Geosynthetic Reinforced Soil Integrated Bridge System (GRS-IBS)

Geotechnical and Materials Engineers Council 2014 Conference April 3-4, 2014

Larry Jones, FDOT

Assistant State Structures Design Engineer & State Geotechnical Engineer

GRS-IBS

- Introduce the concept
- Brief Intro to Design Guide
- Construction Concepts
- FDOT Implementation
- Design Example

GRS – IBS

Why Do This?

FHWA & States with experience report:

- Reduced construction cost (25 60%)
- Reduced construction time
- Flexible design easily field modified for unforeseen site conditions (e.g. obstructions, utilities, different site conditions)
- Easier to maintain (fewer bridge parts, no erosion)
- QA/QC Advantages
- Smooth Transition

GRS FUNDAMENTALS

Definitions

- GRS Geosynthetic Reinforced Soil
 - An engineered, well compacted granular fill (gravel, not sand) with closely spaced (< 12") layers of geosynthetic reinforcement
- IBS Integrated Bridge System
 - A fast, cost-effective method of bridge support blending the roadway into the superstructure using GRS technology

Degree of Composite Behavior

Reinforcement spacing

36" 30" 24" 18" 12" 6"

Cross-Section of GRS-IBS

Site Selection

- Simple span (currently \leq 140 ft)
 - Single or Multiple Span Bridges
- ♦ ≤ 30 ft abutment height
- Grade separation
- ♦ ≤ 7 fps Water Velocity (B&S rip rap)
 - Cost Effective to Excavate Below Scour Elevation?

Site Selection

Tolerable Settlements

- Steel or concrete superstructures
- New or replacement structures
- On or Off System
- Approval Needed for Interstate or Multi-Lane Roadways

Facing Elements

Split face CMU Block

- Dimensions: 7-5/8" x 7-5/8" x 15-5/8" (nominal 8x8x16)
- Readily available
- Inexpensive
- Friction connection to the reinforcement
- Material Specifications:
 - Compressive strength ≥ 4,000 psi
 - Water absorption limit: 5%

Specified 8x8x16 CMU facing Approx 42 lb.

Compatible 8x12x18 SBW facing Approx 81 lb.

Granular Backfill

- Well Graded
 - Specification 204 Graded Aggregate
 - ✓ φ ≥ 38°
- Open Graded
 - Specification 901
 Any Gradation
 from #57 to #89

FHWA Research: Performance Testing and Monitoring

Performance Test Results

2014

Test to Failure half-strength fabric; no CMUs 2400 lb/ft @ 8" Spacing

Before

Construction Video

http://www.youtube.com/watch?feature=player_embedded&v=w_5WFoAdoUw

Design Method

FHWA GRS-IBS Design Guide

http://www.fhwa.dot.gov/publications/res earch/infrastructure/structures/11026/ Geosynthetic Reinforced Soil Integrated Bridge System Interim Implementation Guide

PUBLICATION NO. FHWA-HRT-11-026

JANUARY 2011

2

U.S. Department of Transportation Federal Highway Administration

Research, Development, and Technology Turner-Fairbank Highway Research Center 6300 Georgetown Pike McLean, VA 22101-2296

CONSTRUCTION OF GRS-IBS

GRS Abutment The first layers are important for leveling and alignment and another transmission GAR Riding Bridge Begin/End Roadway surface Surface Superstructure -Bulack Brldge EL. EL E/G GRS Backfill Retained GRS wall CMU Backf111 block face (See Note 4) GRSFilter Fabric Type D-3 or D-2 Solid CMU Index 199 (See Note 5) Excavate and replace with riprap GRS Backfill (if necessary) EL. RR Finish slope Finish Excavation limits Grade (See Note 6) Scour Elevation -Intermediate Reinforcement laver ////X/V////X// Filter Fabric Type D-2 Index 199 10'-0" GAB wrapped XRSF with geotextile BRSF 2014

GRS Abutment Continued

Wall Corners:

- Right angle wall corners constructed with CMU corner blocks that have architectural detail on two sides
- Walls with angles ≠ 90 degrees require cutting of the corner blocks resulting in a vertical seam or joint. Fill with reinforced concrete

GRS Abutment Continued

Top of Facing Wall:

- The top three courses of CMU block are filled with concrete wall mix and pinned together with No. 4 rebar
- The geotextile in these cells needs to be cleared with a razor knife or 'weed burner' to open the core for placement of concrete wall fill

GRS Abutment Continued

- Coping:
 - After filling the top three courses of block, a thin layer of the same concrete mix is placed on top of the block, to form the coping
 - Then hand trowel the coping either square or round and slope to drain

Scour Countermeasure

2014

Beam Seat

• 4" thick x 12" wide pre-cut foam board at the top of the bearing bed reinforcement creates the 'set-back' distance to 'beam seat'.

Beam Seat

Grade the surface of the aggregate slightly high (about 0.5") to seat the superstructure level and maximize contact with the bearing area

Superstructure

2014

Superstructure

 Set Back: The distance between the back of the facing block and the front of the beam seat (use width of foam, currently 12")

FDOT Implementation

- 2014 Structures Manual Sections 3.12.12 & 3.13.4
- Developmental Design Standard 6025
- Developmental Specification 549

FDOT Implementation

Needed from Drainage/Hydraulics:

- Depth of Scour vs. Opening Width
- Design Flow Velocity vs. Opening Width
- Peak Water Elevation vs. Opening Width
- Scour Countermeasure Details
 - Type
 - Elevation to Install
 - Finish Slope

DESIGN EXAMPLE

- Two 12' Lanes + 8' Shoulders
- Barriers per D6025
- Bridge Width = 12' + 8' + (2 * 1.5') = 43'
- GRS Height = 15'
- Wall Spacing = 30'
- Single Span 16" Flat Slab Bridge with 6" CIP Topping

Bridge Length

Wall spacing + 2 x (distance behind wall face)

- Bridge Length =
 - ✓ 30' Wall Spacing +
 - 2 x 2.5'(min) bearing seat +

- 2 x 1' set back (foam width) +
- 2 x facing block (8" CMU or 12" SBW block)+
- ✓ 2 x front batter? (12" SBW block uses 2° batter)
- ✓ 30' + 5' + 2' + 2' = 39'
- Bearing Area = $43 \times 2.5 = 107.5 \text{ sf}$

1.5' for CMU 2' for SBW plumb 2'-8" SBW at 2⁰ batter

Bridge Dead Loads =

- Deck: 22"/12" x 39' x 43' x 150 pcf = 461.175 k
- ✓ Barriers: 39' x 2 x 420 plf = 32.76 k
- Service DL = 493.935 k, 246.967 k/abut, 2297.4 psf

- Bridge Live Loads =
 - Traffic + Design Truck
 - (40' inside of barriers)/12' = 3.33 => 3 Lanes Traffic
 - Traffic = 640 plf x Lspan/2 x 3 Lanes = 37.44 k/abut
 - Truck at abutment = 32+32((Lspan-14)/Lspan)+8((Lspan-28)/Lspan) x 3 Lanes = 164.307k/abut
 - Service LL = 201.747 k/abut, 1876.7 psf

- Bridge Service Loads =
 - Service DL = 2297.4 psf
 - Service LL = 1876.7 psf
 - Service = 4174.1 psf > 4000 psf No Good
- Try Beam Seat = 3 ft
 - (Bridge Length increases to 40 ft)
 - Service = 3545 psf ok

- Soil Parameters:
 - Foundation Soil
 - $\gamma_{\rm f}$ = 55 pcf
 - $\phi_{f} = 33^{\circ}$
 - $C_f = 0$
 - $K_{af} = .29, K_{pf} = 3.39$
 - Retained Soil
 - $\gamma_{\rm b}$ = 125 pcf
 - $\phi_b = 34^{\circ}$
 - $C_{b} = 0$

- $K_{ab} = .28$

- Reinforced Fill
 - γ_r = 115 pcf
 - $\phi_r = 38^{\circ}$
 - $K_{ar} = .24, K_{pr} = 4.20$
- ✓ Road Base
 - γ_{rb} = 140 pcf
 - $\phi_{rb} = 38^{\circ}$
 - $K_{arb} = .24$

External Stability

- Sliding on RSF
- Sliding at Base of RSF
- Eccentricity
- Bearing

Global

SECTION 11: WALLS, ABUTMENTS, AND PIERS

Table 11.5.7-1—Resistance Factors for Permanent Retaining Walls

Mechanically Stabilized Earth Walls, Gravity Walls, and Semigravity Walls		
Bearing resistance	Gravity and semigravity walls	0.55
	• MSE walls	0.65
Sliding		1.0
Tensile resistance of metallic reinforcement and connectors	 Strip reinforcements ⁽⁴⁾ Static loading Grid reinforcements ^{(4) (5)} Static loading 	0.75 0.65
Tensile resistance of geosynthetic reinforcement and connectors	Static loading	0.90
Pullout resistance of tensile reinforcement	Static loading	0.90

Passive earth pressure component of Sliding Resistance

0.50

External Stability - Sliding

2014

External Stability – Sliding on RSF

• Sliding Forces:

✓
$$F_R = \gamma_{EH_{MAX}}F_b + \gamma_{EH_{MAX}}F_{rb} + \gamma_{LS}F_t$$

✓ $F_R = 9451.5$ lb/ft

- Resisting Forces (B=10'):
 - $\checkmark R_{R} = (\gamma_{EV_MIN} W_{GRS} + \gamma_{DC_MIN} q_{b} b_{sw} + \gamma_{DC_MIN} * W_{face}$ $+ \gamma_{EV_MIN} q_{rb} b_{rb_bt} H_{w} \gamma_{w} B) (\mathbf{\rho})$
 - $R_R = (19832.1 \text{ lb/ft}) (2/3 \tan \phi r)$

✓ R_R = 10329.7 lb/ft

♦ R_R/F_R = 10329.7 / 9451.5 = 1.09 OK

External Stability – Sliding at Base of RSF

• Sliding Forces:

 \checkmark F_R = 12103.6 lb/ft

- Resisting Forces (B_{RSF}=12.5'):
 - ✓ R_R = (24766.96 lb/ft) (0.8 tan ϕ f)

✓ R_R = 12867.08 lb/ft

- ♦ R_R/F_R = 12867.08 / 12103.6 = 1.06 OK
- (w/ Passive Resistance $R_R/F_R = 1.11$)

External Stability - Eccentricity

- Eccentricity check not shown in Guide, but required by AASHTO LRFD Bridge Design Specification
- $e = (\Sigma M_D \Sigma M_R) / \Sigma V$
 - Sum Moments about center of base of RSF
 - \checkmark γ_{Max} for ΣM_D \checkmark γ_{MIN} for ΣM_R & ΣV \checkmark If e ≤ B/4 OK

U. S. Department of Transportation Federal Highway Administration Publication No. FHWA-NHI-10-024 FHWA GEC 011 – Volume I November 2009

NHI Courses No. 132042 and 132043

Design and Construction of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes – Volume I

and

Developed following: AASHTO LRFD Bridge Design Specifications, 4th Edition, 2007, with 2008 and 2009 Interims.

AASHTO LRFD Bridge Construction Specifications, 2nd Edition, 2004, with 2006, 2007, 2008, and 2009 Interims.

External Stability - Eccentricity qt q_{LL} - GAB Riding Bridge Roadway surface Surface B_{block} Superstructure -3'-0" Min EL. F EL E/G Backfill **q**_b Retained GRS wall CMU Backflll block face q_{rb} (See Note 4) GRS Filter Fabric Type D-3 or D-2 Solid CMU 199 (See Note 5) ßS Excavate and replace with riprap (if necessary). \mathbf{F}_{t} rb EL. RR W_{Face} Finish slope Finish Excavation limits Grade -(See Nate 6) Scour Elevation -Intermediate Reinforcement layer F_{b} 7////////// Filter Fabric Type D-2 RS Index 199 X_{RSF} GAB wrapped 10'-0" with geotextile W_{RSF}

2014

External Stability - Eccentricity

ΣM_D =

✓
$$\gamma_{DC_MAX} * W_{face}(3.25') +$$

✓ $\gamma_{DC_MAX} * q_{bridg} * b_{sw}(0.25') +$

✓ $\gamma_{LS} * q_{LL} * b_{sw}(0.25') +$

✓ $\gamma_{EH_MAX} * F_{rb} (8.75') +$

✓ $\gamma_{LS} * F_t(8.75') +$

✓ $\gamma_{EH_MAX} * F_b(5.88') = 87.23 \text{ k-ft/ft}$

External Stability - Eccentricity

ΣM_R =

✓
$$\gamma_{EV_{MIN}} * q_{rb} * b_{rb_{bt}} (3.75') +$$

✓ $\gamma_{EV_{MIN}} * W(1.25')$
✓ - 24.2 k-ft/ft

• $(\Sigma M_D - \Sigma M_R) / \Sigma V = 1.80 \text{ ft} < B_{RSF} / 4 \text{ OK}$

Also check Eccentricity of GRS on RSF

External Stability - Bearing

 Compute Eccentricity using γ_{Max} for all permanent and transient loads (assumed worst case for bearing).

External Stability - Bearing

ΣM_D =

✓
$$\gamma_{DC_MAX} * W_{face}(3.25') +$$

✓ $\gamma_{DC_MAX} * q_{bridg} * b_{sw}(0.25') +$

✓ $\gamma_{LS} * q_{LL} * b_{sw}(0.25') +$
✓ $\gamma_{EH_MAX} * F_{rb} (8.75') +$
✓ $\gamma_{LS} * F_t(8.75') +$
✓ $\gamma_{EH_MAX} * F_b(5.88') = 87.23 \text{ k-ft/ft}$

External Stability - Bearing $\Sigma M_R =$ $\checkmark \gamma_{\rm EV MAX} * q_{\rm rb} * b_{\rm rb} = b_{\rm t}(3.75') +$ $\checkmark \gamma_{LS}^{*}qt^{*}brb_{bt}(3.75') +$ ✓ γ_{EV MAX}*W(1.25') \checkmark = 40.90 k-ft/ft ΣV = 43.95 k/ft

•
$$e = (\Sigma M_D - \Sigma M_R) / \Sigma V = 1.05 \text{ ft}$$

External Stability - Bearing

Bearing Pressure at Base

ΣV/(B_{RSF} - 2e)=(43,949 lb/ft)/10.4 ft =4,229 psf

•
$$q_n = \varphi_{bc}(C_f N_c + 1/2(B_{RSF} - 2e)\gamma_f N_{\gamma})$$

- q_n = (0.65)[0+1/2(10.4')(55pcf)(35.2)]= 8,871 psf
- $q_n / \sigma_v = 2.10 \ge 1 \text{ ok}$

- Use Boussinesq Method to determine stress under footing
- Add to Tension due to:
 - GRS Gravel
 - ✓ Road Base
 - Traffic Surcharge on Road

- Max stress under center of footing $(x = b_q/2)$
- $\alpha = ARCTAN(x/z) \beta$ х $\beta = ARCTAN[(x-b)/z]$ \checkmark When b>x, β is neg

- Tension due Service Load on Beam Seat at bottom of 1st course of blocks below bridge x =
- $\sigma_h = (q/\pi) [\alpha + \sin\alpha \cos(\alpha + 2\beta)] K_a$ • Input α & β in Radians • $\alpha = 2.305$ Rad • $\beta = -1.15$ Rad • $\Sigma_{h, ftg} = 818$ psf z = 1.15 Rad

Tension due Service Load at bottom of 1st course of blocks below beam seat

•
$$\sigma_{h, GRS} = z \gamma_r K_{ar} = 18.24 \text{ psf}$$

•
$$\sigma_{h, RB} = q_{rb}K_{ar} = 61.06 \text{ psf}$$

•
$$\sigma_{h, T \text{ on } RB} = q_t K_{ar} = 59.47 \text{ psf}$$

•
$$\Sigma \sigma_{\rm h} = 956.77 \, \rm psf$$

 Tension due Service Load at bottom of 1st course of blocks below beam seat

Σσh = 956.77 psf
 Sv = 8.0 inch = 0.667 ft

T_{req}

Same units for S_v & d (inches ok)

✓ d_{max} = 1.0 inch (#57 stone D₁₀₀=1.0)

$$T = 1026.25$$
 lb/ft

- Tension due Strength I Loads at bottom of 1st course of blocks below beam seat
- $\sigma_{h, ftg} = 1,224.96 \text{ psf}, (\gamma_{DC}MAX \& \gamma_{LS})$
- $\sigma_{h, GRS}$ = 27.36 psf, (γ_{EH_MAX})
- $\sigma_{h, RB} = 82.43 \text{ psf}, (\gamma_{EH_MAX})$
- $\sigma_{h, T \text{ on RB}} = 104.07 \text{ psf}, (\gamma_{LS})$
- Σσh = 1418.82 psf
- T = 1521.85 lb/ft, w/o bearing bed reinf

Internal Stability – Tension in Geotextile

- Require in Plans: T_{ult} ≥ larger of
 - √4,800 lb/ft
 - \checkmark [Max Tension due to $\Sigma_{Factored Loads}$] / 0.4
- Require in Plans: T_{2%} ≥ Max Tension due to Σ_{Service Loads}

Internal Stability – Tension in Geotextile

• For
$$T_{factored} = 1521.58 \text{ lb/ft}$$

• $T_n = (T_{factored})/0.4 = 3804.62 \text{ lb/ft}$
• $T_{2\%} = (T_{service}) = 1026.25 \text{ lb/ft}$
• With Bearing Bed Reinforcement
Min 5 layers required (GRS Guide)
• $Sv = 0.33 \text{ ft}$
• $T_n = (T_{factored})/0.4 \approx 1519 \text{ lb/ft (top)}$
• $T_n = (T_{factored})/0.4 \approx 2545 \text{ lb/ft (base)}$
 $T_{2\%} = (T_{service}) \approx 677 \text{ lb/ft (base of wall)}$

Questions?

Larry.Jones@dot.state.fl.us

GRIP (Geotechnical Research in Progress)

Where: State Materials Office, Gainesville

When: July 31 – August 1, 2014

Videoconference - District Materials Offices in: District 1, Bartow District 3, Chipley District 4/6 Materials, Davie District 5, Deland Turnpike, Turkey Lake Plaza

