

Multilane Roundabout Design

Derwood Sheppard, FDOT CO Kevin Kuhlow, Ayres Associates Transportation Symposium Website

1

Introduction

TRANSPORTATION SYMPOSIUM

ARES

Introduction

TRANSPORTATION SYMPOSIUM

AVRES

3

Introduction

TRANSPORTATION SYMPOSIUM

AVRES

Roundabouts on Florida SHS

- Only single-lane and two-lane modern roundabouts
- Partial three-lane roundabouts may be acceptable under certain conditions

TRANSPORTATION SYMPOSIUM

AYRES

5

Roundabouts Review

FDM 116 Alternative Intersection and Interchange Review

- All proposed Alternative Intersection and Interchange designs <u>require a</u> detailed review early and throughout the design process
- · Configurations subject to this detailed review:
 - > Roundabout

➤ Displaced Left Turn

➤ Median U-Turn (MUT)

- > Continuous Green-T
- ➤ Restricted Crossing U-Turn (RCUT)
- ➤ Quadrant Roadway

➤ Jug Handle

- ➤ Diverging Diamond Interchange (DDI)
- With Phase I submittal and designate a representative of the State Roadway Design Office as a Lead Reviewer in the ERC

Safe System Approach

- Humans make mistakes
- Human body is vulnerable
- Design to ensure that if crashes do occur, they do not result in series human injury

TRANSPORTATION SYMPOSIUM

AYRES

7

Benefits of Roundabouts

- Reduction in injury and fatal crashes
- Severe angle and turning movement collisions are avoidable!

TRANSPORTATION SYMPOSIUM

Benefits of Roundabouts

Safety Comparison – Signals vs. Roundabouts

• Crashes of this type are more severe

TRANSPORTATION SYMPOSIUM

AVRES

9

Design Guides

National Roundabout Guidelines NCHRP 1043 – Guide for Roundabouts (released in 2023)

FDOT Design Manual

FDM 213 Modern Roundabouts (January 1, 2025)

Design Guides

FDM 213 Modern Roundabouts

AVRES

11

Roundabout Operation

- A roundabout brings together:
 - Conflicting traffic streams at reduced speeds
 - Allowing streams to safely cross paths
 - Traverse the roundabout and exit

AYRES

Roundabout Capacity

The capacity of a roundabout entry depends on two factors:

- 1. Circulating flow in the roundabout that conflicts with the entry flow
- 2. Number of entering lanes on the approach to the circulatory roadway

TRANSPORTATION SYMPOSIUM

AYRES

13

Estimated Capacity Limits

The sum of entering (V_e) plus circulating (V_c) traffic at each entry point

Estimate of Lane Capacity

- 1,000 vph or less
 - Single lane should work
- 1,000 vph to 1,300 vph
 - Single lane may work
- 1,300 vph to 1,800 vph
 - 2 lanes should work

TRANSPORTATION SYMPOSIUM

AYRES

Analysis Software

Roundabouts to be analyzed with <u>HCM procedures</u> using one of two FDOT approved analysis tools

- √ 1 or 2 lane entries
- √ 1 lane partial right bypass
- ✓ Up to 4 approach legs

- √ 1 or 2 lane entries
- √ 1 or 2 lane partial right bypass
- ✓ Up to 8 approach legs

TRANSPORTATION SYMPOSIUM

AYRES

15

Design Overview

- The geometric design of a roundabout requires the balancing of competing design interests
- The process may require a <u>considerable</u> amount of iteration
- Roundabouts operate most safely when their geometry positively guides traffic to enter and circulate at slow speeds
- Poor roundabout geometry has been found to negatively impact roundabout operations

TRANSPORTATION SYMPOSIUM

AYRES

Principals and Objectives

- 1. Design to make the driving task as simple as possible
- 2. Slow entry speeds and consistent speeds through the roundabout by using deflection
- 3. Appropriate number of lanes and lane assignment to achieve adequate capacity, lane volume balance, and lane continuity
- Smooth channelization that is intuitive to drivers and results in vehicles naturally using the intended lanes
- 5. Adequate accommodations for design vehicles
- 6. Meet the needs of pedestrians and bicyclists
- 7. Appropriate sight distance and visibility

TRANSPORTATION SYMPOSIUM

AYRES

17

Speed Management

- Achieving appropriate vehicular speeds for entering and traveling through the roundabout is a <u>critical</u> design objective
 - Profound impact on safety of all users
 - Easier to use and more comfortable for pedestrians and bicyclists
- A well-designed roundabout reduces vehicle speeds upon entry and achieves consistency in the relative speeds between conflicting traffic streams

Speed Management

- Operating speed is widely recognized as one of the most important attributes in terms of safety performance, in general:
 - · Frequency of crashes is most directly tied to volume
 - · Severity of crashes is most directly tied to speed
- Maximum entering design speeds based on theoretical fastest path:
 - Single-lane = <u>20-25 mph</u>
 - Multilane = <u>25-30 mph</u>

Slower is better!

AYRES

19

Assessing Vehicle Paths (Fast Paths)

- The fastest path allowed by the geometry determines the negotiation speed for that particular movement
- It is the smoothest, flattest path possible for a single vehicle, in the absence of other traffic and ignoring all lane markings, traversing through the entry, around the central island, and out the exit
- Typically, the critical fastest path is the through movement, but in some situations it maybe a right turn

Does not represent expected vehicle speeds, but rather theoretical attainable speeds for design purposes

Assessing Vehicle Paths (Fast Paths)

See NCHRP 1043 Chapter 9.4 and FDM 213.6 for guidance on constructing fastest paths

Radius	Description
R ₁ – Entry Path Radius	The minimum radius on the fastest through path prior to the yield line. (This is not the same as Entry Radius.)
R ₂ – Circulating Path Radius	The minimum radius on the fastest through path around the central island.
R ₃ – Exit Path Radius	The minimum radius on the fastest through path into the exit.
R ₄ – Left-turn Path Radius	The minimum radius on the path of the conflicting left-turn movement.
R ₅ – Right-turn Path Radius	The minimum radius on the fastest path of a right-turning vehicle.

AYRES

21

Fastest Path Through Movement - Multilane

TRANSPORTATION SYMPOSIUM

AYRES

Assessing Vehicle Paths (Fast Paths)

TRANSPORTATION SYMPOSIUM

AVRES

23

Multilane Roundabouts

- Principles and design process described previously apply to multilane roundabouts but in a more complex way
- Multiple traffic streams may enter, circulate through, and exit the roundabout side-by-side
- Designer needs to consider how these traffic streams interact with each other

TRANSPORTATION SYMPOSIUM

Multilane Roundabouts

- Geometry should provide adequate alignment and establish appropriate lane configurations for vehicles in adjacent entry lanes to be able to negotiate the roundabout geometry without competing for the same space
 - ✓ If not, operational and/or safety deficiencies may occur

TRANSPORTATION SYMPOSIUM

AYRES

25

Multilane Roundabouts

- Additional key considerations for all multilane roundabouts:
 - Lane arrangements to allow drivers to select the appropriate lane on entry and navigate through the roundabout without changing lanes
 - ➤ Alignment of vehicles at the entrance line into the correct lane within the circulatory roadway
 - Accommodation of side-by-side vehicles through the roundabout
 - ➤ Alignment of legs to prevent exiting-circulating conflicts
 - >Accommodations for all travel modes

Lane Arrangement

- Ensure that the design provides the appropriate number of lanes within the circulatory roadway and on each exit to ensure lane continuity
- Movements assigned to each entering lane are key to the overall design
- Pavement markings are integral to the preliminary design process

TRANSPORTATION SYMPOSIUM

AYRES

27

Inscribed Circle Diameter (ICD)

For initial section of ICD, the design vehicle and context of location should be taken into consideration

- Urban location
 - Typically, lower speeds with right-of-way constraints
- Rural location
 - Typically, higher speeds with larger vehicles

Roundabout Type	Typical Inscribed Circle Diameter
Single-lane	120 – 160 ft
Multilane (2-lane entry)	160 – 200 ft

Entry Width

- Required width is dependent upon the number of lanes and the design vehicle
- Typical width for a two-lane entry ranges from 24' to 30'
- Typical widths for individual lanes at entry range from 12' to 15'
- Typical widths with painted gore:
 - > Entry lanes = 11' to 12'
 - ➤ Gore = 4' to 6'

Use painted gores when providing in lane truck accommodations!

AYRES

29

Entry Design

- The entry curvature should balance the competing objectives of:
 - ✓ Speed control
 - ✓ Design vehicle accommodations
 - √ Adequate alignment of natural paths
 - ✓ Need for appropriate visibility lines
- Multilane entry radii commonly
 - > 75 to 120 feet

TRANSPORTATION SYMPOSIUM

Path Overlap

- Designing multilane roundabouts is significantly more complex than single-lane roundabouts due to the additional conflicts present with multiple traffic streams in adjacent lanes:
 - > Entering, Circulating, Exiting
- The <u>natural path</u> of a vehicle is the path it will take based on the speed and orientation imposed by the roundabout geometry

TRANSPORTATION SYMPOSIUM

AVRES

31

Path Overlap

- Path overlap occurs when the natural paths of vehicles in adjacent lanes overlap or cross one another
- The entry design should align vehicles into the appropriate lane within the circulatory roadway
- A good design balances entry speed and path alignment
- Common on entries, but also can occur on exits

TRANSPORTATION SYMPOSIUM

AYRES

Path Overlap

33

AVRES

Path Overlap

AYRES

Path Overlap

TRANSPORTATION SYMPOSIUM

ARES

35

Path Overlap

FDM Figure 213.4.1 Tangents for Path Overlap

TRANSPORTATION SYMPOSIUM

AYRES

Circulatory Roadway Width

- Does not need to remain constant!
- Provide only the minimum width necessary to serve the required lane configuration
 - Major movement may have 2 lanes circulating
 - Minor may have only 1 lane

TRANSPORTATION SYMPOSIUM

AYRES

37

Circulatory Roadway Width

- Usually governed by the type of vehicles that need to be accommodated adjacent to one another
- Typical lane widths range from 12' to 18'
- Typical total circulating width ranges from 28' to 32'

TRANSPORTATION SYMPOSIUM

AYRES

Circulatory Roadway Width

- Outside lane typically larger
 - > They don't have to be 15'/15'
 - Provides additional space for larger vehicles
 - > Improves entry and exit path tangents

TRANSPORTATION SYMPOSIUM

AYRES

39

Design Vehicle Accommodations

- Large trucks, buses, and emergency vehicles often dictate many of the roundabout's dimensions, particularly single-lane roundabouts
- Design vehicle should be <u>identified</u> at the start of a project
- Design vehicle should be <u>evaluated</u> early in the design process

TRANSPORTATION SYMPOSIUM

AYRES

Design Vehicle Accommodations

Roundabouts on the Florida SHS:

- Desirable to accommodate a WB-62FL for all movements
- At a minimum accommodate:
 - ✓ WB-62FL for the through movement on the SHS
 - ✓ A smaller design vehicle may be appropriate for:
 - >Through movements on the minor road
 - >Turning movements to and from the minor road

TRANSPORTATION SYMPOSIUM

AYRES

41

Design Vehicle Accommodations

- ✓ CAD-based computer program should be used to determine the swept path of the design vehicle through each of the turning movements
- Develop travel paths using continuous smooth alignments representative of actual travel paths

TRANSPORTATION SYMPOSIUM

AYRES

Design Vehicle Accommodations - Multilane

- Considerations should be made for both tracking on the entry/exit and within the circulatory roadway
- Percentage of trucks and lane utilization is an important consideration
- Frequency of a particular design vehicle is also an important to consideration
- Determine whether the design will allow trucks to use two lanes or accommodate them to stay within their own lane

TRANSPORTATION SYMPOSIUM

AYRES

43

Design Vehicle Accommodations - Multilane

FDOT Policy

- Provide adequate pavement area for the simultaneous passage of the design vehicle and a passenger vehicle through the roundabout and for turning movements
- Design vehicle swept paths must stay within the travel lanes
- Provide a minimum of <u>18-inches</u> of clearance between curb faces and the outside edge of the design vehicles tire track

Design Vehicle Accommodations - Multilane

FDOT Policy

- Develop swept path diagrams for all turning movements in the following combinations:
 - ✓ Design vehicle in the outside lane and passenger vehicle in the inside lane
 - ✓ Design vehicle in the inside lane and passenger vehicle in the outside lane
- When truck volume is <u>very low</u>, consider allowing the design vehicle to command both lanes

TRANSPORTATION SYMPOSIUM

AYRES

45

Design Vehicle Accommodations - Multilane

Truck in left lane

AYRES

Design Vehicle Accommodations - Multilane

• Truck in right lane

AVRES

47

Spirals

- Typically necessary when there are exclusive leftturn lanes
- Spiral transitions lead drivers into the appropriate lane for their desired exit
- Enable vehicles to reach their intended exits <u>without</u> <u>needing to change lanes</u>

AYRES

Spirals

TRANSPORTATION SYMPOSIUM

AVRES

49

Exit Design

- As with the entries, the design of exit curvature is more complex at multilane roundabouts
- Conflicts can occur between exiting and circulating vehicles if appropriate lane assignments are not provided
- Exit radii are usually larger than the entry radii and are typically used to promote good vehicle path alignment
- Balanced by the need to maintain slow speeds through the pedestrian crossing on exit

Exit Design

TRANSPORTATION SYMPOSIUM

ARES

51

Exit Design

Highly curved exits may shadow pedestrians from multilane exiting traffic

Exit Design

Highly curved exits may also have path overlap

TRANSPORTATION SYMPOSIUM

AYRES

53

Exit Tapers

- Tapering the number of lanes on an exit from 2 lanes to 1 lane allows for additional capacity without excessive mid-block widening
- Roundabouts continuous flow typically results in less saturated traffic streams exiting
- Speeds are much slowing exiting roundabouts which eliminates the need for a long parallel section downstream of an exit

TRANSPORTATION

AYRES

Exit Tapers

 Design exit tapers based on the anticipated in lane exiting speed, not the fastest path

> The farther the full lane widths are extended downstream, the higher the speeds and need for longer merge taper

TRANSPORTATION SYMPOSIUM

ARES

55

Separation between Legs

TRANSPORTATION SYMPOSIUM

AYRES

Separation between Legs

TRANSPORTATION SYMPOSIUM

AVRES

57

January 2026 FDM 213 Updates

- Updated all references from NCHRP 672 to NCHRP 1043
- Updated signing and pavement markings exhibits per new MUTCD 11th edition
- Expanded guidance on high-speed approach AR2 design
- Introduced new AR2 design concept of Speed Contours
- · Added additional guidance on circulatory lane widths
- Expanded guidance on the multilane roundabout design concepts of Straddle Lane and Stay-in-Lane
- Supplemental crosswalk treatments (e.g., RRFBs, PHBs, etc.) are now mandatory for multilane roundabout crosswalks

Safety Message: Driving a Roundabout

- 1. Slow down. Obey traffic signs.
- 2. Yield to pedestrians and bicyclists.
- 3. Yield to traffic on your left already in the roundabout.
- 4. Enter the roundabout when there is a safe gap in traffic.
- 5. Keep your speed low within the roundabout.
- 6. As you approach your exit, turn on your right turn signal.
- 7. Yield to pedestrians and bicycles as you exit.

TRANSPORTATION SYMPOSIUM

AYRES

59

Safety Message: Driving a Multilane Roundabout

- 1. Choose the proper lane before entering and stay in your lane
- 2. Yield to all lanes in the circulatory roadway
- 3. Yield right-of-way to large vehicles

TRANSPORTATION SYMPOSIUM

AVRES

Safety Message: Multilane Roundabout Crashes

TRANSPORTATION SYMPOSIUM

AVRES

61

Derwood Sheppard, FDOT CO

Derwood.Sheppard@dot.state.fl.us

Kevin Kuhlow, Ayres Associates

kuhlowk@ayresassociates.com

