

2TRANSPORTATION 2ASYMPOSIUM

Smart Work Zone Design

James McGinnis, P.E. State Roadway Design Office W.D. Baldwin, P.E. State Traffic Engineering & Operations Office

Objectives

- What is a Smart Work Zone (SWZ)?
- What Are Benefits of SWZ?
- FDOT SWZ Strategies
- SWZ Design Resources
- Use of Resources for Selecting and Designing SWZ Strategies

What Makes SWZ Smart?

SWZ have the following general characteristics:

• **Real-time**: The system obtains and analyzes traffic flow data in realtime, providing frequently updated information to motorists.

 Portable: The system is portable, allowing its installation at different locations (with configuration modifications, as necessary).

• Automated: The system operates in an automated manner with minimal human supervision.

Reliable: The system provides accurate and reliable information, keeping in mind the serious consequences of misinforming motorists in work zone situations.

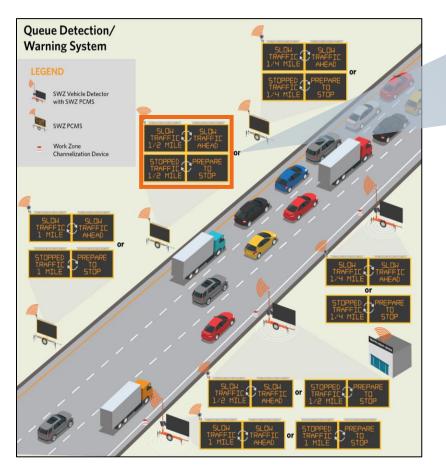
SWZs use combinations of technologies to create strategies in response to work zone traffic impact scenarios. FDOT SWZ strategies covered in the SWZ Guidebook and Developmental Design Concept (DDC) include:

- Work Zone Data Exchange (WZDx)
- Dynamic End of Queue/Slow Speed Warning (DQW)
- Dynamic Lane Merge (DLM)
- Dynamic Speed Harmonization (DSH)

Benefits of SWZ

Benefits	WZDx	DQW	DLM	DSH
Reduce WZ crashes (sideswipe)			\checkmark	
Reduce WZ crashes (rear-end)		\checkmark	\checkmark	\checkmark
Reduce WZ speed variation, stop and go traffic		\checkmark	\checkmark	\checkmark
Improve WZ vehicle throughput		\checkmark	\checkmark	\checkmark
Reduce WZ congestion		\checkmark	\checkmark	\checkmark
Improve WZ traveler information	\checkmark	\checkmark	\checkmark	\checkmark

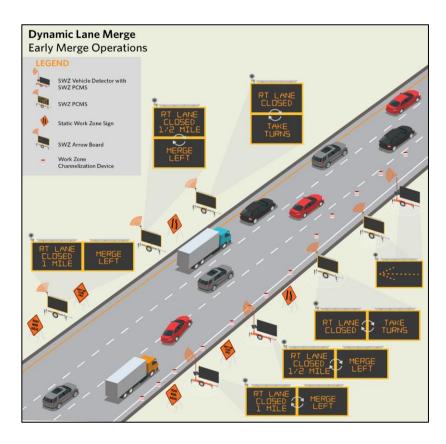
Work Zone Data Exchange (WZDx)



- Program Sponsor: Federal Highway Administration (FHWA)
- Goal: Safe work zone navigation for vehicles equipped with automated driving systems (ADS)
- Work Zone Data: Near real-time work zone data for third party use
- Recommended: Use for projects impacting traffic or when workers are adjacent to open traffic lanes
- Long Term: Eventually use WZDx on all projects that potentially impact traffic

SYMPOSI

Dynamic Queue Detection / Slow Speed Warning (DQW)


- Goals
 - Fewer work zone crashes
 - Increased throughput
- SWZ Vehicle Detectors
 - Traffic speeds
 - Traffic volumes
- SWZ Central Processor
 - Locate slower traffic
 - Locate stopped traffic
 - Locate end of queue
 - Selects messages from preapproved library
 - Posts messages to PCMS
- Portable Changeable Message Signs (PCMS)

TRANSPORTATION

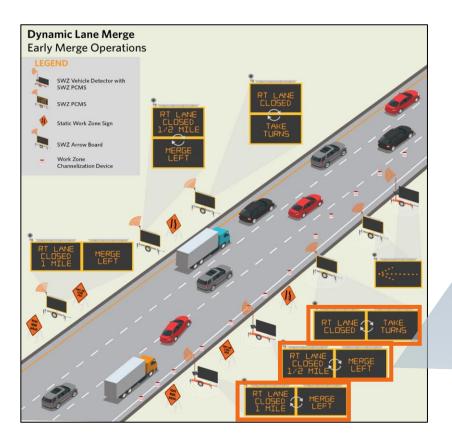
SYMPOSIUM

Dynamic Lane Merge (DLM)

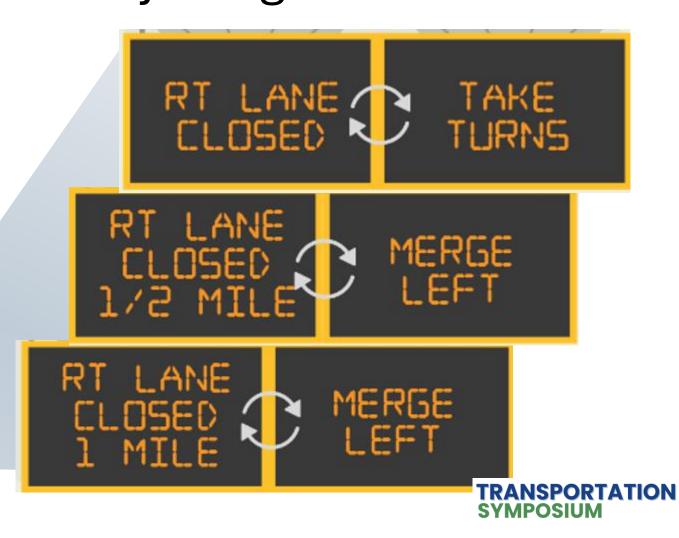
DLM Scenarios

- Early Merge: move traffic (≤1,500 vehicles/lane/hour) to open lanes as early as possible
- Late Merge / Zipper Merge: keep traffic (>1,500 vehicles/lane/hour) in all lanes until the lane closure
- Goals
 - Increase safety (hard braking, road rage)
 - Reduce queue length
 - Increase throughput

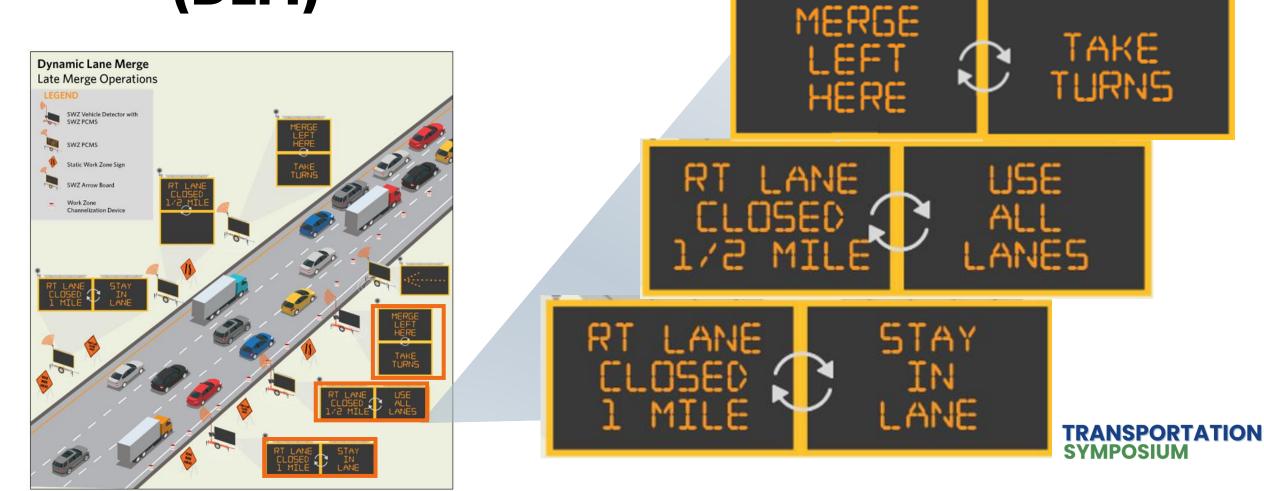
SWZ Detectors


• Speed and volume approaching merge and through the work area

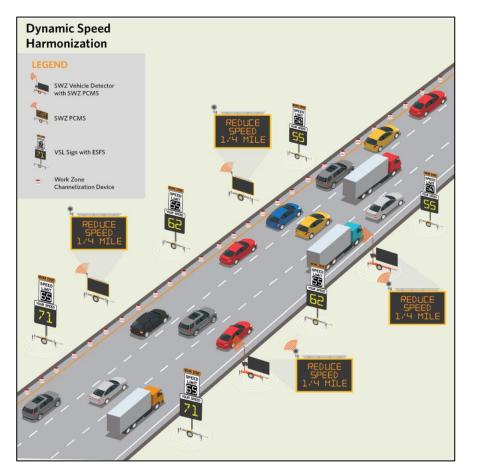
SWZ Central Processor


- Determine applicability of *early merge* or *late merge* based on predetermined algorithms
- Select PCMS messages from pre-approved library
- Post messages to PCMS
- SWZ PCMS
 - Post early merge or late merge messages from Central Processor

Dynamic Lane Merge (DLM)



PCMS for DLM Early Merge Scenario



Dynamic Lane Merge (DLM)

PCMS for DLM Late Merge Scenario

Dynamic Speed Harmonization (DSH)

Goals

Uniform speeds approaching and the through work zones

SWZ Vehicle Detectors

• Vehicle speeds approaching and through work area

SWZ Central Processor

- Locates slow traffic speed areas
- Determines speed limits for traffic approaching slowed speed areas and posts speeds to SWZ VSL signs
- Determines PCMS messages from pre-approved library and posts messages to SWZ PCMS

SWZ PCMS

- Reduced speed ahead messages
- SWZ Variable Speed Limit (VSL) Signs with Electronic
 Speed Feedback Signs (ESFS)
 - VSL: Current speed limit based on downstream traffic
 - ESFS: Displays speed of traffic passing the sign

Dynamic Speed Harmonization (DSH)

SPEED

Dynamic Speed Harmonization

> SWZ Vehicle Detector with SWZ PCMS


VSL Sign with ESFS

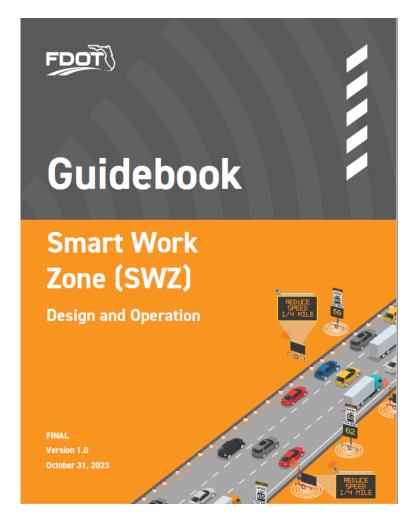
SWZ PCMS

Work Zone Channelization Device

LEGEND

SWZ PCMS and VSL with ESFS

TRANSPORTATION SYMPOSIUM

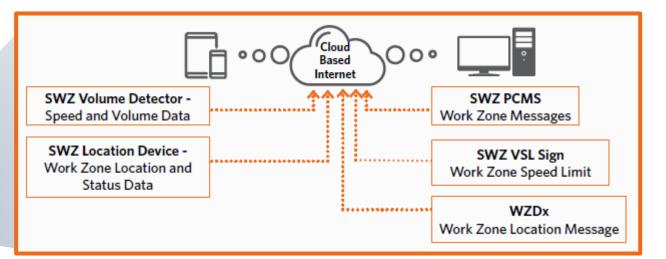

Goal is to Mainstream **Smart Work** Mainstream SWZ into Zones projects based on objective criteria Promote statewide driver expectations and recognition

Resources to Support Design & Construction

- Smart Work Zone Design and Operations Guidebook
- Developmental Standard Plans for 102-600 series
- Developmental Design Criteria (DDC) for FDOT Design Manual (FDM) Section 240 Transportation Management Plan
- Developmental Specs (DevSpecs) for:
 - Section 102 Maintenance of Traffic
 - Section 990 Temporary Traffic Control Device Materials

SWZ Design and Operations Guidebook

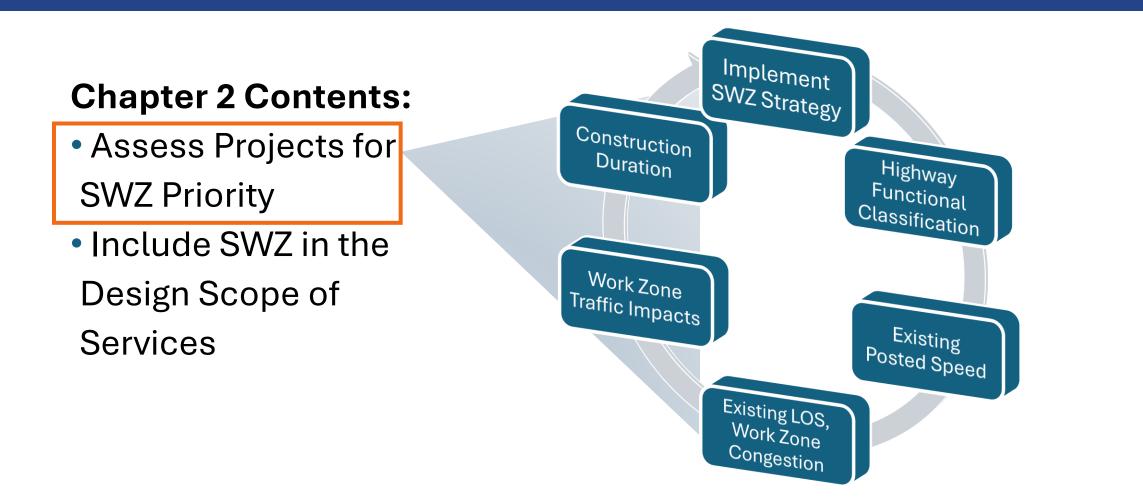
Chapters:


- 1. Introduction
- 2. Programming and Scoping
- 3. Identification and Selection of SWZ Strategies
- 4. SWZ Systems Engineering Analysis
- 5. SWZ Public Information Plan

Guidebook Chapter 1 - Introduction

Chapter 1 Contents:

- Purpose of the SWZ Guidebook
- Characteristics of SWZ
- SWZ Technologies
- SWZ Strategies and Systems
- SWZ Operations


Guidebook

TRANSPORTATION

SYMPOSIUM

SWZ Central (Cloud-based) Processor

Guidebook Chapter 2 - Programming and Scoping

Cuidebook

TRANSPORTATION

SYMPOSIUM

Guidebook Chapter 3 - SWZ Strategies

Chapter 3 Contents

- Work Zone Data Exchange
- Dynamic Lane Merge
- Dynamic Speed Harmonization
- Dynamic End of Queue/Slow Speed Warning

Strategy Descriptions Include:

- Use Cases
- Concept of Operations
- Technologies
- ITS Architectures
- Conceptual Layouts

Guidebook

Guidebook Ch 4 - SWZ Systems Engineering Analysis

Chapter 4 Content

- SWZ Active Management and Operations Plan
- SWZ Communication and CAV Plan
- SWZ Training

SWZ Stakeholders	Training Objectives	्र Guidebook
Designers, TTCP Developers	 Selection of SWZ strategies 	
State and local traffic law enforcement officers	 Speed harmonization concept, current speed limits Installation, setup, and configuration expectations Installation verification testing Installation monitoring and oversight Installation maintenance Installation inspection Installation verification testing oversight 	
Contractor traffic management superintendent and personnel		
Construction Engineers and Inspectors		
RTMC Managers and Operators	 Monitoring SWZ with permanent ITS and temporary equipment and communication Monitoring SWZ through Internet portals Managing DSH applications, setting speed limits 	y ITS

Guidebook Chapter 5 - SWZ Public Information Plan

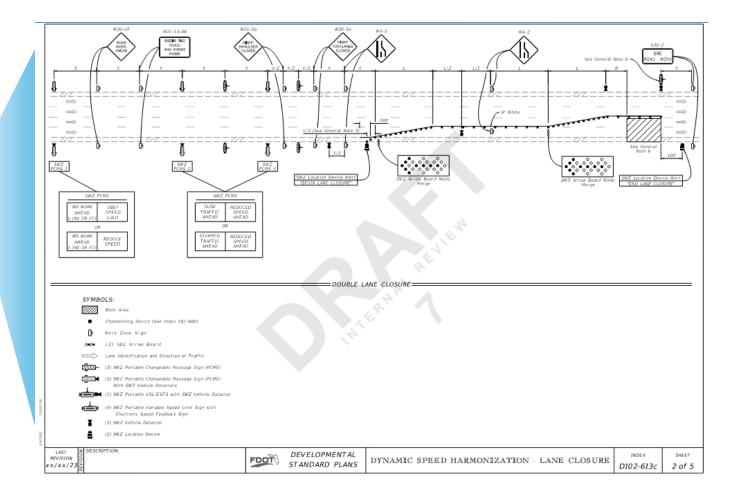
Chapter 5 Content

When using SWZ strategies and technologies in the TTCP, the Public Information Plan (PIP) described in *FDM 240.4* should address SWZ elements included in the project. The PIP should communicate to the traveling public the intent, features, and duration of smart work zone strategies planned for the project. The PIP should take into consideration needs relative to multiple trip types such as daily commuters and tourists.

Developmental Design Criteria - Section 240 Transportation Management Plan

DDC Content Includes:

- Sec 240.2.1.2 Work Zone Speed
- •Table 240.3 Transportation Operations Plans – adds SWZ strategies to Table 240.3.1
- Sec 240.4 addresses SWZ in Public Information Plans
- Sec 240.6 SWZ Strategies and
- Technologies
 - 240.6.1 SWZ Strategies and Technologies
 - 240.6.2 Smart Work Zone Criteria


Table 240.3.1 Transportation Operations Strategies							
Category							
Demand Management	Corridor/Network Management	Work Zone Traffic Management	Safety Management and Enforcement				
Transit services improvements	Signal timing/ coordination improvements	Speed limits reduction or variable speed limits, Speed harmonization	ITS for traffic monitoring and Management				
Transit incentives	Temp. traffic signals	Temp. traffic signal	al Transportation Management Center (TMC)				
Shuttle services	Intersection improvements	Temp. barrier	Aerial surveillance				
Ridesharing/ carpooling incentives	Bus turnouts	Crash Cushions	Milepost markers				
Park-and-Ride promotion	Turn restrictions	Automated flagger assistance devices (AFAD)	Service patrol				
HOV lanes	Truck restrictions	On-site safety training	Local detour routes				
Variable work hours	Dynamic lane close system	TMP inspection team meetings	Contract support for incident management				
Telecommuting	Ramp closures	Dynamic lane merge	Incident/emergency response plan				
	Railroad crossing controls	Dynamic queue detection and warning	Law enforcement				

Developmental Standard Plans Index 102-600 Series

Developmental Indexes

- D102-608 Two-Lane, Two-Way Diversion Connection
- D102-613 Multi-Lane Roadway, Lane Closures
- D102-620 Multi-Lane Roadway, Temporary Diversion
- These Indexes cover DQW, DSH, and DLM SWZ strategies

Developmental Specifications - Dev 102 & 990

Developmental Specs (DevSpecs)

- Dev102SWZ: Maintenance of Traffic
 - Smart Work Zone (SWZ)

Management

• **Dev990SWZ**: Temporary Traffic

Control Device Materials – Smart Work Zone (SWZ) Management

System

•990-3 Portable Devices (Arrow Boards, SWZ Arrow Boards, Changeable Message Signs, SWZ Changeable Message Signs, Regulatory Signs, Radar Speed Display Units and Truck Mounted Changeable Message Signs, Automated Flagger Assistance Devices SWZ Variable Speed Limit (VSL) Signs, SWZ VSL with an Electronic Speed Feedback Sign (ESFS), SWZ Vehicle Detectors, SWZ Cameras).

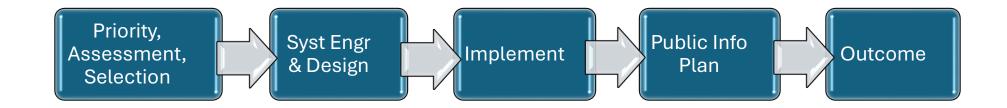
• **990-3.1 General:** With the exception of the SWZ Camera and SWZ Vehicle Detector, all portable devices shall meet the physical display and operational requirements of the Manual on Uniform Traffic Control Devices (MUTCD). With the exception of SWZ devices, all portable devices shall be listed on the Department's Approved Product List (APL). Except for SWZ location devices, all SWZ devices are mounted on trailers. Manufacturers seeking evaluation of their product must submit the following:

SWZ Strategy Selection, Design, and Implementation Process

Steps of Process

SWZ Priority, Assessment, Strategy Selection

Systems Engineering and Design


Implement SWZ

Public Information Plan

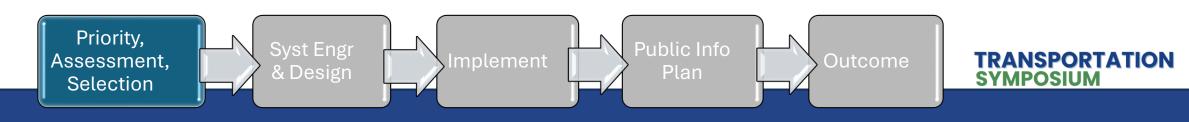
Project Outcome Analysis

Steps of Process

Step One - A : Determine Priority

Primary Prioritization Factors

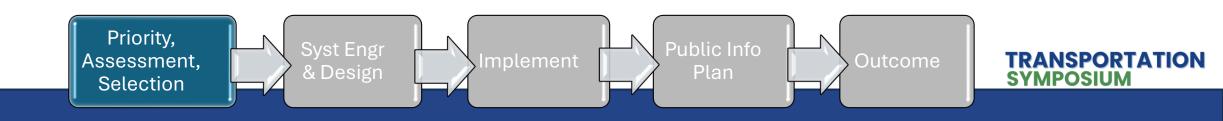
- Highway Functional Classification
- Existing posted speed
- Existing Level of Service or anticipated work zone traffic congestion
- Work zone traffic impacts (Lane closures, diversions, lane shifts)


Construction duration

Additional Considerations

- Truck volume
- Speed compliance history

Crash history


- □ Frequent changes in traffic conditions
- □ Sight distance, lateral offset, clear zone, or other geometric restrictions
- Emergencies, special event, or traffic incident management need

Step One - A: Determine Priority

FDM DDC 6.2 SWZ CRITERIA - MANDATORY SWZ USE

- □ Route Characteristics → Limited access or high-speed route with Level of Service E/F (Existing or anticipated during construction)
- \Box Traffic Impact Duration \rightarrow 5 days or longer
- □ Construction Duration → 6 months or greater with anticipated queuing or travel time delays
- \Box All Projects with Traffic Impacts \rightarrow WZDx SWZ Location Devices

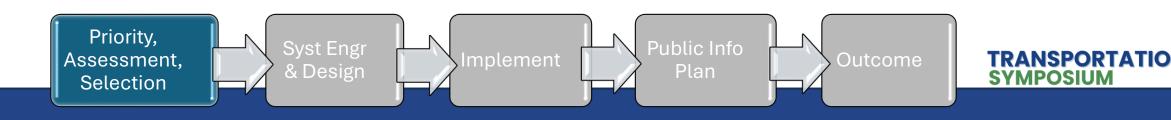
Step One - B : Assess Candidate Strategies

DLM USE CASES

Predicable traffic speed and volume changes

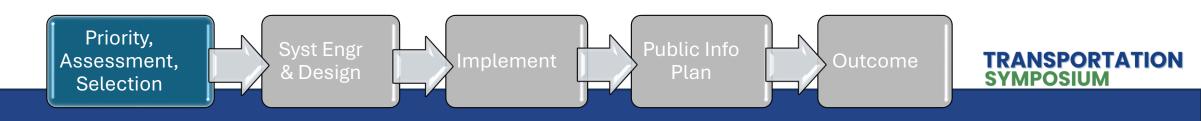
Speed differentials between lanes

DQW USE CASE


Slow or stopped traffic in work zone due to work activities or a traffic incident causing variable length queues

DSH USE CASES

Speed variation through work zone
 High speeds approaching work zone
 Workers exposed to traffic


Tools from SWZ Guidebook

- 3.2.1 DLM Use Cases
- 3.3.1 DSH Use Case
- 3.4.1 DQW Use Case

Step One - C : Select Strategy or Strategies

- Minimum: WZDx
- Other SWZ Strategy or Strategies Inputs
 - Collaboration: Design, Traffic Operations, Construction
 - Construction staging and phases
 - Lane closures (long and short-term)
 - Geometric restrictions (curves, sight distance, shoulders, lane width, etc.)
- Resources:
 - SWZ Guidebook, Chapter 3 Identification and Selection of SWZ Strategies
 - FHWA <u>Work Zone Intelligent Transportation Systems Implementation</u> <u>Guide</u>, Jan 2014

Step Two – A : Systems Engineering for SWZ

TOOLS:

- Guidebook Chapter 3
 Identification and Selection of SWZ Strategies
- *Guidebook Chapter 4*: SWZ Systems Engineering Analysis
- FDOT Procedure 750-040-002 Systems Engineering and Intelligent Transportation Systems (ITS) Architecture Procedure
- **FDM Sec. 240.3** Transportation Operations Plan

Priority, Assessment, Selection

Implement

Public Info Plan

Outcome

TRANSPORTATION SYMPOSIUM

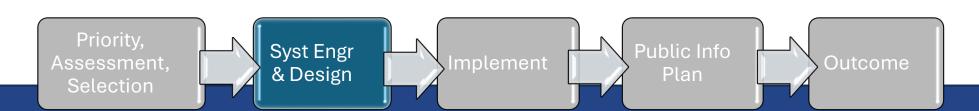
Step Two - B : SWZ Plans, Specs, & Estimates

Include SWZ Design in the Design Scope of Services

Develop SWZ plans from Developmental Standard Plans for each phase construction phase requiring lane closures (daily or long term)

Adjust device layouts based on actual roadway conditions. Extend devices upstream beyond backups

For Design/Build: Include SWZ in Scope of Services. Reference applicable developmental standards and specifications


TOOLS:

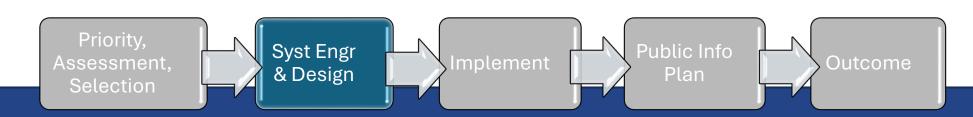
- SWZ Guidebook
 - Chapter 3 Identification and Selection of SWZ Strategies
- Dev Standard Plans:
 - D102-608 Two-Lane, Two-Way Diversion Connection
 - D102-613 Multi-Lane Roadway, Lane Closures

TRANSPORTATION

SYMPOSIUM

 D102-620 Multi-Lane Roadway, Temporary Diversion

Step Two - C : SWZ Plans, Specs, & Estimates


Include SWZ Design in the Design Scope of Services

Develop specifications *Package*

Develop engineering estimates

FDOT Resources for Development of TSP and MSP:

- ✓ FDOT Specifications Handbook
- ✓ FDOT Specifications Guidance
- ✓ FDOT Procedure 630-010-001 "Specification Development"
- ✓ Developmental Specifications
 - Dev102SWZ Maintenance of Traffic Smart Work Zone (SWZ) Management System
 - Dev990SWZ Temporary Traffic Control Device Materials – Smart Work Zone (SWZ) Management System

Step Three - Implement SWZ

Install devices per Dev Std Plans and Temporary Transportation Control Plans

Integrate SWZ Devices with SWZ Cloud Processor. Verify SWZ is functioning

& Design

Train personnel on SWZ Cloud Processor, Responsibilities for Operations and Maintenance

Activate, use, and monitor SWZ strategy per Operations Plan

Implement

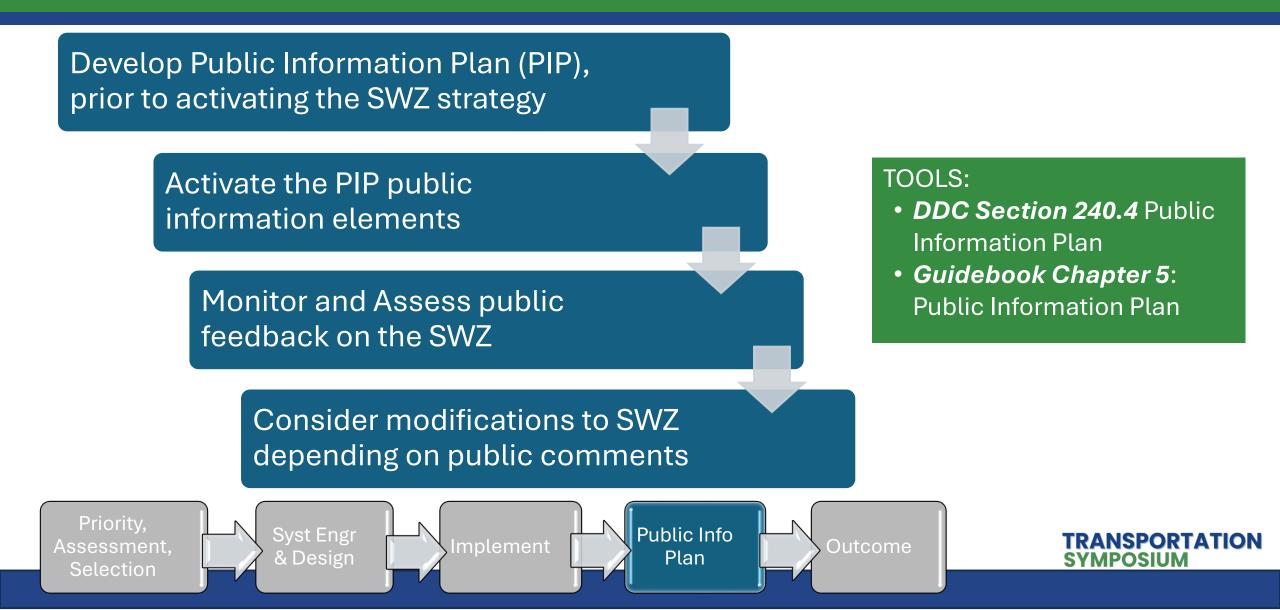
TOOLS:

- SWZ Guidebook
 - **Chapter 3** Identification and Selection of SWZ Strategies
- Guidebook Chapter 4:
 - SWZ Systems Engineering Analysis
 - Concept of Operations
 - Management and Operations Plan

TRANSPORTATION

• TTCP

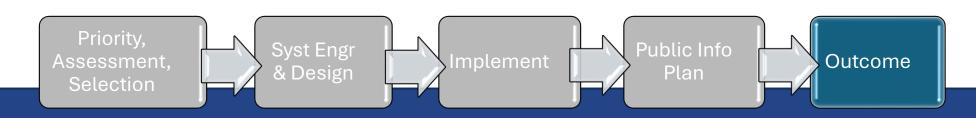
Outcome


Public Info

Plan

- Specifications
 - MSP, TSP
 - DevSpecs Dev102SWZ, Dev990SWZ

Priority, Assessment, Selection


Step Four - SWZ Public Information Plan

Step Five - SWZ After Analysis

Assessments

- Did the SWZ system work as intended?
- How well did the SWZ strategy worked relative to the goals?
- **Data Sources**
 - SWZ Central Processor data
 - FDOT traffic, speed, and/or crash data
- Possible Assessment Milestones
 - Monthly
 - At end of SWZ construction Phase
 - At end of the project
 - At the end of each construction phase using SWZ
- Develop feedback for updates to DDC, Dev Std. Plans, DevSpecs, and Guidebook

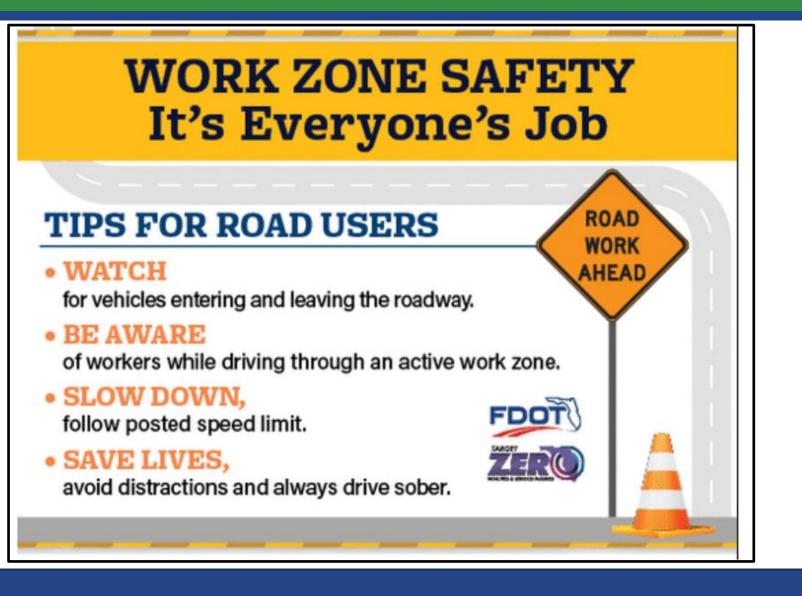
TOOLS:

- Data collected by SWZ Central Processor
- Field observations
- Evaluation plan (if developed as a part of the ConOps)

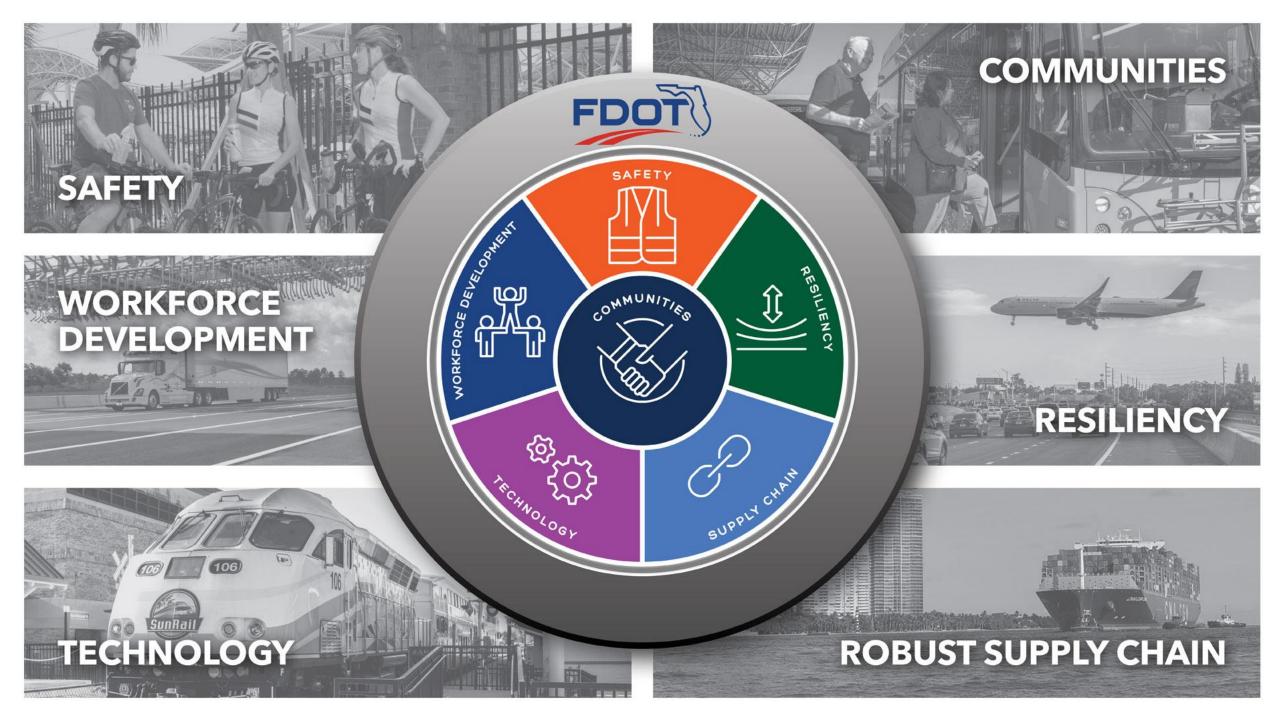
What We Covered

- Basics of SWZ
- SWZ Benefits
- Four SWZ Strategies
- SWZ Mainstreaming and Design Resources
- Use of Resources for Selecting, Designing, and Implementing SWZ Strategies

James McGinnis, P.E.


State Roadway Design Office 850-414-4952 James.McGinnis@dot.state.fl.us

W.D. Baldwin, P.E.


Traffic Engineering & Operations Office 850-410-5579 WD.Baldwin@dot.state.fl.us

Thank you!

TRANSPORTATION SYMPOSIUM

