Computer Programs used in FDOT

Table 1, Driven Piles

FB-Deep	Bridge Software Institute <u>http://bsi-web.ce.ufl.edu/</u>	Computes static pile capacities based on SPT or CPT data. Used for precast concrete, concrete cylinder, steel H- or steel pipe piles, and drilled shafts.
WEAP		Dynamic analysis of pile capacity and drivability.

Table 2, Drilled Shafts

FB-Deep	Bridge Software Institute	Computes static drilled shaft and
	<u>http://bsi-web.ce.ufl.edu/</u>	driven pile capacities based on SPT
		or CPT data.

Table 3, Lateral Loads

FB-Pier FB-MultiPier	Bridge Software Institute <u>http://bsi-web.ce.ufl.edu/</u> _	The Lateral Pile Group Structural Analysis Program is a 3-D nonlinear substructure analysis program.
COM624P	COM624P - Laterally Loaded Pile Analysis Program for the Microcomputer, Version 2.0, FHWA-SA-91-048, 1993. <u>http://www.fhwa.dot.gov/bridge/</u> software.HTM	Computes deflections and stresses for laterally loaded piles and drilled shafts.
LPile	Ensoft	Computes deflections and stresses for laterally loaded piles and drilled shafts.

Table 4, Spread Footings

CBEAR	CBEAR Users Manual, FHWA-	Computes ultimate bearing capacity
	SA-94-034, 1996.	of spread or continuous footings on
	-	layered soil profiles.

Table 5, Sheet Piling

CWALSHT	Dawkins, William P., <u>Users</u> <u>Guide: Computer Program For</u> <u>Design and Analysis of Sheet Pile</u> <u>Walls by Classical Methods</u> , Waterways Experiment Station, 1991.	Design and analysis of either anchored or cantilevered sheet pile retaining walls. Moments, shear, and deflection are shown graphically. Analysis of anchored walls does not follow AASHTO requirements.
Shoring	Civil Tech, <u>CT-SHORING</u> <u>http://civiltech.com/software/shor</u> <u>ing.php</u>	Excavation supporting system design and analysis.
SPW 911	Pile Buck International, Inc. P.O. Box 64-3609 Vero Beach, FL, 32964-3299 <u>http://www.pilebuckinternational.</u> <u>com/product/spw911-sheet-pile-</u> <u>design-software/</u>	Care must be exercised to ensure analyses are in accordance with the AASHTO code earth pressure diagrams. Program may mix methods when inappropriate values are changed. Use Coulomb method.

Table 6, Slope Stability

PCSTABL	PC-STABL6 Purdue University.	Calculates factor of safety against rotational, irregular, or sliding wedge failure by simplified Bishop or Janbu, or Spencer method of slices.
RSS	<u>RSS Reinforced Slope Stability</u> <u>A Microcomputer Program</u> <u>User's Manual</u> , FHWA-SA-96- 039, 1997 <u>http://www.fhwa.dot.gov/bridge/</u> <u>software.HTM</u>	A computer program for the design and analysis of reinforced soil slopes (RSS Reinforced Slope Stability). This program analyzes and designs soil slopes strengthened with horizontal reinforcement, as well as analyzing unreinforced soil slopes. The analysis is performed using a two- dimensional limit equilibrium method.
Visual Slope	Visual Slope, Inc. http://www.visualslope.com/inde x.html	Visual Slope uses drawing procedures similar to AutoCAD to help users establish analytical models, which allow detailed modeling of a complicated project.

XSTABL	Interactive Software Designs, Inc., <u>http://xstabl.com/index.htm</u>	Program performs a two dimensional limit equilibrium analysis to compute the factor of safety for a layered slope using the modified Bishop or Janbu methods.
SLIDE SLIDE2	RocScience https://www.rocscience.com/soft ware/slide2	2D limit equilibrium slope stability analysis program for all types of soil and rock slopes, embankments, earth dams, and retaining walls. (See Note 4)
SLOPE/W	GEO-SLOPE International <u>http://www.geo-slope.com</u>	Limit state design or load resistance factor design is handled by specifying partial factors on permanent/variable loads, seismic coefficients, material properties and reinforcement inputs.

Table 7, Embankment Settlement

FOSSA	http://www.geoprograms.com/fos saindex.htm	Calculates compression settlement due embankment loads.
Settle 3D	http://www.rocscience.com/produ cts/7/Settle3D	Analysis of vertical consolidation and settlement under foundations, embankments and surface loads.
SIGMA/W	GEO-SLOPE International <u>http://www.geo-slope.com</u>	SIGMA/W is a finite element software product that can be used to perform stress and deformation analyses of earth structures. (See Note 4)

Table 8, Soil Nailing

SNAP-2	FHWA:	
		Design and evaluation procedures
	http://www.fhwa.dot.gov/enginee	developed in general accordance
	ring/geotech/software.cfm	with the FHWA guidelines.

Table 9, Walls and Steepened Slopes

GEO5	Bentley GeoStructural Retaining	Care is needed to update the
	Wall Analysis Software	outdated default load and resistance
	(Ver 19.3)	factors.

MSEW 3.0	ADAMA Engineering, Inc., http://msew.com/msewindex.htm	The program can be applied to walls reinforced with geogrids, geotextiles, wire mesh, or metal strips. It allows for reduction factors associated with polymeric reinforcement or for corrosion of metallic reinforcement.
ReSSA 3.0	ADAMA Engineering, Inc., http://msew.com/ressaindex.htm	A computer program for the design and analysis of reinforced soil slopes (RSS Reinforced Slope Stability). This program analyzes and designs soil slopes strengthened with horizontal reinforcement, as well as analyzing unreinforced soil slopes. The analysis is performed using a two dimensional limit equilibrium method.

MSE LRFD	FDOT Structures Design Office	An Excel spreadsheet for external
	http://www.dot.state.fl.us/structur	stability analysis of MSE walls by
	es/proglib.shtm (See Note 3)	LRFD methods.
Cantilever	FDOT Structures Design Office	An Excel spreadsheet for external
LRFD	http://www.dot.state.fl.us/structur	stability analysis of cantilever
	es/proglib.shtm (See Note 3)	retaining walls by LRFD methods.

NOTE:

- 1) The programs included in this list are available from public sources and the private sector.
- 2) Many of the programs listed are continually updated or revised. It is the user's responsibility to become familiarize with the latest versions.
- 3) FDOT's programs are available on the FDOT's Structures Internet site. The address is: <u>http://www.dot.state.fl.us/structures/proglib.shtm</u>. Geotechnical programs are listed below the table of structural engineering/design programs.
- 4) Use of finite element programs for complex geotechnical analyses must include the means to determine input parameters, model calibration and the proposed verification of results.
- 5) **Programs not listed require approval from the State Geotechnical Engineer.**