ORIGINATION FORM

Proposed Revisions to a Standard Plans Index
(Please provide all information - Incomplete forms will be returned)

Contact Information:

Date: May 12, 2022
Originator: Rick Jenkins
Phone: (850) 414-4355
Email: Rick.Jenkins@dot.state.fl.us
Summary of the changes:

Standard Plans:

Index Number: 700-010
Sheet Number (s): $1,4,6,7$, and 8 of 11
Index Title: Single Column Ground Signs

Sheet 1: Added New Note 1 - "Meet the requirements of Specification 700"; Delete General Notes 2 through 7; Renumber General Notes.

Sheet 4: Updated Note 1.A. - Deleted Concrete Class.
Sheet 6: Deleted General Note reference in the BACK-TO-BACK SIGN DETAIL.
Sheet 7: Deleted General Note references in the SIGN PANEL SIDE VIEW details.
Sheet 8: Deleted General Note reference in Detail"B".

Commentary / Background:

The 700 Index Series is being edited to remove material information and other information that is located in the Standard Specifications. Revisions are being made to Specification Sections 700, 962 and 965 in conjunction with these changes.

Other Affected Offices / Documents: (Provide name of person contacted)

Yes	No	
\square	\square	OtherStandard Plans -
\square	\square	FDOTDesign Manual - Dewayne Carver
\square	\square	Basis of Estimates Manual - Ryan Gray
\square	\square	Standard Specifications - Daniel Strickland
\square	\square	Approved Product List - Missy Hollis
\square	\square	Construction - Jason Russell
\square	\square	Maintenance - Deanna Hutchison
Origination Package Includes: (Submit package to Rick Jenkins)		
Yes	N/A	
\square	\square Redline Mark-ups	
\square	\square Revised or Proposed Standard Plan Instruction (SPI)	
\square	\square Other Support Documents	

Implementation:

Design Bulletin (Interim)
DCE Memo
Program Mgmt. Bulletin
FY-Standard Plans (Next Release)

STEP 1: Calculate the area and the centroid for an individual sign or a sign cluster. Note that the centroid and areas have been calculated
for frequently used sign clusters. These are shown on Sheets 7,8 , and 9 .
(2)

SHEET	CONTENTS
1	General Notes and Design Example
2	Design Example - Centroid
3	Column and Foundation Tables
4	Slip Base and Foundation Details
5	Driven Postt, Concrete Stub, and
6	Soil Plate Detailse
7	Wind Beam Ceamn Connection
8	Slam-Latch Detail
$9,10, \& 11$	Frequently Used Slip Down Sign

GENERAL COMMENT: Material information was deleted. Information is either already covered in Standard Specifications OR will be added to Section 700, 962 or 965 in conjunction with these revisions.

STEP 2: Determine the height 'H' from groundline to the centroid of the individual sign or sign cluster. Meet the requirements of Specification 700. Assume: ' B ' $=1 \mathrm{ft}$., ' C ' $=7 \mathrm{ft}$.
Calculated: $\quad x_{c}^{\prime}=-0.1 \mathrm{ft}$., ' $Y_{c}^{\prime}={ }^{\prime} D^{\prime} 2.26 \mathrm{ft}$.
$' H^{\prime}=' B^{\prime}+C^{\prime} C^{\prime}+D^{\prime}=10.26 \mathrm{ft} .==>$ USE $11 \mathrm{ft}. \quad \sum\left(\mathrm{I}^{\prime} \mathrm{A}_{n}^{\prime}\right)=15.4 \mathrm{ft.2}==>$ USE $16 \mathrm{ft.2}$

STEP 3: Refer to the Aluminum Column (Post) Selection Tables and find the intersection point. See Sheet 3.
$\searrow_{\text {GENERAL NOTES }}$
X Shop Drawings This Index is considered fully detailed. Submit
\& Aluminum Sign, Wind Beams and Column (Post) Materials:
A. Aluminum Plates: ASTM B209, Alloy 6061-T6 A. Aluminum Plates: ASTM B209, Alloy 60661-T6 B. Aluminum Bars and Extruded Shapes: ASTM B221, Alloy م061-T6
C. Xluminum Structural Shapes: ASTM B221 Alloy 6061D. Cast Aluminum: ASTM B26 Alloy A356-T6
E. Alumxinum Weld Material: ER 5556 or 5356
3. Galvanized Steel Slip Base Stub Materials:
A. Steel Plara and Structural Shapes: ASTM A36/or ASTM A709, Grade 36 Weld Metal: E70XX
Sign Mounting Bolts, Nuts and Washers A. Aluminum Button Aead and Flat Head Bolts: ASTM F468 Alloy 2024-T4
B. Aluminum Hex Nuts. ASTM Fa67 Alt C. Aluminum Hashers: ASTM B226 Ally 6061 -T6 or $6262-T 9$
-andily

$$
\begin{aligned}
& \text { 5. Stainless Steel Bolts, Nuts ald Waphers mal } \\
& \text { button head and flat head bolt) \$/ follows }
\end{aligned}
$$

button head and flat head bolts 15 follows: A. Stainless Steel Bolts: ASTM Ft 593 Alloy Group 2, Condition A, CW1 or SH1
B. Stainless Steel Nuts: ASTM F55
6. Sign Column (Post) Bolts, मuts and waskers:
A. Galvanized U-Bolt (C) (umn): ASTM A4te or ASTM A193 B7 according to
ASTM F2329 with \&ouble nuts (nut and lock washer
 C. Galvanized Hyibn Strength Hex Head Bolts (Bşe Bolts): ASTM F3125,
D. Galvanizep Hex Nuts: ASTM A563 Grade D
D. Galvanized Hex Nuts: ASTM A563
E. Galvanized Washers: ASTM F436
F. Galvapzed Bolts SSer
F. Galvalzed Bolts (Sieeve): ASTM A307 with Galvanized Hex Nuts and Washers
7. Coatings:
A. Aluminu

STEP 4: For sign assemblies with signs oriented in two directions, only the sign with the
largest area should be analyzed to determine the Column (Post) requirements.
3. \&. BREAKAWAY SUPPORTS REQUIREMENTS: Install non-frangible aluminum column (post) $\left(\right.$ larger than $\left.3^{1 / 2} /^{\prime \prime}\right)$ with breakaway supports as shown on Sheet 4 . Signs shielded by
barrier wall or guardrail do not require breakaway support.

EEVE \& BASE PLATE DETAILS=

(Welded) \qquad

 (Non-Frangible Column, Typ.) (Non-Frangible Column In Crossovers, Medians \& Sidewalks) - 11/01/22

28 Ga. Thick Aluminum Strip
2 Reqd. Per Base
$\overline{=}$ BOLT KEEPER PLATE DETAIL $=$

DELETED: Concrete Class

NOTES:
Foundation Notes for Slip Base:
A. Place Stub into concrete foundation given in the
FOUNDATION TAB
USing lass $I I$ Cond

Stip Base Fabrication Notes:
A. The difference between the O.D. of the post and I.D. of
the Sleeve must be $1 / / 6^{\prime \prime}$ or less.
B. The WELDED STUB BASE and Iower STUB/SLEEVE BASE
PLATE may be fabricated using galvanized steel as an PLATE may be fabricated using galvanized steel as an
option to aluminum. The upper portion of the SLIP BASE must be aluminum.
C. Either a Welded Stub Base or Bolted Stub/Sleeve Base
may be used in Slip Base may be used in Slip Base.
D. For cast base plates bolted to foundation stubs, use a
foundation stub the same size as the sign column (Post)
3. Slip-Base Assembly Instructions:
A. Assemble the Slip Base as follows:
. Insert Post into Sleeve and connect using $2 \sim 1 / 2^{\prime \prime}$
diameter Sleeve Bolts.
2. Assemble top base plate to bottom Base Plate using
Base Bolts (High strength) with 3 washers per bolt. See Detail ' A '):
a. Place one washer on each Base Bolt between the
a. Poace one washer on each Base Bolt between the
bottom Base Plate and the Base Bolt head.
P. Place the next washer betwen the b. Place the next washer between the Bottom Base
c. Use brass or galvanized steel shims to plumb the post
d. Add the top base plate section
d. Add the top pase plate section.
e. Place the third washer between the Top Base
Plate and the Nut.
e. Place the third was.
Plate and the Nut.
B. Orient the Bolt Keeper Plates in the Direction of Traffic.
C. Tighten Base Bolts as follows

Tighten Base Bolts to the maximum possible with a $12^{\prime \prime}$
to $15^{\prime \prime}$ wrench (this will bed the washers and shims and Loosen each Base Bolt one turn.
3. Under the supervision of the Engineer, use a calibrated wrench to tighten bolts to the torque prescribed in the
SLIP BASE DETALLS Table. Over tightened Base Bolts are not permitted.
. Distort bolt threads at the junction with nuts to prevent
D. Obtain a tight sleeve connection by placing 4 galvanized steel evenly around the perimeter of the column (1 between each
bolt hole, 4 total). Use shims that are 1" shorter than the height of the sleeve.

Column (Post) Size		SLIP BASE DETAILS												
Outside	Wall			Weld	Base	Plate	Radius	Bas	e Bolt	Base Pla	e Torque	Hole	SHIM	
		I.D. (Max.)	Height 'H'	'W'	'L'	'T'		Size	Length	ft-lbs	in.-lbs	Size 'D'	L	M
$4^{\prime \prime}$	1/4"	$4^{1 / 1 / 6 "}$	$6^{\prime \prime}$	1/4"	$8^{\prime \prime}$	3/4/4	${ }^{11 / 32^{\prime \prime}}$	$58^{\prime \prime}$	$3^{\prime \prime}$	29	345	${ }^{11 / 1 / 6^{\prime \prime}}$	$13^{3 / 1}$	${ }^{11 / 16^{\prime \prime}}$
$4^{1 / 21}$	1/4/10	$4^{9} / 6^{\prime \prime}$	$6^{\prime \prime}$	1/4"	$8^{\prime \prime}$	$7{ }^{7}{ }^{\prime \prime}$	${ }^{11 / 3 z^{\prime \prime}}$	$58^{\prime \prime}$	$3^{1 / 4}{ }^{\prime \prime}$	29	345	${ }^{11 / 1 / 6^{\prime \prime}}$	$13^{3 / 1}$	${ }^{1 / 1 / 16^{\prime \prime}}$
$5^{\prime \prime}$	1/4"	$5^{1 / 1 / 6 "}$	$7{ }^{\prime \prime}$	1/4"	$8^{\prime \prime}$	//8"	${ }^{11 / 32^{\prime \prime}}$	$58^{\prime \prime}$	$3^{1 / 4} 4^{\prime \prime}$	29	345	${ }^{11 / 1 / 6 "}$	$13^{3 / 1}$	${ }^{11 / 1 / 6^{\prime \prime}}$
$6^{\prime \prime}$	1/4"	$6^{1 / 1 / 6 "}$	$8^{\prime \prime}$	1/4"	$9^{\prime \prime}$	$1^{\prime \prime}$	${ }^{13 / 32^{\prime \prime}}$	$3 / 4$	$3{ }^{1 / 2} 2^{\prime \prime}$	46	554	${ }^{13 / 166^{\prime \prime}}$	$13 / 4{ }^{10}$	${ }^{13 / 16^{\prime \prime}}$
$8^{\prime \prime}$	1/4/	$8^{1 / 166^{\prime \prime}}$	$10^{\prime \prime}$	1/4"	11^{11}	${ }^{1 \prime}$	${ }^{15} 32^{\prime \prime}$	$78^{\prime \prime}$	$3^{3 / 4} 4^{\prime \prime}$	53	640	15/6"	$2{ }^{3 / 8}$	$1{ }^{1 / 16^{\prime \prime}}$

SLIP BASE AND FOUNDATION DETAILS

$\bar{\sim}$ WIND BEAM CONNECTIONS DETAILS $\bar{\square}$

NOTES:

1. $5 / 6^{6 \prime} \emptyset$ stainless steel hex head bolts with nylon washer under head and washer under nut may be used in lieu of $1 / 4^{\prime \prime} \varnothing$ aluminum button or flat head bolts.
2. Use nylon washers (provided by the sheeting sign sheeting.
3. Slots up to $2^{\prime \prime}$ long are allowed in wind beams to accommodate U-Bolts for varying Column (Post) diameters.
4. Wind beams may be oriented in either direction
5. For signs greater than $66^{\prime \prime}$ in height, install a third wind beam evenly spaced between the op and bottom wind beams. For signs up to 1 in height, use only one wind beam at \mathbb{Q} Sign. Install two wind beams on signs with heights
greater than $12^{\prime \prime}$ and less than or equal to 66 .

$\overline{\bar{Z}}$ SIGN PANEL SIDE VIEW

NOTES:

1. Install sign in the undeployed (up) position.
2. Provide a continuous stainless steel hinge with minimum 0.060" leaf thickness, $2^{\prime \prime}$ open width and $0.120^{\prime \prime}$ pin diameter. Stake the hinge at both ends to prevent pin movement.
3. Install Stainless Steel Spring Loaded Slam-Latch with cover to bottom face of flip sign per manufacturer's recommendations.
4. Punch or drill a $3 / 4$ " diameter hole in the "L" shaped bracket on site to match location of $1 / 2$ " wide slam-latch pin. Remove any burs or sharp edges.

DETAIL "A

DETAIL "B" \qquad

700-010-1 $\quad 8$ of 11

STEP 1: Calculate the area and the centroid for an individual sign or a sign cluster. Note that the centroid and areas have been calculated

GENERAL NOTES:

Meet the requirements of Specification 700
2. Shop Drawings:

This Index is considered fully detailed. Submit Shop Drawings only for - moantications not detailed in the Plans.
bREAKAWAY SUPPORTS REQUIREMENTS: Install non-frangible aluminum column (post) (larger than $3^{1 / 2}$ ") with breakaway supports as shown on Sheet 4. Signs shielded by
barrier wall or guardrail do not require breakaway support.

$$
\begin{aligned}
& \Sigma\left(' A_{n}^{\prime}\right)=2,218 \mathrm{in.}{ }^{2}=15.4 \mathrm{ft} \mathrm{~T}^{2} \quad \Sigma\left({ }^{\prime} \mathrm{X}_{n}^{\prime} \times{ }^{\prime} \mathrm{A}_{n}^{\prime}\right)=-1,890 \mathrm{in} .^{3}=-1.09 \mathrm{ft} \mathrm{~B}^{3} \quad \Sigma\left(\mathrm{Y}_{n}^{\prime} \times{ }^{\prime} \mathrm{A}_{n}^{\prime}{ }^{\prime}\right)=60,133 \mathrm{in} .^{3}=34.8 \mathrm{ft} \mathrm{~s}^{3} \\
& X_{c}^{\prime}=\frac{\Sigma\left(X_{n}^{\prime} \times{ }^{\prime} A_{n}^{\prime}\right)}{\Sigma{ }^{\prime} A_{n}^{\prime}}=-0.1 \mathrm{ft} \\
& \left.\mathrm{n}_{n} \times \mathrm{A}_{n}^{\prime}\right)=-1,890 \mathrm{in.}^{3}=-1.09 \mathrm{ft} .^{3} \\
& =2.26 \mathrm{ft} \text {. }
\end{aligned}
$$

STEP 2: Determine the height 'H' from groundline to the centroid of the individual sign or sign cluster Assume: ' $B^{\prime}=1 \mathrm{ft}$., ' C ' $=7 \mathrm{ft}$
Calculated: $\quad X_{c}^{\prime}=-0.1 \mathrm{ft} ., 1 Y_{c}^{\prime}=D^{\prime} D^{\prime} 2.26 \mathrm{ft}$.

$$
' H^{\prime}={ }^{\prime} B^{\prime}+C^{\prime} C^{\prime}+D^{\prime}=10.26 \mathrm{ft} .==>\text { USE } 11 \mathrm{ft.} \quad \sum\left({ }^{\prime} A_{n}^{\prime}\right)=15.4 \mathrm{ft} .^{2} \quad=>\text { USE } 16 \mathrm{ft.2}
$$

STEP 3: Refer to the Aluminum Column (Post) Selection Tables and find the intersection point. See Sheet 3.

STEP 4: For sign assemblies with signs oriented in two directions, only the sign with the
largest area should be analyzed to determine the Column (Post) requirements.

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 22 \end{gathered}$		$\begin{array}{cc} \text { FDOTY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	SINGLE COLUMN GROUND SIGNS	$\begin{gathered} \text { INDEX } \\ 700-010 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 11 \end{aligned}$

SIGN CLUSTER
$C^{\prime}=Y_{c}^{\prime}=\frac{\Sigma\left(Y_{n}^{\prime} \times A_{n}^{\prime}\right)}{\Sigma A_{n}^{\prime}}$
' A_{n} ' $=$ Area of individual sign
' $B^{\prime}=$ Height of the edge of pavement from the mounting elevation
$' C^{\prime}=$ Height of the the bottom of the sign or cluster from the edge of pavement elevation
${ }^{\prime} D^{\prime}=$ Height of the centroid of the sign or cluster from the bottom of the sign or cluster
h = Individual sign height
'H' = Height of sign or cluster centroid from groundline
a $=$ Individual sign width
${ }^{\prime} X_{c}{ }_{c}=$ Centroid horizontal location of sign or cluster from \& Aluminum Column (Post)
${ }^{\prime} Y^{\prime}{ }_{c}=$ Centroid height of sign or cluster from bottom of sign cluster
' $X_{n}^{\prime}=$ Individual sign centroid horizontal location from \& Aluminum Column (Post)
${ }^{\prime} Y_{n}=$ Individual sign centroid height from bottom of sign cluster

NOTES:

1. For 'B' \& 'C' see Index 700-101 and Roadway Plans.
2. Do not exceed an area of 30 SF or a width of 60 inches for a sign or a sign cluster, incluaing rotated sign panels.
3. Vertical sign spacing (1" shown on Sign cluster detail) also applies to rotated signs.
$\overline{=}$ CALCULATION OF SIGN CLUSTER CENTROID $\overline{=}$

DESIGN EXAMPLE - CENTROID

Index	sheet
$700-010$	2 of 11

foundation table						
$\begin{gathered} \text { Column } \\ \text { Size } \end{gathered}$		Foundation Alternatives				
		Driven Post *		Concrete (Class II)		
Outside Diameter (in)	$\begin{aligned} & \text { Wall } \\ & \begin{array}{c} \text { Thk. } \\ \text { (in) } \end{array} \end{aligned}$	Embedment	Depth (ft)		Embedment	
		without Soil Plate	with Soil Plate	(ft)	$\begin{aligned} & \text { Depth } \\ & (f t) \end{aligned}$	$\begin{gathered} \text { Length } \\ (\mathrm{ft}) \end{gathered}$
2.0	1/8	4.5	2.5	---	---	---
2.5	1/8	5.0	3.0	---	---	---
3.0	1/8	5.0	3.5	---	---	---
3.5	3/16	6.0	4.5	---	---	---
4.0	1/4	---	---	2.0	3.5	3.0
4.5	1/4	---	---	2.0	4.0	3.0
5.0	1/4	---	---	2.0	4.5	3.0
6.0	1/4	---	---	2.0	5.0	3.0
8.0	1/4	---	---	2.0	5.5	3.0

* installing frangible column supports:

Columns (posts) $3^{11 / 2 "} 0 . D$. and less are considered frangible and may be installed either by driving the post or setting the posts in preformed holes. Backfill preformed holes with suitable material tamped in layers not thicker than $\sigma^{\prime \prime}$ (to provide adequate

$\bar{\square}$ OFFSET SIGN
NOTES:

1. For offset sign placement see Index 700-101
2. For signs with widths greater than 4^{\prime} see Index 700-011.
3. offset signs with driven posts require a soil plate.

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 22 \end{gathered}$		$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	S INGLE COLUMN GROUND S IGGNS	$\begin{gathered} \text { INDEX } \\ 700-010 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 11 \end{aligned}$

EEVE \& BASE PLATE DETAILS=

(Welded) \qquad

$=$ SLIP BASE AND FOUNDATION DETAIL= = SLIP BASE AND FOUNDATION DETAIL IN CONCRETE= (Non-Frangible Column, Typ.) (Non-Frangible Column In Crossovers, Medians \& Sidewalks)

SLIP BASE AND FOUNDATION DETAILS

Column (Post) Size		SLIP BASE DETAILS												
Outside	Wall	Sleeve	Sleeve Height 'H'	$\begin{array}{\|c\|c\|c\|} \hline \\ w^{\prime} \end{array}$	Base Plate		${ }^{\text {Radius }}$	Base Bolt		Base Plate Torque		$\begin{aligned} & \text { Hole } \\ & \text { Size } \end{aligned}$	SHIM	
	Thickness	I.D. (Max.)			'L'	'T'		size	Length	${ }_{\text {ft-lbs }}$	in.-lbs		L	M
$4^{\prime \prime}$	1/4"	$4^{1 / 1 / 6^{\prime \prime}}$	$6^{\prime \prime}$	1/4/1	$8^{\prime \prime}$	3/4"	${ }^{11 / 32^{\prime \prime}}$	58_{81}	$3^{\prime \prime}$	29	345	${ }^{11 / 1 / 6{ }^{\prime \prime}}$	$1^{3 / 81}$	1/1/6"
$4^{1 / 21}$	1/4/1	49/6"	$6^{\prime \prime}$	1/4/1	$8^{\prime \prime}$	7/8"	${ }^{11 / 3 / 32^{\prime \prime}}$	58_{81}	$3^{1 / 4}{ }^{1 /}$	29	345	${ }^{11 / 1 / 6^{\prime \prime}}$	$1^{3 / 8^{\prime \prime}}$	${ }^{11 / 1 / 6^{\prime \prime}}$
$5^{\prime \prime}$	1/4/1	$5^{1 / 1 / 6^{\prime \prime}}$	$7{ }^{\prime \prime}$	1/4/1	$8^{\prime \prime}$	${ }^{7 / 8}{ }^{\prime \prime}$	${ }^{11 / 32^{\prime \prime}}$	$58_{8 \prime \prime}$	$3^{1 / 4}{ }^{10}$	29	345	${ }^{11 / 166^{\prime \prime}}$	$1^{3 / 8^{\prime \prime}}$	${ }^{11 / 166^{\prime \prime}}$
$6^{\prime \prime}$	1/4/10	$6^{1 / 1 / 6 "}$	$8^{\prime \prime}$	1/4/1	$9^{\prime \prime}$	${ }^{1 \prime}$	${ }^{13} / 32^{\prime \prime}$	${ }^{3 / 4}$	$3{ }^{1 / 21}$	46	554	${ }^{13 / 166^{\prime \prime}}$	$13 / 4$	13/616
$8^{\prime \prime}$	1/4/10	$8^{1 / 166^{\prime \prime}}$	$10^{\prime \prime}$	1/4/1	$11^{\prime \prime}$	$1^{\prime \prime}$	${ }^{15} 33^{\prime \prime}$	/8"	$3^{3 / 4} 4^{\prime \prime}$	53	640	${ }^{15 / 66^{\prime \prime}}$	$2^{3 / 8^{\prime \prime}}$	$1^{1 / 16^{\prime \prime}}$

NOTES:

Foundation Notes for Slip Base:
A. See FOUNDATIIN TABLE on Sheet 3 for foundation
2. Slip Base Fabrication Notes:
A. The difference between the $0 . D$. of the post and I.D. of
the Sleeve must be $1 / 16^{\prime \prime}$ or less.

28 Ga. Thick Aluminum Strip
2 Reqd. Per Base
$\overline{=}$ BOLT KEEPER PLATE DETAIL $=$

Provide 2-0.014" Thick (28 gauge)
and 2-0.032" Thick (21 gauge) 2-0.0329" Thick (21 gaug
Brass Shims Per Post =SHIM DETAIL $=$
B. The WELDED STUB BASE and lower STUB/SLEEVE BASE
PLATE may be fabricated using galvanized steel as an option to aluminum. The upper portion of the SLIP BASE must be aluminum.
C. Either a Welded Stub Base or Bolted Stub/Sleeve Base may be used in Slip Base.
D. For cast base plates bolted to foundation stubs, use a
foundation stub the same size as the sign column (Post)
3. Slip-Base Assembly Instructions:

$$
\begin{aligned}
& \text { Detail Same as } \\
& \text { WELDED STUB BAS }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WELDED STUB BAS } \\
& \text { (Aluminum Required }
\end{aligned}
$$

Assemble the Slip Base as follows:
Insert Post into Sleeve and connect using $2 \sim 1 / 2 "$
diameter Sleeve Bolts.
2. Assemble top base plate to bottom Base Plate using
Base Bolts (High strength) with 3 washers per bolt. (See Detail ' A '):
a. Place one washer on each Base Bolt between the b. Place the next washer between bolt head.
c. Use brass or golvanized steel shate plumb the
d. Add the too gaase plate section.
d. Place the third to plumb
e. Place the third wat.
B. Orient the Bolt Keeper Plates in the Direction of Traffic.

Tighten Base Bolts as follows
Tighten Base Bolts to the maximum possible with a $12^{\prime \prime}$ clear wrench (this will bed the
2. Loosen each Base Bolt one turn.
3. Under the supervision of the Engineer, use a calibrated Wrench to tighten bolts to the torque prescribed in the
SLIP BASE DETAILS Table. Over tightened Base Bolts are not permitted.
. Distort bolt threads at the junction with nuts to prevent
D. Obtain a tight sleeve connection by placing 4 galvanized stee sims between the column (post) and sleeve. Space the shins bolt hole, 4 total). Use shims that are $1^{1 "}$ shorter than the height of the sleeve.

BOLTED STUB/SLEEVE BASE

Aluminum Stub Sleeve
SSe STUB STLEEVEVE
BASE PLATE DETAILS
Galv. Steel Optional)

WeLDed stub base

ALUMINUM SOIL PLATE DETAIL $\bar{\square}$

Optional Slotted Holes
$\overline{\bar{Z}}$ DETAIL "B"

PLAN

NOTE:
cout seal only required
when sidewalks is present.

NOTE
Embedment Depth is $2^{2}-6^{\prime \prime}$ for 2.0
and 2.5" Column (Post) Stubs and
$3^{\prime}-6^{\prime \prime}$ for 3.0^{\prime} and $3.5^{\prime \prime}$ column
$3^{3}-6^{2 \prime}$ for $3.0^{\prime \prime}$
(Post) Stubs.

DRIVEN POST, CONCRETE/STUB, AND SOIL PLATE DETAILS

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 22 \end{gathered}$		FDOT\} $\begin{gathered}\text { FY 2023-24 } \\ \text { STANDARD PLANS }\end{gathered}$	S INGLE COLUMN GROUND S IfGNs	$\begin{gathered} \text { INDEX } \\ 700-010 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 5 \text { of } 11 \end{aligned}$

NOTES:

1. $5 / 6^{6 \prime} \emptyset$ stainless steel hex head bolts with nylon washer under head and washer under nut may be used in lieu of $1 / 4^{\prime \prime} \varnothing$ aluminum button or flat head bolts.
2. Use nylon washers (provided by the sheeting supplier) unde
sign sheeting.
3. Slots up to $2^{\prime \prime}$ long are allowed in wind beams to accommodate U-Bolts for varying Column (Post) diameters.
4. Wind beams may be oriented in either direction
5. For signs greater than $66^{\prime \prime}$ in height, install a third wind beam evenly spaced between the op and bottom wind beams. For signs up to 1 in height, use only one wind beam at \& Sign. Install two wind beams on signs with heights
greater than $12^{\prime \prime}$ and less than or equal to $66^{\prime \prime}$.
WIND BEAM CONNECTIONS DETAILS

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 22 \end{gathered}$	\|cent	FDOT\} $\begin{gathered}\text { FY 2023-24 } \\ \text { STANDARD PLANS }\end{gathered}$	S INGLE COLUMN GROUND S IG	$\begin{gathered} \text { INDEX } \\ 700-010 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 6 \text { of } 11 \end{aligned}$

$\overline{\bar{Z}}$ SIGN PANEL SIDE VIEW $\bar{\square}$ \qquad
NOTES

1. Install sign in the undeployed (up) position
2. Provide a continuous stainless steel hinge with minimum $0.060^{\prime \prime}$ leaf thickness, $2^{\prime \prime}$ open width and $0.120^{\prime \prime}$ pin diameter. Stake the hinge at both ends to prevent pin movement.
3. Install Stainless Steel Spring Loaded Slam-Latch with cover to bottom face of flip sign per manufacturer's recommendations.
4. Punch or drill a $3 / 4$ " diameter hole in the "L" shaped bracket on site to match location of $1 / 2$ " wide slam-latch pin. Remove any burs or sharp edges.

LAST REVISION 11/01/22		$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	S INGLE COLUMN GROUND SIGNS

- DETAIL "

Stainless Steel Slam-Latch

LAST REVISION 11/01/22	DESCRIPTION:	$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	S INGLE COLUMN GROUND S IGGNS	$\begin{gathered} \text { INDEX } \\ 700-010 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 8 \text { of } 11 \end{aligned}$

