GENERAL NOTES:

1. Use a 1-piece cover, unless the 2-piece cover is called for in the Plans, except at inlets and manholes
2. Include "Adjustable" on the cover for Type I manhole ad justable frames.
3. For square or rectangular precast drainage structures, use either deformed or smooth WWR meeting the requitemerts specification 931. WWR must be continuous arove the box and lapped
4. Lap splice horizontal steel in the walls of rectangular structures in accordance with Option 1, 2 or 3 Lap splice horizontal steel in the walls of rectan
as shown in the Wall Reinforcing Splice Details.
5. Welding of splices and laps is permitted. Use AASHTO M259 requirements and restrictions on welds.
6. Rebar straight end embedment of peripheral reinforcement may be used in lieu of ACI standard hooks for top and bottom slabs, except when hooks are specifically called for in the Plans.
7. Precast opening for pipe must be the pipe $O D$ plus $6^{\prime \prime}\left(\pm 2^{\prime \prime}\right.$ tolerance). Use mortar to seal the pipe Dry-pack mortar may be used to seal openings less than $21 / 2^{\prime \prime}$ wide.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes, Contents, Manhole Top Overview, and Manhole Covers
2	Manhole Frames and Manhole Tops
3	Inlet Locking Grates, Subgrade and Base Temporary Drains, and Pipe to Structure Geotextile Wrap
4	Drainage Structure Invert, Sump Bottom, Wall Reinforcing Splice Details, and Typical Slab to Wall Details
5	Precast Option and Equivalent Reinforcement substitution
6	Construction Joints and Minimum Box Riser Segment Dimensions
7	Skewed Pipe in Rectangular Structures
8	Miscellaneous Pipe Connection Details

elevation

elevation

1-PIECE COVER
2-PIECE COVER

LAST REVISION 11/01/23		FDOTS	FY 2024-25 STANDARD PLANS	S UPPLEMENTARY $\mathbb{D E T A I L S}$ FOR DRAINAGE STRUCTURES	$\begin{gathered} \text { INDEX } \\ 425-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 8 \end{aligned}$

TABLE 1

WEIGHT OF CASTINGS (Ib) \begin{tabular}{l|l|l}
\& $2^{\prime}-0^{\prime \prime}$ OPENING \& $3^{\prime}-0^{\prime \prime}$ OPENING

\cline { 2 - 3 } \& \&

\hline $\begin{array}{c}\text { Frame } \\
\text { Type }\end{array}$ \& Frame \& Cover (Std.) \& Frame

\hline Inside loutside Cover

\hline 1 \& 2-Potal

\hline

\hline I \& 155 \& 190 \& 220 \& Inside \& Outside \& Total

\hline II \& 155 \& 190 \& 220 \& 410

\hline

II \& 145 \& 190 \& 255 \& 190 \& 220 \& 410

\hline III \& 90 \& 190 \& 180 \& 190 \& 220 \& 410

\hline
\end{tabular} NOTE:

Frame Type I in Table 1, includes Adjustable frames.

PLAN

SECTION \qquad (For Curb Inlets Types 7 \& 8)

eLEVATION

-TYPE 7
TTYP:

1. Use Class II concrete for Manhole top Type 7 slabs.
2. Manhole top Type 7 slabs may be of cast-in-place or precast construction. The optional key is for precast tops and in lieu of dowels. Omit
frame and slab openings when top is used over a junction box.
3. Manhole top Type 8 may be of cast-in-place, precast concrete construction, or brick construction. For concrete construction, use the same
concrete and steel reinforcement as the supporting wall unit. An eccentric cone may be used.
4. Use construction joint options, as shown on Sheet 6 to secure manhole tops to structures.
5. Frames may be adjusted to a maximum 12" height with brick or precast ASTM C478 grade rings.
6. Manhole top Type 8 may be substituted for a Type 7, if the minimum dimensions are not reduced.
7. Manhole top Type 7 may be substituted for Type 8, if the minimum thickness (h) above pipe opening cannot be maintained with Type 8

MANHOLE TOPS
MANHOLE FRAMES AND MANHOLE TOPS

STANDARD PLANS

THRU-BOLT

J-TYPE

ADHESIVE BONDDED
ANCHOR

NOTES:

1. Install either a $1 / 2^{\prime \prime} \varnothing \times 1^{\prime \prime}$ Diameter Threaded Straight (Thru-Bolt), a J-Type
or an adhesive Bonded Anchor Eyebolt.
2. Install a $5 / 16^{\prime \prime}$ Chain and $3 / 16^{\prime \prime}$ Cold Shuts. When chaining two grates
together provide adequate loop for easy handling.
3. Install adhesive bonded anchor option with a minimum of $4^{\prime \prime}$ embedment, and
in accordance with Specification 416 .

EYEBOLT AND TABLE 2 CHAIN REQUIREMENTS				
$\begin{array}{\|c\|} \hline \text { Index } \\ \text { Number } \end{array}$	Inlet Type	$\begin{aligned} & \text { Eye- } \\ & \text { Bolts } \end{aligned}$	Length of Chain	Handling \& Remarks
425-030	1	1	$4^{\prime}-0^{\prime \prime}$	Slide \& Spin
	2	2	2 @ 4'-0"	Slide \& Spin
425-031	N/A	1	$3^{\prime}-88^{\prime \prime}$	Slide or Slide \& Spin
425-032	N/A	1	$4^{\prime}-0^{\prime \prime}$	Slide \& Spin
425-040	s	1	$4^{\prime}-0^{\prime \prime}$	Slide \& Spin
425-041	v	1	$4^{\prime}-0^{\prime \prime}$	Slide \& Spin
425-050	A	1	$3^{\prime}-0^{\prime \prime}$	Slide
425-051	B	1	$5^{\prime}-0^{\prime \prime}$	Slide \& Spin
425-052	C	1	$2^{\prime \prime}-6^{\prime \prime}$	Slide \& Spin
	D	1	$2^{\prime \prime}-6^{\prime \prime}$	Slide \& Spin
	E	2	2 @ 2'-6"	Slide \& Spin
	H	2	2 @ 2'-6"	Flip Ctr. Grate and Slide \& Spin Single Free Grate
			1 or 2 @ 1'-6"	Center Grate(s) Chained to One End Grate
425-053	F	1	$3^{\prime}-6{ }^{\prime \prime}$	Flip or Slide \& Spin
	${ }^{6}$	1	$6^{\prime}-0^{\prime \prime}$	Slide
			$2^{\prime \prime}-0^{\prime \prime}$	Lifting Loop
425-054	J	1	$4^{\prime}-0^{\prime \prime}$	Slide \& Spin

LOCKING GRATES TO INLETS

NOTES:

1. Bevel cut upper stub to match forming for apron face. Capping or plugging of upper stub is not required. Remove friable base material at stub opening to permit covering of opening with structural course material.
2. Remove riprap, cement PVC cap on lower stub, and place compacted fill in entrance prior to placing base material.

SECTION

DETAIL "A"

NOTE:
Wrap with Type D-3 geotextile in accordance with Specification 51

LOCKING GRATES, SUBGRADE AND BASE TEMPORARY DRAINS, AND PIPE TO STRUCTURE GEOTEXTILE WRAP

STANDARD PLANS

NOTE: For all structures unless excluded by special detail.
\qquad

NOTES:

1. Construct sumps in inlets and manholes connecting to French Drains unless excluded in the Plans.
2. Construct sumps only where called for in the Plans at all other locations.
in the Plans.
3. Install Type D-3 geotextile in accordance with Specification 514

- SUMP BOTTOM
\qquad
(Option 1) Lap Splice: At Quarter Point
(30 Bar Diameter or vertical wire
Spacing Plus 2" for WWR)

PICAL SLAB TO WALL DETA
(PRECAST STRUCTURE SHOWN)

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 23 \end{gathered}$	DESCRIPTION:	$\begin{gathered} \text { FDOT } 5 \text { 2024-25 } \\ \text { STANDARD PLANS } \end{gathered}$	S UPPLEMENTARY $\mathbb{D E T A I L S}$ FOR DRAINAGE STRUCTURES	$\begin{array}{\|c\|} \hline \text { INDEX } \\ 425-001 \end{array}$	$\begin{aligned} & \text { SHEET } \\ & 4 \text { of } 8 \end{aligned}$

example table of equivalent steel area								
SCHEDULE	GRADE 60 REINFORCING BAR		EQUIVALENT GRADE 40 REINFORCING BAR		EQUIVALENT 65 KSI SMOOTH WELDED WIRE REINFORCEMENT		EQUIVALENT 70 KSI DEFORMED WELDED WIRE REINFORCEMENT	
	Bar Size \& Spacing	$\begin{gathered} \text { Steel } \\ \text { Area } \\ \text { (in²/ft) } \end{gathered}$	Bar Size \& Spacing	$\begin{gathered} \hline \text { Steel } \\ \text { Area } \\ \left(i i^{2} / f t\right) \end{gathered}$	Style Designation	$\begin{gathered} \hline \text { Steel } \\ \text { Area } \\ \text { (in } 1 / \text { ft }) \end{gathered}$	Style Designation	$\begin{gathered} \hline \text { Steel } \\ \text { Area } \\ \text { (in } / \text { /ft }) \end{gathered}$
A	$\begin{aligned} & \text { \#3 @ 6¹2" Ctrs. } \\ & \text { \#4 @ 12" Ctrs. } \end{aligned}$	0.20	\#3 @ 41/2" Ctrs. \#4@ 8" Ctrs. \#5 @ 12" Ctrs.	0.30	$\begin{aligned} & \hline 3^{\prime \prime} \times 3^{\prime \prime}-W 4.6 \times W 4.6 \\ & 4^{\prime \prime} \times 4{ }^{4 \prime}-W 6.2 \times W 6.2 \\ & 6^{\prime \prime} \times 6^{\prime \prime}-W 9.2 \times W 9.2 \end{aligned}$	0.1846	$\begin{aligned} & \hline 3^{\prime \prime} \times 3^{\prime \prime}-D 4.3 \times D 4.3 \\ & 4^{4} \times 4^{\prime \prime}-D 5.7 \times D 5.7 \\ & 6^{\prime \prime} \times 6^{\prime \prime}-D 8.6 \times D 8.6 \end{aligned}$	0.1714
B	$\begin{aligned} & \text { \#3 @ } 51 / 2 /^{\prime \prime} \text { Ctrs. } \\ & \text { \#4 @ 10" Ctrs. } \end{aligned}$	0.24	\#3 @ $3^{1 / 2}$ Ctrs. \#4 @ $6^{1 / 2}$ " Ctrs. \#5 @ 10" Ctrs	0.36	$3^{\prime \prime} \times 3^{\prime \prime}-W 5.5 \times W 5.5$ $4^{\prime \prime} \times 4^{\prime \prime}-$ W7.4xW7. 4 $6^{\prime \prime} \times 6^{\prime \prime}-$ W $11.1 \times$ W 11.1	0.2215	$\begin{gathered} 3^{3} \times 3^{4 " D}-D 5.1 \times D 5.1 \\ 4^{4} \times 4^{4-}-D 6.9 \times D 6.9 \\ 6^{\prime \prime} \times 6^{\prime \prime}-D 10.3 \times D 10.3 \end{gathered}$	0.2057
Special 1	$\begin{aligned} & \text { \#3@ 5" Ctrs.. } \\ & \text { \#4@ 9" Ctrs. } \end{aligned}$	0.267	\#3 @ 3" Ctrs. \#4 @ 6" Ctrs \#5 @ 9" Ctrs.	0.40	$\begin{gathered} 3^{\prime \prime} \times 3^{\prime \prime}-W 6.2 \times W 6.2 \\ 4^{\prime \times} \times 4^{\prime \prime}-W 8.2 \times W 8.2 \\ 6^{\prime \prime} \times 6^{\prime \prime}-W 12.3 \times W 12.3 \end{gathered}$	0.2465	$\begin{gathered} 3^{\prime \prime} \times 3^{\prime \prime}-D 5.7 \times D 5.7 \\ 4^{4 \prime} \times 4^{\prime \prime}-D 7.6 \times D 7.6 \\ 6^{\prime \prime} \times 6^{\prime \prime}-D 11.4 \times D 11.4 \end{gathered}$	0.2289
c	$\begin{aligned} & \text { \#3 @ 31/2" Ctrs. } \\ & \text { \#4 @ } 6^{1 / 2} \text { ctrs. } \\ & \text { \#5 @ 10" Ctrs. } \end{aligned}$	0.37	\#4 @ 4" Ctrs. \#5 @ 61⁄2" Ctrs. \#6 @ $9^{1 / 2 / 2}$ Ctrs.	0.555	3"×3"-W8.5×W8.5 $4^{\prime \prime} \times 4^{\prime \prime}-$ W $11.4 \times$ W 11.4 $6^{\prime \prime} \times 6^{\prime \prime}-W 17.1 \times W 17.1$	0.3415	$\begin{gathered} 3^{\prime \prime} \times 3^{\prime \prime}-D 7.9 \times D 7.9 \\ 4^{4} \times 4^{\prime \prime}-D 10.6 \times D 10.6 \\ 6^{\prime \prime} \times 6^{\prime \prime}-D 15.9 \times D 15.9 \end{gathered}$	0.3171
D	\#4 @ 41/2" Ctrs. \#5 @ 7" Ctrs. \#6 @ 10" Ctrs	0.53	\#4 @ $3^{\prime \prime}$ ctrs. \#5 @ 41/2" Ctrs. \#6 @ 6 ¹/2" Ctrs.	0.795	$3^{\prime \prime} \times 3^{\prime \prime}-$ W $12.2 \times$ W 12.2 $4^{\prime \prime} \times 4^{\prime \prime}-$ W $16.3 \times$ W 16.3 6"x6"-W24.5xW24.5	0.4892	$3^{\prime \prime} \times 3^{\prime \prime}-D 11.4 \times D 11.4$ $4^{4 \prime} \times 4^{\prime \prime}-D 15.1 \times D 15.1$ $6^{\prime \prime} \times 6^{\prime \prime}-\mathrm{D} 22.7 \times \mathrm{D} 22.7$	0.4543
E	\#4@ 3" ctrs. \#5 @ $5^{\prime \prime}$ Ctrs. \#6 @ 7" Ctrs.	0.73	\#5 @ $31 / 2^{\prime \prime}$ Ctrs. \#6 @ 41/2" Ctrs. \#7 @ $61 / 2$ Ctrs.	1.095	$3^{\prime \prime} \times 3^{\prime \prime}-$ W $16.8 \times$ W 16.8 $4^{\prime \prime} \times 4^{\prime \prime}$-W22.5 WW22.5 $6^{\prime \prime} \times 6^{\prime \prime}-$ W $33.7 \times$ W 33.7	0.6738	$3^{\prime \prime} \times 3^{\prime \prime}-D 15.6 \times D 15.6$ $4^{4 \prime} \times 4^{\prime \prime}-D 20.9 \times D 20.9$ $6^{\prime \prime} \times 6^{\prime \prime}-D 31.3 \times D 31.3$	0.6257
F	$\begin{gathered} \text { \#5 @ 31/2" ctrs. } \\ \text { \#6 @ 5" Ctrs. } \\ \text { \#7 @ } 7^{\prime \prime \prime} \text { ctrs. } \end{gathered}$	1.06	\#6 @ 3" Ctrs. \#7 @ 41/2" Ctrs. \#8 @ $6^{\text {" }}$ Ctrs.	1.59	$3^{\prime \prime} \times 3^{\prime \prime}-W 24.5 \times$ W24.5 $4^{\prime \prime} \times 4^{\prime \prime}-$ W $32.6 \times$ W 32.6 $6^{\prime \prime} \times 6^{\prime \prime}-W 48.9 \times W 48.9$	0.9785	$\begin{aligned} & 3^{\prime \prime} \times 3^{\prime \prime}-D 22.7 \times D 22.7 \\ & 4^{\prime \prime} \times 4^{\prime \prime}-D 30.3 \times D 30.3 \\ & 6^{\prime \prime} \times 6^{\prime \prime}-D 45.4 \times D 45.4 \end{aligned}$	0.9086
Special 2	$\begin{aligned} & \text { \#5 @ 3" Ctrs. } \\ & \text { \#6 @ 4 } 4^{\prime \prime} \text { Ctrs. } \\ & \text { \#7 @ } 5^{1 / 2} \text {. Ctrs. } \end{aligned}$	1.24	$\begin{aligned} & \text { \#7 @ 4" Ctrs. } \\ & \text { \#8 @ } 5^{\prime \prime} \text { Ctrs. } \end{aligned}$	1.86	$3^{\prime \prime} \times 3^{\prime \prime}-W 28.6 \times W 28.6$ $4^{4 \prime} \times 4^{\prime \prime}-W 38.2 \times$ W 38.2 $6^{\prime \prime} \times 6^{\prime \prime}-W 57.2 \times W 57.2$	1.1446	3"×3"-D26.6×D26.6 $4^{\prime \prime} \times 4^{\prime \prime}-D 35.4 \times D 35.4$ $6^{\prime \prime} \times 6^{\prime \prime}-D 53.1 \times D 53.1$	1.0629
G	$\begin{aligned} & \text { \#6 @ } 3^{1 / 2}{ }^{\prime \prime} \text { ctrs. } \\ & \# 7 \text { @ } 5^{\prime \prime} \text { Ctrr. } \end{aligned}$	1.46	$\begin{aligned} & \text { \#7 @ } 3^{\prime \prime} \text { Ctrs. } \\ & \text { \#8 @ 4" Ctrs. } \end{aligned}$	2.19	3" $\times 3^{\prime \prime}-$ W $33.7 \times$ W 33.7 $4^{\prime \prime} \times 4^{\prime \prime}-W 44.9 \times W 44.9$	1.3477	$\begin{aligned} & 3^{\prime \prime} \times 3^{\prime \prime}-D 31.3 \times D 31.3 \\ & 4^{\prime \prime} \times 4^{\prime \prime}-D 41.7 \times D 41.7 \end{aligned}$	1.2514

NOTES:

1. See inlet indexes for optional precast inlet construction details up to depths of 15'
2. Interior dimensions of an Alt. "B" Bottom may be ad justed to reflect these inlet interior
dimensions when precast units are used in conjunction with Alt. "B" Structure Bottoms. dimensions when precast units are used in conjunction with Alt. "B" Structure Bottoms
Index $425-010$.
3. Use concrete meeting the requirements of ASTM C478 or Class IV for precast structures with $6^{\prime \prime}$ wall or slab thickness.
4. Reinforcement may be deformed bar reinforcement or welded wire reinforcement. Bar
reinforcement other than 60 ksi may be used, however only two grades are recogized reinforcement other than 60 ksi may be used, however only two grades are recognized:
Grade 40 and Grade 60 . Smooth welded wire reinforcement will be recognized as having a design strength of 65 ksi and deformed welded wire reinforcement will be recognized
as having a design strength of 70 ksi . The area of reinforcement required as having a design strength of 70 ksi. The area of reinforcement required may be
ad justed in accordance with the Equivalent Steel Area Table provided. Use the following ad justed in accordance with the Equivalent Steel Area Table provided. Use the followi
equations to determine the steel area and spacing for bars not otherwise specified:

$$
\text { Grade } 40 \text { Steel Area }=\text { As } 40=60 / 40 \times \text { As60 }
$$

Smooth Welded Wire Reinforcement Steel Area $=$ As65 $=60 / 65 \times$ As60
Deformed Welded Wire Reinforcement Steel Area $=$ As70 $=60 / 70 \times$ As 60
When a reduced area of reinforcement is provided, any maximum bar spacing shown
must also be reduced as determined by the following equations, unless otherwise shem
Max. Grade 40 Bar Spacing $=$ Grade 60 Bar Spacing
Max. Smooth Welded Wire Spacing $=$ Grade 60 Bar Spacing $\times 0.86$
Max. Deformed Welded Wire Spacing $=$ Grade 60 Bar Spacing $\times 0.74$
When an increased area of reinforcing is provided, the maximum bar spacing may be
increased by the squared ration of increased steel area, but not to exceed $12^{\prime \prime}$:
Max. Bar Spacing Provided $\leq=$ Max. Bar Spacing Required $\times\left(\frac{\text { Steel Area Provided }}{\text { Min. Steel Area Required }}\right)^{2}$ Use wire no smaller than than W3.1 or D4.O, or larger and with spacing $8^{\prime \prime}$ or less. Use bar Use wire no smaler than than wi.1 or D4.0, or larger and with spacing 8" or less. Use bar
reinforcement displaying the minimum yield designation grade mark, or either the number 60 or reinforcement displaying the minimum yield designation grade mark, or either the number 60 or
one (1) grade mark line to be acceptable at the higher value. Use maximum bar spacing no greater
than than two (2) times the slab thickness with a maximum spacing of 12 " or three (3) times the wall thickness, with a maximum spacing of 18 "for vertical bars and $122^{\prime \prime}$ for horizontal bars. Wires
smaller than W3.1 or D4.0 may be used in the walls of ASTM C 478 round structure bottoms smaller than w3. 1
and round risers.
5. Fiber-reinforced concrete may be substituted for conventional steel reinforcement in accordance with the Structures Design Guidelines. Submit shop drawings corresponding to an approved

top slabs to wall joints

NOTES:

1. One or more types of joints may be used in a single structure, except brick wall structure. Brick wall construction is permitted on circular units only.
2. All grouted joints are to have a maximum thickness of $1^{\prime \prime}$.
3. Keyways are to be a minimum of $11 / 2^{\prime \prime}$ deep.
4. Joint dowels are to be \#4 bars, $12^{\prime \prime}$ long with a minimum of 6 bars per joint approximately evenly spaced for circular structures or at maximum 12" spacing for rectangular structures. Bars may be either Adhesive Bonded Dowels in accordance with Specification 416, or placed approximately $6^{\prime \prime}$ into fresh oncrete leaving the remainder to extend into the secondary cast. Welded w equivalent steel area table on Sheet 5 .
5. Minimum cover on dowel reinforcing bars is $2^{\prime \prime}$ to outside face of structure
6. Seal joints between wall segments and between wall segments and top or bottom slabs with preformed plastic gasket material inaccordance with Specification 430 or non-shrink grout in accordance with Specification 934
7. Insert products approved by the Engineer may be used in lieu of dowel embedment

When
Then (Reqd.) $h \geq 0.4 \mathrm{H}$ $h \geq H$ (Min.)

H (Min.) $\leq h \geq 0.4 \mathrm{H}$
NOTES:
8. Segments may pe inverted. Opening for pipe is
the pipe 00 plus $6^{\prime \prime}\left(\pm 2^{\prime \prime}\right.$ tolerance).
9. If h can not be attained, then a top or bottom slaab
must be attached to the segment as shown below.

TABLE 3	
Minimum Value for H	
H (min. $)$	Box or Riser Diameter
$I^{\prime}-0^{\prime \prime}$	$3^{\prime}-6^{\prime \prime} \& 4^{\prime}-0^{\prime \prime}$
$I^{\prime}-6^{\prime \prime}$	$5^{\prime}-0^{\prime \prime} \& 6^{\prime \prime}-0^{\prime \prime}$
$2^{\prime}-0^{\prime \prime}$	$>^{\prime \prime} 6^{\prime}-0^{\prime \prime}$

RISER SEGMENTS OTHER THAN DOWEL \qquad

NOTES:

1. h may be less than $\sigma^{\prime \prime}$ when approved by the Engineer
but not for inlet segments at finish grade elevation.
2. Dowel construction joint or monolithic cast only.

- SEGMENTS for slab to wall dowel construction joints or monolithic cast \qquad
- CONSTRUCTION JOINT OPTIONS \qquad MINIMUM BOX AND RISER SEGMENT DIMENSIONS \qquad

CONSTRUCTION JOINT OPTIONS AND MINIMUM BOX AND RISER SEGMENT DIMENSIONS
N:

24-25
S UPPLEME NTARY DETAILS
index
sheet
11/01/20
FDOTY SY 2024-25 FOR DRAINAGE STRUCTURES

425-001 6 of 8

PLAN VIEW
 for Cast-In-Place Structures or elliptical pipe openings when approved by the Engineer.
\qquad

PLAN VIEW
Lap splice: 20 bar diameter for deformed wire or bar, but not less than vertical wire spacing plus $2^{\prime \prime}$ for WWR or 40 bar diameters for smooth wire $\overline{\bar{Z}}$ MULTIPLE PIPE CONNECTIONS - PRECAST ROUND STRUCTURES \qquad
plan view
multiple parallel pipe connections - Rectangular structures

MISCELLANEOUS PIPE CONNECTION DETAILS

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$		$\begin{gathered} \text { FDOT } 5 \text { 2024-25 } \\ \text { STANDARD PLANS } \end{gathered}$	S UPPLEMENTARY DETAILS FOR DRAINAGE STRUCTURES	$\begin{gathered} \text { INDEX } \\ 425-001 \end{gathered}$	SHEET 8 of 8

