

2 TRANSPORTATION 24 SYMPOSIUM

New Criteria for Straight Steel I-Girder (SSI-G) Bridges (aka SDB 24-01)

Dennis Golabek, PE

State Structures Design Office / WSP GEC

Objective: NEW Criteria - Analysis and Design

Review Past and Current SDGs Criteria

➢ Background

➢ Five Cases

Phase Construction and Widening Rules

Criteria Revisions - Curved Steel I-G and Steel Boxes

➢ Procedure to Calculate the ADTT_{SL}

Straight Steel I-Girder (SSI-G)

Review Past and Current SDGs Criteria

□SDG allows both Approximate and Refined Methods of Analyses (as required).

Historically, the Approximate Method (Line Girder Analysis) has produced efficient and robust designs.

□LRFD 4.6.2 Approximate Method of Analysis – allows for high skew angles.

LRFD 4.6.3 Refined Method of Analysis (RMA) - more expensive software and greater Design/LR effort.

□Some "design gaps" when using LGA

Review Past and Current SDGs Criteria

Background: Survey 2000-2014

SYMPOSIUM

5

Background: FDOT Research Reports

FDOT Research <u>Report BE535</u> (~25 bridges) Established Cases based on skew angles, skew indexes and CF conf.
 Case 1 and 2 can use a LGA and could estimate FLB stresses and cross-frame forces.
 FDOT Research <u>Report BEB13</u> (~25 bridges) Focused on Cases 1 and 2.
 FDOT TWO (40 bridges) Focused on Case 2.

	Girder Behavior (LGA vs. 3D-FEA)	Cases 1 & 2 Adjustment to LGA
	STR I and SER II Bending Moments (Positive and Negative)	No
	STR I and SER II Vertical Shear Forces	No
	STR I Bearing Reactions for the Exterior Girder (obtuse corner & pier)	Yes, multiplicative factor for Case 2
	Fatigue Vertical Shear Force Ranges	Yes, multiplicative factor for Case 2
\sum	Fatigue Flexural Stresses for Exterior Girder	Yes, new LLDF equation (FDOT)
\sum	Total Dead Load Vertical Displacements	No
\sum	Live Load Deflections	Yes, use LLDF for moments
\sum	Girder Layovers under the total dead load	Simplified EQN

Background: Agenda Item 37

2021 AASHTO BRIDGE COMMITTEE AGENDA ITEM: 37 TECHNICAL COMMITTEE: T-14 / T-5

Commentary EXCERPTS 6.7.4 Diaphragms and Cross-Frames

> Refined analysis model for simple bridge geometries is not typically warranted.

>NCHRP (2021) bridges with a skew index > 0.3 produced significant live load forces in cross-frames.

 $> ADTT_{SL} > 1,500$, engineering judgment should be used.

In Summary -LRFD <u>COMMENTARY</u> states Do not need to do an RMA if: Is ≤ 0.3, and ADTT_{SL} < 1500 otherwiseuse Engineering Judgment SDG 5.13 provides specific requirements for using LGA or RFM

Five Cases for SSI-G Units Overview

Table 5.13.1-1 Design Criteria for Straight Steel I-Girder Units

Case	SDG Section	Skew Angle (θ)	Skew Index (Is)	Cross-Frame Configuration	Required Method(s) of Analysis ³	Cross-Frame Connection Type	Calculate Cross-Frame Rating Factor
1 ¹	5.13.2 & 5.13.3	θ ≤ 20°	ls ≤ 0.45	contiguous ² and parallel to skew angle	LGA [<i>LRFD</i> 4.6.2.2]	Bearing	No
2 ¹	5.13.2 & 5.13.4	20° < θ ≤ 50°	ls ≤ 0.3	contiguous ² and normal to girders	LGA [<i>LRFD</i> 4.6.2.2]	Bearing	No
3	5.13.5	θ ≤ 50°	ls ≤ 0.45	Any⁵	LGA and RMA [<i>LRFD</i> 4.6.2.2 & 4.6.3]	Bearing	No
4	5.13.6	θ ≤ 50°	ls ≤ 0.6	Any⁵	RMA [LRFD 4.6.3]	Slip-critical	No ⁶
5	5.13.7	$\theta \le 60^{\circ 4}$	Any	Any⁵	RMA 3D-FEA [<i>LRFD</i> 4.6.3]	Slip-critical	Yes

1. Staggered (similar to the term "discontinuous" as defined in LRFD 6.2) cross-frame arrangements are not permitted.

2. As defined in *LRFD* 6.2. This configuration may consist of removed nuisance cross-frames from a contiguous line in the vicinity of a support as discussed in *LRFD* C6.7.4.2. There must be an end cross-frame line located along each skewed support.

 LGA refers to a line girder analysis defined as analyzing an individual straight girder from the rest of the superstructure system using classical force and displacement methods or finite element model in which the live load forces are determined using the LLDF defined in *LRFD* 4.6.2.2. RMA refers to a refined method of analysis defined in *LRFD* 4.6.3.

4. See SDG 1.10 for skew angle limitation.

5. See SDG 5.7.B.

6. Cross-frame(s) (or any structural element) can be load rated at the discretion of the EOR.

Cases 1 & 2: General Criteria

SYMPOSIUM

Cases 1 & 2: LGA

Rules (clarifications) for Performing an LGA

- 1. Distribute all non-composite dead loads equally to all girders.
- 2. Rules for calculating the single weighted average value for K_g .
- 3. Skew Correction Factor: apply to the lever rule and the rigid cross-section method.
- 4. Do not use the reduction factor for moment LLDF.
- 5. Optional live load deflection criteria, calculate using the moment LLDF.
- 6. All girders in the unit must be the same.

SYMPOSIUM

Cases 1 & 2: Flange Lateral Bending

Girder Design Checks (Case 2) for: Case 1 FLB = 0Strength I (1.6x) and Service II (1.2x) Fatigue I (or II) (need to factor and apply 0.65x) • Constructability ٠ Near is defined as the first two cross-frame lines adjacent to the support. Transition the flange lateral bending stress from the value in the table at the first cross-frame location to a value of zero at the second cross-frame location. Exterior Interior "0" FLB Full FLB

TRANSPORTATION SYMPOSIUM

Cases 1 & 2: Cross-frame Forces

For <u>intermediate cross-frames</u>, use only load combinations for:

- Strength I
- Fatigue I or II (*NEW* SDG 2.12.3 for ADTT_{SL})
- Constructability

Use "K" frames for intermediate cross-frames as shown in SDM Figure 16.7-1.

Evenly space cross-frames, with a spacing not to exceed 30-feet.

Table 5.13.4-3 Cross-Frame Component Forces

Table 5.13.3-1 Case 1

Load Case	Top Chord	Diagonals	Bottom Chord
	Intermediate Cro	ss-Frames Simple Spa	ns
Strength I1 (kips)	40	70	1.3*RDDP + 85*(S/D _w) - 115 ≥ 100
Fatigue Range ² (kips)	10	12	0.10*RDDP + 3*(S/D _w) + 5 ≥ 15
Constructibility ³ (kips)	15	10	20
	ntermediate Cross	-Frames Continuous S	pans
Strength I1 (kips)	50	0.35*RDDP + 20*(S/Dw) +20 ≥ 70	1.3*RDDP + 85*(S/Dw) – 90 ≥ 100
Fatigue Range ² (kips)	10	0.05*RDDP +11	0.20*RDDP + 8*(S/Dw) - 2 ≥ 15
Constructibility ³ (kips)	40	20	40
	End	Cross-Frames	
Strength I ^{1,4} (kips)	100	100	75
Fatigue Range ² (kips)	10	10	10
Constructibility ^{3,4} (kips)	10	10	10
1. The forces shown	for Strength I are alre	eady factored.	
 Apply load factors factor of 0.65. The values are for concrete deck and For end cross-fram not include effects 	tor Fatigue I or II loa r the unfactored force d SIP forms. Apply oth mes directly supportin s of the concrete edge	ding combinations as appli- induced into the cross-frame her forces effects as applicating a free edge of the concre beam weight and a local se	cable. In addition, apply a nes due to the weight of the able. te deck, these forces do wheel load.

Rigid Differential Deflection Parameter

350

300

250

0

TRANSPORTATION

SYMPOSIUM

0

STR I Bottom Chord Forces (k)

TRANSPORTATION

SYMPOSIUM

By trial and error, added two other variables

$(L_{eff}/100) * \cos \theta * DDP = RDDP$

Rigid Differential Deflection Parameter

 L_{eff} = Effective Span Length

For Simple spans, L_{eff} = span length For continuous spans

(non-composite dead load contraflexure - NCDLC):

- distance between a simple support and a NCDLC, or
- between points of NCDLC.

For Two-span continuous, use maximum.

For three or more continuous spans, use the largest of:

- 1) effective span length of the maximum interior span,
- 2) 50% of the maximum interior span length, or
- 3) 65% of the effective length of the maximum end span.

SYMPOSIUM

Cases 1 & 2: Fatigue Moment Range LLDF

17

Cases 1 & 2: Fatigue Moment Range LLDF

One Design Lane Loaded:
$$0.06 + \left(\frac{S}{14}\right)^{0.4} \left(\frac{S}{L}\right)^{0.3} \left(\frac{K_g}{12.0Lt_s^3}\right)^{0.1}$$

- ➢ g_{interior} is the "One Design Lane Loaded" equation from LRFD Table 4.6.2.2.2b-1.
 - > Do not divide by 1.2 per LRFD 3.6.1.1.2.
- e_M is the same as "e" per LRFD Table
 4.6.2.2.2d-1 with the value not to exceed 1.0.

Applies to:

- > Case 1 continuous spans and Case 2.
- ➤ 4 or more girders.
- > All spans in Unit have lengths ≥ 150'.
- > Girder spacing ≥ 9'.
- ➤ d_e/S ≤ 0.26

Cases 1 & 2: Fatigue Moment Range Modifications

Zone 1: In the vicinity of the Support

- Use the LRFD LLDF at the support
- ➤ Use LLDF_{mfatExt} at the adjacent 10th point on each side of the support
- > Transition linear interpolate between points

SYMPOSIUM

19

Cases 1 & 2: Fatigue Moment Range Modifications

Zone 2: In the vicinity of the End Support at the obtuse corner

- > Applies to the last 30% of the span length
- Calculate SCR at the tenth points

Table 5.13.2-2 Fatigue Moment Range Skew Correction Factor, SCFmfat

Continuous Spans^{1,2}

SYMPOSIUM

0.3Lspan

1.1

Simple Spans^{1,2}

Not Applicable

0.4Lseen

Length of

Case 1

Applicability

Cases 1 & 2: Fatigue Moment Range Modifications

Zone 3: In the vicinity of positive moment areas

- Calculate the reduction factor, RF_{Zone3}
- Apply it to the maximum stress range
- Extend this Reduced maximum value as a horizontal line

SYMPOSIUM

Cases 1 & 2: Summary

SYMPOSIUM

Case 3: LGA & RMA

Table 5.13.1-1 Design Criteria for Straight Steel I-Girder Units

Case	SDG Section	Skew Angle (θ)	Skew Index (Is)	Cross-Frame Configuration	Required Method(s) of Analysis ³	Cross-Frame Connection Type	Calculate Cross-Frame Rating Factor
3	5.13.5	θ ≤ 50°	ls ≤ 0.45	Any⁵	LGA and RMA [<i>LRFD</i> 4.6.2.2 & 4.6.3]	Bearing	No

Supplemental Conditions 5, 6, 7 and 8 are not applicable.

Use LGA- ensures girder capacity is sufficient without relying on the cross-frames to transfer gravity loads.

Cross-frames are secondary members with bearing connections.

Use RMA for other force effects.

Table 5.13.2-1 Supplemental Conditions to LRFD 4.6.2.2

Su	pp	lemental Conditions ¹	LRFD 4.6.2.2 Conditions	
	1.	Width of deck can vary up to 5 degrees ²	Width of deck is constant	
	2.	Girder spacing can be non-parallel up to 5 degrees ^{2,3}	Girders are parallel	
	3.	The beam spacing must meet the range of applicability	For beam spacing exceeding the range of applicability as specified in tables in Articles 4.6.2.2.2 and 4.6.2.2.3, the live load on each beam is based on the lever rule.	
	4.	10,000 ≤ Kg ≤ 10,000,000	10,000 ≤ K _a ≤ 7,000,000	
	5.	Difference between skew angles of two adjacent supports does not exceed 10 degrees	Not explicitly addressed	
_	6.	d _e / S ≤ 0.35	Not explicitly addressed	
	7.	0.95 ≤ S/D _w ≤ 2.00	Not addressed	
-	8.	RDDP < 175 (see SDG 5.13.2.K)	Not addressed	

Criteria

Cases 4 & 5: RMA (Case 5 3D-FEA)

Table 5.13.1-1 Design Criteria for Straight Steel I-Girder Units

Case	SDG Section	Skew Angle (θ)	Skew Index (Is)	Cross-Frame Configuration	Required Method(s) of Analysis ³	Cross-Frame Connection Type	Calculate Cross-Frame Rating Factor
4	5.13.6	$\theta \le 50^{\circ}$	ls ≤ 0.6	Any⁵	RMA [<i>LRFD</i> 4.6.3]	Slip-critical	No ⁶
5	5.13.7	$\theta \leq 60^{\circ 4}$	Any	Any⁵	RMA 3D-FEA [LRFD 4.6.3]	Slip-critical	Yes

5.13.6 Design Criteria for Case 4

Use a Refined Method of Analysis (*LRFD* 4.6.3) for Case 4 as defined in Table 5.13.1-1.

5.13.7 Design Criteria for Case 5

Use a 3D-FEA Refined Method of Analysis (*LRFD* 4.6.3) for Case 5 as defined in Table 5.13.1-1. The 3D-FEA analysis requirements include, but are not limited, to the following:

- A. Model the superstructure fully in three dimensions.
- B. Model the girder flanges using beam, plate, shell, or solid elements.
- C. Model the girder webs using plate, shell, or solid elements.
- D. Model the intermediate and end cross-frames components using beam, truss, or plate elements.
- E. Model the deck using plate, shell, or solid elements.

Bridge 1 (*Ls* = 208 ft; wg = 82.5 ft; θ = 49.4°, 49.4°; *ls* = 0.46) BE535

Phase Construction and Widening Rules:

5.13 STRAIGHT STEEL I-GIRDER UNITS		7.6 WIDENING RULES		
5.13.1 Design Cases		7.6.3 Steel I-Girders		
		 For existing straight steel I-girder units, see Table 7.6.3-1 for criteria regarding the requirements for level of analysis, load rating, and strengthening of the existing cross frames. Analyze the existing steel Lairder unit and analyze and design the 		
B. For phase construction, analyze and design each ph Case 2 as applicable when the following criteria is m	ase separately as Case 1 or et:	widening separately as Case 1 or Case 2 as applicable when all the following conditions are met:		
 All phases meet either Case 1 or 2 criteria pe 	Table 5.13.1-1.	1. Both the existing and widening meet Case 1 or Case 2 criteria per Table 7.6.3-1.		
The skew index for the entire unit at final cond less than or equal to 0.45.	lition (entire cross-section) is	 The skew index for the entire unit (existing and proposed widening in the final condition) unit is less than 0.45. 		
 The construction sequence follows the require SDG 5.1.B. 	ements of SDG 4.2.11 and	 The cross-frames are designed and detailed in accordance with SDG 5.1.B. 		
Otherwise, use the skew index for the final condition to select Case 3, 4, or 5 per Table 5.13.1-1.	(entire cross-section) of the unit	Otherwise, use the skew index for the entire unit (i.e., final widened configuration) to select Case 3, 4, or 5 per Table 5.13-1. See SDG 5.13 for additional information.		
	C	losure pour required		
Widening Existing	Widening	Existing		
Phase II Phase I	Phase II	Phase I Final Condition		

AASHTO Approved Ballots Upcoming 10th Ed.

- Primary and Secondary Members
- Bolted Connections
 - Bearing Type Connections (SM Only)
 - HS Bolts Threads Excluded for CF
- Load Rating requirements for Crossframes

Primary and Secondary Members

F. Designate on the plans, all:

- Primary (main) members. Also, identify areas of primary members that are subject to tension and stress reversal, and designate that CVN testing is required.
- Commentary: Primary members have additional fabrication and inspection criteria per Section 460 of the **Specifications** and AASHTO/AWS D1.5 Bridge Welding Code which includes but not limited to material traceability, material testing, bolt hole fabrication, welding procedures, and inspection

	A. Replace rows 10 and 11 in <i>LRFD</i> Table 6.6 <u>11 are exempt from Charpy V-notch</u> (CVN) of skew angle.	6.2.1-1 as shown below. Members in row testing. See SDM 2.14 for the definition
√ 0 10 2	Diaphragm and cross-frame members and mechanically fastened or welded cross- frame gusset plates in-non-skewed straight I-girder <u>units that are designated as Case 1,</u> <u>2, or 3 (see SDG 5.13.1), bridges, skewed</u> straight I girder bridges having a skew angle ≤ 50° and a bridge skew index ≤ 0.45, and in horizontally curved I-girder bridges satisfying all the conditions specified in Article 4.6.1.2.4b (for neglecting the effects of curvature)	Secondary
~ ₩ 1	Diaphragm and cross-frame members and mechanically fastened or welded cross- frame gusset plates in <u>straight-skewed</u> I-girder <u>units that are designated as Case 4</u> or 5 (see <u>SDG 5.13.1)</u> , bridges having a skew angle of > 50° or a bridge skew index of > 0.45-and in horizontally curved I-girder bridges not satisfying one or more of the conditions specified in Article 4.6.1.2.4b (for neglecting the effects of curvature)	Primary

Primary and Secondary Members

Steel Box - added information from the 10th Ed.

FDOT specific: added reference to SDG 5.6.3.D

For composite box-girder bridges: • Intermediate internal cross-frame members and their mechanically

B. Add the following rows to LRFD Table 6.6.2.1-1 immediately after row 11:

- fastened or welded gusset plates. Intermediate internal diaphragms that are not provided for continuity Except as specified herein, intermediate external diaphragms or cross-frame Secondary members and mechanically fastened or welded intermediate external cross-frame gusset plates Internal support diaphragms in straight bridges without skewed supports or in horizontally-curved bridges satisfying all the conditions specified in Article 4.6.1.2.4c for neglecting the effects of curvature. For composite box-girder bridges: · Intermediate internal diaphragms that are provided for continuity and their associated intermediate external diaphragms. · External support diaphragms or crossframe members and mechanically fastened or welded external support cross-frame gusset plates · Internal support diaphragms in straight bridges with skewed supports or in Primary horizontally-curved bridges not satisfying one or more of the conditions specified in Article 4.6.1.2.4c for neglecting the effects of curvature.
- Intermediate external diaphragms provided in bridges with concrete decks designed using the empirical design method to satisfy the design conditions specified in Article 9.7.2.4.
- Intermediate external diaphragms provided in accordance with SDG 5.6.3.D.

Bearing Type Connections (Secondary Members)

7. Replace Structures Design Guidelines Section 5.4 with the following:

5.4 Bolts (LRFD 6.4.3.1 and 6.13.2)

- A. Design structural bolted connections as either bearing or slip-critical connections in accordance with *LRFD* 6.13.2 and as modified by the following:
 - 1. SDG 5.13.1, and SDG 5.14.1.
 - For composite box girder bridges, all connections must be slip-critical. An
 exception is for bridges containing secondary members, which may have bearing
 type connections for these members.
 - Steel integral and/or straddle (regardless of their classification of superstructure or substructure) caps must use slip-critical connections.
- B. All bearing-type connections must use standard size holes.

SDM 5.3.E (Typical Steel GN)

- Re-formatted several notes regarding bolted connections
- Added plan notes regarding bearing connections
 - Bolts need to be tightened per Section 460-5
 - Faying surface to be prepared to SSPC SP-10

Note K:

- Specify the connection type (i.e., slip-critical or bearing).
- Specify if threads are excluded from the shear plane (see SDG 5.11.C).

Note L:

Specify as primary or secondary member.

Load Rating of Cross-frames

Structures Design Bulletin 24-01 Analysis and Design Criteria for Steel I-Girders Attachment 'F' Page 2 of 2

5.14 HORIZONTALLY CURVED STEEL I-GIRDER UNITS

Design horizontally curved steel I-girder units in accordance with *LRFD* and the following requirements:

- A. For horizontally-curved I-girder units satisfying all the conditions specified in *LRFD* 4.6.1.2.4b, design the cross-frame connections as bearing connections. Do not calculate a load rating factor for the intermediate or end cross-frames.
- B. For horizontally-curved I-girder units not satisfying all the conditions specified in *LRFD* 4.6.1.2.4b, design the cross-frame connections as slip-critical connections. Do not calculate a load rating factor for the intermediate or end cross-frames except as noted in Number 3a below.
- C. Use a 3D FEA (see SDG 5.13.5 for requirements) refined method of analysis (LRFD 4.6.3) when:
 - 1. The *LRFD* bridge skew index is greater than 0.6 (see also *SDG* 1.10). Calculate a rating factor for the intermediate cross-frames.
 - 2. The central angle (any span in the unit) is greater than 0.06 radians and the *LRFD* bridge skew index is greater than 0.4 but less than or equal to 0.6. Do not calculate a load rating factor for the intermediate or end cross-frames.

ADTT_{SL} is used to determine if a fatigue detail category is Fatigue I or II

What we have: AADT-opening year, and the design year AADT data which is typically 20 years from the opening date (roadway Typical Section package) (uses traffic forecasting procedures as referenced in FDM 120)

IF bridge life is 75 years, what AADT-year should the ADTT_{SL} be based on?

TRANSPORTATION

SYMPOSIUM

AADT₃₈

Wrap-Up

 $\checkmark \theta$, I_s & CF arrangement defines Cases for SSI-G bridges

✓ 5 Cases: Required Method of Analysis, CF connection type, and CF LR ✓ Cases 1 & 2 LGA with tabulated FLB stresses and CF loads ✓ Case 3 LGA supplemented with RMA ✓ Case 4 & 5 RMA

✓ Phase Construction and Widening Rules

✓ Criteria Revisions – Also for Curved Steel I-G and Steel Boxes

✓ Primary and Secondary Members
 ✓ Bearing Connections for Secondary Members
 ✓ Load Rating of Cross-frames

✓ ADTT_{SL} (Growth factor, AADT₃₈)

Quiz:

1. True or False. You can always use a 3D-FEM for the method of analysis of an SSI-G unit.

- 2. True or False. HS Bolted connection in a primary member may be designed for only bearing if you meet the criteria in SDB 24-01.
- 3. True or False. For a SSSI-G unit with a skew index > 0.6, you must use a full 3D-FEA.
- 4. **True** or False. Cross-frames are <u>not</u> required to be load rated for SSSI-G units meeting any Case 1 to 4.

- 5. For calculating the ADTT(SL) use which of the following:
 - a) +20-year AADT
 - b) +38-year AADT
 - c) +75-year AADT

SYMPOSIUM

- 6. RDDP stands for:
 - a) Remote Direct Data Placement
 - b) Rigid Differential Deflection Parameter
 - c) Required Driven Development Process

Vickie Young, P.E. Assistant State Structures Design Engineer (850) 414-4301 Vickie.Young@dot.state.fl.us

FDOT Safety Message

34

Questions:

