

Trip Generation Study: Fast-Food & Coffee Shops with Drive-Throughs

Gina Bonyani, Sr. Transportation Planner, Central Office

Drew Roark, P.E., CTL, Alex Roark Engineering

Bill Oliver, P.E., W.E. Oliver, P.E., LLC

Website

1

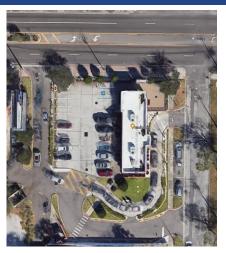
Session Objectives:

TRANSPORTATION SYMPOSIUM

Project Objectives

TRANSPORTATION SYMPOSIUM

3


Project Benefits

Qualitative:

 A better understanding of trip generation and operational characteristics of these land uses in varying situations.

Quantitative:

 Specific requirements for approval (or denial) of new driveway permits for these land uses.

TRANSPORTATION SYMPOSIUM

4

5

Task 1 – Literature Review Transportation Symposium

Task 2 – Site Selections

TRANSPORTATION SYMPOSIUM

7

7

Task 3 – Traffic Data Collection

FRANSPORTATION

Just the Facts

- For fast food restaurants we sampled 2,347 vehicles utilizing the drive through
- A total of approximately 24,000 vehicles (roughly 10%)
- Coffee shops included 1,157 samples in the drive through
- Generally recorded information:
 - · Time of arrival at order station
 - · Time order was completed
 - Time vehicle arrived at payment station (if applicable), and if the vehicle was "inhibited" by a vehicle ahead
 - Time payment transaction was completed (if applicable)
 - Time of arrival at pickup station (in some cases, this would be the time an attendant brought the order to the vehicle), and if the vehicle was "inhibited" by a vehicle ahead
 - · Time of departure from the pickup lane

TRANSPORTATION SYMPOSIUM

9

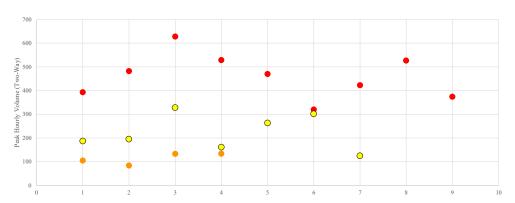
9

Task 4 – Data Analysis

TRANSPORTATION SYMPOSIUM

10

Conditions We Saw

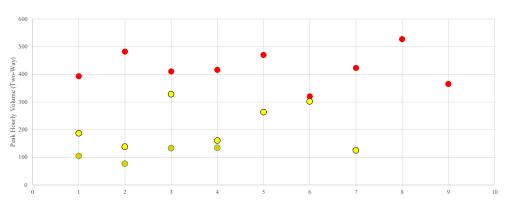

- Demands are higher than historically seen.
- At Fast-Food average 60% (range 25% to 95%) of entering vehicles use drive-through.
- At Coffee/Donut Shops average 62% (range 26% to 85%) of entering vehicles use drive-through.
- Some use of internet ordering in advance.
- Multi-lane ordering, multi-lane pickup operations.

TRANSPORTATION SYMPOSIUM

11

Actual Trip Generation

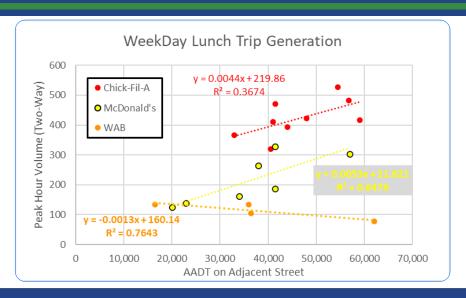
Maximum Hourly Trip Generation



TRANSPORTATION SYMPOSIUM

12

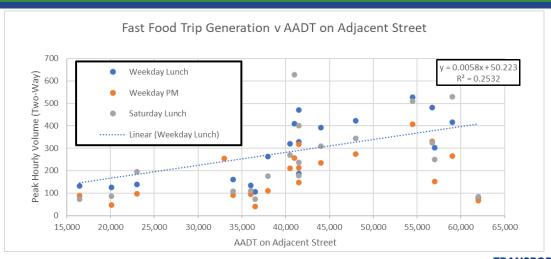
Weekday Lunch (highest) Trip Generation



TRANSPORTATION SYMPOSIUM

13

13


Weekday Lunch (highest) Trip Generation

TRANSPORTATION SYMPOSIUM

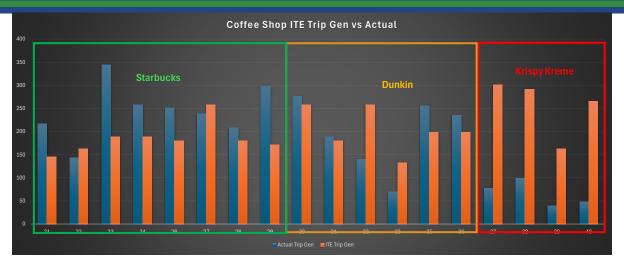
14

Is Adjacent Street Volume a Better Independent Variable?

TRANSPORTATION SYMPOSIUM

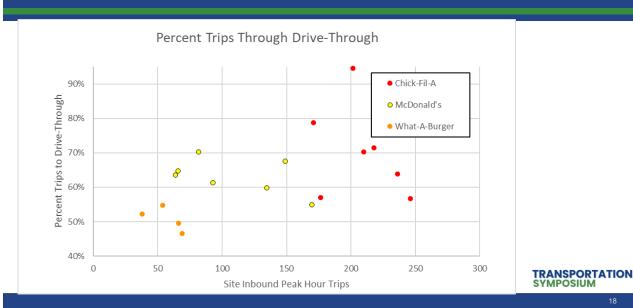
15

15


ITE vs. Actual - Fast Food

TRANSPORTATION SYMPOSIUM

16


ITE vs. Actual - Coffee Shop

TRANSPORTATION SYMPOSIUM

17

Queueing – Drive-Through Usage

How To Estimate Queue Length

Queue lengths depend on three factors:

- Rate and duration of arrivals (e.g. trip generation).
 More arrivals, longer queues.
- Rate at which orders are filled and vehicles depart.
 Faster rate shortens queues.
- Lengths of vehicles in queue.

TRANSPORTATION SYMPOSIUM

19

How to Estimate Queue Length

Arrival Rates

- At Fast-Food Restaurants ranged from 40 To 628 veh/hr, averaged 245
- At Coffee-Donut Shops ranged from 22 To 485 veh/hr, averaged 199

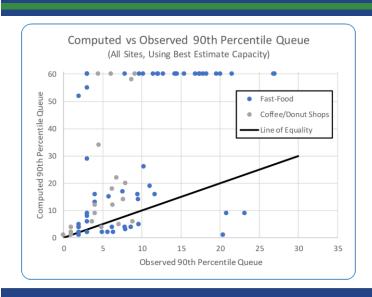
<u>Service Rates</u>

- At Fast-Food Restaurants ranged from 21 To 205 veh/hr, averaged 86
- At Coffee-Donut Shops ranged from 33 To 107 veh/hr, averaged 73

Conclude: Different restaurants have different operating styles. These parameters even vary within store brands. **Cannot generalize**.

RANSPORTATION
SYMPOSIUM

How to Estimate Queues

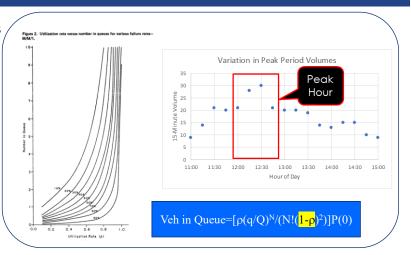

We tried different methods:

- Applied "classical" (exponential) equations
- Applied micro-simulation

TRANSPORTATION SYMPOSIUM

21

Application of Classical Equations

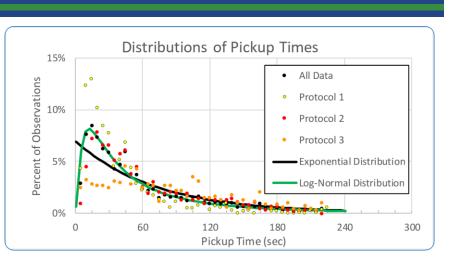


• RMS error > 30.24 (capped graph at 60 veh)

TRANSPORTATION SYMPOSIUM

Classical Equations Don't Do a Good Job

- As volume:capacity ratios approach 1.00, queues increase exponentially.
- For queues to increase exponentially, vehicles need to arrive exponentially. But demands fall off after the peak period, and queues dissipate.
- Assumes variance = average

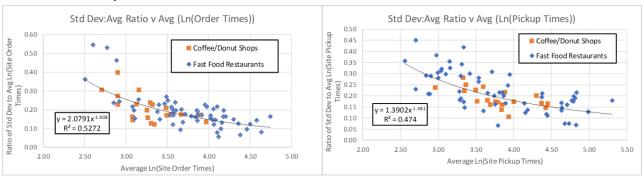

TRANSPORTATION SYMPOSIUM

23

23

Classical Equations Don't Do a Good Job

 They are based on a "negative exponential" distribution of service times, actual service times follow a "lognormal" distribution.

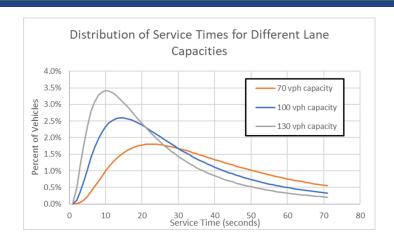


TRANSPORTATION SYMPOSIUM

24

Natural Log Better Fit

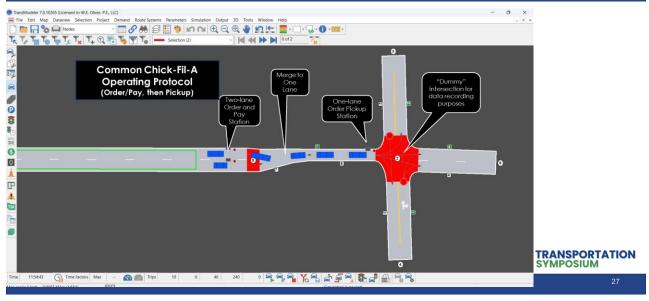
 Natural Log function requires both the <u>average</u> service time and <u>standard deviation</u> of service times. We found relationship.


TRANSPORTATION SYMPOSIUM

25

25

Lane Capacity and Service Time Distributions


 As capacity increases, distribution of service times "tightens up"

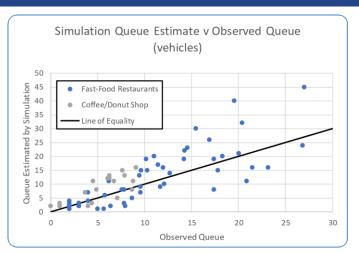
TRANSPORTATION SYMPOSIUM

26

Simulation Setup

27

Service Time Distributions Into Simulation

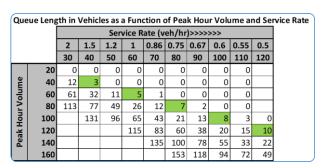

Service Time Distributions for TransModeler Unique, log-40.3 42.5 normally-Standard De 34.47 41.22 38.10 65.42 25.60 37.46 45.14 118.49 distributed service time Percentile Applicable Time 1 Time 2 Time 3 Time 4 Time 1 Time 2 Time 3 Time 4 3.5% 4.0% 2.0 3.0 12.0 13.8 2.0 4.0 3.0 3.0 5.0 5.0 7.0 12.9 9.0 26.6 distributions can 4.5% 6.0 8.0 7.0 14.0 5.5% be entered into 21% 19.0 16.0 24.0 28.0 10.2 15.0 21.0 52.0 6.0% 21.0 26.0 18.5 24.0 27.0 32.0 32.0 42.0 61.0 77.7 **TransModeler** 30.0 29.0 35.1 47.0 23.0 34.0 88.0 32.0 35.0 40.0 46.0 18.0 20.0 25.8 29.0 38.0 100.0 42.0 109.0 37.0 60.0 41.0 39.0 43.0 51.0 55.9 67.0 74.0 35.0 39.0 49.0 53.9 54.0 48.0 60.0 60.1 55.0 68.0 84.0 100.0 29.0 42.8 35.0 47.0 59.0 158.0 68.0 180.0 78% 83% 5.0% 67.0 60.0 77.0 69.0 75.5 84.0 109.5 124.0 80.5 209.0 92.0 237.2 52.6 61.0 90.0 79.6 105.0 96.1 142.5 53.0 78.0 106.2 269.4 174.0 65.0 102.0 126.6 340.4 5.0% 96.0 114.8 3.0% 97% 133.4 122.7 140.7 225.4 89.0 135.9 169.5 419.6 161.6 176.1 203.5 310.2 134.6 191.0 238.0 592.2

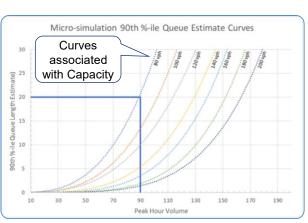
TRANSPORTATION SYMPOSIUM

28

Application of Micro-Simulation

RMS error = 5.5 veh
 (compared to >30.24 for classical equations)




TRANSPORTATION SYMPOSIUM

29

29

Queue Length based on Volume and Service Rate

TRANSPORTATION SYMPOSIUM

30

Lessons

- Through the pandemic, drive-throughs have seen dramatic changes (increased usage)
- Popularity among different brands varies dramatically, therefore trip generation rates vary dramatically.
- Using ITE Trip Generation for estimates may not be accurate by brand
- Peak hours for fast food are weekday lunch hour, however traffic impact analysis is typically weekday PM Peak Hour

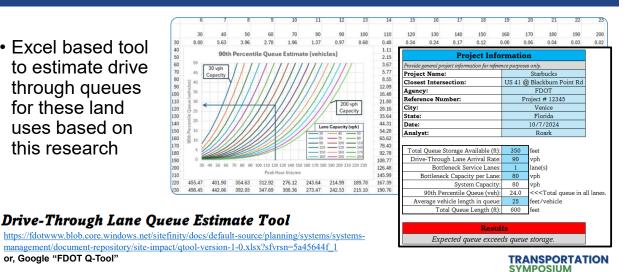
TRANSPORTATION SYMPOSIUM

21

31

Lessons

- Classical queueing equations don't do a good job for today
- Performance in drive throughs (service times) varies dramatically because different restaurant chains have different operating procedures
- In development review, we need to know <u>both volume and capacity</u> of drive-through lane(s).


TRANSPORTATION SYMPOSIUM

32

Implementation Item – "QTool"

 Excel based tool to estimate drive through queues for these land uses based on this research

or, Google "FDOT Q-Tool"

33

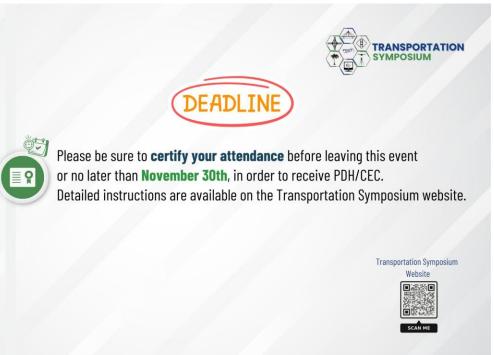
Safety Message

- Queue spillover from these types of sites with drive-throughs can create safety issues with the adjacent transportation facilities including the roadways and bike and pedestrian facilities.
- Ensuring that adequate gueue storage is provided at the planning phase of a development project may prevent these safety issues from occurring.
- This research has developed an easy-to-use tool to better estimate the queues at these sites.

"I FT'S GFT FVFRYONF HOMF SAFFLY"

TRANSPORTATION

Contact Us


- FDOT PM: Gina Bonyani, Systems Implementation Office
 - Gina.Bonyani@dot.state.fl.us or 850.414.4707
- PI: Drew Roark, PE, CTL, Alex Roark Engineering
 - drew@alexroarkeng.com or 850.567.2044
- PI: Bill Oliver, PE, W.E. Olliver, P.E., LLC
 - bill@weo-pe.com or 813.748.9188

35

