40 mph in Hour 3 and improves to a speed of 56 mph in Hour 4. The Pembroke Road southbound off-ramp also queues onto the mainline causing a low speed of 54 mph.

During the PM peak hour (as shown in **Figure 7.14**), congestion is observed on I-95 northbound at similar locations to the AM peak hour. Between Ives Dairy Road and Hallandale Beach Boulevard, the high demand volume coupled with weaving maneuvers between the two interchanges cause congestion and speeds between 25-36 mph to occur. Operations begin to deteriorate in Hour 1 at this location reaching speeds as low as 28 mph (see **Figure 7.15**). In Hour 3 congestion begins to recover with an approximate speed of 43 mph and continues to improve in Hour 4 with a speed of 61 mph. The Hallandale Beach Boulevard northbound off-ramp also queues on the mainline in Hour 2. The Hollywood Boulevard diverge also begins to degrade in Hour 1 with a low speed of 40 mph. Operations continue to worsen in Hours 2 and 3 with approximate speeds of 32 mph and 21 mph, respectively. Significant queueing is observed spilling back from the off-ramp. Operations upstream of Hollywood Boulevard in Hour 4 only recover to speeds of 26 mph or better.


In the southbound direction there is minor turbulence upstream of the Hollywood Boulevard off-ramp in Hour 2 reaching a speed of 55 mph. This is in part due to the Hollywood Boulevard off-ramp queueing on the mainline. Also, in the southbound direction, congestion within the 800-foot-long weave segment between Pembroke Road and Hallandale Beach Boulevard is observed with an approximate mainline speed of 53 mph in Hour 2. Speeds of 58 mph or greater are observed in Hours 3 and 4 for the entire southbound direction.

2045 Preferred Alternative Results – Figure 7.16 shows the 2045 Preferred Alternative results for the AM peak hour. These results show significant improvements over the No-Build due to capacity improvements on the mainline and at study interchanges. In the AM peak period, I-95 northbound operates at 55 mph or better for all four hours of simulation throughout the project area (see Figure 7.17). The additional lane available within the northbound weave segment between Ives Dairy Road and Hallandale Beach Boulevard significantly improves operations at this location. The Preferred Alternative geometry eliminated the short weave segments between Hallandale Beach Boulevard and Pembroke Road as well as Pembroke

Road and Hollywood Boulevard which significantly improved reliability on the mainline. The additional left turn lane and increased right turn lane storage at the Hollywood Boulevard northbound off-ramp, in addition to the proposed C-D road servicing Pembroke Road on-ramp volume and Hollywood Boulevard off-ramp volume, significantly reduces the risk of queue spillback from the ramp terminal intersection to the I-95 mainline. The proposed northbound C-D road shifts the reduced off-ramp queue off the mainline lanes. Note that the Tri-Rail train activity prevents vehicles from traveling westbound in both the No-Build and Preferred Alternatives at the interchanges while passing through the arterial. Train events were the primary cause for the longer queues at the Hollywood Boulevard off-ramp.

I-95 in the southbound direction operates at or near free-flow conditions throughout the project area during the AM peak period. The weave segment upstream of the proposed Hollywood Boulevard and Pembroke Road combined off-ramp experiences speeds of 56 mph and greater in Hour 2. While the weave segment created by the Sheridan Street single lane on-ramp and Hollywood Boulevard/Pembroke Road two-lane off-ramp is approximately 4,000 feet in length, minor turbulence exists with over 2,700 vehicles staging to use the off-ramp. This location improves to a speed of 58 mph in Hour 3 and a speed of 61 mph in Hour 4. The proposed relocation of the Pembroke Road southbound on-ramp to south of the Hallandale Beach Boulevard on-ramp eliminated the turbulence experienced in the No-Build weave segment between the Pembroke Road on-ramp and Hallandale Beach Boulevard off-ramp.

Figure 7.18 shows the 2045 Preferred Alternative results for the PM peak hour. These results show significant improvements over the No-Build due to improvements on the mainline and at study interchanges. I-95 northbound operates at 55 mph or better throughout the project area for hours 1, 3, and 4 of simulation (see **Figure 7.19**). Hour 2 experiences a short duration of queue spillback from the Hollywood Boulevard off-ramp CD road system resulting in a speed of 47 mph at the Hollywood Boulevard off-ramp. This location is significantly improved compared to the No-Build alternative which has significant congestion on I-95 mainline and speeds as low as 21 mph throughout the simulation duration. The additional left turn lane and increased right turn lane storage at the Hollywood Boulevard northbound off-ramp significantly reduced the ramp queueing. Similar to the AM peak hour, the additional lane between Ives Dairy Road and Hallandale Beach Boulevard significantly improves operations at this location. The Preferred Alternative geometry also eliminated the short weave segments between Hallandale Beach Boulevard and Pembroke Road as well as Pembroke Road and Hollywood Boulevard which significantly improved reliability on the mainline. In the southbound direction speeds of 59 mph or higher are observed for all four hours of simulation during the PM peak period.

I-95 Northbound

8,869

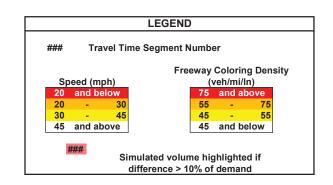
8,869

10,167

8,519

8,519

8,519


9,844

9,844

9,844

8,387

10,439

10,163

10,163

8,632

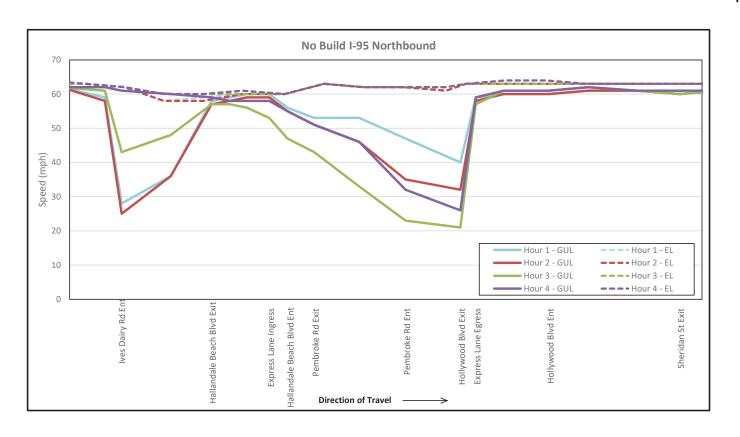
8,632

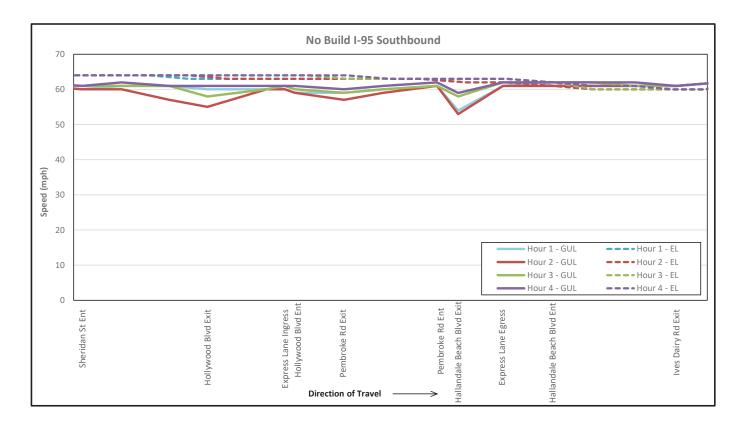
8,632

8,632

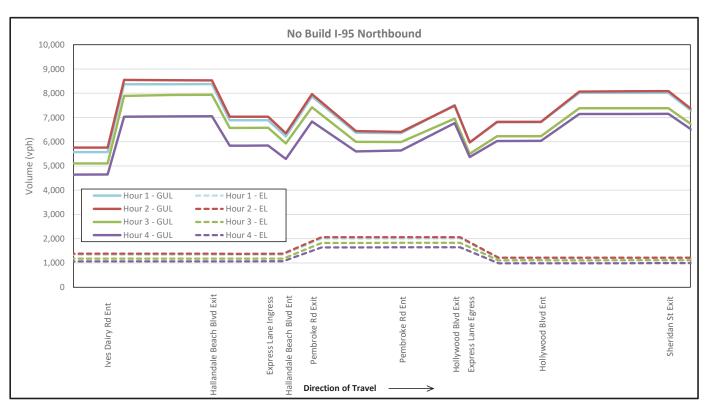
7,207

10,163


Speed (mph)


Density (veh/mi/ln)

Total Demand Volume (vph)


Total Simulated Volume (vph)

PM Peak Period Speed Profiles for I-95

PM Peak Period Volume Profiles for I-95

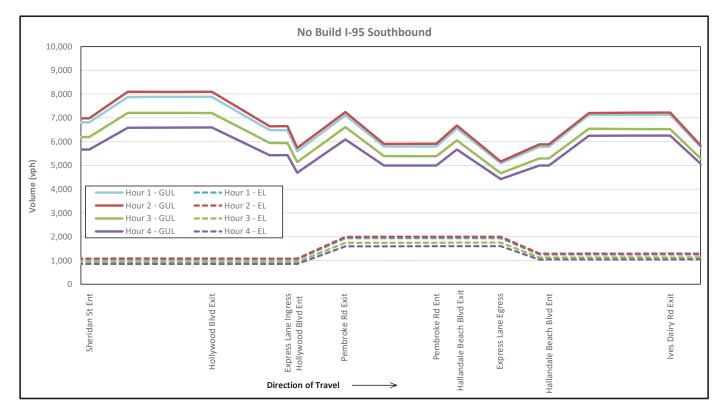
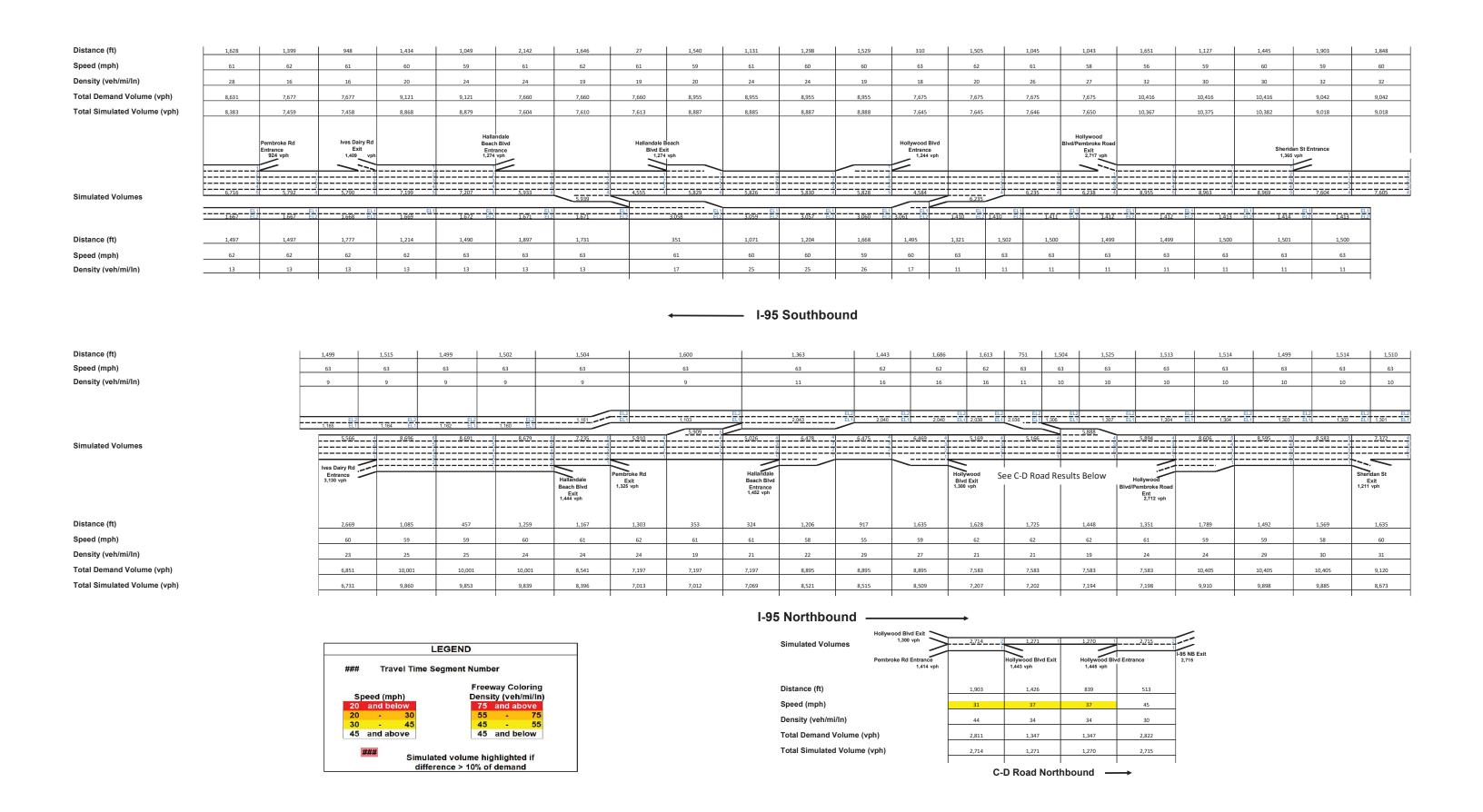
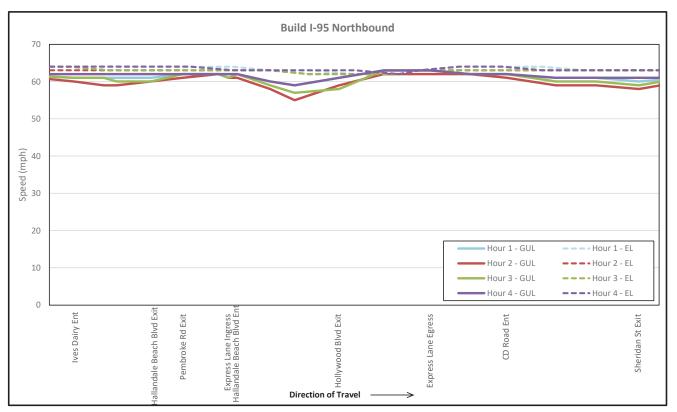
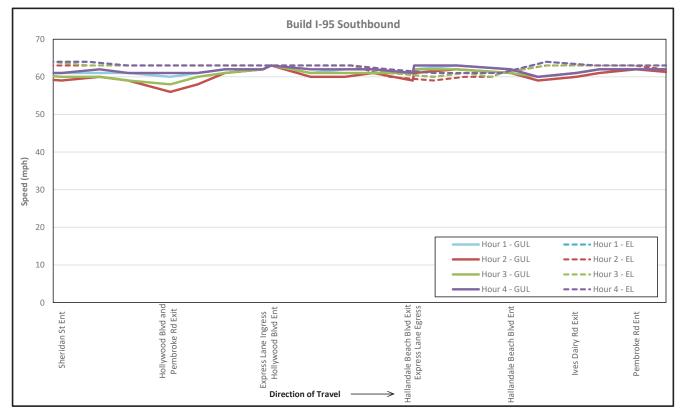
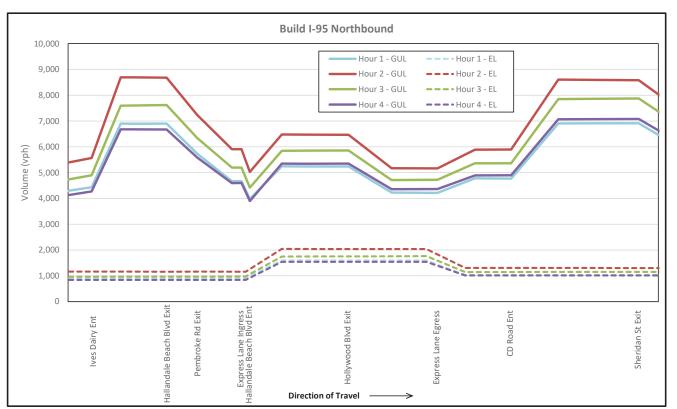





Figure 7.15 - No-Build Alternative PM Peak Speed and Volume Profiles



AM Peak Period Speed Profiles for I-95

AM Peak Period Volume Profiles for I-95

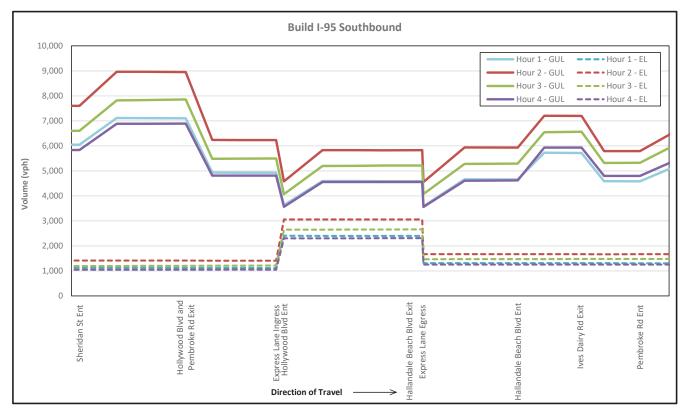
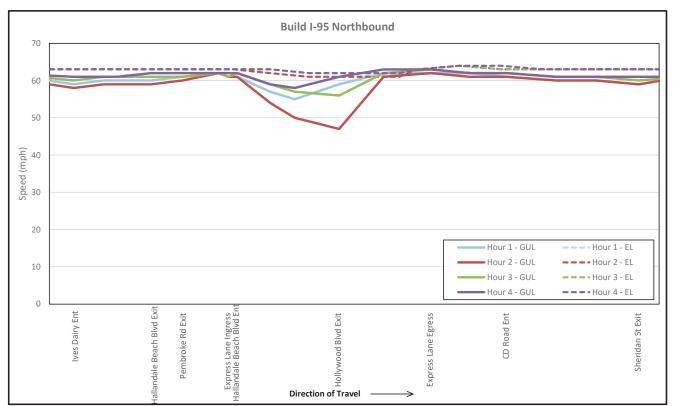
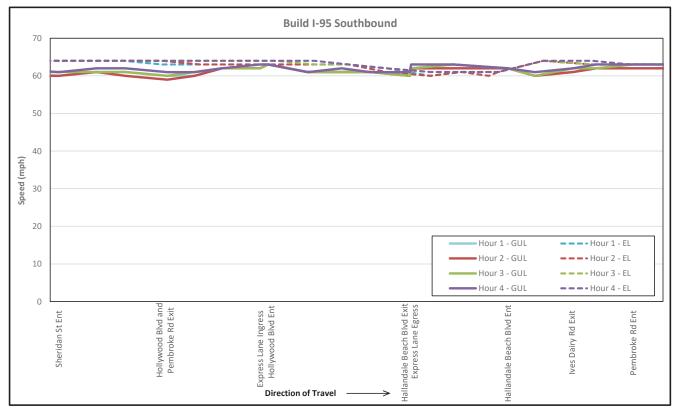
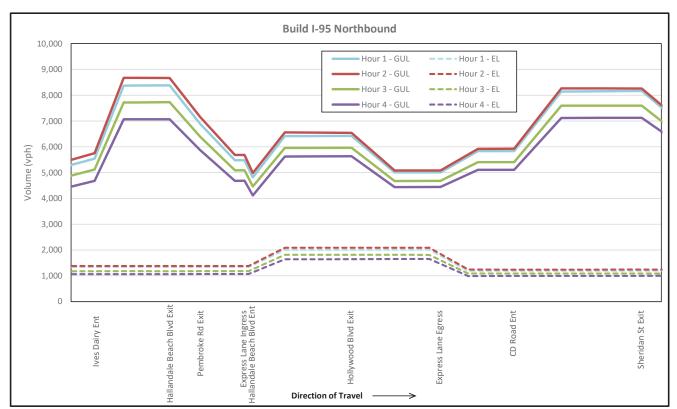




Figure 7.17 - Preferred Alternative AM Peak Speed and Volume Profiles


Distance (ft)	1,628	1,399	948	1,434	1,049	2,142	1,646	27	1,540	1,131	1,298	1,529	310	1,505	1,045	1,0	13	1,651	1,127	1,445	1,903	1,848
Speed (mph)	62	62	62	61	60	62	62	62	60	61	61	61	63	62	62	60		59	60	61	60	60
Density (veh/mi/ln)	22	13	13	18	22	21	17	16	18	22	22	18	16	18	22	23		27	27	27	29	29
Total Demand Volume (vph)	6,784	6,206	6,206	7,983	7,983	6,491	6,491	6,491	8,016	8,016	8,016	8,016	6,580	6,580	6,580	6,5	80	9,193	9,193	9,193	8,072	8,072
Total Simulated Volume (vph)	6,642	6,069	6,065	7,805	7,792	6,436	6,422	6,412	7,907	7,900	7,902	7,897	6,577	6,579	6,573	6,5	78	9,176	9,173	9,176	8,057	8,055
			- } +	ih	Bee Er 1,3	-			exit 95 vph							_1	oke Road t 98 vph			1,116		
Cimulated Valumas	5,360	4,787	3 4 4,782	3 4 6,521	4 5 6,509	5 5,152	3	3 856	3 4 5,351	5,343 4	5,342	5,339	4,022	-+	3 4 5,494	3 4 5,49	96 4	8,094 5	8,091 5	8,094 5	6,978	6,975 4
Simulated Volumes							5,141	$\overline{}$						5,498								
	1,282	1.282	1.283 EL	1 EL 2 1.284	1,283	1.284 EL:	2 1,281	EL2	2,556 EL	2,557 FL2	2,560 EL2	2,558 EL	2,555 EL2	1.081 EL2 1.08		079 EL1	1.082	EL1 1.082	L2 1.082	EL1 1.079	EL1 1.080	EL1 EL2
Distance (ft)	1,497	1,497	1,777	1,214	1,490	1,897	1,731		351	1,071	1,204	1,668	1,495	1,321 1	,502 1	500	1,499	1,499	1,500	1,501	1,500	
Speed (mph)	63	63	63	63	63	63	64		61	60	61	60	61	63	63	53	63	63	64	64	64	
Density (veh/mi/ln)	10	10	10	10	10	10	10		14	21	21	21	14	9	9	9	9	9	8	8	8	
Distance (ft)			1,499	1,515	1,499	1,502	1,504		1,600	—— I-95	Southbo	und	1,68	6 1,613	751	1,504	1,525	1,513	1,514	1,499	1,514	1,510
Speed (mph)			63	63	63	63	63		63		62	61	61	61	63	64	63	63	63	63	63	63
Density (veh/mi/ln)			11	11	11	11	11		11		11	17	17	17	11	10	10	10	10	10	10	10
			510	FLO	51.0	FLO	1001	EL2		EL2		EL2	EL2	EL2 EL	2 EL2	EL2		EL2	EL2	EL2	EL2	EL2 EL2
			1,381 EL1	EL2 1,379 EL1	EL2 1,380 EL1	EL2 EL1	1,381	EL2 EL1	F. 605	EL2 EL1	2,086	EL2 EL1 2,087	EL2	EL2 EL 7 EL1 2,086 EL	2 EL2 1 2,086 EL1 1		-	EL2 1,240	EL2 EL1 1,238	EL2 EL1 1,242	EL2 EL1 1,241	EL2 EL2 EL1 1,242 EL1
Simulated Volumes			5,752	4 8,675	6 8,672	6 8,666	6 7,152	5 5,685	5,685	4.981 4	6,557	6,556	6,541	4 <u>5,082</u>	4 <u>5,082</u>	5,9	3 4 3	5,924 4	<u>8,265</u> <u>5</u>	<u>8,263</u> <u>5</u>	<u>8,259</u>	6.852 4
Simulated Volumes			5,752	4 8,675 2 1	6 8,672 5 4 3	6 8,666 5 4 3 3	6 7,152 5 4 3	5 5,685	5,685	4.981 4	6,557	6,556	6,541	4 <u>5,082</u>	4 <u>5,082</u>	5,9	3 4 3	5,924 4 3 2	8,265 5 4 3 2	8,263 5 4	<u>8,259</u>	6.852 4
Simulated Volumes		E	5,752	4 8,675 2 1	6 8,672 5 4 3	6 8,666	6 7,152 5 4 3	5 5,685	5,685	4.981 4	6,557	6,556	6,541	4 5,082 3 2 1	4 <u>5,082</u>	5,9:	3 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5,924 4 3 2	8,265 5 4 3	8,263 5 4	8,259	6.852 4
Simulated Volumes Distance (ft)			5,752	4 8,675 2 1	6 8,672 5 4 3	6 8,666 5 4 3 3	6 7.152 4 3 2 1 1 Hallandale Beach Blvd	55,6853 31 Pembroke Rd Exit	5,685	4,981 4 3 2 2 Hallandale Beach Blvd Entrance	6,557	6,556	6,541	4 5,082 3 2 1 Hollywood Blvd Exit	4 <u>5,08</u> 2 3 2 1	5,9:	3 4 3 - 2 1 - 1 1 Iow	5,924 4 3 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8,265 5 4 3 2	8,263 5 4	8,259	6.852 4 3 2 1 Sheridan St
		E	Ives Dairy Rd Entrance 2,923 vph	4	5	8.666 5.5 4.4 4.7 2.2	Hallandale Beach Blvd Ext 1,514 vph	5 5.685 4 2 3 2 1 Pembroke Rd Exit 1,467 vph	5,685	Hallandale Boach Blvd Entrance 1,576 vph	6.557	6556	6,541	Hollywood Blvd Exit 1,459 vph	4 5.082 2	-4 5.92 -4	3 4 3 2 1 1 1 low Biv	Hollywood Addresses Road Ent 2,341 vph	8.265 5 4 3 2	8,263 5 3 3 2 1	8,259	5,852 4 3 2 1 Sheridan St Exit 1,407 vph
Distance (ft) Speed (mph) Density (veh/mi/ln)		E	Sy752 Ives Dairy Rd Entrance 2,923 vph 2,669	4 8.675	6 8.672 3 4	8,666 5 4 4 3 2 1	E 7.152 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5 5,685 4 3 3 Pembroke Rd Exit 1,467 vph	5,685	Hallandale Beach Blvd Entrance 1,576 vph	1,206	917	1,635	4 5,082 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6ee C-D Road	-4 5.92 -3	3 4 3 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Hollywood Wide Pombroke Road Ent 2,341 vph	8265 - 5 4 4 - 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8.263	8,259 1,569	6.852 4 3 2 2 3 Sheridan St Exit 1,407 vph
Distance (ft) Speed (mph)		E	lves Dairy Rd Entrance 2,923 vph	1,085	6 8.672 8.672 8	1,259	6	5 5,685 4 3 2 2 1 Pembroke Rd Exit 1,467 vph 1,303	5,685 3 2 1	Hallandale Beach Blvd Entrance 1,876 vph	1,206	917	1,635 47	Hollywood Blvd Exit 1,459 vph	5.082 2.000 6.000 1,725 62	Results Be	3 4 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Hollywood wd/Pembroke Road Ent 2,341 vph 1,351	1,789 60	8,263 5 4 3 3 2 1 1,492	1,569 59	Sheridan St Exit 1,497 vph
Distance (ft) Speed (mph) Density (veh/mi/ln)		==	52/52	1,085 59	5	1,259	6	5 5.685	3 5.685	4.981 4 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1,206 54	917	1,635 47	Hollywood Blvd Exit 1,459 vph	6ee C-D Road	Results Be	3 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Hollywood wd/Pembroke Road Ent 2,341 vph	1,789 60	1,492 60 28	1,569 59	6,852 4 3 2 1 Sheridan St Exit 1,407 vph
Distance (ft) Speed (mph) Density (veh/mi/ln) Total Demand Volume (vph)			Substitute	1,085 59 25 10,163	457 59 24 10,163 10,052	1,259 59 24 10,163	1	Pembroke Rd Exit 1,467 vph 1,303 62 23 7,162	3 5.685	4.981 4 Hallandale Beach Blvd Entrance 1,576 vph 324 61 20 7,162 7,067	1,206 54 24 8,869	917 50 33 8,869 8,643	1,635 47 35 8,869	Hollywood Blvd Exit 1,459 vph 1,628 61 21 7,373	1,725 62 20 7,373	Results Be	3 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Hollywood dr/Pembroke Road Ent 2,341 vph 1,351 61 24 7,373	1,789 60 23 9,844	1,492 60 28 9,844	1,569 59 28	5,852 4 3 2 1 Sheridan St Exit 1,407 vph 1,635 61 28 8,387
Distance (ft) Speed (mph) Density (veh/mi/ln) Total Demand Volume (vph)			Substitute	1,085 59 25 10,163	457 59 24 10,163	1,259 59 24 10,163	1	Pembroke Rd Exit 1,467 vph 1,303 62 23 7,162	3 5.685	4.981 4 Hallandale Beach Blvd Entrance 1,576 vph 324 61 20 7,162 7,067	1,206 54 24 8,869 8,643	917 50 33 8,869 8,643	1,635 47 35 8,869 8,628	Hollywood Blvd Exit 1,459 vph 1,628 61 21 7,373	1,725 62 20 7,373 7,168	Results Be	3 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Hollywood du/Pembroke Road Ent 2,341 vph 1,351 61 24 7,373 7,164	1,789 60 23 9,844 9,503	1,492 60 28 9,844	1,569 59 28	5,852 4 3 2 1 Sheridan St Exit 1,407 vph 1,635 61 28 8,387
Distance (ft) Speed (mph) Density (veh/mi/ln) Total Demand Volume (vph)			Substitute	1,085 1,085 59 25 10,163 10,054	457 59 24 10,163 10,052	1,259 24 10,163 10,046	1	Pembroke Rd Exit 1,467 vph 1,303 62 23 7,162	3 5.685	4.981 4 Hallandale Beach Blvd Entrance 1,576 vph 324 61 20 7,162 7,067	1,206 54 24 8,869 8,643	917 50 33 8,869 8,643	1,635 47 35 8,869 8,628	Hollywood Blvd Exit 1,459 vph 1,628 61 21 7,373	44 5.082 5.082 6.00 F. 5.00 F.	Results Be	3 4 4 - 3 - 3 - 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Hollywood du/Pembroke Road Ent 2,341 vph 1,351 61 24 7,373 7,164	1,789 60 23 9,844 9,503	1,492 60 28 9,844	1,569 59 28	5,852 4 3 2 1 Sheridan St Exit 1,407 vph 1,635 61 28 8,387
Distance (ft) Speed (mph) Density (veh/mi/ln) Total Demand Volume (vph)			2,669 58 25 7,207 7,133	1,085 1,085 59 25 10,163 10,054	457 59 24 10,163 10,052	1,259 1,259 24 10,163 10,046	1	Pembroke Rd Exit 1,467 vph 1,303 62 23 7,162	3 5.685	4,981 4 Hallandale Beach Blvd Entrance 1,576 vph 324 61 20 7,162 7,067	1,206 54 24 8,869 8,643	917 50 33 8,869 8,643	1,635 47 35 8,869 8,628	Hollywood Blvd Exit 1,459 vph 1,628 61 21 7,373	6ee C-D Road 1,725 62 20 7,373 7,168	Results Be	3 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Hollywood du/Pembroke Road Ent 2,341 vph 1,351 61 24 7,373 7,164	1,789 60 23 9,844 9,503	1,492 60 28 9,844	1,569 59 28	5,852 4 3 2 1 Sheridan St Exit 1,407 vph 1,635 61 28 8,387
Distance (ft) Speed (mph) Density (veh/mi/ln) Total Demand Volume (vph)			Speed Spee	1,085 1,085 59 25 10,163 10,054	457 59 24 10,163 10,052 LEGEND Segment Numb	1,259 59 24 10,163 10,046	1	Pembroke Rd Exit 1,467 vph 1,303 62 23 7,162	3 5.685	4,981 4 Hallandale Beach Blvd Entrance 1,576 vph 324 61 20 7,162 7,067	1,206 54 24 8,869 8,643 Northbo	917 50 33 8,869 8,643	1,635 47 35 8,869 8,628	Hollywood Blvd Exit 1,459 vph 1,628 61 21 7,373 7,168	4	1,44 63 7,33 7,11 1 1,11 xit Holl	3 4 4 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5.924 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1,789 60 23 9,844 9,503	1,492 60 28 9,844	1,569 59 28	5,852 4 3 2 1 Sheridan St Exit 1,407 vph 1,635 61 28 8,387
Distance (ft) Speed (mph) Density (veh/mi/ln) Total Demand Volume (vph)			1	1,085 1,085 59 25 10,163 10,054 Travel Time Sed (mph) nd below - 30	457 457 59 24 10,163 10,052 LEGEND Segment Numb Free Dens 75 55	1,259 1,259 24 10,163 10,046 ber way Coloring ity (veh/mi/In) and above - 75	1	Pembroke Rd Exit 1,467 vph 1,303 62 23 7,162	3 5.685	4.981 4 Hallandale Beach Blvd Entrance 1,576 vph	1,206 54 24 8,869 8,643 Northbo Simulated Volu	917 50 33 8,869 8,643 Und Hollyvimes	1,635 47 35 8,869 8,628	1,628 61 21 7,373 7,168	6ee C-D Road 1,725 62 20 7,373 7,168 Hollywood Blvd E 1,584 vph 1,426	1,44 6: 11 1 1,14 1 1,1	3 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5.924 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1,789 60 23 9,844 9,503	1,492 60 28 9,844	1,569 59 28	5,852 4 3 2 1 Sheridan St Exit 1,407 vph 1,635 61 28 8,387
Distance (ft) Speed (mph) Density (veh/mi/ln) Total Demand Volume (vph)			Spec	1,085 1,085 59 25 10,163 10,054 Travel Time \$	457 59 24 10,163 10,052 LEGEND Segment Numb Free Dens 75 55 45	1,259 1,259 24 10,163 10,046	1	Pembroke Rd Exit 1,467 vph 1,303 62 23 7,162	3 5.685	4.981 4 Hallandale Beach Blvd Entrance 1,576 vph	1,206 54 24 8,869 8,643 Northbo Simulated Volu Distance (ft) Speed (mph)	917 50 33 8,869 8,643 und Hollyvimes Pemb	1,635 47 35 8,869 8,628	1,628 61 21 7,373 7,168	1,725 62 20 7,373 7,168 Hollywood Blvd E 1,584 vph 1,426 37	1,4 6: 11 11 11 11 11 11 11 11 11 11 11 11 11	3 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Hollywood Road Ent 2,341 vph 1,351 61 24 7,373 7,164 1.551 1.552 1.552 1.552 1.552 1.552 1.552 1.552	1,789 60 23 9,844 9,503	1,492 60 28 9,844	1,569 59 28	5,852 4 3 2 1 Sheridan St Exit 1,407 vph 1,635 61 28 8,387
Distance (ft) Speed (mph) Density (veh/mi/ln) Total Demand Volume (vph)			Spec	1,085 1,085	457 59 24 10,163 10,052 LEGEND Segment Numb Free Dens 75 55 45	1,259 1,259 24 10,163 10,046 Der way Coloring ity (veh/mi/ln) and above - 75 - 55 and below	1	Pembroke Rd Exit 1,467 vph 1,303 62 23 7,162	3 5.685	4,981 4 Hallandale Boach Blvd Entrance 1,576 vph 324 61 20 7,162 7,067	1,206 54 24 8,869 8,643 Northbo Simulated Volu Distance (ft) Speed (mph) Density (veh/m	917 50 33 8,869 8,643 und Hollyvimes Pemb	1,635 47 35 8,869 8,628	1,628 61 21 7,373 7,168	1,725 62 20 7,373 7,168 21 1,102 1 1,426 37 30	1,4 63 7,3 7,1 1 1,11 1 1,11 1 1,31 1 33	3 4 4 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Hollywood vd/Pembroke Road Ent 2,341 vph 1,351 61 24 7,373 7,164 1-95 1-95 2,332 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1,789 60 23 9,844 9,503	1,492 60 28 9,844	1,569 59 28	5,852 4 3 2 1 Sheridan St Exit 1,407 vph 1,635 61 28 8,387
Distance (ft) Speed (mph) Density (veh/mi/ln) Total Demand Volume (vph)			1	1,085 1,085 59 25 10,163 10,054 Travel Time S ed (mph) nd below - 30 - 45 nd above	457 59 24 10,163 10,052 LEGEND Segment Numb Free Dens 75 55 45	1,259 1,259 59 24 10,163 10,046 Der way Coloring ity (veh/mi/ln) and above 75 and below ghlighted if	1	Pembroke Rd Exit 1,467 vph 1,303 62 23 7,162	3 5.685	4,981 4 Hallandale Boach Blvd Entrance 1,576 vph 324 61 20 7,162 7,067	1,206 54 24 8,869 8,643 Northbo Simulated Volu Distance (ft) Speed (mph) Density (veh/m	917 50 33 8,869 8,643 Hollyvimes Pemb	1,635 47 35 8,869 8,628	1,628 61 21 7,373 7,168 1,903 31 43 2,794 2,686	4	1,4 63 7,3 7,1 1 1,11 1 1,11 1 1,11 1 1,11 1 1,11 1 1,11	3 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Hollywood 1,351 61 24 7,373 7,164 1.351 61 24 7,373 7,164 1.352 62 2,471 2,332	1,789 60 23 9,844 9,503	1,492 60 28 9,844	1,569 59 28	5,852 4 3 2 1 Sheridan St Exit 1,407 vph 1,635 61 28 8,387

PM Peak Period Speed Profiles for I-95

PM Peak Period Volume Profiles for I-95

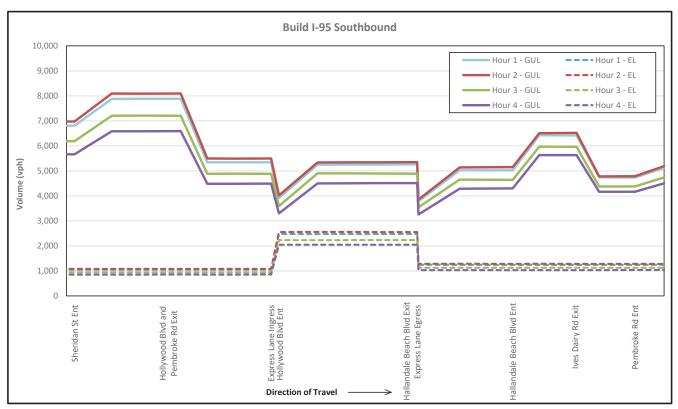


Figure 7.19 - Preferred Alternative PM Peak Speed and Volume Profiles

Queue Length Analysis – Table 7.12 and Table 7.13 contains the No-Build and Preferred Alternatives queue length comparison, respectively. In the table, the available storage represents the left or right turn storage bay measured from the stop bar to the taper. The ramp length is measured from the stop bar to the gore point with the freeway with adjustment for deceleration, where applicable. If the off-ramp consists of an auxiliary lane which is adequate to accommodate deceleration from freeway speed to stop condition, then no adjustments were made to the ramp length. This condition is typical for parallel type off-ramps. If the off-ramp type does not accommodate deceleration, then the total ramp length was reduced by the minimum deceleration distance, in accordance with AASHTO Greenbook, Table 10-5. This condition is typical for taper type off-ramps.

In the No-Build Alternative, five ramps have maximum queues that are not contained within the ramp length in either the AM peak hour, PM peak hour, or both. These queues exceed the ramp length and spill onto I-95 which compromises the safety of vehicles traveling on the mainline.

- Hallandale Beach Boulevard northbound off-ramp (AM and PM peak)
- Hallandale Beach Boulevard southbound off-ramp (AM Peak)
- Pembroke Road southbound off-ramp (AM Peak)
- Hollywood Boulevard northbound off-ramp (AM and PM peak)
- Hollywood Boulevard southbound off-ramp (PM peak)

In the Preferred Alternative, two ramps have a maximum queue that are not contained within the ramp length in either the AM or PM peak hour:

- Hallandale Beach Boulevard southbound off-ramp (AM peak)
- Hollywood Boulevard northbound off-ramp (PM peak)

The Hallandale Beach Boulevard ramp length was reduced from 2,640 feet to 2,070 feet because the off-ramp is a taper type which required removing the minimum deceleration distance of 570 feet. The maximum southbound left AM peak hour queue is 2,096 feet while the adjusted ramp length is 2,070 feet. The queue does not extend to impact the through lanes on I-95 as the speed profile at this location shows speeds of 59 mph or higher for all four hours of simulation. Therefore, there is no mainline performance degradation due to the queue from the Hallandale Beach Boulevard southbound off-ramp.

Table 7.12 – 2045 No-Build Alternative Interchange Queue Length

					2045 No-E	2045 No-Build AM Peak		2045 No-Build PM Peak	
Ramp Location		oach/ ement	Available Storage ¹ (ft)	Ramp Length (ft)	Max. Queue (ft)	Queue extend to I-95 mainline?	Max. Queue (ft)	Queue extend to I-95 mainline?	
I-95 at	NB	L	720	1,580	921	No	432	No	
Hallandale	NB	R	460	1,580	2,640	Yes	2,428	Yes	
Beach	SB	L	1,050	1,930	3,417	Yes	532	No	
Boulevard	SB	R	980	1,930	564	No	1,495	No	
1.05 ort	NB	L	830	1,770	729	No	1,203	No	
I-95 at	NB	R	430	1,770	237	No	257	No	
Pembroke Road	SB	L	820	2,180	1,248	No	525	No	
Rodd	SB	R	240	2,180	2,367	Yes	1,349	No	
1.05 ort	NB	L	540	1,690	5,515	Yes	5,411	Yes	
I-95 at	NB	R	300	1,690	871	No	4,622	Yes	
Hollywood Boulevard	SB	L	590	1,890	1,062	No	2,077	Yes	
boolevara	SB	R	580	1,890	1,652	No	3,703	Yes	

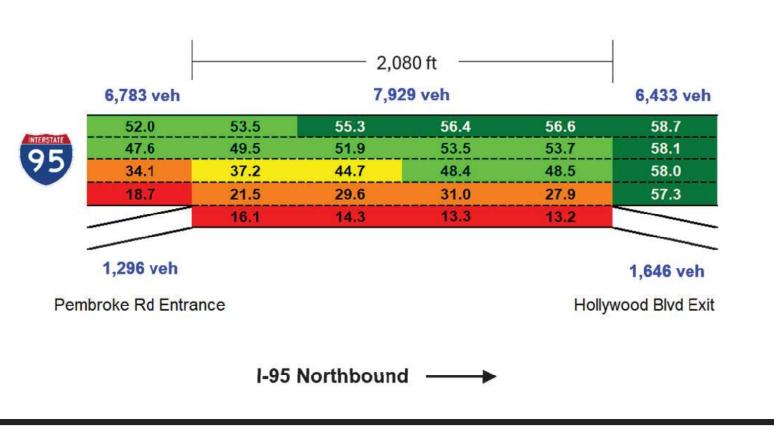
¹Length of left or right turn storage bay

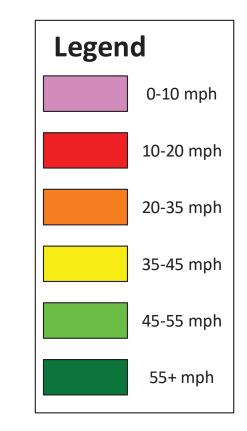
Table 7.13 – 2045 Preferred Alternative Interchange Queue Length

					2045 Prefe	erred AM Peak	2045 Preferred PM Peak	
Ramp Location		roach/ ement	Available Storage ¹ (ft)	Ramp Length (ft)	Max. Queue (ft)	Queue extend to I-95 mainline?	Max. Queue (ff)	Queue extend to I-95 mainline?
I-95 at	NB	L	610	1,920	532	No	697	No
Hallandale	NB	R ²	470	1,920	1,067	No	880	No
Beach	SB	L	570	2,070	2,096	Yes	509	No
Boulevard	SB	R ^{2, 3}	570	2,070	237	No	314	No
1.05 ort	NB	L	510	4,810	2,984	No	4,092	No
I-95 at Pembroke	NB	R	530	4,810	2,980	No	4,088	No
Road	SB	L	1,080	3,520	300	No	244	02
Rodd	SB	R	500	3,520	1,573	No	1,256	No
1.05 ort	NB	L ²	820	4,160	3,270	No	5,5834	Yes
I-95 at	NB	R	810	4,160	289	No	560	No
Hollywood Boulevard	SB	L2	630	2,380	348	No	337	No
boolevara	SB	R ²	620	2,380	438	No	1,135	No

¹Length of left or right turn storage bay

²Additional lane of storage provided in Preferred Alternative


³Right turn on red not allowed in Preferred Alternative


⁴Queue length was calculated using a queue counter on the slip ramp to the C-D Road. All other queues are from the node output.

The Hollywood Boulevard northbound off-ramp utilizes a proposed C-D road which services Pembroke Road on-ramp volume and Hollywood Boulevard off-ramp volume. Train events were the primary cause of the longer queues in both the No-Build and Preferred Alternatives. Queues from the northbound left turn lane at the Hollywood Boulevard ramp terminal as well as turbulence from the Hollywood Boulevard off-ramp volume weaving with the Pembroke Road on-ramp volume on the C-D road causes gueueing on the mainline at the C-D Road ramp diverge in the peak hour only. The peak hour experiences a speed of 47 mph while hours 1, 3, and 4 experience speeds of 55 mph or faster. This location is significantly improved compared to the No-Build Alternative which has significant congestion on I-95 mainline and speeds as low as 21 mph throughout the simulation duration. Figure 7.20 illustrates the lane-by-lane PM peak hour speeds for both the No-Build and Preferred Alternatives at the Hollywood Boulevard northbound of ramp. The outside lane of the No-Build Alternative has speeds less than 15 mph while the Preferred Alternative operates at speeds ranging from 36 mph to 55 mph. Additionally, visual audits of the Vissim microsimulation animation confirmed that there were no long-standing queueing events along the mainline throughout the simulation period and that any observed queue was restricted to the outside lane. Queueing on the mainline was also only observed for less than 12 minutes throughout the four-hour simulation period. Overall, the Preferred Alternative performs substantially better than the No-Build Alternative which experiences long-standing queuing events across multiple lanes during the peak period.

No-Build Alternative: I-95 Northbound Off to Hollywood Blvd

Preferred Alternative: I-95 Northbound Off to Hollywood Blvd CD Road

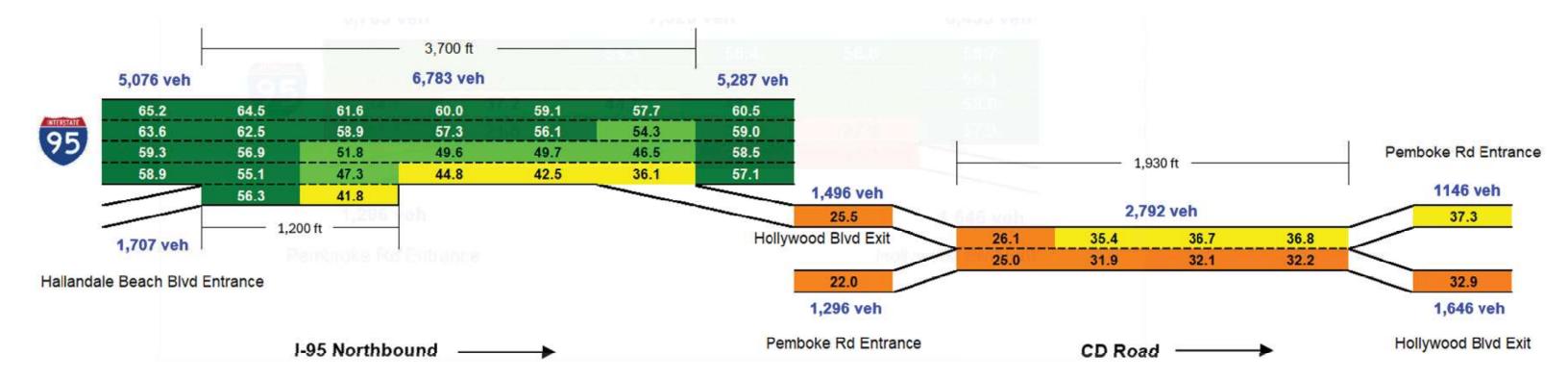


Figure 7.20 – Hollywood Boulevard Northbound Off Ramp PM Peak Hour Lane by Lane Operations

7.6.4 2045 Design Year Intersections Operational Analysis

The performance of the study area intersections was evaluated as part of the Vissim analysis. Signal optimization was performed to account for the 2045 peak-hour volumes. The 2045 design year intersection delay results are summarized in *Table 7.14*. Additional details for the intersection analysis are provided in *Appendix S*.

Table 7.14 – 2045 Intersection/Interchange Analysis Summary

	No	-Build	Prefe	erred
Intersection	Delay (sec/veh)		Delay (sec/veh)	
	AM	PM	AM	PM
Hallandale Beach Boulevard and Park Road	134.6	113.5	136.5	101.3
Hallandale Beach Boulevard and SW 30th Avenue	71.2	46.9	72.1	56.6
Hallandale Beach Boulevard and I-95 Ramps	65.0	44.1	42.1	35.6
Hallandale Beach Boulevard and 10th Terrace	106.6	99.1	103.2	90.1
Pembroke Road and Park Road	127.1	28.9	63.9	15.6
Pembroke Road and SW 31st Avenue	42.3	26.4	30.1	13.3
Pembroke Road and SW 30th Avenue	19.7	15.3	20.8	16.3
Pembroke Road and I-95 Ramps	56.0	46.0	37.3	40.0
Pembroke Road and NW 10th Avenue/S 28th Avenue	97.5	113.1	33.7	62.4
Hollywood Boulevard and Entrada Drive	9.1	19.7	7.6	15.5
Hollywood Boulevard and Calle Grande Drive	6.1	9.0	2.8	6.8
Hollywood Boulevard and Tri-Rail Station	42.3	33.1	29.7	29.5
Hollywood Boulevard and I-95 Ramps	94.6	87.5	49.5	52.0
Hollywood Boulevard and SW 28th Avenue	60.7	88.3	63.6	90.1

Note: Values that have red, bolded text are instances where the Preferred Alternative intersection delay is greater than the No-Build intersection delay.

Delays are reduced at the I-95 ramp terminal intersections of all three interchanges in the Preferred Alternative when compared to the No-Build Alternative. In addition, all but four arterial intersections in the Preferred Alternative operate with lower intersection delay than the No-Build Alternative. Of the four intersections that have higher intersection delay in the Preferred Alternative, the difference is not operationally significant. Additionally, there is a small increase in traffic volume (average approximately 2%) being processed at each of these intersections in the Preferred Alternative, which contributes to slightly higher delays incurred at the intersections.

Two significant improvements to the intersection delay in the Preferred Alternative occur at the intersections of Pembroke Road at Park Road in the AM peak-hour and Pembroke Road at NW 10th Avenue/S 28th Avenue in the AM and PM peak hours. Both intersections are the furthest adjacent intersection east and west of I-95. The proposed improvements at Pembroke Road include lengthened right turn lanes on the eastbound and westbound

approaches of the I-95 interchange. The eastbound right turn lane is signalized upstream of the rail crossing for an opposing westbound left turn movement at SW 30th Avenue and for train events. The lengthened right turn lane provides an additional lane of capacity to store vehicles during stopped events and significantly reduces queueing on the eastbound arterial.

The travel time (minutes: seconds) along each arterial was measured from west of the furthest west adjacent intersection to east of the furthest east adjacent intersection (see *Table 7.15*). All but the Hallandale Beach Boulevard eastbound and Hollywood Boulevard westbound arterial in the AM peak-hour experienced shorter travel times in the Preferred Alternative when compared to the No-Build Alternative. The eastbound direction on Hallandale Beach Boulevard experienced a marginal increase of 11 seconds of total arterial travel time while westbound direction on Hollywood Boulevard experienced a marginal increase of 3 seconds. All arterials processed more volumes than the No-Build Alternative (*Table 7.16*).

Table 7.15 – 2045 Arterial Travel Time

Arterial	Direction of		AM Peak		PM Peak			
Ariendi	Travel	No-Build	Preferred	Difference	No-Build	Preferred	Difference	
Hallandale Beach	Eastbound	09:49	10:00	-00:11	08:47	08:20	00:27	
Boulevard	Westbound	07:16	07:10	00:06	06:50	06:22	00:28	
Davida valva David	Eastbound	09:07	06:19	02:48	05:22	04:16	01:06	
Pembroke Road	Westbound	07:37	03:48	03:49	06:15	04:11	02:04	
Hollywood	Eastbound	05:30	04:49	00:41	05:11	04:46	00:25	
Boulevard	Westbound	05:05	05:08	-00:03	04:55	04:40	00:15	

Note: Values that have red, bolded text are instances where the Preferred Alternative arterial travel time is greater than the No-Build arterial travel time.

Table 7.16 – 2045 Arterial Vehicle Throughput (vph)

	Table 7.10	20 10 71	ilonal rol	neie iinoog	,po. (, b	·· <i>y</i>		
Arterial	Direction of		AM Peak		PM Peak			
Ariendi	Travel	No-Build	Preferred	Difference	No-Build	Preferred	Difference	
Hallandale Beach	West of I-95	3,246	3,261	15	4,062	4,225	163	
Boulevard	East of I-95	5,189	5,249	60	5,524	5,592	68	
	West of I-95	3,964	4,338	374	4,425	4,589	164	
Pembroke Road	East of I-95	3,455	4,054	599	3,768	3,961	193	
Hollywood	West of I-95	4,112	4,181	69	4,307	4,322	15	
Boulevard	East of I-95	4,162	4,251	89	4,603	4,615	12	

Overall, the Preferred Alternative performs better than the No-Build Alternative at the arterial level. The Preferred Alternative results in an overall reduction in intersection delays and travel times along the arterials. In instances where there is a marginal increase in intersection delays or travel times which results from the increase in throughput, is due to the operational improvements on the freeway segments and ramp terminals.

7.6.5 2045 NETWORK-WIDE PERFORMANCE

Table 7.17 summarizes the network-wide performance results for the No-Build and Preferred Alternatives during the 2045 AM and PM peak periods. Comparison of the alternatives shows that the Preferred consistently exhibited better performance than the No-Build Alternative in terms of delay, average speed, number of stops and latent demand.

In terms of average speed, the Preferred Alternative shows better performance than the No-Build during both peak periods with speed increases of 14% (AM) and 8% (PM). Network delay time reductions for the Preferred Alternative were 40% (AM) and 29% (PM). Significant improvements were realized for the latent delay/demand, and total stops.

Table 7.17 – 2045 Network-Wide Performance

	2040 ITCIWOIR MIGC		
AM PEAK	No-Build	Preferred	Percent Difference
Average Speed (mph)	36	41	14%
Total Delay (hr)	6,213	3,724	-40%
Latent Delay (hr)	6,185	1,590	-74%
Latent Demand	2,609	315	-88%
Total Travel Time (hr)	17,019	14,810	-13%
Total Stops	379,250	233,349	-38%
Vehicles Arrived	136,433	139,483	2%
		1	
PM PEAK	No-Build	Preferred	Percent Difference
PM PEAK Average Speed (mph)	No-Build 36	Preferred 39	
			Difference
Average Speed (mph)	36	39	Difference 8%
Average Speed (mph) Total Delay (hr)	36 6,065	39 4,276	Difference 8% -29%
Average Speed (mph) Total Delay (hr) Latent Delay (hr)	36 6,065 5,222	39 4,276 2,289	8% -29% -56%
Average Speed (mph) Total Delay (hr) Latent Delay (hr) Latent Demand	36 6,065 5,222 1,938	39 4,276 2,289 561	Difference 8% -29% -56% -71%

The analysis presented in this section shows that the Preferred Alternative provides acceptable operations within the study area through the 2045 Design Year, while the No-Build Alternative is expected to experience critical failures along the I-95 mainline and study area arterials. This analysis supports the conclusion that the proposed roadway enhancements within the area of influence for the Preferred Alternative will benefit both the interstate and regional transportation systems.

The 2045 design year operational analysis results show that the I-95 facility performs significantly better under the Preferred Alternative. The No-Build Alternative operates under severe congestion during both peak periods in the northbound direction of I-95. During the AM and PM peak periods, the Preferred Alternative provides substantial operational improvements along I-95 in the northbound direction with free-flow operations observed along most of the facility. While the southbound direction in the No-Build Alternative has minor congestion when compared to the northbound direction, the Preferred Alternative also performs at or near free-flow speeds throughout the simulation duration.

8.0 Safety

The conceptual design plans for the proposed I-95 corridor improvements were developed in accordance with the FDOT's Design Standards, Florida Design Manual and AASHTO's Policy on Geometric Design of Highways and Streets. Adherence to these standards will facilitate safety and efficient traffic operations along the corridor.

Preferred Alternative Safety Benefits – Safety in this project will be enhanced by addressing the capacity needs and improving the operations and access between the I-95 mainline and interchanges. Below is a summary of the Preferred Alternative benefits:

- In the AM peak period, I-95 northbound operates at 55 mph or better for all four hours
 of simulation throughout the project area. The additional lane available within the
 northbound weave segment between Ives Dairy Road and Hallandale Beach
 Boulevard significantly improves operations.
- The Preferred Alternative geometry eliminated the short weave segments between Hallandale Beach Boulevard and Pembroke Road and between Pembroke Road and Hollywood Boulevard, which significantly improved reliability on the mainline.
- The proposed C-D road servicing Pembroke Road on-ramp volume and Hollywood Boulevard off-ramp volume significantly reduces the risk of queue spillback from the ramp terminal intersection to the I-95 mainline. The proposed northbound C-D road shifts the reduced off ramp queue off the mainline lanes.
- The additional I-95 entry and exit ramp capacity at these interchanges will improve the safety and overall flow of traffic between the I-95 mainline and interchanges.
- The proposed collector distributor roadway system removes I-95 mainline traffic, which provides more capacity to several mainline segments of I-95. The preferred alternative increases the mainline speeds by 10 to 21 miles per hour.
- The proposed improvements will reduce the number of entrances and exits to and from I-95, which improves the overall operations of the I-95 mainline, ramps, and interchanges.
- The proposed improvements are expected to reduce long-term crashes related to heavy congestion, mainline weaving maneuvers, mainline and ramp speed differentials, and interstate access. The preferred alternative reduces the number of weaving movements and eliminates speed differentials between the mainline and ramps.
- The additional ramp terminal capacity and the new ramp configurations will provide more off-ramp storage, eliminating the queue from the ramps extending to the I-95 mainline.

- Relocating and combining interchange exit and entry ramps increase interchange spacing.
- In the case of an evacuation event, I-95 will have additional lanes with the proposed improvements. The additional lanes will make the corridor more effective during emergency evacuation events and emergency response.
- The proposed improvements will address the safety issues at the interchange entry and exit points by increasing gaps along the general use lanes providing more space for vehicles entering and exiting I-95 without weaving conflicts and/or last-minute lane changes.
- I-95 in the southbound direction operates at or near free-flow conditions throughout the project area during the AM peak period.
- The southbound weave segment upstream of the proposed Hollywood Boulevard and Pembroke Road combined off-ramp experiences speeds of 56 mph and greater.
- The proposed relocation of the Pembroke Road southbound on-ramp to south of the Hallandale Beach Boulevard on-ramp eliminated the turbulence experienced in the No-Build weave segment between the Pembroke Road on-ramp and Hallandale Beach Boulevard off-ramp.

Historical Crash Data Analysis – According to the crash analysis summarized in **Section 3.6**, the most frequent crash types within the study area were rear-end and sideswipe with notable peak period crash locations at the on and off-ramps. These types of accidents are attributed to slow congested corridors with substandard weaving distances and excessive lane changes. The preferred alternative addresses all three issues by adding capacity, reducing the number of access points, reducing weaving maneuvers, and maximining the interchange spacing.

Safety Studies – The safety studies completed prior to the PD&E Study included a Benefit-Cost and Net Present Value Analysis. The benefits associated with expected reduction in crashes due to the safety study proposed improvements were estimated based on the Crash Reduction Factors (CRF) obtained from the FDOT approved technical report titled, "Accident Reduction Factors for use in Calculating B/C" and the FHWA funded Crash Modification Factor website "www.cmfclearinghouse.org". In addition, collision diagrams were utilized to determine potentially correctable (due to proposed improvements) crashes. The benefit/cost ratio for the interchange at Hallandale Beach Boulevard was 10.6, at Pembroke Road was 15.4, and at Hollywood Boulevard was 3.2. The PD&E Study's preferred alternative is keeping these safety improvements and further enhancing them by proposing additional capacity, exclusive turn lanes, and queue storage. Therefore, the

benefit/cost ratio with the preferred alternative is expected to be higher than the safety studies. The safety study reports are included as **Appendix T.**

No negative impacts to safety were identified with the proposed improvements. Therefore, design mitigation measures were not required.

9.0 OTHER CONSIDERATIONS

9.1 CONSISTENCY WITH MASTER PLANS, LGCP AND DRIS

The I-95 project from south of Hallandale Beach Boulevard to north of Hollywood Boulevard is identified in the following transportation plans (see **Appendix U** for details):

- 2045 Broward County Metropolitan Transportation Plan (MTP) with funds allocated for Preliminary Engineering.
- Broward MPO's 2024-2028 Transportation Improvement Plan (TIP) with funds allocated for the PD&E Study.
- FDOT 2024-2028 Statewide Transportation Improvement Plan (STIP) with funds allocated for the PD&E Study.
- 2024-2028 FDOT Five-Year Work Program with funds allocated for the PD&E Study and Preliminary Engineering (2025-2026).

Funding for future phases (Right of Way and Construction) is currently being coordinated by the FDOT to ensure that the project is consistent with the local government comprehensive plans and that the required project funding is identified in the MTP, TIP, STIP, and Work Program.

9.2 Transportation Systems Management and Operations (TSM&O)

Transportation Systems Management and Operations (TSM&O) alternatives are comprised of minor improvement options that are typically developed to alleviate specific traffic congestion and safety problems, or to get the maximum utilization out of the existing facility by improving operational efficiency.

Short-term safety improvements were evaluated at all three interchanges after the planning study (FPID#s 436111-1, 436303-1, and 439911-1). The improvements at Hallandale Beach Boulevard and Pembroke Road were constructed in 2019. The Hollywood Boulevard improvements were constructed in 2021. These improvements bring an immediate relief to the interchange areas but will not significantly improve the system capacity and/or linkage needs within the entire study area. Long-term improvements are necessary to mitigate the existing traffic conditions and increase capacity to accommodate future travel demand. A TSM&O Alternative will not significantly reduce congestion on the system, nor will it provide the regional area interconnections needed to enhance mobility for this section of Broward County.

The TSM&O Alternative would provide some short-term relief throughout the corridor. However, the TSM&O Alternative alone would not be consistent with the purpose and need of this project. TSM&O improvements are only viable in combination with the preferred alternative improvements. Therefore, a TSM&O Alternative was not evaluated in detail.

The following TSM&O elements are included in the preferred alternative:

- Auxiliary lanes between interchanges
- Additional exclusive turn lanes at the interchange ramp terminals
- Additional turn-lane storage at the interchange ramp terminals
- Capacity improvements at the ramp junctions
- Signal optimization
- Enhanced signage
- New ITS technologies and infrastructure

FDOT is in the process of discussing internally with the District TSM&O Group what strategies are planned along the I-95 corridor and which ones should be considered further in the preferred alternative. These strategies will be listed and documented during the Design phase.

9.3 ANTICIPATED DESIGN EXCEPTIONS AND VARIATIONS

The PD&E Study limits overlap with the I-95 Express Phase 2 and Phase 3C projects. The I-95 Express Phase 2 opened to traffic in 2016. I-95 Express Phase 3C is currently under construction. Both projects documented Design Exceptions and Variations along the I-95 mainline, which includes the limits of this PD&E Study. The focus of this PD&E Study was to evaluate and propose interchange improvements only. Therefore, the study did not propose geometric improvements along the I-95 mainline.

Table 9.1 summarizes design controls and criteria that will need a Design Variation or Design Exception due to the PD&E Study's preferred alternative improvements.

Table 9.2 summarizes Design Variations and Exceptions that currently exist along the corridor and may need to be updated during the Design phase.

Table 9.1 – Preferred Alternative Design Variations and Design Exceptions

Description	Begin	End	Length	Proposed (Top) Required (Bottom)	Explanations/ Comments				
Design Speed Variation									
Collector Distributor Roadway	Pembroke Road	Hollywood Boulevard	-	45 MPH 55MPH	FDM Requires 55 MPH – 10 MPH less than the mainline design speed The 45 MPH design speed is dictated by the vertical geometry of the collector distributor systems. Substandard Interchange spacing along with right of way constraints and limitations prohibit a vertical geometry that meets the 55 MPH standard.				
		Border Wi	dth Design Vo	ıriation					
Border Width (throughout the project)	Miami- Dade/Browar d County Line	Johnson Street	16,340'	Varies	Existing and proposed condition. Necessary to avoid significant right of way impacts along both sides of the corridor and interchanges.				
		Bicycle L	ane Width Va	riation					
Westbound Pembroke Road	West of I-95	I-95	540'	4'-7' 7'	Necessary to avoid impacting the Orangebrook Golf Course, which is a Section 4(f) Site				
Eastbound Pembroke Road	East of I-95	South 28 th Avenue	400'	4' 7'	Necessary to avoid right of way impacts and potential relocations				
	Shoulder Width Design Exception								
Northbound Direct Access to Pembroke Road (Inside Shoulder)	Hallandale Beach Boulevard	Pembroke Road	2315'	0-2' 6'	Necessary to avoid right of way impacts and reconstruction of Ansin Boulevard.				
Northbound Direct Access to Pembroke Road (Outside Shoulder)	Hallandale Beach Boulevard	Pembroke Road	2415'	1' 6'	Necessary to avoid right of way impacts and reconstruction of Ansin Boulevard.				

Table 9.2 – Existing Design Variations and Design Exceptions

				Proposed (Top)					
Description	Begin	End	Length	Required (Bottom)					
Shoulder Width Design Variation									
Northbound I-95 Express Lanes	Just north of the Miami-Dade/Broward County Line (208+82)	South of Hallandale Beach Boulevard (225+13)	1,631'	10'-12' 12'					
Northbound I-95 Express Lanes	North of Pembroke Road (310+39)	South of Hollywood Boulevard (321+96)	1,157'	10'-12' 12'					
Southbound I-95 Express Lanes	South of Hollywood Boulevard (323+74)	North of Pembroke Road (295+49)	2,825'	10'-12' 12'					
Southbound I-95 Express Lanes	South of Hallandale Beach Boulevard (217+86)	Just north of the Miami-Dade/Broward County Line (212+66)	520'	10'-12' 12'					
	Shoulder Wid	th Design Exception							
Northbound I-95 Express Lanes	South of Hallandale Beach Boulevard (225+13)	North of Pembroke Road (310+39)	8,526'	5'-10' 10'					
Northbound I-95 Express Lanes	South of Hollywood Boulevard (321+96)	Johnson Street (370+14)	4,818'	5'-10' 10'					
Southbound I-95 Express Lanes	Johnson Street (370+14)	South of Hollywood Boulevard (323+74)	4,640'	5'-10' 10'					
Southbound I-95 Express Lanes	North of Pembroke Road (295+49)	South of Hallandale Beach Boulevard (217+86)	7,763'	5'-10' 10'					
	Lane Width	Design Exception							
Northbound I-95 Express Lanes and Two Inside General Use Lanes	Miami-Dade/Broward County Line	Johnson Street	16,340'	11' 12'					
Southbound I-95 Express Lanes and Two Inside General Use Lanes	Johnson Street	Miami-Dade/Broward County Line	16,340'	11' 12'					
	Buffer Width	n Design Variation							
Northbound I-95	Miami-Dade/Broward County Line	Johnson Street	16,340'	3' 4'					
Southbound I-95	Johnson Street	Miami-Dade/Broward County Line	16,340'	3' 4'					

Table 9.2 – Existing Design Variations and Design Exceptions (Continued)

Description	Begin	End	Length	Proposed (Top) Required (Bottom)				
Length of Horizontal Curve Design Exception								
I-95 South of Hallandale Beach Boulevard (Northbound & Southbound)	PC 234+30	PT 243+03	873'	873' 975'				
I-95 North of Pembroke Road (Northbound & Southbound)	PC 291+90	PT 297+11	521'	521' 975'				
I-95 South of Hollywood Boulevard (Northbound & Southbound)	PC 330+33	PT 336+61	628'	628' 975'				
I-95 North of Hollywood Boulevard (Northbound & Southbound)	PC 346+72	PT 352+41	569'	569' 975'				
I-95 South of Johnson Street (Northbound & Southbound)	PC 358+78	PT 364+39	561'	561' 975'				
	Length of Vertical	Curve Design Variation						
I-95 (Crest Vertical Curve)	South of Hallandale Beach Boulevard	North of Hallandale Beach Boulevard	1,650'	1,650' 1,800'				
I-95 (Crest Vertical Curve)	South of Pembroke Road	North of Pembroke Road	1,750'	1,750' 1,800'				
I-95 (Crest Vertical Curve)	South of Hollywood Boulevard	North of Hollywood Boulevard	1,700'	1,700' 1,800'				
	Vertical Curve K-	Value Design Variation						
I-95 (Crest Vertical Curve)	South of Hallandale Beach Boulevard	North of Hallandale Beach Boulevard	-	307 401				
I-95 (Crest Vertical Curve)	South of Pembroke Road	North of Pembroke Road	-	304 401				
I-95 (Crest Vertical Curve)	South of Hollywood Boulevard	North of Hollywood Boulevard	-	306 401				
I-95 (Crest Vertical Curve)	South of Johnson Street	North of Johnson Street	-	306 401				
I-95 (Sag Vertical Curve)	North of Hollywood Boulevard	North of Hollywood Boulevard	-	164 181				

Table 9.2 – Existing Design Variations and Design Exceptions (Continued)

Description	Begin	End	Length	Proposed (Top) Required (Bottom)					
Stopping Sight Distance Design Variation									
Northbound I-95 Inside Express Lane	North of Pembroke Road (291+90)	North of Pembroke Road (297+11)	521'	658' 730'					
Potential Stopp	ing Sight Distance Design	Exception (Due to Expre	ss Lane mark	cers)					
Northbound I-95 Inside General Use Lane	Just north of Pembroke Road	North of Pembroke Road	526'	423' 645'					
Northbound I-95 Outside Express Lane	North of Hollywood Boulevard	South of Johnson Street	560'	608' 645'					
Southbound I-95 Inside General Use Lane	South of Johnson Street	North of Hollywood Boulevard	564'	611' 645'					
Southbound I-95 Outside Express Lane	North of Pembroke Road	Just north of Pembroke Road	516'	419' 645'					
	Potential Supere	levation Variation							
I-95	Just north of the Miami-Dade/Broward County Line	South of Hallandale Beach Boulevard	-	0.023 0.025					
I-95	South of Hallandale Beach Boulevard	Just south of Hallandale Beach Boulevard	-	0.030 0.033					
I-95	Just north of Pembroke Road	North of Pembroke Road	-	0.050 0.056					

Note: These Design Exceptions and Variations are existing conditions and are already documented as part of the I-95 Express Phase 2 and Phase 3C projects. This PD&E Study does not propose geometric improvements along the I-95 mainline.

9.4 CONCEPTUAL SIGNING MASTER PLAN

An I-95 Conceptual Signing Master Plan (CSMP) was developed to include in the 2045 proposed improvements as part of the I-95 PD&E Study. The plan depicts all the guide signs needed within the study limits for the preferred alternative design configuration. **Appendix V** contains the CSMP developed for the 2045 proposed improvements.

10.0 JUSTIFICATION FOR PROJECT

10.1 Assessment of FHWA's Policy on Access to Interstate System

The FHWA's Policy on Access to the Interstate System provides the requirements for the justification and documentation necessary to substantiate any proposed changes in access to the Interstate System. The policy is published under the Federal Register, Volume 74, Number 165, which was updated on May 22, 2017. The responses provided herein for both policy statements demonstrate compliance with these requirements and justification for the proposed interchange modifications at I-95 from south of Hallandale Beach Boulevard to north of Hollywood Boulevard in Broward County, Florida.

Policy:

It is in the national interest to preserve and enhance the Interstate System to meet the needs of the 21st Century by assuring that it provides the highest level of service in terms of safety and mobility. Full control of access along the Interstate mainline and ramps, along with control of access on the crossroad at interchanges, is critical to providing such service. Therefore, FHWA's decision to approve new or revised access points to the Interstate System under Title 23, United States Code (U.S.C.), Section 111, must be supported by substantiated information justifying and documenting that decision. The FHWA's decision to approve a request is dependent on the proposal satisfying and documenting the following requirements.

Considerations and Requirements:

1. An operational and safety analysis has concluded that the proposed change in access does not have a significant adverse impact on the safety and operation of the Interstate facility (which includes mainline lanes; existing, new or modified ramps; and ramp intersections with crossroad) or on the local street network based on both the current and the planned future traffic projections. The analysis should, particularly in urbanized areas, include at least the first adjacent existing or proposed interchange on either side of the proposed change in access (Title 23, CFR, paragraphs 625.2(a), 655.603(d) and 771.111(f)). The crossroads and the local street network to at least the first major intersection on either side of the proposed change in access should be included in this analysis to the extent necessary to fully evaluate the safety and operational impacts that the proposed change in access and other transportation improvements may have on the local street network (23 CFR 625.2(a) and 655.603(d)). Requests for a proposed change in access should include a description and assessment of the impacts and ability of the proposed changes to

safely and efficiently collect, distribute and accommodate traffic on the Interstate facility, ramps, intersection of ramps with crossroad and local street network (23 CFR 625.2(a) and 655.603(d)). Each request should also include a conceptual plan of the type and location of the signs proposed to support each design alternative (23 U.S.C. 109(d) and 23 CFR 655.603(d)).

The operational analysis conducted for the SIMR confirmed that the proposed improvements to the I-95 mainline and interchange modifications will not have any significant adverse impacts on safety and operations along I-95. The proposed modifications will improve traffic operations and enhance safety. When compared with the No-Build Alternative, the Preferred Alternative significantly improves operations along I-95 and its interchanges.

In the Preferred Alternative, average operating speeds along the northbound direction significantly increased for both peak periods. For the AM peak, the No-Build Alternative experienced areas of congestion in the northbound direction causing operating speeds as low as 26 mph versus 55 mph or higher for the Preferred Build Alternative. For the PM peak, the No-Build reported operating speed in the northbound direction as low as 25 mph while the Build Alternative reported speed as low as 47 mph for one segment that recovered after the peak hour, which is located at the Hollywood Boulevard off-ramp. In the southbound direction, average operating speeds for the AM peak of the No-Build Alternative were as low as 40 mph while the Build Alternative maintained operating speed of 56 mph or more. At the networkwide level, in terms of average speed, the Preferred Alternative shows better performance than the No-Build during both peak periods with speed increases of 14% (AM) and 8% (PM). Network delay time reductions for the Preferred Alternative were 40% (AM) and 29% (PM). Significant improvements were also shown for the latent delay/demand, and total stops.

The additional capacity improvements will provide added operational benefits to support future Bus Services, Emergency Response Services, and improved travel time reliability in and out of the interstate.

Data from historical crash records identified multiple high crash segments and high crash spots along I-95. Traffic congestion along I-95 is a contributing factor for much of the crashes experienced along the corridor. Under the No-Build Alternative, traffic congestion is expected to increase along I-95 in future years with a corresponding

increase in crash risk along the corridor. This potential for future increase in crash risk is largely alleviated by the improvements proposed in the Preferred Alternative.

The Preferred Alternative will enhance safety by addressing the capacity needs and improving the operations and access between the I-95 mainline and interchanges. The proposed improvements will reduce the number of entrances and exits, which improves the overall operations of the I-95 mainline, ramps, and interchanges. The proposed improvements are expected to reduce crashes related to mainline weaving maneuvers. The preferred alternative reduces the number of weaving movements and eliminates speed differentials between the mainline and ramps. The additional ramp terminal capacity and new ramp configurations will provide more off-ramp storage, which eliminates the queue from the ramps extending to the I-95 mainline. Relocating and combining interchange exit and entry ramps improves interchange ramp spacing.

The proposed improvements will address the safety issues at the interchange entry and exit points by increasing gaps along the general use lanes providing more space for vehicles entering and exiting I-95 without weaving conflicts and/or last- minute lane changes.

In the case of an evacuation event, I-95 will have additional lanes with the proposed improvements. The additional lanes will make the corridor more effective during emergency evacuation events and emergency response.

The I-95 project will include the development of a comprehensive signing plan for the corridor. A conceptual signing master plan is presented under **Appendix V**.

2. The proposed access connects to a public road only and will provide for all traffic movements. Less than "full interchanges" may be considered on a case-by-case basis for applications requiring special access, such as managed lanes (e.g., transit or high occupancy vehicle and high occupancy toll lanes) or park and ride lots. The proposed access will be designed to meet or exceed current standards (23 CFR 625.2(a), 625.4(a)(2) and 655.603(d)). In rare instances where all basic movements are not provided by the proposed design, the report should include a full-interchange option with a comparison of the operational and safety analyses to the partial interchange option. The report should also include the mitigation proposed to compensate for the missing movements, including wayfinding signage, impacts on local intersections, mitigation of driver expectation leading to wrong-way

movements on ramps, etc. The report should describe whether future provision of a full interchange is precluded by the proposed design.

The SIMR proposes no new interchanges within the project limits. All existing interchanges provide access to public roads only. The improvements proposed at the interchanges will maintain full access to I-95 and all movements will be accommodated at all cross streets. The proposed access modifications will be designed to meet or exceed all applicable design standards, to the extent possible. Any design variations or exceptions that are identified, will be processed in accordance with FHWA and FDOT standards.

11.0 CONCEPTUAL FUNDING PLAN

The project is included in the 2045 and 2050 MPO MTP, 2021-2025 TIP and 2021-2025 STIP. The design phase is funded in the 2021-2025 FDOT Work Program under our FPID project numbers:

- FPID# 436903-2-I-95 Southbound between Johnson Street and Pembroke Road
- FPID# 436903-3 I-95 Southbound between Pembroke Road and Ives Dairy Road
- FPID# 436903-4 I-95 Northbound between south of Hallandale Beach Boulevard and Pembroke Road
- FPID# 436903-5 I-95 Northbound between Pembroke Road and Johnson Street

The right of way and construction phases are not currently funded. The project is anticipated to be funded with federal and state funds. The project is proposed to be phased in four projects. A funding plan will be developed based on the results, costs, and recommendations from the PD&E Study. The project is in the 2021-2025 FDOT Five-Year Work Program with funds allocated for the PD&E and Preliminary Engineering phases. Funding for future phases is currently being coordinated to ensure that the project is consistent with the local government comprehensive plans and that required project funding is identified in the MTP, TIP, STIP, and Work Program.

INTERSTATE 95 (I-95) / STATE ROAD 9 (SR 9) PD&E STUDY

From South of Hallandale Beach Boulevard (SR 858) to North of Hollywood Boulevard (SR 820) Broward County, Florida

