Index 455-054 54" Precast / Post-Tensioned Concrete Cylinder Pile

Design Criteria

AASHTO LRFD Bridge Design Specifications; Structures Detailing Manual (SDM);

 Structures Design Guidelines (SDG)
Design Assumptions and Limitations

Standard piles are designed to have 1000 psi uniform compression after prestress losses without any applied loads.

The piles are designed to have 0.0 psi tension using a load factor of 1.5 times the pile self weight during pick-up, storage and transportation as shown in the "Table of Maximum Pile Pick-Up and Support Lengths" on the standard.

Plan Content Requirements

In the Structures Plans:
Show and label the piles on the Foundation Layout, End Bent, Intermediate Bent, Pier, Footing, Typical Section and other sheets as required.

Complete the following "Data Table" in accordance with SDG 3.5 and SDM 11.4 and include it in the contract plans with the "Foundation Layout" sheets. Modify table and notes as required to accommodate the required number of piles, piers and/or bents and use of Test Piles. When not enough space is available on one plan sheet, continuations of the Data Table and/or separate pile cut-off elevation tables are acceptable. See FDM 115 for more information regarding use of Data Tables.

For projects without Test Piles change column heading "TEST PILE LENGTH (ft.)" to "PILE ORDER LENGTH (ft.)".

pile data table																					Tavie ore ol/or/16	
installation criteria								design criteria								pile cut-off elevations						
$\begin{gathered} \text { PIER } \\ \text { or } \\ \text { NUMT } \\ \text { NUMER } \end{gathered}$	$\begin{aligned} & \text { PILE } \\ & \text { SIIE } \\ & \text { (in) } \end{aligned}$	$\begin{gathered} \text { NOMINAL } \\ \text { BEEAING } \\ \text { RESISTANCE } \\ \text { (tons) } \end{gathered}$	NOMINAL UPIITT RESITANCE (tons)		$\begin{gathered} \text { TEST } \\ \text { PILE } \\ \text { LeNGH H H } \\ \text { (ft.) } \end{gathered}$	$\begin{aligned} & \text { REOUIRED } \\ & \text { JETETION } \\ & \text { ELEVATIU } \end{aligned}$ $(f t .)$	REQUIRED PREFRRM EIEVATION (ft.)	$\begin{gathered} \text { FACTORED } \\ \text { DESIIN } \\ \text { LOAD } \\ \text { (tons) } \end{gathered}$			$\begin{gathered} \text { TOTAL } \\ \text { SCOUR } \\ \text { RESISTANCE } \\ \text { (tons) } \end{gathered}$		$\begin{gathered} 100-Y E A R \\ S C O R \\ \text { ELEVATION } \end{gathered}$		$\begin{aligned} & 5 \\ & \frac{5}{3} \\ & 0 \end{aligned}$	PILE 1	PILE 2	PILE 3	PILE 4	PILE 5	PILE 6	PILE 7

$$
\begin{aligned}
& \frac{\text { Factored Design Load }+ \text { Net Scour Resistance }+ \text { Down Drag }}{0} \leq \text { Nominal Bearing Resistance } \\
& \text { UPLIFT RESISTANCE - The witimate side friction capacity that must be botained below }
\end{aligned}
$$

$$
\begin{aligned}
& \text { IOTAL SCOUR RESISTANCE - An estimate of the ultimate static side frictio } \text { resistane porovide by the scourrobe soilt } \\
& \text { NET SCOUR RESISTANCE - An estitiante of the uttimate static side friction } \\
& \begin{array}{l}
\text { resistance provided by the soll from the } \\
\text { required preformed or jetting elevation }
\end{array}
\end{aligned}
$$

```
ILE InSTALLATION NOTES INotes Date II-OI-20,
Contractor to verify location of all utilities prior to any pile
Fontractorta verify/a
Winimum Tip Elevation is required for lateral stabilit,
When a required jetting elevation is shown, the jet shall be
l
for determination of the required driving resistance.
No jetting will be allowed without the approval of the Engineer
The Contractor should not anticipate being allowed to jet piles
below the ioo-year.
For pile groups, pile driving is to commence at the center of the groum
When using embedded guages for dynamic testing,tip guages are required
```


Payment

Item number	Item Description	Unit Measure
$455-36-A B$	Concrete Cylinder Piles, Furnished \& Driven (54" Diameter)	LF

