Proposed Revisions to a Standard Plans Index
(Please provide all information - Incomplete forms will be returned)

Contact Information:

Date: November 1, 2019
Originator: Rick Jenkins
Phone: (850) 414-4355
Email: Rick.Jenkins@dot.state.fl.us

Summary of the changes:

Reorganized Index, Added additional Sheets.
Sheet 1: General Notes and Overview
Sheet 2: Manhole Frames and Tops
Sheet 3: Inlet Locking Grates, Subgrade and Base Temporary Drains, and Pipe to Structure Filter Fabric Wrap
Sheet 4: Drainage Structure Inlet, Sump Bottom, Wall Reinforcement Splice Details, and Typical Slab to Wall Details
Sheet 5: Construction Joints and Minimum Box Riser Segment Dimensions
Sheet 6: Skewed Pipe in Rectangular Structures
Sheet 7: Miscellaneous Pipe Connection Details

Commentary / Background:

Changed Title. Reorganized Details and Sheets to declutter Index. Moved information from detail callouts to Notes in order to decrease clutter of the drawing. Design notes moved to SPI. Removed dimension "H" from SEGMENTS FOR SLAB TO WALL DOWEL CONSTRUCTION JOINTS OR MONOLITHIC CAST to clarify that the values in Table 3 are for RISER SEGMENTS OTHER THAN DOWEL. Slab to Wall details from 425-010 added to Index. (Continued)

Other Affected Offices / Documents: (Provide name of person contacted)

Origination Package Includes:

(Email or hand deliver package to Rick Jenkins)

Redline Mark-ups
Proposed Standard Plan Instruction (SPI)
Revised SPI
Other Support Documents

Implementation:

Design Bulletin (Interim)
DCE Memo
Program Mgmt. Bulletin
FY-Standard Plans (Next Release)

NEW SHEET

GENERAL NOTES AND OVERVIEW

NOTES FOR PRECAST OPTIONS AND

EXAMPLE TABLE OF EQUIVALENT STEEL AREA

example table of equivalent steel area								
SCHEDULE	GRADE 60 reinforcing bar		equivalent grade 40 REINFORCING BAR		equivalent 65 KSI SMOOth welded wire reinforcement		EQUIVALENT 70 KSI DEFORMED WELDED WIRE REINFORCEMENT	
	Bar Size \& Spacing	$\begin{gathered} \text { Steel } \\ \text { Area } \\ \left(i n^{2} / f t\right) \end{gathered}$	Bar Size \& Spacing	Min. Steel Area ($i n^{2} / f t$)	Style Designation	$\begin{array}{\|c\|} \hline \text { Min. Steel } \\ \text { Area } \\ \left(i n^{2} / f t\right) \\ \hline \end{array}$	Style Designation	Min. Steel Area (in $/$ ft $)$$\|$
A	$\begin{aligned} & \text { \#3 @ 6½" Ctrs. } \\ & \text { \#4 @ 12" Ctrs. } \end{aligned}$	0.20	\#3 @ 41/2" Ctrs. \#4 @ 8" Ctrs. \#5 @ 12" Ctrs.	0.30	3"x3"-W4.6xW4.6 4"x4"-W6.2xW6.2 6"x6"-W9.2xW9.2	0.1846	$3^{\prime \prime} \times 3^{\prime \prime}-D 4.3 \times D 4.3$ 4"x4"-D5.7xD5.7 $6^{* *} \times 6^{\prime \prime}-D 8.6 \times D 8.6$	0.1714
B	$\begin{aligned} & \text { \#3 @ 5½" Ctrs. } \\ & \text { \#4 @ 10" Ctrs. } \end{aligned}$	0.24	$\begin{aligned} & \text { \#3 @ 31/2" Ctrs. } \\ & \text { \#4 @ } 6^{1 / 2} \text { Ctrs. } \\ & \text { \#5 @ 10" Ctrs. } \end{aligned}$	0.36	3"x3"-W5.5xW5.5 4"x4"-W7.4xW7.4 6"x6"-W $11.1 \times W 11.1$	0.2215	$\begin{gathered} 3^{\prime \prime} \times 3^{\prime \prime}-D 5.1 \times D 5.1 \\ 4 " \times 4^{4}-D 6.9 \times D 6.9 \\ 6^{\prime \prime} \times 6^{\prime \prime}-D 10.3 \times D 10.3 \end{gathered}$	0.2057
Special 1	$\begin{aligned} & \text { \#3 @ } 5^{\prime \prime} \text { Ctrs.. } \\ & \text { \#4 @ } 9^{\prime \prime} \text { Ctrs. } \end{aligned}$	0.267	\#3 @ $3^{\prime \prime}$ Ctrs. \#4 @ 6" Ctrs. \#5 @ 9" Ctrs.	0.40	$\begin{gathered} 3^{\prime \prime} \times 3^{\prime \prime}-W 6.2 \times W 6.2 \\ 4^{\prime \prime} \times 4^{4}-W 8.2 \times W 8.2 \\ 6^{\prime \times} \times 6^{\prime \prime}-W 12.3 \times W 12.3 \end{gathered}$	0.2465	$\begin{gathered} 3^{\prime \prime \times} \times 3^{\prime \prime}-D 5.7 \times D 5.7 \\ 4^{\prime \prime} \times 4^{\prime \prime}-D 7.6 \times D 7.6 \\ 6^{\prime \prime} \times 6^{\prime \prime}-D 11.4 \times D 11.4 \end{gathered}$	0.2289
c	$\begin{aligned} & \text { \#3 @ 31/2" Ctrs. } \\ & \text { \#4 @ 61/2" Ctrs. } \\ & \text { \#5 @ 10" Ctrs. } \end{aligned}$	0.37	\#4@4" Ctrs. \#5 @ $61 / z^{\prime \prime}$ Ctrs. \#6 @ 91/2" Ctrs.	0.555	$3^{\prime \prime} \times 3^{\prime \prime}-W 8.5 \times$ W8. 5 $4^{\prime \prime} \times 4^{\prime \prime}-$ W $11.4 \times$ W 11.4 $6^{\prime \prime} \times 6^{\prime \prime}-$ W17.1 1 WW 17.1	0.3415	$3^{\prime \prime} \times 3^{\prime \prime}-D 7.9 \times D 7.9$ $4^{\prime \prime} \times 4^{\prime \prime}-D 10.6 \times D 10.6$ 6"x6"-D15.9xD15.9	0.3171
D	\#4 @ 41/2" Ctrs. \#5 @ 7" Ctrs. \#6 @ 10" Ctrs.	0.53	\#4 @ 3" Ctrs. \#5 @ 41/2/" Ctrs. \#6 @ 61⁄2" Ctrs.	0.795	3"x3"-W $12.2 \times$ W 12.2 $4^{4 \prime x 4} 4^{\text {"W W }} 16.3 \times$ W 16.3 6"x6"-W24.5xW24.5	0.4892	$3^{\prime \prime} \times 3^{\prime \prime}-D 11.4 \times D 11.4$ $4^{\prime \prime} \times 4^{\prime \prime}-D 15.1 \times D 15.1$ 6"x6"-D22.7×D22.7	0.4543
E	\#4 @ 3" Ctrs. \#5 @ 5" Ctrs. \#6 @ 7" Ctrs.	0.73	\#5 @ $31 / 2^{\prime \prime}$ Ctrs. \#6 @ 41/2" Ctrs. \#7 @ $61 / 2$ " Ctrs.	1.095	$3^{\prime \prime} \times 3^{\prime \prime}-$ W16.8×W16.8 $4^{\prime \prime} \times 4^{\prime \prime}-$ W22.5xW22.5 $6^{\prime \prime} \times 6^{\prime \prime}-$ W $33.7 \times$ W 33.7	0.6738	$\begin{aligned} & \hline 3^{\prime \prime \times 3 "-D 15.6 \times D 15.6} \\ & 4^{4 \times} \times 4^{\prime \prime}-D 20.9 \times D 20.9 \\ & 6^{\prime \prime} \times 6^{\prime \prime}-D 31.3 \times D 31.3 \end{aligned}$	0.6257
F	\#5 @ $3^{1 / 2}$ " Ctrs. \#6 @ 5" Ctrs. \#7 @ 7" Ctrs.	1.06	\#6 @ 3" Ctrs. \#7 @ 4½" Ctrs. \#8 @ $6^{\prime \prime}$ Ctrs.	1.59	3"x3"-W24.5xW24.5 4"x4"-W32.6xW32.6 6"x6"-W48.9xW48.9	0.9785	$\begin{aligned} & 3^{\prime \prime} \times 3^{\prime \prime}-D 22.7 \times D 22.7 \\ & 4^{\prime \prime} \times 4^{\prime \prime}-D 30.3 \times D 30.3 \end{aligned}$ $6^{\prime \prime} \times 6^{\prime \prime}-D 45.4 \times D 45.4$	0.9086
Special 2	$\begin{aligned} & \text { \#5 @ } 3^{\prime \prime} \text { Ctrs. } \\ & \text { \#6 @ 4" Ctrs. } \\ & \text { \#7 @ 51/2" Ctrs. } \end{aligned}$	1.24	$\begin{aligned} & \text { \#7 @ 4" Ctrs. } \\ & \text { \#8 @ 5" Ctrs. } \end{aligned}$	1.86	3"x3"-W28.6xW28.6 4"x4"-W38.2xW38.2 $6^{\prime \prime} \times 6^{\prime \prime}-W 57.2 \times W 57.2$	1.1446	$3^{\prime \prime} \times 3^{\prime \prime}-D 26.6 \times D 26.6$ $4^{\prime \prime} \times 4^{\prime \prime}-D 35.4 \times D 35.4$ $6^{\prime \prime} \times 6^{\prime \prime}-$ D53.1 \times D53. 1	1.0629
G	$\begin{aligned} & \text { \#6 @ 31/2" Ctrs. } \\ & \text { \#7 @ 5" Ctrs. } \end{aligned}$	1.46	$\begin{aligned} & \text { \#7 @ } 3^{\prime \prime} \text { Ctrs. } \\ & \text { \#8 @ 4" Ctrs. } \end{aligned}$	2.19	3"x3"-W33.7xW33.7 4"x4"-W44.9xW44.9	1.3477	$\begin{aligned} & 3^{\prime \prime \times 3^{\prime \prime}-D 31.3 \times D 31.3} \\ & 4^{\prime \prime} \times 4^{\prime \prime}-D 41.7 \times D 41.7 \end{aligned}$	1.2514

GENERAL NOTES

1. For square or rectangular precast drainage structures, using either deformed or smooth wwr meeting the requirements of Specification Section 931, WWR shall be continuous around the box and lapped in accordance with Option 1 or 3 as shown in the Wall Reinforcing Splice Details.

MOVE TO SHEET 1
2. Horizontal steel in the walls of rectangular structures shall be lap spliced in accordance with Option 1,2 or 3 as shown in the Wall Reinforcing Splice Details.
3. Welding of splices and laps is permitted. The requirements and restrictions placed on welding in AASHTO M259 shall apply.
4. Rebar straight end embedment of peripheral reinforcement may be used in lieu of ACI standard hooks for top and bottom slabs except when hooks are specifically called for in the plans or standard drawings.
5. Concrete as specified in ASTM C478, (4000 psi) may be used in lieu of Class II concrete in precast items manufactured in plants which meet the requirements in accordance with Specification Section 449.
6. Precast opening for pipe shall be the pipe $0 D$ plus $6^{\prime \prime}\left(\pm 2^{\prime \prime}\right.$ tolerance). Mortar used to seal the pipe into the opening will be of such a mix that shrinkage will not cause leakage into or out of the structure. Dry-pack mortar may be used in lieu of brick and mortar construction to seal openings less than $21 / 2 "$ wide.
7. For pay item purposes, the height used to determine if a drainage structure is greater than ho feet shall be computed using the elevation of the top of the manhole lid,
放
C. the outside top elevation of a junction box less the flow line elevation of the lowest pipe or to top of sump floor

EQUIVALENT REINFORCEMENT SUBSTITUTION

Details for optional precast inlet construction up to depths of 15^{\prime} are shown on the inlet indexes.
2. When precast units are used in conjunction with Alt. "B" Structure Bottoms, Index 425-010, the interior dimensions of an Alt. "B" Bottom can be adjusted to reflect these inlet interior
3. Concrete which meets the requirements of ASTM C478 or Class IV must be used for precas structures constructed with $6^{\prime \prime}$ wall or slab thickness.
4. Reinforcement can be either deformed bar reinforcement or welded wire reinforcement. Bar reinforcement other than 60 ksi may be used, however only two grades are recognized; Grade 40 of 65 ksi and deformed welded wire reinforcement will be recognized as having a design strength 70 ksi . The are of reinforcement required may be ad justed in accordance with the Equivalent Steel Area Table provided. For bars and spacings not given, the steel area required can be determined by the following equations:
Grade 40 Steel Area $=A_{s} 40=\frac{60}{40} \times A_{s} 60$
Smooth Welded Wire Reinforcement Steel Area $=A_{S} 65=\frac{60}{65} \times A_{s} 60$
Deformed Welded Wire Reinforcement Steel Area $=A_{s} 70=\frac{60}{70} \times A_{s} 60$
When a reduced area of reinforcement is provided, any maximum bar spacing shown must Max. Grade 40 Bar Spacing $=$ Grade 60 Bar Spacing
Max. Smooth Welded Wire Spacing $=$ Grade 60 Bar Spacing $\times 0.86$
Max. Deformed Welded Wire Spacing $=$ Grade 60 Bar Spacing $\times 0.74$
When an increased area of reinforcing is provided, then the maximum bar spacing may be When an increased area of reinforcing is provided, then the maximum bar spaci
increased by the squared ratio of increased steel area, but not to exceed 12":

$$
\text { Max. Bar Spacing Provided } \leq \text { Max. Bar Spacing Required } \times\left(\frac{\text { Steel Area Provided }}{\text { Min. Steel Area Required }}\right)^{2}
$$ In no case will reinforcement with wires smaller than W3.1 or D4.0, or spacings greater than

$8^{\prime \prime}$ be permitted. Bar reinforcement shall show the minimum yield designation grade mark or either the number 60 or one (1) grade mark line to be acceptable at the higher value.
Maximum bar spacing shall not be greater than two (2) times the slab thickness with maximum spacing of $12^{\prime \prime}$ or three (3) times the wall thickness, with a maximum spacing
of $18^{\prime \prime}$ for vertical bars and $12^{\prime \prime}$ for horizontal bars. Wires smaller than W3.1 or D4.0 are permitted in the walls of ASTM $C 478$ round structure bottoms and round risers.
5. Fiber-reinforced concrete may be substituted for conventional steel reinforcement in别 approved fiber-reinforced
State Drainage Engineer State Drainage Engineer.

UPDATED NOTES

SHEET 5

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ -11 / 01 / 17 \end{gathered}$		FDOT	$\begin{gathered} \text { FY 2019-20 } \\ \text { STANDARD PLANS } \end{gathered}$	SUPPLEMENTARY DETAILS F OR MANHOLES AND INLETS	$\begin{array}{\|c\|} \text { INDEX } \\ 425-001 \end{array}$	$\begin{aligned} & \text { SHEET } \\ & 4 \text { of } 5 \end{aligned}$

Corrected Reference to Skew

DESIGNER NOTE: Use only when round structures are not practical, engineer of record approval required.

PICTORIAL VIEW

NOTE: 1. Submit Shop Drawings of corner openings for approval by the Engineer of Record.
2. h_{2} may be less than $1^{\prime}-0^{\prime \prime}$ when a minimum $1^{\prime}-0^{\prime \prime}$ deep segment, $8^{\prime \prime}$ slab or curb inlet is provided above the corner opening.
3. For inlet segments at finish grade elevation substitute a \#8 Bar for the top corner bar when $1^{\prime}-0^{\prime \prime} \leq h_{2}<2^{\prime}-0$

RECTANGULAR SEGMENT WITH PIPE OPENING AT CORNER

PLAN VIEW FOR SKEWS $\leq 45^{\circ}$ (Not Centered)

PLAN VIEW FOR SKEWS > 45° (Not Centered)

SECTION AA
(Pipes Not Shown For Clarity)

DETAILS FOR SKEWED PIPES IN RECTANGULAR STRUCTURES

NEW SHEET 7 of 8
425-001 5 of 5

GENERAL NOTES:

1. Use a 1-piece cover, unless the 2 -piece cover is called for in the Plans, except at inlets and manhole
with sump bottoms. Use the 2 -piece cover when the sump depth exceeds $2{ }^{2}$, unless otherwise noted.
2. Include "Adjustable" on the cover for Type I manhole adjustable frames.
3. For square or rectangular precast drainage structures, use either deformed or smooth WWR meeting the requirements of Specification 931. WWR must be continuous around the box and lapped in
accordance with Option 1 or 3 as shown in the Wall Reinforcing Splice Details.
4. Lap splice horizontal steel in the walls of rectangular structures in accordance with Option 1,2 or 3 as shown in the Wall Reinforcing Splice Details.
5. Welding of splices and laps is permitted. Use AASHTO M259 requirements and restrictions on welds.
6. Rebar straight end embedment of peripheral reinforcement may be used in lieu of ACI standard hooks for top and bottom slabs, except when hooks are specifically called for in the Plans.
7. Precast opening for pipe must be the pipe OD plus $6^{\prime \prime}\left(\pm 2^{\prime \prime}\right.$ tolerance). Use mortar to seal the pipe
into the opening of such a mix that shrinkage will not cause leakage into or out of the structure. Dry-pack mortar may be used to seal openings less than $2 \frac{1}{2} /{ }^{\prime \prime}$ wide.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes, Contents, Manhole Top Overview, and Manhole Covers
2	Manhole Frames and Manhole Tops
3	Inlet Locking Grates, Subgrade and Base Temporary Drains, and Pipe to Structure Filter Fabric Wrap
4	Drainage Structure Invert, Sump Bottom, Wall Reinforcing Splice Details, and Typical Slab to Wall Details
5	Precast Option and Equivalent Reinforcement substitution
6	Construction Joints and Minimum Box Riser Segment Dimensions
7	Skewed Pipe in Rectangular Structures
8	Miscellaneous Pipe Connection Details

Raised or Depressed
Product Identification Number (With
or Without Ribs)

BOTTOM

elevation
1-PIECE COVER

elevation
2-PIECE COVER
\qquad
\qquad

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{array}$		STANDARD PLANS	S UPPLLEMENTARY DETAILS FOR DRAINAGE STRUCTURES	$\begin{gathered} \text { Index } \\ 425-001 \end{gathered}$	SHEET 1 of 8

TABLE 1

\section*{WEIGHT OF CASTINGS (Ib)} | | Frame | $2^{\prime \prime}-0^{\prime \prime}$ OPENING |
| :--- | :--- | :--- |
		$3^{\prime}-0^{\prime \prime}$ OPENING		$\begin{array}{c}\text { Frame } \\ \text { Type }\end{array}$	Frame	Cover (Std.)	Frame	2-Piece Cover					
Inside Outside Total						I	155	190	220	Inside	Outside	Total	
:---:	:---:	:---:	:---:	:---:	:---:	:---:							
II	145	190	255	410				II	155	190	190	255	190
:---:	:---:	:---:	:---:	:---:	:---:								
III	90	190	180	190	220								

NOTE:
Frame Type I in Table 1, includes Adjustable frames.

PLAN

PLAN

elevation
(For Manholes)

elevation
$\xrightarrow[\text { WECLL }]{\text { SEN }}$ \qquad

\qquad precast eccentric cone

NOTES:

. Use Class II concrete for Manhole top Type 7 slabs.
2. Manhole top Type 7 slabs may be of cast-in-place or precast construction. The optional key is for precast tops and in lieu of dowels. Omit
frame and slab openings when top is used over a junction box
3. Manhole top Type 8 may be of cast-in-place, precast concrete construction, or brick construction. For concrete construction, use the same
concrete and steel reinforcement as the supporting wall unit. An eccentric cone may be used.
4. Use construction roin options, as
4. Use construction joint options, as shown on Sheet 6 to secure manhole tops to structures.
5. Frames may be adjusted to a maximum 12" height with brick or precast ASTM C478 grade rings.
6. Manhole top Type 8 may be substituted for a Type 7, if the minimum dimensions are not reduced.
7. Manhole top Type 7 may be substituted for Type 8, if the minimum thickness (h) above pipe opening cannot be maintained with Type 8 .

TYPE I ADJUST AbLE FRAME

LAST		
REVISION		
$11 / 01 / 20$	$\hat{0}$ 	DESCRIPTION:

FDOT 2021-22
STANDARD PLANS

THRU-BOLT
NOTES:
2. Install a $5 / 16^{\prime \prime}$ Chain and $3 / 16^{\prime \prime}$ Cold Shuts. When chaining two grates
2. Install a 5 b $^{\prime \prime}$ Chain and 3 . ${ }^{\prime \prime}$ Cold Shuts. When chain
together provide adequate loop for easy handling
3. Install adhesive bonded anchor option with a minimum of $4^{\prime \prime}$ embedment, and
in accordance with Specification 416 .

EYEBOLT AND TABLE 2					
CHAIN REQUIREMENTS					

LOCKING GRATES TO INLETS

NOTES:

1. Bevel cut upper stub to match forming for apron face. Capping or plugging of upper stub is not required. Remove friable base material at stub opening to permit covering of opening with structural course material.
2. Remove riprap, cement PVC cap on lower stub, and place compacted fill in entrance prior to placing base material.

NOTE: For all structures unless excluded by special detail.
= DRAINAGE STRUCTURE INVERT \qquad

NOTES:

1. Construct sumps in inlets and manholes connecting to French Drains unless excluded in the Plans.
2. Construct sumps only where called for in the Plans at all other locations.
3. Construct weep holes in sump bottom only where called for in the Plans.
(0ption 1) Lap Splice: At Quarter Point
(30 Bar Diameters or Vertical Wire
(30 Bar Diameters or Vertical Wire
Spacing Plus 2 " for WWR)

.. Double Layer wall Reinf.

> HALF PLAN
\qquad

Rebar Straight End Embedment
Rebar Straight End Embedment
4 Min. Beyond Inside Face of

NOTES:
See Sheet 6 for optional construction joints.
2 Bend bars as required to maintain cover.
TYPICAL SLAB TO WALL DETAILS (PRECAST STRUCTURE SHOWN)

example table of equivalent steel area								
	GRADE 60 REINFORCING BAR		EQUIVALENT GRADE 40 reinforcing bar		EQUIVALENT 65 KSI SMOOTH WELDED WIRE REINFORCEMENT		EQUIVALENT 70 KSI DEFORMED welded wire reinforcement	
SCHEDULE	Bar Size \& Spacing	$\begin{gathered} \text { Steel } \\ \text { Area } \\ \left(i n^{2} / f t\right) \end{gathered}$	Bar Size \& Spacing	$\begin{gathered} \text { Steel } \\ \text { Area } \\ \text { (in } / \text { /ft }) \end{gathered}$	Style Designation	$\begin{gathered} \text { Steel } \\ \text { Area } \\ \left(i n^{2} / f t\right) \end{gathered}$	Style Designation	$\begin{gathered} \text { Steel } \\ \text { Area } \\ \left(i n^{2} / f t\right) \end{gathered}$
A	$\begin{aligned} & \text { \#3 @ } 61 / 2 \text { /n }^{\prime \prime} \text { Ctrs. } \\ & \# 4 @ 12^{\prime \prime} \text { Ctrs. } \end{aligned}$	0.20	$\begin{aligned} & \text { \#3@ 41/2" Ctrs. } \\ & \text { \#4@ 8" ctrs. } \\ & \text { \#5 @ 12" ctrs. } \end{aligned}$	0.30	$3^{\prime \prime} \times 3^{\prime \prime}-W 4.6 \times W 4.6$ $4^{\prime \prime} \times 4^{\prime \prime}-W 6.2 \times W 6.2$ $6^{\prime \prime} \times 6^{\prime \prime}-W 9.2 \times W 9.2$	0.1846	$\begin{aligned} & 3^{\prime \prime} \times 3^{\prime \prime}-D 4.3 \times D 4.3 \\ & 4^{\prime \prime} \times 4^{4}-D 5.7 \times D 5.7 \\ & 6^{\prime \prime} \times 6^{\prime \prime}-D 8.6 \times D 8.6 \end{aligned}$	0.1714
B	$\begin{aligned} & \text { \#3@ }{ }^{1 / 2 / z^{\prime} \text { Ctrs. }} \\ & \# 4 \text { @ } 10^{\prime \prime} \text { ctrs. } \end{aligned}$	0.24	$\begin{aligned} & \text { 33@ 31/2" Ctrs. } \\ & \# 4 \text { @ } 6^{1 / 2 "} \text { ctr. } . \\ & \# 5 @ 10^{\prime \prime} \text { Ctrs. } \end{aligned}$	0.36	$\begin{gathered} 3^{\prime \prime} \times 3^{\prime \prime}=W 5.5 \times W 5.5 \\ 4^{\prime \times 4} \times 4^{-W 7.4 \times W 7.4} \\ 6^{\prime \prime} \times 6^{\prime \prime}-W 11.1 \times W 11.1 \end{gathered}$	0.2215	$\begin{gathered} 3^{\prime \prime} \times 3^{\prime \prime}-D 5.1 \times D 5.1 \\ 4^{\prime \prime} \times 4^{\prime \prime}-D 6.9 \times D 66.9 \\ 6^{\prime \times} \times 6^{\prime-D 10.3 \times D 10.3} \end{gathered}$	0.2057
Special 1	$\begin{aligned} & \text { \#3@ 5" Ctrs.. } \\ & \text { \#4@ 9" Ctrs. } \end{aligned}$	0.267	$\begin{aligned} & \text { \#3 @ 3" Ctrs. } \\ & \text { \#4 @ } 6^{\prime \prime} \text { ctrs. } \\ & \# 5 \text { @ } 9^{\prime \prime} \text { Ctrs. } \end{aligned}$	0.40	$\begin{gathered} 3^{4 \prime \times 3^{\prime \prime}-W 6.2 \times W 6.2} \\ 4^{4} \times 4^{\prime \prime}-W 8.2 \times W 8.2 \\ 6^{\prime \times} \times 6^{-W 12.3 \times W} 12.3 \end{gathered}$	0.2465	$3^{\prime \prime} \times 3^{\prime \prime}-D 5.7 \times 05.7$ $4^{\prime \prime} \times 4^{\prime \prime}-77.6 \times 07.6$ $6^{\prime \prime} \times 6^{\prime \prime}-$ D11.4×D11.4	0.2289
c	\#3 @ $3^{1 / 2}$ " Ctrs. \#4 @ $6^{1 / 2}$ " Ctrs. \#5 @ 10" ctrs.	0.37	\#4 @ 4" Ctrs. \#5 @ $61 / 2^{\prime \prime}$ Ctrs. \#6 @ 91/2" Ctrs.	0.555	$3^{\prime \prime} \times 3^{\prime \prime}-W 8.5 \times W 8.5$ $4^{\prime \prime} \times 4^{\prime \prime}$-W $11.4 \times$ W 11.4 $6^{\prime \times 6} 6^{\prime \prime}-$ W17.1 $1 \times$ W $^{2} 17.1$	0.3415	$\begin{gathered} 3^{\prime \prime} \times 3^{\prime \prime}-D 7.9 \times D 7.9 \\ 4^{\prime \prime} \times 4^{\prime \prime}-D 10.6 \times D 10.6 \\ 6^{\prime \prime} \times 6^{\prime \prime}-D 15.9 \times D 15.9 \end{gathered}$	0.3171
D	\#4 @ 41/2" Ctrs. \#5 @ 7" Ctrs. \#6 @ 10" Ctrs.	0.53		0.795	$3^{\prime \prime} \times 3^{\prime \prime}-$ W $12.2 \times$ W 12.2 $4^{\prime \prime} \times 4^{\prime \prime}$-W $16.3 \times$ W 16.3 $6^{\prime \prime} \times 6^{\prime \prime}-$ W24.5 \times W 24.5	0.4892	$3^{1 "} \times 3^{\prime \prime}-D 11.4 \times D 11.4$ $4^{\prime \prime} \times 4^{\prime \prime}-D 15.1 \times$ D15.1 $6^{\prime \prime} \times 6^{\prime \prime}-D 22.7 \times D 22.7$	0.4543
E	\#4 @ 3" Ctrs. \#5 @ $5^{\prime \prime}$ Ctrs. \#6 @ 7" Ctrs.	0.73		1.095	$\begin{aligned} & 3^{\prime \prime} \times 3^{\prime \prime}-W 16.8 \times W 16.8 \\ & 4^{\prime \prime} \times 4^{\prime \prime}-W 22.5 \times W 22.5 \end{aligned}$ $6^{\prime \prime} \times 6^{\prime \prime}-W 33.7 \times W 33.7$	0.6738	$\begin{aligned} & 3^{\prime \prime} \times 3^{\prime \prime}-D 15.6 \times D 15.6 \\ & 4^{\prime \prime} 4^{\prime \prime-D 20.9 \times D 20.9} \\ & 6^{\prime \prime} \times 6^{\prime \prime}-D 31.3 \times D 31.3 \end{aligned}$	0.6257
F		1.06	\#6 @ $3^{\prime \prime}$ ctrs. \#7 @ 41/2" Ctrs. \#8 @ $6^{\text {" }}$ ctrs.	1.59	$3^{3 \times 3} 3^{\prime \prime}$-W $24.5 \times$ W 24.5 $4^{4 \prime \times 4} 4^{\prime \prime}$ W32.6xW 32.6 $6^{\prime \prime} \times 6^{\prime \prime}-W 48.9 \times W 48.9$	0.9785	$\begin{aligned} & 3^{\prime \prime} \times 3^{\prime \prime}-D 22.7 \times D 22.7 \\ & 4^{*} \times 4^{\prime \prime}-D 30.3 \times D 30.3 \\ & 6^{\prime \prime} \times 6^{\prime \prime}-D 45.4 \times D 45.4 \end{aligned}$	0.9086
Special 2	$\begin{aligned} & \text { \#5 @ 3" Ctrs. } \\ & \# 6 \text { @ 4" Ctrs. } \\ & \text { \#7 @ } 5 / 2^{\prime \prime} \text { Ctrs. } \end{aligned}$	1.24	$\begin{aligned} & \text { \#7 @ 4" Ctrs. } \\ & \text { \#8 @ 5" Ctrs. } \end{aligned}$	1.86	$3^{\prime \prime} \times 3^{\prime \prime}-$ W28.6xW28.6 $4^{4 \prime} \times 4^{\prime \prime}$-W $38.2 \times$ W 38.2 $6^{\prime \prime} \times 6^{\prime \prime}-W 57.2 \times W 57.2$	1.1446		1.0629
G	$\begin{aligned} & \text { \#6 @ 312" Ctrs. } \\ & \text { \#7 @ 5" Ctrs. } \end{aligned}$	1.46	$\begin{aligned} & \text { \#7 @ 3" Ctrs. } \\ & \text { \#8 @ 4" Ctrs. } \end{aligned}$	2.19	$3^{\prime \prime} \times 3^{\prime \prime}-$ W33.7 \times W33.7 $4^{\prime \prime} \times 4^{\prime \prime}-W 44.9 \times W 44.9$	1.3477	$\begin{aligned} & 3^{\prime \prime} \times 3^{\prime \prime}-D 31.3 \times D 31.3 \\ & 4^{\prime \prime} \times 4^{\prime \prime}-D 41.7 \times D 41.7 \end{aligned}$	1.2514

NOTES:

1. See inlet indexes for optional precast inlet construction details up to depths of 15
2. Interior dimensions of an Alt. "B" Bottom may be ad justed to reflect these inlet interior Index 425-010.
3. Use concrete meeting the requirements of ASTM C478 or Class IV for precast structures with $6^{\prime \prime}$ wall or slab thickness.
4. Reinforcement may be deformed bar reinforcement or welded wire reinforcement. Bar reinforcement other than 60 ksi may be used, however oldy two grades arcerent. Bagnized:
Grade 40 and Grade 60 . Smooth welded wire reinforcement will be recognized as having Grade 40 and Grade 60 . Smooth welded wire reinforcement will be recognized as having
a design strength of 65 ksi and deformed welded wire reinforcement will be recognized as having a design strength of 70 ksi . The area of reinforcement required may be adjusted in accordance with the Equivalent Steel Area Table provided. Use the follow

$$
\text { Grade } 40 \text { Steel Area }=A s 40=60 / 40 \times \text { As6C }
$$

Smooth Welded Wire Reinforcement Steel Area $=$ As65 $=60 / 65 \times$ As60
Deformed Welded Wire Reinforcement Steel Area $=$ As70 $=60 / 70 \times$ As60
When a reduced area of reinforcement is provided, any maximum bar spacing shown must also be reduced as determined by the following equations, unless otherwise shown
Max Grade 40 Bar Spacing $=$ Grade 60 Bar Spacing
Max. Smooth Welded Wire Spacing $=$ Grade 60 Bar Spacing $\times 0.86$
Max. Deformed Welded Wire Spacing $=$ Grade 60 Bar Spacing $\times 0.74$
When an increased area of reinforcing is provided, the maximum bar spacing may be
increased by the squared ration of increased steel area, but not to exceed 12":
Max. Bar Spacing Provided $\leq=$ Max. Bar Spacing Required $\times\left(\frac{\text { Steel Area Provided }}{\text { Min. Steel Area Required }}\right)^{2}$
Use wire no smaller than than W3.1 or D4.O, or larger and with spacing $8^{\prime \prime}$ or less. Use bar reinforcement displaying the minimum yield designation grade mark, or either the number 60 or one (1) grade mark line to be acceptable at the higher value. Use maximum bar spacing no greater
than two (2) times the slab thickness with a maximum spacing of $12^{\prime \prime}$ or three (3) times the wall thickness, with a maximum spacing of $18^{\prime \prime}$ for vertical bars and $12^{\prime \prime}$ for horizontal bars. Wires smaller than W3.1 or D4.0 may be used in the walls of ASTM C 478 round structure bottoms and round risers.
5. Fiber-reinforced concrete may be substituted for conventional steel reinforcement in accordance with the Struct fiber-reinforced concrete mix design for approval to the State Drainage Engineer.

NOTES:

1. One or more types of joints may be used in a single structure, except brick wall structure. Brick wall construction is permitted on circular units only
2. All grouted joints are to have a maximum thickness of $1^{\prime \prime}$.
3. Keyways are to be a minimum of $1 \frac{1}{2}$ " deep.
4. Joint dowels are to be \#4 bars, $12^{\prime \prime}$ long with a minimum of 6 bars per joint approximately evenly spaced for circular structures or at maximum 12" spacing for rectangular structures. Bars may be either Adhesive Bonded Dowels in
accordance with Specification 416, or placed approximately n $^{\prime \prime}$ into fresh accordance with Specification 416, or placed approximately $6^{\prime \prime}$ into fresh oncrete leaving the remainder to extend into the secondary cast. Welded wire equivalent steel area table on Sheet 5 .
5. Minimum cover on dowel reinforcing bars is $2^{\prime \prime}$ to outside face of structure.
6. Seal joints between wall segments and between wall segments and top or bottom slabs with preformed plastic gasket material inaccordance with Specification 430 or non-shrink grout in accordance with Specification 934.
7. Insert products approved by the Engineer may be used in lieu of dowel embedment

- CONSTRUCTION JOINT OPTIONS \qquad

PLAN VIEW

NOTE
These values are based on $2^{\prime \prime}$ clearance for precast structures. Larger skews are possible for Cast-In-Place Structures or elliptical pipe openings when approved by the Engineer.

NOTE:

Lap splice: 20 bar diameter for deformed wire or bar, but not less than MAXIMUM PIPE SKEW FOR PRECAST ROUND OPENINGS=

pLAN VIEW

- multiple parallel pipe connections - rectangular structures=

MISCELLANEOUS PIPE CONNECTION DETAILS

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$	\|rest DESCRIPTION:	$\begin{gathered} \text { FY 2021-22 } \\ \text { FDOTY } \\ \text { STANDARD PLANS } \end{gathered}$	S UPPLEMENTARY DETAILS FOR DRAINAGE STRUCTURES	$\begin{array}{\|c\|} \text { INDEX } \\ 425-001 \end{array}$	SHEET 8 of 8

