

TRIP GENERATION STUDY FOR COFFEE SHOP WITH DRIVE-THROUGH AND FAST FOOD WITH DRIVE-THROUGH

Drew Roark, PE, CTL, Alex Roark Engineering

Transportation Symposium Website

Project Objectives

TRANSPORTATION

Project Benefits

Qualitative:

 A better understanding of trip generation and operational characteristics of these land uses in varying situations.

Quantitative:

 Specific requirements for approval (or denial) of new driveway permits for these land uses.

TRANSPORTATION SYMPOSIUM

3

Scope

Л

Task 1 – Literature Review

5

Task 2 – Site Selections

Task 3 – Traffic Data Collection

TRANSPORTATION SYMPOSIUM

7

/

Just the Facts

- For fast food restaurants we sampled 2,347 vehicles utilizing the drive through
- A total of approximately 24,000 vehicles (roughly 10%)
- Coffee shops included 1,157 samples in the drive through
- Generally recorded information:
 - · Time of arrival at order station
 - · Time order was completed
 - Time vehicle arrived at payment station (if applicable), and if the vehicle was "inhibited" by a vehicle ahead
 - Time payment transaction was completed (if applicable)
 - Time of arrival at pickup station (in some cases, this would be the time an attendant brought the order to the vehicle), and if the vehicle was "inhibited" by a vehicle ahead
 - · Time of departure from the pickup lane

TRANSPORTATION SYMPOSIUM

8

9

Conditions We Saw

- Demands are higher than historically seen.
- At Fast-Food average 60% (range 25% to 95%) of entering vehicles use drive-through.
- At Coffee/Donut Shops average 62% (range 26% to 85%) of entering vehicles use drive-through.
- Some use of internet ordering in advance.
- Multi-lane ordering, multi-lane pickup operations.

RANSPORTATION SYMPOSIUM

Actual Trip Generation

Maximum Hourly Trip Generation

TRANSPORTATION SYMPOSIUM

. .

11

Weekday Lunch (highest) Trip Generation

Weekday Lunch Trip Generation

TRANSPORTATION SYMPOSIUM

12

Weekday Lunch (highest) Trip Generation

TRANSPORTATION SYMPOSIUM

13

13

ITE vs. Actual - Fast Food

TRANSPORTATION SYMPOSIUM

14

ITE vs. Actual - Coffee Shop

TRANSPORTATION SYMPOSIUM

15

15

Is Adjacent Street Volume a Better Independent Variable?

TRANSPORTATION SYMPOSIUM

16

Queueing – Drive-Through Usage

17

How To Estimate Queue Length

Queue lengths depend on three factors:

- Rate and duration of arrivals (e.g. trip generation).
 More arrivals, longer queues.
- Rate at which orders are filled and vehicles depart.
 Faster rate shortens queues.
- · Lengths of vehicles in queue.

TRANSPORTATION SYMPOSIUM

How to Estimate Queue Length

Arrival Rates

- At Fast-Food Restaurants ranged from 40 To 628 veh/hr, averaged 245
- At Coffee-Donut Shops ranged from 22 To 485 veh/hr, averaged 199

Service Rates

- At Fast-Food Restaurants ranged from 21 To 205 veh/hr, averaged 86
- At Coffee-Donut Shops ranged from 33 To 107 veh/hr, averaged 73

Conclude: Different restaurants have different operating styles. These parameters even vary within store brands. **Cannot generalize**.

TRANSPORTATION SYMPOSIUM

19

How to Estimate Queues

We tried different methods:

- Applied classical equations
- Applied micro-simulation

TRANSPORTATION SYMPOSIUM

Application of Classical Equations

• RMS error > 30.24

TRANSPORTATION SYMPOSIUM

21

21

Classical Equations Don't Do a Good Job

 As volume:capacity ratios approach 1.00, queues increase exponentially. For queues to increase exponentially, vehicles need to arrive exponentially. But demands fall off after the peak period, and queues dissipate.

TRANSPORTATION SYMPOSIUM

2

Classical Equations Don't Do a Good Job

 They are based on a "negative exponential" distribution of service times, actual service times follow a "lognormal" distribution.

TRANSPORTATION SYMPOSIUM

23

23

Simulation Setup

Natural Log Better Fit

TRANSPORTATION SYMPOSIUM

25

Service Time Distributions Into Simulation

Unique, lognormallydistributed service time distributions can be entered into TransModeler

		Se	ervice Tii	ne Distri	butions	for Trans	Modeler				
				Order	Times		Pickup Times				
		Average:	47.0	42.5	54.3	75.1	27.9	40.3	55.7	144.0	
Standard Dev:			34.47	41.22	38.10	65.42	25.60	37.46	45.14	118.49	
		Capacity:	77	85	66	48	129	89	65	25	
Trans											
Modeler											
Table		% to which	Order	Order	Order	Order	Pickup	Pickup	Pickup	Pickup	
Row	Percentile	Applicable	Time 1	Time 2	Time 3	Time 4	Time 1	Time 2	Time 3	Time 4	
1	2%	3.5%	6.9	2.0	12.0	2.0	3.0	3.0	7.0	12.9	
2	5%	4.0%	9.2	3.0	13.8	4.0	5.0	5.0	9.0	26.6	
3	10%	4.5%	13.0	6.0	17.0	8.0	7.0	9.0	14.0	37.3	
4	14%	5.5%	15.0	10.0	20.0	20.0	8.0	11.0	16.2	43.0	
5	21%	5.5%	19.0	16.0	24.0	28.0	10.2	15.0	21.0	52.0	
6	25%	6.0%	21.0	18.5	27.0	32.0	12.0	16.0	24.0	61.0	
7	33%	6.5%	26.0	24.0	32.0	42.0	14.0	21.0	30.0	77.7	
8	38%	5.5%	30.0	29.0	35.1	47.0	16.0	23.0	34.0	88.0	
9	44%	6.0%	34.0	32.0	40.0	54.0	18.0	25.8	38.0	100.0	
10	50%	6.0%	37.0	35.0	46.0	60.0	20.0	29.0	42.0	109.0	
11	56%	6.0%	41.0	39.0	51.0	67.0	23.0	35.0	49.0	125.0	
12	62%	5.5%	48.0	43.0	55.9	74.0	26.0	39.0	53.9	142.3	
13	67%	5.5%	54.0	48.0	60.0	84.0	29.0	42.8	59.0	158.0	
14	73%	5.5%	60.1	55.0	68.0	100.0	35.0	47.0	68.0	180.0	
15	78%	5.0%	67.0	60.0	75.5	109.5	39.3	52.6	80.5	209.0	
16	83%	5.0%	77.0	69.0	84.0	124.0	44.5	61.0	92.0	237.2	
17	88%	5.0%	90.0	79.6	96.0	142.5	53.0	78.0	106.2	269.4	
18	93%	4.5%	105.0	96.1	114.8	174.0	65.0	102.0	126.6	340.4	
19	97%	3.0%	133.4	122.7	140.7	225.4	89.0	135.9	169.5	419.6	
20	99%	2.0%	161.6	176.1	203.5	310.2	134.6	191.0	238.0	592.2	
		100.0%									

TRANSPORTATION SYMPOSIUM

26

Lane Capacity and Service Time Distributions

 As capacity increases, distribution of service times "tightens up"

TRANSPORTATION SYMPOSIUM

27

27

Application of Micro-Simulation

- RMS error = 5.5 veh
- (compared to >30.24)

TRANSPORTATION SYMPOSIUM

28

Queue Length based on Volume and Service Rate

Queue Length in Vehicles as a Function of Peak Hour Volume and Service Ra												
		Service Rate (veh/hr)>>>>>										
		2	1.5	1.2	1	0.86	0.75	0.67	0.6	0.55	0.5	
		30	40	50	60	70	80	90	100	110	120	
Peak Hour Volume	20	0	0	0	0	0	0	0	0	0		
	40	12	3	0	0	0	0	0	0	0		
	60	61	32	11	5	1	0	0	0	0		
	80	113	77	49	26	12	7	2	0	0		
	100		131	96	65	43	21	13	8	3	0	
	120				115	83	60	38	20	15	10	
	140					135	100	78	55	33	22	
	160						153	118	94	72	49	

TRANSPORTATION SYMPOSIUM

29

29

Lessons

- Popularity among different brands varies dramatically, therefore trip generation rates vary dramatically.
- Using ITE Trip Generation for estimates may not be accurate by brand
- Peak hours for fast food are weekday lunch hour, however traffic impact analysis is typically weekday PM Peak Hour

TRANSPORTATION SYMPOSIUM

30

Lessons

- Through the pandemic, drivethroughs have seen dramatic changes (increased usage)
- No updates in traffic engineering queuing theory since the 70s.
 Queueing equations focused on roadway/intersections.
- Performance in drive throughs (service times) vary dramatically
- Different restaurant chains have different operating procedures

TRANSPORTATION SYMPOSIUM

31

31

Implementation Item – "QTool"

 Excel based tool to estimate drive through queues for these land uses based on this research

TRANSPORTATION SYMPOSIUM

3

Safety Message

- Queue spillover from these types of sites with drive-throughs can create safety issues with the adjacent transportation facilities including the roadways and bike and pedestrian facilities.
- Ensuring that adequate queue storage is provided at the planning phase of a development project may prevent these safety issues from occurring.
- This research has developed an easy-to-use tool to better estimate the queues at these sites.

"LET'S GET EVERYONE HOME SAFELY"

TRANSPORTATION SYMPOSIUM

33

Contact Us

- FDOT PM: Gina Bonyani, Systems Implementation Office
 - Gina.Bonyani@dot.state.fl.us or 850.414.4707
- PI: Drew Roark, PE, CTL, Alex Roark **Engineering**
 - drew@alexroarkeng.com or 850.567.2044

TRANSPORTATION SYMPOSIUM

