FY 2024-25 STANDARD PLANS FOR BRIDGE CONSTRUCTION

Effective for Projects with Lettings in the Fiscal Year (FY) from

July 1, 2024 through June 30, 2025

ABBREVIATIONS

Abbreviation	Meaning	Abbreviation	Meaning	Abbreviation	Meaning
AASHTO	American Association Of State Highway And Transportation Officials	CSIP	Cost Savings Initiative Proposal	G	Shear Modulus
AC	Alternating Current	CSL	Cross-hole Sonic Logging	g	Gram
Accel.	Acceleration	CTPB	Cement Treated Permeable Base	Ga.	Gauge or Gage
ACI	American Concrete Institute	Ctr., Ctrs.	Center	Galv.	Galvanized
ADA	Americans with Disabilities Act	Cu. Ft.	Cubic Feet	GFI	Ground Fault Interrupter
ADT	Average Daily Traffic	Cu. Yd., cy,	Cubic Yard	GFRP	Glass Fiber Reinforced Polymer
AFAD	Automated Flagger Assistance Device	-----------------	-----------------	Grd.	Ground
AISC	American Institute Of Steel Construction	D	Depth, Distance or Diameter	----------------- H	------------------
AISI	American Iron and Steel Institute	Dia. or \varnothing	Diameter	Hd.	Head
Alt.	Alternate	Db.	Double	H.S., HS	High Strength
Alum.	Aluminum	Decel.	Deceleration	HDPE	High Density Polyethylene
ANSI	American National Standards Institute	Deg.	Degree	Horiz.	Horizontal
AOS	Apparent Opening Size	Dim.	Dimension	HP	Horsepower or H-Pile
APL	Approved Products List	Dist.	Distance	HSHV	High Strength Horizontal Vertical
App.	Approach	DMM	Domestic Mail Manual	---	-----------------
Approx.	Approximate	DPI	Ditch Point Intersection	ID, I.D.	Inside Diameter or Identification
ARTBA	American Road \& Transportation Builders Association	Dt	Ditch	in.	Inch(es)
Asph.	Asphalt	dtoe	District Traffic Operations Engineer	Inc.	Incorporated
Assem.	Assembly	---	-----------------	Int.	Interior
ASTM	American Society For Testing And Materials	e	Superelevation Rate	Inv.	Invert
ATPB	Asphalt Treated Permeable Base	E.P. or EOP	Edge Of Pavement	ITS	Intelligent Transportation Systems
Auxil.	Auxiliary	EA or Ea.	Each	---	---------------
awg	American Wire Gauge	EIA	Electronic Industries Alliance	JCT	Junction
AWS	American Welding Society	El. or Elev.	Elevation	Jt.	Joint
------------	B ----	Embed.	Embedment	------------------ K	---------
Bot.	Bottom	EPDM	Ethylene Propylene Diene Monomer	k	kip
Brkwy.	Breakaway	Eq.	Equation or Equal	kip	1000 Pounds
b / w	Between	Equip.	Equipment	ksi	Kips Per Square Inch
--------	C -----------------	etc.	Et Cetera (And So Forth)	kVA	Kilovolt Ampere
$c \mathrm{C}, \mathrm{c}$ to C	Center to Center	ETP	Electronic Tough Pitch	---	-----------------
$C \& G$	Curb And Gutter	Ex.	Example	L	Length
c.c.	Crash Cushion	Exist.	Existing	LA	Limited Access
CCTV	Closed-Circuit Television	Exp.	Expansion	1 l or lbs.	Pound(s)
CFR	Code of Federal Regulations	Ext.	Extension	lb/sy	Pounds Per Square Yard
CFRP	Carbon Fiber Reinforced Polymer	-----------------	-----------------	$1 b^{\prime}$	Pound force
cfs, CFS	Cubic Feet Per Second	FAC	Florida Administrative Code	LBR	Lime rock Bearing Ratio
CIP, C.I.P. or C-I-P	Cast In Place	FC	Friction Course	LF	Linear Foot (Feet)
CJP	Complete Joint Penetration	Fdn.	Foundation	Lgth.	Length
ckt.	circuit	F.L. or E	Flow Line	Long.	Longitudinally or Longitudinal
q	Center Line	FI.	Florida	LRFD	Load Resistance Factor Design
Cl.	Clearance	FDEP	Florida Department Of Environmental Protection	LRS	Low-Relaxation Strand
CMP	Corrugated Metal Pipe	FDOT	Florida Department Of Transportation	LS	Lump Sum
Con.	Connection	FHWA	Federal Highway Administration	LSD	Lump Sum per Day
conc.	Concrete	FIB	Florida-I Beam	Lt.	Left
Const.	Construct or Construction	F.S.	Florida Statutes		
Cont.	Continuation or Continuous	FS	Far Side		
Corr.	Corrugated	FSB	Florida Slab Beam		
cov.	Cover	Ft.	Foot or Feet		
CP	Concrete Pipe	FTP	Florida Traffic Plans		

ABBREVIATIONS

Abbreviation	Meaning
m	Meter
m^{2}	Meter Square
Mach.	Machine
MAS	Motorist Awareness System
MASH	Manual for Assessing Safety Hardware (AASHTO)
Max.	Maximum
mes	Mitered End Section
M.H.	Manhole or Mounting Height
mHw	Mean High Water
Mid.	Middle
mil or mils	One-Thousandth of An Inch
Min.	Minimum or Minute
Misc.	Miscellaneous
mLW	Mean Low Water
mm	Millimeter
Mod.	Modification
MOT	Maintenance Of Traffic
MPH or mph	Miles Per Hour
MUTCD	Manual On Uniform Traffic Control Devices
N	
N	Standard Penetration Number
NA or N/A	Not Available or Not Applicable
NC	Normal Crown
NCHRP	National Cooperative Highway Research Program
ndCbu	Neighborhood Delivery And Collection Box Unit
NEMA	National Electrical Manufacturers Association
NHW	Normal High Water
No.	Number
Nom.	Nominal
NPS	Nominal Pipe Size
NPT	National Pipe Thread
NS or N.S.	Near Side
NS	Non-Structural
NTS	Not To Scale
--- 0 -----------------	
o.c.	On Center
0 to 0 or 0.0.	Out to Out
o.b.G.	Optional Base Group
OD or O.D.	Outside Diameter
Oz.	Ounce
--------------	----
Pavt.	Pavement
PBR	Pedestrian/Bicycle Railing
PC	Point of Curvature
PCC	Plain Cement Concrete
pcf	Pounds per Cubic Foot
PCMS	Portable Changeable Message Sign
P.E. or PE	Professional Engineer

Abbreviation	Meaning	Abbreviation	Meaning
Pen.	Penetration	St. or ST.	Street
PPB	Pier Protection Barrier	Sta.	Station
PPP	Polypropylene pipe	Std.	Standard
Prest.	Prestressed	Stg.	Strong
PRS	Portable Regulatory Sign	Stl.	Steel
psf	Pounds Per Square Foot	sw	Skewed Angle
PSI or psi	Pounds Per Square Inch	Swk.	Sidewalk
PT	Point of Tangency or Pressure Treated	SYM	Symmetrical
PTFE	Polytetrafluoroethylene	-----	----------------
PVC	Polyvinyl Chloride	Tor t	Thickness, Tangent Distance or Time
		Tan	Tangent
Q	Flow Volume	$T \& G$	Tongue and Groove
Qty.	Quantity	TCP	Traffic Control Plan(s)
-------	----------------	TCZ	Traffic Control Zone
R or Rad.	Radius	Temp.	Temperature or Temporary
Rt.	Right	Theo.	Theoretical
R/W	Right of Way	THW or THWN	Insulation (Flame Retardant, Moisture
RC	Reverse Crown		And Heat Resistant Thermoplastic)
RCP	Reinforced Concrete Pipe	tma	Truck/Trailer Mounted Attenuator
Rd.	Road or Round	tN	Ton
Rdwy.	Roadway	Trans.	Transition or Transverse
Rect.	Reticuline or Rectangular	tTC	Temporary Traffic Control
Ref.	Reference	tVSs	Transient Voltage Surge Suppression
Reinf.	Reinforced or Reinforcement	TX	Transmit
Req. or Reqd.	Required	Typ.	Typical
RGS	Rigid Galvanized Steel	---------------- U	-----------------
RPM	Raised Pavement Markers	UL	Underwriters Laboratories
R / R or $R R$	Railroad	UPS	Uninterruptible Power Supply
RSDU	Radar Speed Display Unit	USPS	United States Postal Service
RU	Rack Unit	Util.	Utilities
RX	Receive	uv	Ultraviolet
----	---------------	--	------------------
Sors	Speed, Spacing or Second	veh.	vehicle
Sch.	Schedule	vert.	Vertical
SHBR	Special Height Bicycle Railing	VPD or Vpd.	Vehicles Per Day
Shidr.	Shoulder	------------	----------------
shw	Seasonal High Water	w	width or wide
SIP	Stay In Place	wT	Weight
SP	Superpave	wwm	Welded Wire Mesh
Spa., Spcg. or Sp.	space(ing)(s)	wWR	Welded Wire Reinforcing
Spec.	Specification	--------	-----------------
sq	Square	Yd.	Yard
Sq. Ft., SF, sf or S.F.	Square Foot	Yr.	Year
sq. in.	Square Inch		
Sq. Yd., SY or S.Y.	Square Yard		
SR	State Road		
FSB	Florida Slab Beam		
Ss	Stainless Steel		

TABLE OF CONTENTS
FY 2024-25 STANDARD PLANS FOR BRIDGE CONSTRUCTION

Plans Index Title

General Construction Operations

e of Traffic

102-200 Temporary Acrow 300 Series Detour Bridge General Notes \& Details
102-201 Temporary Acrow 700xs Series Detour Bridge General Notes \& Details
102-210 Temporary Detour Bridge - Timber Pile Foundations
102-220 Temporary Detour Bridge - Steel H Pile Foundations
102-230 Temporary Detour Bridge - Steel Pipe Pile Foundations
102-240 Temporary Detour Bridge Thrie - Beam Guardrail

Structures

Concrete Structures
400-090 Approach Slabs (Flexible Pavement Approaches)
400-091 Approach Slabs (Rigid Pavement Approaches)
400-289 Concrete Box Culvert Details
400-291 Precast Concrete Box Culverts Supplemental Details
400-292 Standard Precast Concrete Box Culverts
400-510 Composite Elastomeric Bearing Pads - Prestressed Florida-I \& AASHTO Type II Beams
415-001 Bar Bending Details (Steel)
415-010 Bar Bending Details (FRP)
Precast Prestressed Concrete Construction
450-010 Florida-I Beam - Typical Details and Notes
450-036 Florida-I 36 Beam - Standard Details
450-045 Florida-I 45 Beam - Standard Details
450-054 Florida-I 54 Beam - Standard Details
450-063 Florida-I 63 Beam - Standard Details
450-072 Florida-I 72 Beam - Standard Details
450-078 Florida-I 78 Beam - Standard Details
450-084 Florida-I 84 Beam - Standard Details
450-096 Florida-I 96 Beam - Standard Details
450-120 AASHTO Type II Beam
450-199 Prestressed I-Beams Build-Up and Deflection Data
450-210 Florida-U Beam - Typical Details and Notes
450-248 Florida-U 48 Beam - Standard Details
450-254 Florida-U 54 Beam - Standard Details
450-263 Florida-U 63 Beam - Standard Details
450-272 Florida-U 72 Beam - Standard Details
450-299 Florida-U Beams Build-up \& Deflection Data
450-450 Florida Slab Beam Typical Details \& Notes
450-451 12" Florida Slab Beam

Plans Index Title
Index
Precast Prestressed Concrete Construction (Cont.)
450-452
15" Florida Slab Beam
450-453 18" Florida Slab Beam
450-502 Beveled Bearing Plate Details - Prestressed Florida-U Beams
450-511 Bearing Plates (Type I) - Prestressed Florida-I \& AASHTO Type II Beams
450-512 Bearing Plates (Type 2) - Prestressed Florida-I \& AASHTO Type II Beams

Structures Foundations

455-001 Square Prestressed Concrete Piles - Typical Details \& Notes
455-002 Square Prestressed Concrete Pile Splices
455-003 Square Prestressed Concrete Piles - EDC Instrumentation
455-012 - 12" Square Prestressed Concrete Pile
455-014 14" Square Prestressed Concrete Pile
455-018 18" Square Prestressed Concrete Pile
455-024 24" Square Prestressed Concrete Pile
30" Square Prestressed Concrete Pile
455-031 30" Square Prestressed Concrete Pile - High Moment Capacity
455-054 54" Precast/Post-Tensioned Concrete Cylinder Pile
455-060 60" Prestressed Concrete Cylinder Pile
455-101 Square CFRP \& SS Prestressed Concrete Piles - Typical Details \& Notes
455-102 Square CFRP \& SS Prestressed Concrete Pile Splices
455-112 12" Square CFRP \& SS Prestressed Concrete Pile
455-114 14" Square CFRP \& SS Prestressed Concrete Pile
455-118 18" Square CFRP \& SS Prestressed Concrete Pile
455-124 24" Square CFRP \& SS Prestressed Concrete Pile
455-130 30" Square CFRP \& SS Prestressed Concrete Pile
455-154 54" Precast/Post-Tensioned CFRP \& SS Concrete Cylinder Pile
455-160 60" Prestressed CFRP and SS Concrete Cylinder Pile

Bridge Deck Joint

458-100 Expansion Joint System - Strip Seal
458-110 Expansion Joint System - Poured Joint with Backer Rod
Structural Steel and Miscellaneous Metal
460-250 Access Hatch Assembly for Steel Box Sections
460-251 Access Hatch Assembly for Concrete Box Sections
460-252 Access Door Assembly for Steel Box Sections
460-470 Traffic Railing - (Thrie Beam Retrofit) Typical Details \& Notes
460-471 Traffic Railing - (Thrie Beam Retrofit) Narrow Curb
460-472 Traffic Railing - (Thrie Beam Retrofit) Wide Strong Curb Type 1
460-473 Traffic Railing - (Thrie Beam Retrofit) Wide Strong Curb Type 2

TABLE OF CONTENTS

Standard Plans Index
 Index Title

Structural Steel and Miscellaneous Metals (Cont.)
460-474 Traffic Railing - (Thrie Beam Retrofit) Intermediate Curb
460-475 Traffic Railing - (Thrie Beam Retrofit) Wide Curb Type 1
460-476 Traffic Railing - (Thrie Beam Retrofit) Wide Curb Type
460-477 Thrie-Beam Panel Retrofit (Concrete Handrail)
460-490 Traffic Railing - (Rectangular Tube Retrofit)

ost-Tensioning

462-001 Post-Tensioning Vertical Profiles
462-002 Post-Tensioning Anchorage Protection
462-003 Post-Tensioning Anchorage and Tendon Filling Details
Fiber Reinforced Polymer Fender Systems
471-030 Fender System - Prestressed Concrete Piles and FRP Wales

Incidental Construction

Navigation Lights for Fixed Bridges
510-001 Navigation Light System Details (Fixed Bridges)
Metal Pedestrian/Bicycle Railings, Guiderails and Handrails
515-021 Pedestrian/Bicycle Bullet Railing for Traffic Railing
515-022 Pedestrian/Bicycle Bullet Railing Details
515-051 Bridge Pedestrian/Bicycle Railing (Steel)
515-061 Bridge Pedestrian/Bicycle Railing (Aluminum)
oncrete Barriers, Traffic Railing and Parapets
521-404 Guardrail Transitions - Existing Post \& Beam Bridge Railings (Narrow \& Recessed Curbs)
521-405 Guardrail Transitions - Existing Post \& Beam Bridge Railings (Wide Curbs)
521-422 Traffic Railing - (42" Vertical Shape)
521-423 Traffic Railing - (32" Vertical Shape)
521-426 Traffic Railing - (Median 36" Single-Slope)
521-427 Traffic Railing - (36" Single-Slope)
521-428 Traffic Railing - (42" Single-Slope)
521-480 AASHTO Type II Beam
521-481 Traffic Railing - (Vertical Face Retrofit) Narrow Curb
521-482 Traffic Railing - (Vertical Face Retrofit) wide Cur
521-483 Traffic Railing - (Vertical Face Retrofit) Intermediate Curb
521-484 Traffic Railing - (Vertical Face Retrofit) Spread Footing Approach
521-509 Traffic Railing/Noise Wall ($8^{\prime}-0^{\prime \prime}$) - Bridge
521-660 Light Pole Pedestal - Bridge
521-820 27" Concrete Parapet Pedestrian/Bicycle with Bullet Railing
521-825 42" Concrete Pedestrian/Bicycle Railing

Standard Plans Index	Index Title
Fencing - Type R	
550-010	Bridge Fencing (Vertical)
550-011	Bridge Fencing on Parapet (Curved Top)
550-012	Bridge Fencing (Enclosed)
550-013	Bridge Fencing on Barrier (Curved Top))

Traffic Control Signals and Devices
630-010 Conduit Details - Embedded

Signing, Pavement Markings and Lighting

715-240 Maintenance Lighting for Box Girders

STANDARD PLANS

$\begin{gathered} \text { Standard } \\ \text { Plan } \\ \text { Index } \end{gathered}$	Description
102-110	Sheet 2: Updated the ADHESIVE-BONDING MATERIAL SYSTEM Note to "When using adhesive bonding material systems for anchor bolts, use a Type HSHV adhesive meeting the requirements of Section 937 and listed on the APL. Install anchor bolts in accordance with Specification 416. Field testing requirements of Specification 416 do not apply." Sheet 4: Updated the GEOTEXTILE FABRIC Note: "Provide and install Type D-5 geotextile fabric in accordance with Specifications 514 to contain backfill materials behind the barrier units."
102-200	Sheet 2: Changed reference of "Filter Fabric" to "Geotextile". Sheet 3: Changed reference of "Filter Fabric" to "Geotextile".
102-600	Sheet 1: Added symbols legend. Sheet 9: Added left-turn lane closure detail. Quick Reference Sheet: Updated coefficient in Table 8.
102-660	Increase the maximum work zone speed allowed for Option 2 to 45mph.
120-001	Update Note 4 to reference proper testing.
400-010	Sheet 2: Updated the TYPICAL BACK-FILL DETAIL Callout:" Install a continuous $1.5^{\prime} \times 1.5^{\prime}$ drain using clean, broken stone or grave, graded and placed to allow free drainage. Provide and install Type D-3 geotextile in accordance with Specifications 514 around the perimeter to prevent fill from washing out."
400-011	Updated GENERAL NOTES: Note 1 - 3 Updated to active voice. Note 5 - Updated "Joint Seal: Provide and install organic bond breaker or Type D-5 geotextile in accordance with Specifications 400 and 514, respectively." Note 6 - Updated reference from Specification 985 to Specification 514. Changed all references of "Geotextile Fabric" to "Geotextile". Changed all references of "Section" to "Specification".
400-289	Sheet 5: Changed the location of the main reinforcing in Detail J and K to be at the correct point of the radius to maximize the effectiveness of the reinforcing; Changed callout "Filter Fabric" to "Geotextile" in DETAIL "B". Sheet 6: Changed callout "Filter Fabric" to "Geotextile" in DETAIL "L". Sheet 7: Changed callout "Filter Fabric" to "Geotextile" in DETAIL "L" and DETAIL " N ". Sheet 8: Changed all references "Filter Fabric" to "Geotextile" and changed Specification reference of 985 to 514 in the ASPHALTIC CONCRETE BASE detail.

$\begin{gathered} \text { Standard } \\ \text { Plan } \\ \text { Index } \\ \hline \end{gathered}$	Description
400-291	All Sheets: Changed all references of "Filter Fabric" to "Geotextile".
400-292	Sheet 1: Changed all references of "Filter Fabric" to "Geotextile". Sheet 7: Changed all references of "Filter Fabric" to "Geotextile".
415-010	Sheet 1: Added hook styles to the reinforcing list.
425-001	Sheet 1: Updated the Table of Contents to reflect title change on Sheet 3. Sheet 3: Added Note "Wrap with geotextile in accordance with Specification 514."to the PIPE TO STRUCTURE FILTER FABRIC WRAP detail; Changed all references of "Filter Fabric" to "Geotextile". Sheet 4: Added Note 4 "Install Type D-3 geotextile in accordance with Specifications 514." to the SUMP BOTTOM detail.; Changed all references of "Filter Fabric" to "Geotextile".
425-031	Sheet 1: General Note 5 altered to specify "If Alternate G grate is specified in the Plans, field installation of a roller bar is not permitted."
425-052	Moved the note about slot placement from the non-traversable inlet details to General Notes. The note and requirement should apply to all the inlets that have slots.
430-001	Sheet 1: Updated Table of Contents to reflect title change on Sheet 3. Sheet 2: In the ROUND CONCRETE PIPE DETAIL, Deleted Notes 1 and 2; Added New Note 1 "Locate the last full wrap of reinforcement within 3 inches of the spigot shoulder and meet ASTM C76 for round pipe."; Updated all Note references; Updated detail to show 3" "Max" dimension. In the ELLIPTICAL CONCRETE PIPE JOINT DETAIL, Added New Note 1 "Locate the last full wrap of reinforcement within 3 inches of the spigot shoulder and meet ASTM C507 for elliptical pipe."; Updated new Note 2 to "Type D-3 Geotextile Jacket is required on both type of joints."; Updated Note 3 to "Details shown before joint is homed."; Added "3" Max (See Note 1)" callout and dimension to both details. Sheet 3: Updated Note 2 "Install Type D-3 geotextile in accordance with Specification 514. Install securing device to hold the geotextile jacket on to the pipe."; Changed all references of "Filter Fabric" to "Geotextile".

STANDARD PLANS

FY 2024-25 REVISIONS LOG

Standard Plan Index	Description
430-012	Sheet 1: Added GENERAL Note 5 "Install Type D-2 geotextile fabric in accordance with Specifications 514." Sheet 2: Changed all references of "Filter Fabric" to "Geotextile".
430-022	General Note 1: Added "or use manufacturer approved coupler" on the end. General Note 2: Added "metal" between corrugated and mitered. Delete "either."
440-001	Sheet 1: Updated Note 5 "Install Type D-3 geotextile fabric in accordance with Specification 514."; Changed all references of "Filter Fabric" to "Geotextile". Sheet 2: Changed all references of "Filter Fabric" to "Geotextile". Sheet 3: Changed all references of "Filter Fabric" to "Geotextile".
443-001	Sheet 1: Updated Note 3 "Install Type D-3 geotextile fabric in accordance with Specification 514."; Changed all references of "Filter Fabric" to "Geotextile". Sheet 2: Changed all references of "Filter Fabric" to Geotextile.
446-001	Sheet 1: Updated Note 4 "Provide and install Type D-3 geotextile fabric in accordance with Specifications 514."; Changed all references of "Filter Fabric" to Geotextile. Sheet 3: Moved Note 3 to General Note 4 on Sheet 1; Renumbered Notes; Updated Note references in callout; Changed all references of "Filter Fabric" to "Geotextile". Sheet 4: Moved Note 3 to General Note 4 on Sheet 1; Renumbered Notes; Updated Note references in callout; Changed all references of "Filter Fabric" to "Geotextile".
450-511	Sheet 1: Changed Dimension L to account for the skew angle; Added Dimension " L " on plan; Added note clarifying negative dimension for AASHTO Beam anchor studs.
455-001	Sheet 1: Corrected typo in Note 6.
455-031	Sheet 1: Changed the location of the dowels; Deleted part of note 2 not allowing for corrugated galvanized metal pipe forms.

Standard Plan Index	Description
455-154	Sheet 1: Corrected Note 3 language for clarity.
455-400	Sheet 1: Changed the "PLASTIC FILTER FABRIC" Note in the SHEET PILE DESIGN CRITERIA AND NOTES to "GEOTEXTILE: Provide and install Type D-2 or D-3 geotextile in accordance with Specifications 514. Extend the geotextile to the bottom of the "X" dimension."; Changed all references of "Filter Fabric" or "Plastic Filter Fabric" to "Geotextile".
455-440	Sheet 1: Changed the "PLASTIC FILTER FABRIC" Note in the SHEET PILE DESIGN CRITERIA AND NOTES to "GEOTEXTILE: Provide and install Type D-2 or D-3 geotextile in accordance with Specifications 514. Extend the geotextile to the bottom of the "X" dimension."; Changed all references of "Filter Fabric" or "Plastic Filter Fabric" to "Geotextile".
458-110	Sheet 1: Changed annotation about form material to indicate it should be removed completely.
509-070	Sheet 1: Change General Note 5, Class VI to 3-4; Delete Type V and Type VI from Traffic Control Devices for Flush Shoulder Roadway Details. Sheet 3: Change 12'-5'" min in PLAN; Change 51" Max to 57" Min in Median Section at Signal Gates Detail.
521-001	Sheet 2: Revised note 5 to accommodate "shoulder rocking".
521-510	Sheet 4: Corrected reinforcing steel estimated quantities.
521-511	Sheet 1: Updated references to notes. Sheet 3: Corrected reinforcing steel estimated quantities.
521-513	Sheet 2: Corrected reinforcing steel estimated quantities.
521-650	Sheet 1: Table 1 - Changed the column headings to "Top of Pedestal Height (Ft.)" and "Luminaire Mounting Height"; Note 10 - Added Index 521-611 reference. Sheet 3: Detail "A" - Added minimum depth for base plate; Added new Anchor Plate Detail.

STANDARD PLANS

$\left.\begin{array}{|c|c|}\hline \begin{array}{c}\text { Standard } \\ \text { Plan } \\ \text { Index }\end{array} & \begin{array}{r}\text { Description } \\ \hline 524-001\end{array} \\ \begin{array}{rl}\text { Sheet 1: Updated GENERAL NOTE } 5 \text { "Select appropriate geotextile } \\ \text { based on the application type referenced in Specification } 985 \\ \text { and install in accordance with Specification 514 under all } \\ \text { ditch pavement except for miscellaneous asphalt." }\end{array} \\ \text { Sheet 2: Changed "Filter Fabric" to "Geotextile" in Table 1. }\end{array}\right\}$

Standard Plan Index	Description
$641-020$	Sheet 2: Added note allowing additional strand pattern and updated associated tables. Sheet 3: Added a new strand pattern.
$646-001$	Added Note 6, "In lieu of footing design shown, a Spread Footing may be used in accordance with index 700-120."
$649-010$	Sheet 1: Changed phrase from "full-penetration groove" to "complete joint penetration; Changed note 1 and revised Section A-A to add clarity to anchor bolt nuts.
Sheet 3: Changed weld detail to say "CJP."	

STANDARD PLANS

FY 2024-25 REVISIONS LOG

Standard Plan Index	Description
695-001	Sheet 1: Added modem antenna to cabinet; Removed "furnished separately" from Backplane callout; Moved J1 Mounting Bracket Details to Sheet 18; Added Table of Content; Updated Note 1D from "J1" to "P1"; Updated Note 4 to read "Provide and install Speed/Classification Unit, Modem, and Antenna."; Updated Note 5 to be consistent with other sheets; Updated Note 6 to read "Provide and install a 12-fiber single mode cable, a 12-port patch panel, and a managed field Ethernet switch." Titled sheet Continuous Count Station Traffic Monitoring Site - TTMS/CCS." Sheet 2: Added modem antenna to cabinet; Removed "furnished separately" from Backplane callout; Updated Note 1D from "J1" to "P1"; Updated Note 4 to read "Provide and install Speed/Classification Unit, Modem, and Antenna."; Update Note 5 to be consistent with other sheets; Updated Note 6 to read "Provide and install a 12-fiber single mode cable, a 12-port patch panel, and a managed field Ethernet switch." Titled Sheet "Continuous Count Station Traffic Monitoring Site TTMS/CCS"; Changed Veh. Sensor Term. Strip to Piezo Sensor Terminal Strip. Sheet 3: Titled sheet for Continuous Count Station Traffic Monitoring Site - TTMS/CCS - Cabinet Backplane Details; Updated "Cnte" callout to "Cntr". Sheet 4: Titled sheet for Continuous Count Station Traffic Monitoring Site - TTMS/CCS; Titled details "Pinout Chart, Receptacles, and Plug Details"; Corrected Equipment Cable Plug table to P1. Sheet 5: Added "Traffic Flow" in each lane; Updated Note \#3 to read "Twist loop leads at the rate of 8 to 16 twists per foot. Extend the twisted pair loop wire directly to the cabinet. No splicing of the loop leads will be permitted." Deleted Note \#6; Moved DETAILS 'A' THRU 'C' to Sheet 18; Titled sheet "Continuous Count Station Traffic Monitoring Site TTMS/CCS - Lane Layout for TTMS/CCS Inductive Loop and Axle Sensors"; Updated callouts to specify "non weight" axle sensors; Renumbered notes. Sheet 6: New Sheet 11 - Weigh-In-Motion Monitoring Site -Redeveloped to show Lane Layout for TTMS/CCS Inductive Loop and Weigh-In-Motion Sensors. NEW Sheet 6: - Short Term Traffic Monitoring Site - PTMS - Cabinet Layout Details (Four Lanes or Less). Sheet 7: Deleted Sheet.

Standard Plan Index	Description
695-001 Cont.	Sheet 8: New Sheet 19 - Non-Intrusive Vehicle Sensor; Added Note 4 "Cabinet, ground rod pull box, and maintenance service slab installed per Index 676-001, except cabinet center will be 4 feet above grade."; Added Maintenance Service Slab and Pull Box for ground rod to the ELEVATION detail. NEW Sheet 8: Short Term Traffic Monitoring Site - PTMS - Lane Layout for TMS Inductive Loop and Axle Sensors. Sheet 9: New Sheet 20 - Added Title "Solar Power Pole with Pole Mounted Cabinet and Pedestal Mounted Cabinet Details"; Updated Note 1 to read "Cabinet, ground rod pull box, and maintenance service slab installed per Index 676-001, expect cabinet center will be 4 feet above grade."; Added Maintenance Service Slab and Pull Box for ground rod to the two ELEVATION details; Deleted ground rod clamps and added exothermic weld call out; Updated the DETAILS lettering sequence. NEW Sheet 9: Weigh-In-Motion Monitoring Site - Cabinet Layout Details (Four Lanes or Less). Sheet 10: New Sheet - Weigh-In-Motion Monitoring Site - Cabinet Backplane Details. Sheet 11: New Sheet - Previous Sheet 6. Sheet 12: New Sheet - Non-Motorized Monitoring Site - Cabinet Layout Details. Sheet 13: New Sheet - Non-Motorized Monitoring Site - Cabinet Sideplane and Cabinet Backplane Details. Sheet 14: New Sheet - Non-Motorized Monitoring Site - Narrow Side Path Configurations. Sheet 15: New Sheet - Non-Motorized Monitoring Site - Large Shared Use Path Configurations. Sheet 16: New Sheet - Non-Motorized Monitoring Site - Extra Large Shared Use Path Configurations. Sheet 17: New Sheet - Non-Motorized Monitoring Site - Paved Sidewalk Configuration. Sheet 18: New Sheet - Details 'A' thru ' F '. Sheet 19: New Sheet - Previous Sheet 8. Sheet 20: New Sheet - Previous Sheet 9.
700-010	Sheet 5: Change minimum Driven Post Hole Diameter to $12^{\prime \prime}$ and added Note 2 about an alternate post hole shape. Sheet 9: Changed second sign from top on 3rd column (right column from 2 digit US Shield to 3 digit US Shield. Changed sign image.

Standard Plan Index	Description
700-011	Changed the first column to have sign size of Width \times Height rather than Height x Length. The four dimensions under the heading will need to be reversed to make this change complete.
700-020	Sheet 1: Revised bolts in the Hanger Beams to show correctly; Changed all reference of length to width and depth to height. Sheet 2: Added Foundation Notes to allow for precast concrete foundation with an octagon shape as a substitute for the circular shaped foundation shown. Sheet 3: Revised bolts in the Hanger Beams to show correctly; Changed all reference of length to width and depth to height.
700-030	Sheet 1: Corrected CADD error not showing the bolts in the Hanger Beams correctly; Added Ianguage to Detail B bolt call out to clarify number of bolts required; Changed all reference of length to width and depth to height.
700-090	Sheet 4: Changed weld detail to say "CJP."
700-101	Add reflective strip to post on WWD sign Case X.
700-102	For signs G20-1 and G20-2 changed the dimension from height x width to width x height (4' $\times 2^{\prime}$).
700-110	Added missing callout; Added additional callouts for clarity: Changed all reference lengths to width to keep consistent with MUTCD.
700-120	Sheet 3: New Sheet - Spread Footing Foundation Sheet 12: New Sheet - Roadside Sign Assembly - 9 Sheet 13: New Sheet - Roadside Sign Assembly - 10 Sheet 14: New Sheet - Roadside Sign Assembly - 11
711-003	Sheet 1: Deleted 18" white hash marks.
715-001	Sheet 1: Deleted the "Access Panel" drawing and added a "Pole Base" callout on the 'Metal Pole Wiring Detail'. Added the "Access Door" drawing and a "Pole Base" callout on the 'Metal Pole Detail'.

Standard Plan Index	Description			
$715-002$	Sheet 4: Added Shaft Foundation Note 3 to allow for concrete			
foundation with an octagon shape as a substitute for the				
circular shaped shaft that's shown.		$	$	Sheet 5: Added new structural grout pad details to the plan and
:---				
section view. Added new note 9 to explain structural grout				
pad construction and reference specification.				

GENERAL NOTES:

This Index is only applicable to the current FDOT inventory of temporary bridge component which are manufactured in accordance with Acrow Series 300 , Triple Single design.

Work this Index with Index 102-210, 102-220, 102-230 and 102-240.
structural steel:
Steel Plates and Rolled Sections shall be ASTM A709 Grade 36
Pipe piles shall be ASTM A252 Grade 2, Fy = 35 ksi .
BOLTS, LAG SCREWS AND THREADED BOLT STOCK:
Furnish high strength bolts in accordance with ASTM F3125 Grade A325 Type 1. Furnish Threaded
Stock in accordance with Stock in accordance with ASTM A36. Furnish Lag Screws in accordance with ASTM A30
timber and Lagging:
fimber and Lagging shall be No. 1 Southern Yellow Pine.
backwall bent piles:
Timber Piles:
10^{\prime} Minimum Embedment into compacted backfill or into soil having a blow count greater than $6(N>6)$. Ultimate Capacity greater than 18 tons. Splices are not allowed on any timber piles.

H-Piles
12' Minimum Embedment into compacted backfill or into soil having a blow count greater than $6(N>6)$.
Ultimate Capacity greater than 18 tons.
shims admissible between backwall pile and cap
Test piles are not required for backwall piles.
expansion bearings:
Inspect the PTFE (Teflon) layer and stainless steel plate prior to installation
Do not use bearings that have a severely damaged or unbonded PTFE layer. Cean PTFE of all grit and grime prior to installation.
lean Stainless steel plate of all ard grime prior to installation and finish to a smooth buffed surface.
distributing beams:
Longitudinal stops restraining the distributing beams may be lengthened or shortened to Center the distributing beam bearing on the cap beam
The longitudinal stops are to bear on the distributing beam end frame.
expansion joint settings:
Install the expansion joint considering the total continuous bridge length, location of fixed bearings and ambient temperature at the time of installation, assume a $1^{\prime \prime}$ expansion joint opening at 7
storage facility.
Contact
FDOT Statewide Aluminum Shop 2590 Camp Rd.
Oviedo, F1.
$407-278-2727$
For shipping weights and dimensions of Temporary Bridge elements.
SHIPPING WEIGHTS AND DIMENSIONS:
Decking Sizes:

Type	Length	Width	Weight (Ibs)
Curb	5^{\prime}	6'-9"	800
Curb	10^{\prime}	6'-9"	1420
Curb	15^{\prime}	$6^{\prime}-9{ }^{\prime \prime}$	2200
Curb	20^{\prime}	6'-9"	2800
NonCurb	5^{\prime}	5'-3"	650
NonCurb	10^{\prime}	5'-3"	1000
NonCurb	15^{\prime}	5'-3"	1600
NonCurb	20^{\prime}	5'-3"	2100

Shipping weights and dimensions of other bridge components can be
AFFIC RAILING NOTES:
See Index 536-001 for component details, geometric layouts and associated notes not fully Colat
CONCRETE: Concrete for Transition Blocks shall be Class II (Bridge Deck).
THRIE-BEAM PANEL: Steel Thrie-Beam Elements shall meet the requirements of AASHTO M180, Type II (Zinc coated). BOLTS, NUTS AND WASHERS: Bolts, nuts and round washers shall be in accordance with
AASHTO M180. Plate Washers shall be in accordance with ASTM A36 or ASTM A709 Grade 36 Do not drill Temporary Bridge components to attach Guardr
placed between Truss members as shown in Index 102-240.
COATINGS: All Nuts, Bolts, Anchors, Washers and Backer Plates shall be hot-dip galvanized in accordance with the Specifications.

WOOD BLOCKS: All wood blocks, incluading required wedge shaped blocks shall be Pressure Treated Lerlin in accordance with Specifications Section 955. Bolt holes in blocks to be

PAYMENT:
Temporary Detour Bridge is to be paid for under Contract Unit Price for Special Detour. If a temporary bridge system other than that shown herein is used, the Contractor is responsible for renting or purchasing their own system. Payment for Temporary Guardrai Furnish and install Bridge Thrie-Beam Panels and all associated hardware as shown.
Payment will be made with the Temporary Detour Bridge under the Pay Item Special Detour, Ls. Turn over Bridge Thrie-Beam Paners and all associated har.

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 22 \end{gathered}$	20 DESCRIPTION:	$\begin{array}{cc} \text { FDOT } \\ \text { FY 2024-25 } \\ \text { STANDARD PLANS } \end{array}$	TEMPORARY ACROW 300 SERIES DETOUR BRIDGE GENERAL NOTES AND DETAILS

ELEVATION VIEW

GENERAL NOTES:

This Index is only applicable to the current FDOT inventory of temporary bridge components
which are manufactured in accordance with Acrow Series $700 \times S$ three Lane $24^{\prime}, 36^{\prime}$, and 42^{\prime} w
which are manufactured in accordance with Acrow Series 700xs three Lane $24^{\prime}, 36^{\prime}$, and 42^{\prime} widths.

Work this Index with Index 102-210, 102-220 and 102-230
structural steel

$$
\text { Steel Plates shall be ASTM A709 Grade } 36 \text {. }
$$

EXPANSION BEARINGS:
Inspect the PTFE (Teflon) layer and stainless steel plate prior to installation Clean PTFE of all grit and grime prior to installation.
Clean Stainless steel plate of all grit and grime prior to installation and finish to a mooth buffed surface
distribution beams:
Distribution beam stops restraining the distribution beams may be lengthened or shortened to center the distributing beam bearing on the cap beam.

EXPANSION JOINT SETTINGS
Install the expansion joint considering the total continuous bridge length, location of fixed bearings and ambient temperature at the time of installation, assume a 2" expansion joint opening at 70 degrees F, (Expansion joint depends on span/bridge
age facility:
Contact
FDOT Statewide Aluminum Shop
2590 Camp Rd.
Oviedo, FI.
$407-278-2727$
For shipping weights and dimensions of Temporary Bridge elements.
Contractor to coordinate with Storage Facility and Acrow to obtain required parts list. Shipping weights and dimensions of other bridge components can be
别
approach traffic railing notes:
Index 536-001 for component details, geometric layouts and associated notes not fully detailed herein.
CONCRETE: Concrete for Transition Blocks shall be Class II (Bridge Deck).
THRIE-BEAM PANEL: Steel Thrie-Beam Elements shall meet the requirements of AASHTO M180, Type II (Zinc coated).
BOLTS, NUTS AND WASHERS:
Bolts, nuts and round washers shall be in accordance with AASHTO M180. Plate Washers shall be in accordance with Bridge components to attach Guardrail. Guardrail Bolts shall be placed between Truss members as shown in Index 102-240

COATINGS: All Nuts, Bolts, Anchors, Washers and Backer Plates shall be hot-dip galvanized in accordance with the Specifications.

WOOD BLOCKS: All wood blocks, including required wedge shaped blocks shall be Pressure Treated Lumber in accordance with Specifications Section 955. Bolt holes in blocks to be centered ($\pm 1 / 4$)

PAYMENT:

Temporary Detour Bridge is to be paid for under Contract Unit Price for Special Detour.
If a temporary bridge system other than that shown herein is used, the Contractor is responsible for renting or purchasing their own system. Payment for Temporary Guardrail work and Transition Block will
be made under Pay Item Temporary Guardrail LF

Furnish and install Bridge Thrie-Beam Panels and all associated hardware as shown. Payment will be made with the Temporary Detour Bridge under the Pay Item Special Detour, LS. Turn over Bridge Thrie Specifications Section 102-6.
 TRUSS CONFIGURATION (Truss configuration depends on design Live load, Span, and width of bridge)

REINFORCING CHORD 20'-O" TOP \& BOTTO
USE CHORD BOLTS

BEARING BLOCK
WITH BEARING
TYPICAL ELEVATION VIEW
reinforcina
REINFORCING
CHORD END CHORD END
(TOP \& BOTTOM) DIAGONAL BRACE
USE BOLTS

$\underset{\text { LAST }}{\text { REVISION }}$
Z DESCRIPTION:

TABLE 1				
Swaybrace / Transom Brace				
Bridge Roadway width (ft)	Transom	Swaybrace Part \# (Single)	Swaybrace Part \#\# (Double)	Transom Brace Part \#
24	SC0017	AB590	AB515	AB519
36	AB957	AB891	AB891	AB519
42	AB978	AB979	AB979	AB519

TABLE 4			
Bridge Roadway width (ft)	Transom Part \#	(x) \& to inner inner truss	(y) Transom Beam Length
24	SC0017	$26^{\prime}-1^{\prime \prime}$	$31^{\prime}-4^{\prime \prime}$
36	AB957	$38^{\prime}-43 / 16^{\prime \prime}$	$43^{\prime}-731 / 6^{\prime \prime}$
42	AB978	$44^{\prime}-43^{\prime \prime}$	$49^{\prime}-73^{\prime \prime}$

TABLE 7		
Bridge Roadway width (ft)	Transom Part \#	(x \& inner truss to inner truss
24	SC0017	$26^{\prime}-1^{\prime \prime}$
36	$A B 957$	$38^{\prime}-43 / 6^{\prime \prime}$
42	$A B 978$	$44^{\prime}-43 /^{\prime \prime}$

TABLE 3		
Bridge Roadway width (ft)	Transom Part \#	(b) Height Bottom of Truss Chord to top of Transom
24	$5 C 0017$	$285 / 16^{\prime \prime}$
36	$A B 957$	$40 / 16^{\prime \prime}$
42	AB978	$43^{\prime \prime}$

TABLE 5		
Bridge Roadway width (ft)	Transom Part \#	(b) Height Bottom of Truss Chord to top of Deck
24	SC0017	$333^{1 / 16^{\prime \prime}}$
36	$A B 957$	$459 /{ }^{\prime \prime}$
42	AB978	$483 / 8^{\prime \prime}$

LAST	¿ DESCRIPTION:
REVISION	ก

PLAN VIEW

\qquad

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 07 / 01 / 06 \end{gathered}$	20 DESCRIPTION:	$\begin{array}{cc} \text { FDOTY 2024-25 } \\ \text { STANDARD PLANS } \end{array}$	TEMPORARY DETOUR BRIDGE TIMBER PILE FOUNDATIONS	$\begin{gathered} \text { INDEX } \\ 102-210 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 3 \end{aligned}$

PLAN VIEW

hold down strap assembly detail

CAP butt splice plate detail

- BACKW ALL BENT DETAILS $=$

partial elevation showing thrie-beam panels at expansion joint

> THRIE-BEAM EXPANSION PANEL DETAIL

LAST REVISION $07 / 01 / 15$	\ DESCRIPTION:	$\begin{array}{cc} \text { FDOT 2024-25 } \\ \text { STANDARD PLANS } \end{array}$	TEMPORARY DETOUR BRIDGE THRIE-BEAM GUARDRAIL

GENERAL NOTES

. SURFACE TREATMENT: Apply a Class 4 Floor Finish (Grooved) to the riding surface from begin or end approach slab joint
to begin or end bridge. See Bid Item Notes. Apply a broomed finish to sidewalk areas. 2. CONDUIT: If required, see Structures Plans for Conduit details. 3. When a longitudinal construction joint is necessary or allowed
by the Engineer, the transverse steel shall be extended as by the Engineer, the transverse steel shall be extended as
shown in the Longitudinal Construction Joint Detail.
4. The plan view for CASE 1 applies when the skew ande
($(1)=0^{\circ}$. Relevant details also apply to CASE 2 .
5. The plan view for CASE 2 applies where the skew angle (0) is $>0^{\circ}$. The slab shown represents a skew to the right
for an approach slab at begin bridge; approach slab at the end of bridge or a left skew shall be treated similarly. The shown reinforcement shall be utilized, and Dowe/s provided
in accordance with Index $350-001$ and $370-001$. 6. Deformed WWR must meet the requirements of
6. Deformed Section 931 .
7. PROFILOGRAPH
7. PROFILOGRAPH: If profilograph requirements apply, planing may be required. The permitted construction joint shown in
Section A-A will facilitate the placement of the expansion join
8. Approach slabs shown in Plan View Cases 1 and 2 represent a typical approach slab with edge barriers and no sidewalks. Provide railings, parapets, traffic separators and sidewalks
as detailed on the additional approach slab sheets. as detailed on the additional approach slab sheets.
9. PAYMENT: Deformed WWR for the edge of Approach
on retaining walls is not included in the estimated quantity for reinforcing steel and is considered incidental to to te work. See
Roadway Plans for Optional Base details and quantities.

CROSS REFERENCES:

For Section B-B, Longitudinal Construction Jint Detail and Approach Slab Details see Sheet 2.

NOTES:
. See Contract Plans for Culvert Location,
Culvert Skew Angle and Roadway Cross Section. location of construction joint. See Detail C (Sheet 5).

\qquad

OUTSIDE WALLS OF BOXES
SECTION B-B
\Longrightarrow FLARED WINGWALL
 SECTION C-C

INTERIOR DOUBLE WALLS OF BOXES

NOTES:

1. The Box Culvert Data Tables and Reinforcing Bar List do not include the additional quantities needed for dowel connections or transitions from double walls of existing
concrete box culverts; the cost for additional reinforceent concrete wall in the the cost for additional reinforcement and the thickened steel in the culvert transitional area shall be included in the costs for concrete and
2. Cost for removal and disposal of material from existing headwalls, wingwalls and box and cost of cleaning, straightening and extending or doweling longitudinal reinforcing
extension.
3. Remove existing colctite and straighten existing reinforcement lap and tie onto extension reinforcement 4. Dowel in \#4 Bars @ 1^{\prime}--0" max. spacing into wall/slab when there is a single mat of existing reinforcing steel, otherwise splice $1^{\prime}-66^{\prime \prime}$ as shown for inside reinforcement. Use an Adhesive Bonding Material System in accordance with Specifications Section $416 \& 937$
for top and bottom slab, parallel and full width
4. See Box Culvert Data Table notes in Plans for Connection Types allowed.

INTERIOR SINGLE WALLS OF BOXES

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 23 \end{gathered}$	20 DESCRIPTION:	$\begin{gathered} \text { FY 2024-25 } \\ \text { FDOTANDARD PLANS } \end{gathered}$	CONCRETE BOX CULVERT DETAILS	$\begin{gathered} \text { INDEX } \\ 400-289 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 6 \text { of } 8 \end{aligned}$

\rightarrow DOUBLE WALLS OF BOXES

INTERIOR SINGLE WALLS OF BOXES PLAN VIEWS

Roughened face of Existing
Headwall or Wingwall (See Note Wrap Geotextile around
Construction Joint (2'-0" Min. Width)

DETAIL "L" - TRANSITION FOR EXTERIOR WALL/SLAB EXTENSION
(Interior Single Walls Similar)
TYPE II CONNECTION DETAILS FOR CONCRETE BOX CULVERT EXTENSIONS
(ADHESIVE DOWEL TO EXISTING CONCRETE)

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 23 \end{gathered}$	20 DESCRIPTION:	FDOT) FY 2024-25	CONCRETE BOX CULVERT DETAILS	$\begin{gathered} \text { INDEX } \\ 400-289 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 7 \text { of } 8 \end{aligned}$

LINK SLAB TYPICAL SECTION

 (Multiple Barrel Culvert shown, Single Barrel Culvert similar)* Install dowels with an Adhesive Bonding Material System in accordance with Specification Section 416. The Contracto bonded dowels. Shift dowels to clear box culvert reinforcing.

1. Provide a Cast-In-Place Link Slab to ensure uniform joint opening of precast box culverts when the differential xcept that a Link Slab is not required for differential settlements less than $1 / 2$.

$$
\Delta Y \leq \frac{(L)^{2}}{760 \times R}
$$

Where:
$\Delta Y=$ Maximum Long-Term Differential Settlement (ft.) $R=$ Exterior height of Box Culvert (ft.)
$W=$ Length of Box Culvert Segments (ft.)
$W=$ Length of Box Culvert Segments (ft.)
$L=$ Effective length for single curvature deflection (ft.)
2. Extend Link Slab to back face of headwalls and to limits
existing box culverts for extensions.

ESTIMATED LINK SLAB QUANTITIES		
ITEM	UNIT	QUANTITY
Class II or IV Concrete (Culvert)	CY/SF	0.0216
Reinforcing Steel (Roadway)	Lb./SF	1.52

NOTE: Estimated quantities are based the plan area of precast box slabs, and are provided for information only.
No additional layment will be made for Link Slabs where these are required for the precast box culverts.

M	4	As Reqd.	As Reqd.
REINFORCING STEEL BENDING DIAGRAMS			

NOTES:
2. Lap splice length for Bars 4 M is $1^{\prime}-4^{\prime \prime}$ minimum.
dESIGN NOTE:

1. Link Slab required when joint openings from differential settlement exceed as determined in Link Slab Note 1

VIEW J-J

SChematic longitudinal section (NEW CONSTRUCTION)

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 23 \end{array}$	DESCRIPTION:	$\begin{array}{cc} \text { FDOT 2024-25 } \\ \text { STANDARD PLANS } \end{array}$	PRECAST CONCRETE BOX CULVERTS - S UPPLEMENTAL DETAILS

GENERAL NOTES
These precast designs may be substituted for cast-in-place box culverts designed
to AASHTO LRFD Bridge Design Specifications. 4th Edition. Designs are based on the design criteria shown in FDOT Structures Design Guidelines.
2. Loading: HL-93 \& any fill heights between the minimum \& maximum shown.
3. Only one design of precast box culvert is to be used for any installation
4. Reinforcing steel must consist of smooth or deformed welded wire reinforcement einforcement may consist of reinforcing bars meeting the requirements of Specification Section 931. Minimum cover must be 2"for slightly or moderately aggressive environments or $3^{\prime \prime}$ for extremely aggressive environments, unless nor more than $4^{\prime \prime}$. The spacing of longitudinal wires or bars must not be more than $8^{\prime \prime}$.
5. As9 Congituainal wires must have a minimum cross-sectional area of 40% of the deformed bars
6. Welding of reinforcement must be limited to the locations shown in ASTM C1577 and in accordance with ANSI/AWS D1.4 "Structural Welding Code - Reinforcing Steel.
7. For alternate reinforcing configuration Options 2 and 3 shown in Detail " A " and "B" (Sheet 1), As1 may be extended to the middle of either slab and lap spliced with As7 and As8. As4 may b
or As3 at corners by welding.
8. Haunch dimensions may vary between the minimum and maximum dimensions shown in the Design Tables but only one haunc
the full length of the box culvert installation.
9. Submittal of redesign calculations are not required for any increase to the slab and/or wall thickness when the minimum reinforcement areas shown in the Desig
2. For Design Earth Cover greater than 10 feet, the Contractor may interpolate the required areas of reinforcement and slab or wall thickness. Interpolated areas
11. Minimum length of precast box segments is 4 feet and maximum length is 16 feet
12. See Index 400-291 for connections to wingwalls, headwalls and other general details.

SCHEMATIC OF LAP SPLICE LOCATIONS FOR OPTION $2 \& 3$ REINFORCING CONFIGURATIONS

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 07 / 01 / 13 \end{gathered}$	DESCRIPTION:	$\begin{gathered} \text { FY 2024-25 } \\ \text { FDTANDARD PLANS } \end{gathered}$	STANDARD PRECAST CONCRETE BOX CULVERTS	$\begin{gathered} \text { INDEX } \\ 400-292 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 4 \text { of } 14 \end{aligned}$

NOTES:

1. See
Sheet
1 for Reinforcing Details and dimension locations.
2. See Sheet 2 for General Notes
3. See Sheet 14 for WWR Bending Diagram
\square

TABLE 8 - Standard PRECAST BOX CULVERT DESIGNS (2"COVER) - 12' SPANS

$\begin{gathered} \hline \begin{array}{c} \text { SPAN } \\ \text { (S) } \\ \text { RISE } \\ \text { RIS } \end{array} \\ (\mathrm{Ft} .) \end{gathered}$	SLAB / WALL THICKNESS				DESIGNEARTH COVERABOETOP SLAB	REINFORCEMENT AREAS (sq. in./Ft.)								$\begin{gathered} \hline \text { As1 EXT. } \\ \text { LENGTH } \\ \text { (M) } \\ \text { (in.) } \end{gathered}$	
	$\begin{array}{\|l\|l\|} \hline T O P \\ \text { (Tt) } \\ \text { (in.) } \\ \hline \end{array}$	$\begin{aligned} & \text { BOT. } \\ & \text { (Tb) } \\ & \text { (in.) } \end{aligned}$	$\begin{gathered} \text { SIDE } \\ (T w) \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \text { HAUNCH } \\ \text { (H) } \\ \text { (in.) } \end{gathered}$											
						As1	As2	As3	$\frac{A s 4}{0.29}$	$\begin{array}{\|l\|} \hline A s 5 \\ \hline 0.29 \\ \hline \end{array}$	$\begin{aligned} & \hline A s 7 \\ & \hline 0.47 \end{aligned}$	$\frac{A 58}{0.49}$	As9		
$12^{\prime} \times 4^{\prime}$	12	12	12	to 12	$0.33^{\prime}-<2^{\prime}$	0.52	0.57	0.45							
					$2^{\prime}-<3^{\prime}$	0.52	0.57	0.45	0.15	-	-	-			
					$3^{\prime}-<5^{\prime}$	0.50	0.54	0.45	0.15	-	-	-			
					$5^{\prime}-10^{\prime}$	0.50	0.52	0.52	0.15	-	-	-			
					15^{\prime}	0.63	0.61	0.59	0.15	-	-	-			
					20^{\prime}	0.82	0.81	0.77	0.15	-	-	-			
	12.5	12.5	12	$\begin{gathered} 8 \text { to } \\ 12 \\ \hline \end{gathered}$	25^{\prime}	0.99	0.99	0.95	0.15	-	-	-			
	14	14	12		30^{\prime}	1.03	1.15	1.11	0.15	-	-	-			
$12^{\prime} \times 6^{\prime}$	12	12	12	4 to 12	$0.33^{\prime}-<2^{\prime}$	0.47	0.62	0.51	0.29	0.29	0.42	0.46		-	
					$2^{\prime}->3^{\prime}$	0.47	0.62	0.51	0.15	-	-	-		66	
					3^{\prime} - < 5^{\prime}	0.45	0.60	0.51	0.15	-	-	-		59	
					$5^{\prime}-10^{\prime}$	0.47	0.59	0.59	0.15	-	-	-		59	
					15^{\prime}	0.57	0.68	0.66	0.15	-	-	-		53	
					20^{\prime}	0.74	0.90	0.86	0.15	-	-	-		53	
	12.5	12.5	12	$\begin{gathered} 8 \text { to } \\ 12 \end{gathered}$	25^{\prime}	0.88	1.11	1.06	0.15	-	-	-		53	
	14	14.5	12		30^{\prime}	0.92	1.27	1.24	0.15	-	-	-		53	
$12^{\prime} \times 8^{\prime}$	12	12	12	4 to 12	0.33' - <2'	0.44	0.67	0.56	0.29	0.29	0.40	0.44		-	
					2^{\prime} - < 3^{\prime}	0.44	0.67	0.56	0.15	-	-	-		66	
					$3^{\prime}-<5^{\prime}$	0.41	0.64	0.56	0.15	-	-	-		59	
					$5^{\prime}-10^{\prime}$	0.45	0.63	0.64	0.15	-	-	-		59	
					15^{\prime}	0.56	0.75	0.73	0.15	-	-	-		53	
					20^{\prime}	0.72	0.98	0.95	0.15	-	-	-		53	
	12.5	13	12	$\begin{gathered} 8 \text { to } \\ 12 \\ \hline \end{gathered}$	25^{\prime}	0.85	1.20	1.16	0.15	-	-	-		53	
	14	14.5	12		30^{\prime}	0.89	1.38	1.35	0.15	-	-	-		53	
$12^{\prime} \times 10^{\prime}$	12	12	12	4 to 12	$0.33^{\prime}-<2^{\prime}$	0.44	0.71	0.60	0.29	0.29	0.39	0.44		-	
					$2^{\prime \prime}-<3^{\prime}$	0.44	0.71	0.60	0.15	-	-	-		73	
					3^{\prime} - < 5^{\prime}	0.42	0.68	0.60	0.15	-	-	-		66	
					$5^{\prime}-10^{\prime}$	0.47	0.67	0.69	0.15	-	-	-		59	
					15^{\prime}	0.59	0.81	0.81	0.15	-	-	-		53	
					20^{\prime}	0.75	1.06	1.04	0.15	-	-	-		53	
	12.5	13	12	$\begin{gathered} 8 \text { to } \\ 12 \end{gathered}$	25^{\prime}	0.87	1.30	1.26	0.15	-	-	-		53	
	14	14.5	12		30^{\prime}	0.92	1.47	1.45	0.15	-	-	-		53	
$12^{\prime} \times 12^{\prime}$	12	12	12	to 12	$0.33^{\prime}-<2^{\prime}$	0.46	0.74	0.64	0.29	0.29	0.40	0.46		-	
					$2^{\prime \prime}-3^{\prime}$	0.46	0.74	0.64	0.20	-	-	-		93	
					$3^{\prime}-<5^{\prime}$	0.42	0.72	0.64	0.20	-	-	-		80	
					$5^{\prime}-10^{\prime}$	0.54	0.71	0.74	0.18	-	-	-		73	
					15^{\prime}	0.66	0.87	0.89	0.15	-	-	-		59	
					20^{\prime}	0.83	1.14	1.13	0.15	-	-	-		59	
	12.5	13	12	$\begin{gathered} 8 \text { to } \\ 12 \end{gathered}$	25^{\prime}	0.96	1.39	1.37	0.15	-	-	-		53	
	14	14.5	12.5		30^{\prime}	1.05	1.56	1.56	0.15	-	-	-		53	

LAST REVISION $07 / 01 / 13$		$\begin{array}{cc} \text { FDOT 2024-25 } \\ \text { STANDARD PLANS } \end{array}$	STANDARD PRECAST CONCRETE BOX CULVERTS	$\begin{gathered} \text { INDEX } \\ 400-292 \end{gathered}$	SHEET 6 of 14

NOTES:

1. See Sheet 2 for General Notes.
2. See Sheet 14 for WWR Bending Diagrams.

NOTES:

1. See Sheet 2 for General Notes
2. Sheet 7 for Reinforcing Details and dimension locations
3. See Sheet 14 for WWR Bending Diagrams.

LAST REVISION $07 / 01 / 13$		$\begin{gathered} \text { FY 2024-25 } \\ \text { FTANDARD PLANS } \end{gathered}$	STANDARD PRECAST CONCRETE BOX CULVERTS	$\begin{gathered} \text { INDEX } \\ 400-292 \end{gathered}$	$\begin{gathered} \text { SHEET } \\ 10 \text { of } 14 \end{gathered}$

TABLE 13B - STANDARD PRECAST BOX CULVERT DESIGNS (3" COVER) - 9' SPANS

$\begin{array}{\|cc\|} \hline \text { SPAN } \times \begin{array}{c} \text { RISE } \\ (S) \\ \\ (R) \\ (F t .) \end{array} \\ \hline \end{array}$	SLAB / WALL THICKNESS				DESIGNEARTH COVERABOVETOP SLAB	REINFORCEMENT AREAS (sq. in./Ft.)								$\begin{gathered} \hline \text { AS1 EXT. } \\ \text { LENGTH } \\ \text { (M) } \\ \text { (in.) } \end{gathered}$
	$\begin{aligned} & \begin{array}{l} \text { TOP } \\ \text { (Tt) } \\ \text { (in.) } \end{array} \end{aligned}$	$\begin{aligned} & \text { BOT, } \\ & \text { (Tb) } \\ & \text { (in.) } \end{aligned}$	$\begin{array}{\|c} \hline \text { SIDE } \\ (T w) \\ \text { (in.) } \end{array}$	$\begin{gathered} \text { HAUNCH } \\ \text { (H) } \\ \text { (in.) } \end{gathered}$										
						As 1	As2	As3	As4	As5	As7	As8	As9	
$9^{\prime} \times 5^{\prime}$	10	10	10	to 12	0.33' - <2'	0.49	0.65	0.57	0.24	0.24	0.40	0.48		-
					$2^{\prime}-<3^{\prime}$	0.49	0.65	0.57	0.12	-	-	-		54
					$3^{\prime}-<5^{\prime}$	0.46	0.54	0.53	0.12	-	-	-		49
					$5^{\prime}-10^{\prime}$	0.52	0.50	0.51	0.12	-	-	-		49
					15^{\prime}	0.75	0.74	0.75	0.12	-	-	-		44
					20^{\prime}	0.98	1.01	1.00	0.12	-	-	-		44
	10	10.5	10	$\begin{gathered} 8 \text { to } \\ 12 \end{gathered}$	25^{\prime}	1.21	1.27	1.19	0.12	-	-	-		44
	11	11.5	10		30^{\prime}	1.30	1.36	1.30	0.12	-	-	-		44
$9^{\prime} \times 6^{\prime}$	10	10	10	4 to 12	$0.33^{\prime}-<2^{\prime}$	0.48	0.68	0.60	0.24	0.24	0.39	0.48		-
					2^{\prime} - < 3^{\prime}	0.48	0.68	0.60	0.12	-	-	-		54
					$3^{\prime}-<5^{\prime}$	0.45	0.57	0.56	0.12	-	-	-		49
					$5^{\prime}-10^{\prime}$	0.52	0.53	0.56	0.12	-	-	-		49
					15^{\prime}	0.74	0.79	0.81	0.12	-	-	-		44
					20^{\prime}	0.97	1.07	1.07	0.12	-	-	-		44
	10	10.5	10	$\begin{gathered} 8 \text { to } \\ 12 \end{gathered}$	25^{\prime}	1.18	1.35	1.28	0.12	-	-	-		44
	11	11.5	10		30^{\prime}	1.27	1.44	1.38	0.12	-	-	-		44
$9^{\prime} \times 7^{\prime}$	10	10	10	to 12	$0.33^{\prime}-<2^{\prime}$	0.49	0.70	0.63	0.24	0.24	0.39	0.49		-
					2^{\prime} - < 3^{\prime}	0.49	0.70	0.63	0.12	-	-	-		59
					$3^{\prime \prime}-<5^{\prime}$	0.46	0.59	0.59	0.12	-	-	-		54
					$5^{\prime}-10^{\prime}$	0.54	0.57	0.60	0.12	-	-	-		49
					15^{\prime}	0.75	0.84	0.86	0.12	-	-	-		44
					20^{\prime}	0.98	1.13	1.14	0.12	-	-	-		44
	10	10.5	10	$\begin{gathered} 8 \text { to } \\ 12 \\ \hline \end{gathered}$	25^{\prime}	1.18	1.43	1.36	0.12	-	-	-		44
	11	11.5	10		30^{\prime}	1.28	1.52	1.46	0.12	-	-	-		44
$9^{\prime} \times 8{ }^{\prime}$	10	10	10		$0.33^{\prime}-<2^{\prime}$	0.51	0.72	0.65	0.24	0.24	0.39	0.51		-
					2^{\prime} - < $3^{\prime \prime}$	0.51	0.72	0.65	0.12	-	-	-		59
					$3^{\prime \prime}-<5^{\prime}$	0.49	0.61	0.62	0.12	-	-	-		59
					5' -10^{\prime}	0.57	0.60	0.65	0.12	-	-	-		54
					15^{\prime}	0.79	0.89	0.92	0.12	-	-	-		44
					20^{\prime}	1.02	1.20	1.22	0.12	-	-	-		44
	10	10.5	10	$\begin{gathered} 8 \text { to } \\ 12 \\ \hline \end{gathered}$	25^{\prime}	1.21	1.50	1.44	0.12	-	-	-		44
	11	11.5	10		30^{\prime}	1.33	1.59	1.54	0.12	-	-	-		44
$9^{\prime} \times 9^{\prime}$	10	10	10	4 to 12	$0.33^{\prime}-<2^{\prime}$	0.54	0.74	0.68	0.24	0.24	0.41	0.54		-
					2^{\prime} - < 3^{\prime}	0.54	0.74	0.68	0.15	-	-	-		72
					$3^{\prime}-5^{\prime}$	0.53	0.63	0.64	0.13	-	-	-		72
					$5^{\prime}-10^{\prime}$	0.62	0.64	0.70	0.12	-	-	-		59
					15^{\prime}	0.85	0.94	0.99	0.12	-	-	-		49
					20^{\prime}	1.09	1.26	1.29	0.12	-	-	-		49
	10	10.5	10	$\begin{gathered} 8 \text { to } \\ 12 \\ \hline \end{gathered}$	25^{\prime}	1.28	1.56	1.52	0.12	-	-	-		44
	11	11.5	10		30^{\prime}	1.42	1.66	1.66	0.12	-	-	-		44

1. See Sheet 2 for General Notes
2. See Sheet 7 for Reinforcing Details and dimension locations. 3. See Sheet 14 for WWR Bending Diagrams.

NOTES

1. See Sheet 2 for General Notes
2. Sheet for Reinforcing Details and dimension locations.
3. See Sheet 14 for WWR Bending Diagrams.

| LAST REVISION $07 / 01 / 13$ | \|c|cose | $\begin{array}{cc} \text { FDOT } \\ \text { FY 2024-25 } \\ \text { STANDARD PLANS } \end{array}$ | STANDARD PRECAST CONCRETE BOX CULVERTS |
| :---: | :---: | :---: | :---: |

PLAN

TYPICAL SECTION TYPE $D, E \& A A$ PAD

TYPICAL SECTION TYPE $F, G \& A B$ PAD

TYPICAL SECTION TYPE J\&K PAD

* Work this sheet with the appropriate type Bearing Plate Detail (See Bearing Plate Data Table) and
BEARING PAD DATA TABLE in the Structures Plans. See TABLE OF BEAM VARIABLES and BEARING PLATE DATA TABLE in the Structures Plans for
locations where beveled bearing plates are required
** Offset to End of Beam is reduced to 2" for Type K Pad.

PARTIAL PLAN (Beam \& Bearing Skew > 0°) (Use Index 450-511)

PARTIAL PLAN WITH SQUARED END BEAM (Use Index 450-512) (Beam Skew $>0^{\circ}$; Bearing Skew $=0^{\circ}$)

LAST REVISION O7/01/15	包DESCRIPTION:	$\begin{gathered} \text { FD } 5 \text { 2024-25 } \\ \text { STANDARD PLANS } \end{gathered}$	COMPOSITE ELASTOMERIC BEARING PADS - PRESTRESSED FLORIDA-I \& AASHTO TYPE II BEAM

CASE 2
(Special Orientation for Widenings)

SCHEMATIC PLAN VIEWS AT BEAM ENDS
SCHEMATIC END ELEVATIONS OF BEAMS
(Showing Vertical Bevel of Beam End)

BEAM NOTES

Work this Index with the Florida-I Beam Standard Details (Index 450-036 thru 450-096) and the Table of Beam Variables in Structures Plans.
Concrete cover:
Stress Strands N to 10 kips
Place one (1) Bar 5 K or $5 Z$ at each location. Alternate the direction of the ends for each bar . see "ELEVATION AT END OF BEAM" in Standard Details.
. Tie Bars 5 K and 5 IZ to the fully bonded strands in the bottom or center row (see "STRAND ATTERN" on the Table of Beam Variables sheet in Structures Plans).
A. At the Contractor's option, the length of the bottom legs of Bars 5 K and 5 Z may be
B. For deformed WWR, supplemental transverse \#4 bars are permitted to support Piece
$K \& S$ under the cross wires on the bottom row of strands
Place Bars 3C1, 3D1 and 4M1 in beam END 1, and Bars 3C2, 3D2 and 4M2 in bea END 1 and END 2 are shown on the Standard Details "ELEVATION"
. For Beams with vertically beveled end conditions: Place first row of Bars 3C1, 3C2, 3D1, $3 D 2,5 \mathrm{~K}, 5 \mathrm{Y}$ and $5 Z$ parallel to the end of the beam. Progressively rotate remaining bars within the limits of Bars $5 Z$ until vertical by adjusting the spacing at the top of beam up
to a maximum of $1^{\prime \prime}$. For deformed WWR, cut top cross wire and rotate bars as required or to a maximum of $1^{1 "}$. For deformed WWR, cut top cross wire and rotate bars as required or 9. For beams with skewed end conditions:
A. Place end reinforcement parallel to the skewed end of the beam. End reinforcement
is defined as Bars $3 C 1,3 C 2,3 D 1,3 D 2,5 K, 4 M 1,4 M 2,5 Y$ and $5 Z$ placed within the is defined as Bars $3 C 1,3 C 2,3 D 1,3 D 2,5 K, 4 M 1,4 M 2,5 Y$ and $5 Z$ placed within the
B. Beyond the limits of the spacing for Bars 3 C , place Bars $303,5 \mathrm{~K}$ and 4 M 3 perpendicular to the longitudinal axis of the beam. Fan Bars as needed to avoid overlapping bars at the transition to Bars $3 D 3$ and $4 M 3$, and field cut to maintain minimum cover. Provide additional Bars
bars are not included in the "BILL OF REINFORCING STEEL". For placement locations see Skewed Beam End Details for Widening Existing Bridges.
C. Adjust the dimensions of Bars $3 \mathrm{C} 1,3 \mathrm{C}, 3 \mathrm{D1}, 3 \mathrm{D} 2,4 \mathrm{M1}$ and 4 M 2 as shown on the Bending Diagram.
D. WWR is
permitted for end reinforcement Bars 3D1, 3D2, 4M1 and 4M2, use bar reinforcement.
A. Deformed WWR may be used in lieu of Bars 3D, $5 K, 4 M$, and $5 Z$ as shown on the Standard Details; except at skewed ends (see Note 9).
B. Bars 3D1, 302 an 303 may be fabricated as a singte bar with a $11^{\prime \prime \prime}$ minimum spice of the top legs,
exterior strands

1. Embedment of Safety Line Anchorage Devices are permitted in the top flange to accommodate fall 12. For beams with ends that will not be permanently encased in concrete diaphragms, cut wedges and解 "STRAND CUTTING AND PROTECTING DETALL" on Sheet 2. Protect end of wedged recessed strands in accordance with Specification Section 450 .
Holes in the beam web for temporary bracing or shipping devices must be formed prior to casting. Fill holes not meeting all the following criteria in accordance with Specification Section 450
A. The superstructure environmental classification is slightly or moderately aggressive B. Clear cover to adjacent steel reinforcing is l"or greater
C. Hole inside diameter is $2^{\prime \prime}$ maximum
D. Non-metallic non-water absorbing forming materials such as PVC, may be left in place permanently.

Bars 5 K spaced perpendicular
to end of beam @ 3 $1 / 2^{\prime \prime}$.
Skewed Bars 5Z, 4M1 or
4M2 placed with Bars 5 K *

PLAN VIEW (SHOWING TOP
(End 1 Shown, End 2 Similar)
(Bars 5A, 5 \& \& Strands N not shown for clarity)

Bars 5 K spaced perpendicular
to end of beam @ $31 / 22^{\prime \prime}$. Skewed
Bars 5Z, 3D1 or 3D2, 3C1 or
$3 C 2$ placed with Bars $5 \mathrm{~K} *$

Begin WWR Option when
applicable, Pieces D-3
$\& S-1$, see Sheet 2 of
PARTIAL SECTION THRU WEB (SHOWING BOTTOM FLANGE) END 1 Shown, END 2 Similar)
(Bars 5Y, Strands, and Embedded Bearing Plate "A" not shown for clarity)

SKEWED BEAM END DETAILS FOR WIDENING EXISTING BRIDGE
$=$ STRAND CUTTING AND PROTECTING DETAIL $\bar{\square}$

END VIEW

SECTION A-A FOR CONVENTIONAL REINFORCING (Showing Bars 5K, 5Y \& 5Z Only)

ELEVATION AT END OF BEAM
(Flanges Not Shown For Clarity)
(End 1 Shown, End 2 Similar)

sp. with Bars $5 K$
See Note 9)*

Dim. L = Beam Casting Lengt

CONVENTIONAL REINFORCING

BAR BENDING DETAILS						
BILL OF REINFORCING STEEL						
MARK	NOTE					
NUMBERS					\quad SIZE $\left.$	NUMBER
:---:						
REQUIRED		LENGTH				
:---:						
(NOTE 2)	\right\rvert\,					

$\frac{5 A}{5 Y}$ $19^{\prime}-0^{\prime \prime}$ $3^{\prime}-3^{\prime \prime}$ $4 M 1 \& 4 M 2$ $D=3^{\prime}-8^{\prime \prime} / \operatorname{Sin} \varnothing$ $4 M 3$ $3^{\prime}-8^{\prime \prime}$		ARS $3 C 1 \& 3 C 2$
$\begin{gathered} \text { BARS 5A, 4M1, 4M2, } \\ 4 M 3 \& 5 Y \end{gathered}$		

BARS $5 K \& 5 Z$ BARS 3D1, $3 D 2 \& 3 D 3$
NOTES:
A. Work this Index with Index 450-010 - Typical Florida-I Beam Details and Notes and the in Structures Plans.
B. For referenced notes, see Index 450-010, For Dimensions A, B, C, D, L, R\& \& 1 and
number of spaces Si thru S4, see Florida-I number of spaces S1 thru S4, see Florida-I
Beam - Table of Beam Variables in Structures Beam -
Plans.
(Overall Length of Beam along $£$ Beam including length increase as required for Beam placed
on grade and Dim. R to compensate for elastic and time dependent shortening effects) Direction of Stationing

- ${ }^{\text {" }}$ Max.
about \& @ top of Beam)

ALTERNATE REINFORCING STEEL (WWR) DETAILS

* These dimensions are
measured perpendicular
measured perpendicul

END VIEW
ELEVATION AT END OF BEAM
Flanges Not Shown For Clarity)
(End 1 Shown, End 2 Similar)

Dim. $L=$ Beam Casting Length
CONVENTIONAL REINFORCING

$\left|\frac{\sigma^{\prime \prime}}{\text { Min. }}\right|$

$0=90^{\circ}$ for Bars 303

BARS 5K \& 5Z BARS $\frac{A+B}{1^{1-11 / 2^{n}}-3 D 1 \& 3 D 2}$
NOTES
A. Work this Index with Index 450-010-Typica Florida-I Beam Details and Notes and the
Florida-I Florida-I Beam - Table of Beam Variables
. For referenced notes,
C. For Dimensions A, B, C, D, L, R\&V1 and number of spaces Si thru S4, see Florida-I Beam-Table of Beam Variables in Structures
Plans.

$$
\begin{aligned}
& \text { ase as required for Beam placed } \\
& \text { ase }
\end{aligned}
$$

on grade and Dim. R to compensate for elastic and time dependent shortening effects)
'-6" Max. †/ about \& @ top of Beam)

	-_q Beam		
ELEVATION			END 2
DOTY FY 2024-25 STANDARD PLANS	FLORIDA-I 54 BEAM - STANDARD DETAILS	$\begin{gathered} \text { INDEX } \\ 450-054 \end{gathered}$	SHEET 1 of 2

ALTERNATE REINFORCING STEEL (WWR) DETAILS

ALTERNATE REINFORCING STEEL (WWR) DETAILS

BEAM NOTES
Work this Index with the Table of Beam Variables in Structures Plans. All bar bend dimensions are out to out.
Concrete cover: 2 inches minimum.
Strands N: 3/3" \varnothing minimum, stressed to $10,000 \mathrm{lbs}$. each.
$4 K$ or $5 Z$ each location. Alternate the direction of the ends for each
6. Tie Bars $4 K$ and $5 Z$ to the fully bonded strands in the bottom or center row (see "STRAND PATTERN" on the Table of Beam Variables sheet in Structures Plans)
8. For Beams with vertically beveled end conditions:
8. For Beams with vertically beveled end conditions:
A. Place first row of Bars $3 D 1,3 D 2,4 K, 4 Y$ and $5 Z$ parallel to the end of the bean Progressively rotate remaining bars within the limits of Bars $5 Z$ until vertical by adjusting the spacing at the top of beam up to a maximum of 1
B. For deformed en top cross wire and rotate bars as required or reduce end . For beams with skewed end conditions:
A. WWR is not permitted for end reinforcement Bars 3D1, and 302 on skewed ends
B. use bar reinforcement. Place end reinforcement parallel to the skewed end of the beam. End Preinforcement is defined as Bars 3D1, 3D2, 4K, 4Y and 5Z placed within the limits of the spacing for Bars 30 in "ELEVATION AT END OF BEAM".
C. Beyond the limits of the spacing for Bars $3 D$, place Bars $4 K$ perpendicular to the longitudinal axis of the beam. For placement see "SKEWED BEAM END DETAILS 10. Contractor Options:
A. Deformed WWR may be used in lieu of Bars 3D, 4K, and $5 Z$ as shown on Sheet 4; except at skewed ends (See Note 9).
B. Bars 301 and 302 may be fabricated as a two-piece bar with a 1'-0" minimum lap
C. For deformed WWR, supplemental transverse \#4 bars are permitted to support \& S under the cross wires on the bottom row of strands or above Strands N.

1. Embedment of Safety Line Anchorage Devices are permitted in the top flange to accommodate fall protection systems. See shop drawings for details and spacing of required anchorage devices. 12. For beams with ends that will not to be encased in concrete diaphragms, cut wedges and recess Prestressing Strands at the end of the beam without damaging the surrounding concrete. See "STRAND
CUTTING AND PROTECTING DETAIL" on Sheet CUTTING AND PROTECTING DETALL" on Sheet 2
Holes in the beam web for temporary bracing or shipping devices must be formed prior to casting A. The superstructure environmental classification is slightly or moderately aggressive B. Clear cover to adjacent steel reinforcing is $1^{\prime \prime}$ or greater
C. Hole inside diameter is $2^{\prime \prime}$ maximum
D. Non-metallic, non-water absorbing forming materials such as PVC, may be left in place permanently.

(Special Orientation for Widenings)
sChematic plan views at beam ends
SCHEMATIC END ELEVATIONS OF BEAMS
(Showing Vertical Bevel of Beam End)

| $\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 18 \end{gathered}$ | \|c|c | DESCRIPTION: | FDOTT | FY 2024-25
 STANDARD PLANS | AASHTO TYPE II BEAM | $\begin{gathered} \text { INDEX } \\ 450-120 \end{gathered}$ | $\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 4 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

For number of Bars, spacing and
Sheet 3 for Conventional Reinforcement,
Sheet 4 for WWR.

PARTIAL SECTION THRU WEB (SHOWING BOTTOM FLANGE) (End 1 Shown, End 2 Similar
(Bars $4 Y$ \& Strands not shown for clarity

SKEWED BEAM END DETAILS FOR WIDENING EXISTING BRIDGES

FOR WELDED WIRE REINFORCEMENT

PARTIAL SECTION AT CENTER BEAM

PARTIAL BEAM END VIEW (Conventional Reinforcing Bars A, Y and Bottom Strands not Shown for Clarity)
notes:
a. See Sheet 3 for placement details \& Table of Beam

Variables in Structures Plans for variables S1, S2, S3,
$54 \& V 1$.
Place Conventional Reinforcement Bars 5A as shown on
Sheet 3. Place additional Bars 4Y as shown in Section A-A for WWR. Bars $5 Z$ will not be used with the WWR Option. Pieces may be fabricated in multiple length sections.
d. For beams with skewed end conditions, Pieces D-1\&D-2 Shall not be used; Conventional Reinforcement Bars D1 \&
D2 shall be used. See Sheet 2 Skew Details and Sheet 1 D2 shall be used. See Sheet 2 Skew Details and Sheet 1
Note 9 for placement details. Shift Pieces $K \&$ Bars $4 Y$ to Note 9 for placement details. Silt Pieces $K \&$ Bars 4 to
accommodate skewed end conditions and align with Bars D.

STANDARD DETAILS
Index Sheet
450-120 4 of 4

BUILD-UP DIAGRAM FOR TANGENT SPANS
(ALONG a BEAM) (CASE 1)

BUILD-UP DIAGRAM FOR SAG VERTICAL CURVE \& HORIZONTAL CURVE SPANS (ALONG a BEAM) (CASE 2)

BUILD-UP DIAGRAM FOR CREST VERTICAL CURVE SPANS - CONTROL AT \& SPAN (ALONG q BEAM) (CASE 3)

BEAM CAMBER AND BUILD-UP NOTES

The build-up values given in the Data Table* are based on theoretical beam cambers. The Contractor shall monitor beam cambers for the purpose of predicting camber values at the time of the deck pour. If the predicted cambers based
on field measurements differ more than +/-1" from the theoretical "Net Beam on field measurements differ more than $+/-1$ - 1" from the theoretical "Net Beam
Camber @ 120 Days" shown in the Data Table*, obtain approval from the Engineer to modify the build-up dimensions as required. When the measured beam cambers create a conflict with the bottom mat of deck steel, notify the Engineer a minimum of 21 days prior to casting.

Dim. "A" includes the weight of the Stay-In-Place Formwork.

DEAD LOAD DEFLECTION DIAGRAM

[^0]Work this Index with the Build-up and Deflection
Data Table for Florida-I and ASHTO Type Data Table for Florida-I and AASHTO Type II Beams in Structures Plans.

CASE 2

CASE 3
\qquad

BEAM NOTES

1. Work this Index with the Florida-U Beam Standard Details (Index 450-248, 450-254 450-263 and 450-272) and the Table of Beam Variables in Structures Plans.
All bar bend dimensions are out-to-out.
2. Concrete cover: 2 inches minimum. Maximum aggregate size is a No. 67
3. Concrete face may be sloped with a maximum 1:24 draft to facilitate formwork removal.
4. Tie Bars 5 K to the fully bonded strands in the bottom row (see "STRAND PATTERN" on the

Table of Beam Variables sheet in Structures Plans).
For beams without skewed ends or vertically beveled end conditions (see Note 8) the
Engineer may approve the use of deformed WWR in lieu of Bars 6A1, 4A2, 5B, 4C, 3D,
$5 \mathrm{E}, 4 \mathrm{~F}, 4 \mathrm{G}, 4 \mathrm{H}, 5 \mathrm{~K}, 5 \mathrm{~L}$ and 4 M . The spacing and sizes of deformed WWR must match reinforcing sizes shown on the Florida-U Beam Standard Details sheets.
8. For Beams with vertically beveled end conditions, where "Dim P" exceeds.
$5 E$, and the first Bars 4 F and 5 K parallel to the end of the beam. Fan the remaining
5E, and the first Bars 4 F and 5 K parallel to the end of the beam. Fan the remaining
Bars 4 F and 5 K within the limits of "Dim. B" (End Diaphragm) at equal spaces until vertical.
9. Embedment of Safety Line Anchorage Devices are permitted in the top flange to
accommodate fall protection systems. See shop drawings for details and spacing of any anchorage devices or other required embedded hardware.
10. Intermediate diaphragms must be cast and concrete release strength obtained prior to removing the beam from casting bed.
. Pace drains pipes adjacent to each web at each beam end (four drains per beam). A. Drain Pipe: 2" NPS Schedule 80 PVC.

Cover, wrap and secure wire screen around the end of the pipe prior to casting.
C. Provide removable pipe plugs during casting. Remove plugs from the inside of pipes after casting.
2. Protection of Strands:

Extend the reeessecess around all strands (including dormant) or strand groups. Extend the recessed blockout to the web face and bottom of the flange for the
bottom row of strands.
After detensioning, cut strands
$1 / 2 "$
from recessed surface and fill the blockout to protect strands with Type F-2 or Q Epoxy Compound in accordance with

Section 926
14. Prior to deck placement, provide temporary blocking under each web at both ends of every beam. Ensure the temporary blocking is adequate to resist movements and rotations during deck placement. Leave temporary blocking and bracing in place for Based on the deck forming system and deck pla any required temporary bracing between the U Beams.

TYPICAL STRAND BLOCKOUT DETAIL $\bar{\square}$

END VIEW AT END DIAPHRAGM

SECTION C-C

pan
BUILD-UP DIAGRAM FOR SAG VERTICAL CURVE \& HORIZONTAL CURVE Spand Span (ALONG \& FLANGE) (CASE 2)

BUILD-UP DIAGRAM FOR CREST VERTICAL CURVE SPANS CONTROL AT \& SPAN
(ALONG q FLANGE) (CASE 3)

BEAM CAMBER AND BUILD-UP NOTES:

he build-up values given in the Data Table* are based on theoretical beam cambers, he Contractor shall monitor beam cambers for the purpose of predicting
camber values at the time of the deck pour. If the predicted cambers based
field measurements differ more than $+/-1 / 2$ " from the theoretical "Net Beam
Camber @ 120 Days" shown in the Data Table*, obtain approval from the Engineer to modify the build-up dimensions as required. When the measured beam cambers create a conflict with the bottom mat of deck steel, notify the Engineer a minimum of 21 days prior to casting.

Dim. "A" includes the weight of the Stay-In-Place Formwork.

DEAD LOAD DEFLECTION DIAGRAM (ALONG \& BEAM)

fabrication notes

1. The abbreviated FSB designation for depth and width is FSB "depth" x width", e.g. FSB 12×48
2. Strands N shall be ASTM A416, Grade 250 or $270,3 / 8 / \varnothing$ or larger strands,
stressed to 10,000 Ibs. each.
3. Unless otherwise noted, the minimum concrete cover for reinforcing steel
shall be $2^{\prime \prime}$.

5hall be $2^{\prime \prime}$. For referenced Dimensions, Angles and Case Numbers, see Florida Slab
Beam - Table of Variabses in Structures Plans.
6. Bars $4 D 1 \& 6 Y 1$ correspond to END 1, and $4 D 2 \& 6 Y 2$ correspond to END 2 . 7. Bars 5 E1 correspond to interior FSBS, and 5E2 correspond to exterior FSB 8. Rake the top surface of the Slab Beams transversely to provide a roughened surface with $1 / 41$ amplitude.
9. Embedment of Safety Line Anchorage Devices are permitted to accommodate full protection systems. See shop drawings for details and spacings.

SCHEMATIC SIDE ELEVATION OF BEAM (Beam on a Positive Grade shown; Beam on a Negative Grade or Horizontal Grade similar.)

SCHEMATIC PLAN VIEWS AT bEAM ENDS

$\begin{array}{\|c\|} \hline \text { LAST } \\ \text { REVISION } \\ \text { 04/01/23 } \end{array}$	DESCRIPTION:	STANDARD PLANS	FLORIDA SLAB BEAM TYPICAL DETAILS AND NOTES	$\begin{gathered} \text { INDEX } \\ 450-450 \end{gathered}$	SHEET 1 of 3

TYPICAL SECTION
(INTERIOR BEAM SHOWN; EXTERIOR BEAM SIMILAR, SEE BARS 5E DETAILS)

NOTES Table of Variables index 450-450 and

For Dimensions C, D, E, L, R, W\&Y and Angle Ø, see Florida Slab Beam - Table of Variables in Structures Plans.
For referenced notes, see Index 450-450, Sheet 1

* For q of outermost strand positions, see corresponding Strand Pattern on Florida Slab Beams - Table of Variables in
Structures Plans.
** At the Contractor's option, the Detail as shown for Interior Beams may be used for Exterior Beams and the Bars 5E field
bent on the exterior side of the Beam to provide the specified cover to the coping line
*** At the Contractor's option, the Optional Exterior Beam Section may be used.

EXTERIOR BEAMS** BARS 5E DETAIL

FLANGE DETAIL
PICAL BOTH SIDES OF FS

* $1 / 2$ " Pad Type K

CROSS REFERENCE
See Sheet 1 for Notes.
\qquad

* 1/2" for Pad Type K

CROSS REFERENCE:
See Sheet 1 for Notes

1-POINT PICK-UP

2-POINT PICK-UP

3-POINT PICK-UP

STORAGE AND TRANSPORTATION SUPPORT DETAILS

Structures Plans
A. Piles: Class V, except use Class VI for High Moment Capacity Pile
B. High Capacity Splice
B. High Capacity Splice Collar: Class V.
C. See "GENERAL NOTES" in the Structures Plans for locations where the use of Highly Reactive Pozzolans is required.
3. Concrete strength at time of prestress transfer
A. Piles: 4,000 psi minimum.
A. Piles: 4,000 psi minimum.
B. High Moment Capacity Piles: 6,500 psi minimum
4. Carbon-Steel Reinforcing:
A. Bars: Meet the requirements of Specification Section 415.
B. Prestressing Strands: Meet the requirements of Specification Section 933.

Protect all strands permanently exposed to the environment and not embedded 5. Spiral Ties:
A. Tie each wrap of the spiral strand to a minimum of two corner strands.
6. One full turn required for spiral splices.
6. Pile Splices: Fill dowel holes and form the joint between pile sections with a Type $A B$
Epoxy Compound in accordance with Specification Section 926 . Use an Epoxy Bonding Compound or an Epoxy Mortar as recommended by the Manufacturer.

	$D=$ Square Pile Size (inches)					Required Storage and Transportation Detail	Pick-Up Detail
	12	14	18	24	30		
Maximum Pile Length (Feet)	48	52	59	68	87	2, 3, or 4 point	1 Point
	69	75	85	98	124	2, 3, or 4 point	2 Point
	99	107	121	140	178	3 or 4 point	3 Point

1. For Sections D-D, E-E, \& F-F see Index 455-012 thru 455-030 for applicable concrete pile size and Pile Splice Reinforcement Details.
2. Prestressing strands, spiral ties and/or reinforcement are not shown for clarity.
3. When pile splices are necessary due to shipping and handling limitations, use the "Drivable Planned Prestressed Precast Splice Detail" or Mechanical Pile Splices on the Approved Products List (APL).
4. When preformed dowel holes are used, continue the $1^{\prime \prime}$ spiral tie pitch to $4^{\prime}-0^{\prime \prime}$ below the head of the pile, See Index 455-018, 455-020 \& 455-024. For preformed holes; use either removable preforming material or stay-in-place corrugated galvanized steel ducts meeting ASTM Specification A653, Coating Designation G90, 26 gauge.
Use 2" diameter ducts with a minimum corrugation (rib) height of 0.12 in. fabricated with either welded or interlocked seams. Galvanizing of welded seams is not required.
5. For tension piles where top of Prestressed Pile is less than 3 feet below Pile Cut-off Elevation, extend No. 10 Dowels into cap beyond Pile Cut-off Elevation to achieve development as approved by the Engineer.

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$		STANDARD PLANS	SQUARE PRESTRESSED CONCRETE PILES EDC INS TRUME NTATION

ALTERNATE STRAND PATTERNS

4~0.6" ब Grade 270 LRS
8~1/2" \emptyset (Special), Grade 270 LRS, at 25 kips
8 ~ $1 / 2$ " 0 , Grade 270 LRS, at 24 kips
8~7/10"の, Grade 270 LRS, at 23 kips
8~ 12 ~ $31^{\circ}{ }^{\circ}$ " \varnothing, Grade 270 LRS, at 16 kips

SECTION D-D
See Non-Drivable Unforeseen Reinforced Precast Pile Splice Detail)

SECTION E-E
See Drivable Unforeseen Prestressed Precast Pile Splice Detail)

PILE SPLICE REINFORCEMENT DETAILS

1. Work this Index with Index 450-001 - Typical Details and Notes for Square Prestressed Concrete Piles and Index 455-002 Square Prestressed Concrete Pile Splices
2. Any of the given Alternate Strand Patterns may be utilized

The strands shall be located as follows:
Place one strand at each corner and place the remaini strands equally spaced between the corner strands
The total strand The total strand pattern shall be concentric with the nominal concrete section of the pile.

ALTERNATE STRAND PATTERNS

$8 \sim 0.6^{\prime \prime} \varnothing$, Grade 270 LRS, at 33 kips
$8 \sim 1 / 2^{\prime \prime} \emptyset$ (Special), Grade 270 LRS, at 31 kips
~ $1 / 2^{\prime \prime}$ Ø, Grade 270 LRS, at 31 kips
12 ~
16 ~3" Ø. Grade 270 LRS, at 16 Kips

SECTION D-D
(See Non-Drivable Unforeseen Reinforced Precast Splice Detail)

SECTION E-E
(See Drivable Unforeseen Prestressed Precast Splice Detail)

PILE SPLICE REINFORCEMENT DETAILS
NOTES

1. Work this Index with Index 455-001 - Typical Details and Notes for Square Prestressed Concrete Piles and Index 455-002 - Square
crete Pile Splices
2. Any of the given Alternate Strand Patter
The strands shall be located as follows

Place one strand at each corner and place the remaining
Place one strand at each corner and place the remain
strands equally spaced between the corner strands.
The total strand pattern shall be concentric with the nominal concrete section of the pile.

ALTERNATE STRAND PATTERNS

12 ~ 0 . ${ }^{\prime \prime}$
$12 \sim 1 / 2^{\prime \prime} \varnothing$ (Special), Grade 270 LRS, at 34 kips $16 \sim 1 / 2^{\prime \prime} \varnothing$ Grade 270 LRS, at 26 kips $20 ~ 7 / 6^{\prime \prime} 0$, Grade 270 LRS, at 21 kips 24 ~ $3 / 8^{\prime \prime} 0$, Grade 270 LRS, at 17 kips

Work this Index with Index 455-001 - Typical Details and Notes for Work this Index with Index 455-001 - Typical Details and Notes
Square Prestressed Concrete Piles and Index 455-002 - Square Square Prestressed Concrete Piles
Prestressed Concrete Pile Splices.
2. Any of the given Alternate Strand Patterns may be utilized

The strands shall be located as follows:
Place one strand at each corner and place the remaining
strands equally spaced between the crer
strands equally spaced between the corner strands.
The total strand pattern shall be concentric with the nominal concrete section of the pile.

** See Note 4 on Index 455-002

ALTERNATE STRAND PATTERNS
$16 \sim 0.6^{\prime \prime} \varnothing$ Grade 270 LRS, at 44 kips $20 \sim 1 / 22^{\prime \prime} \emptyset$ (Special), Grade 270 LRS, at 34 kips $24 \sim^{1 / 2} /^{\prime \prime} 0$ Grade 270 LRS, at 31 kips

NOTES:
Work this Index with Index 455-001 - Typical Details and Notes for Square Prestressed Concrete Piles and Index 455-002 - Square Square Prestressed Concrete Piles
Prestressed Concrete Pile Splices.
2. Any of the given Alternate Strand Patterns may be utilized.

The strands shall be located as follows:
Place one strand at each corner and place the remaining
strands equally spaced between the corne
strands equally spaced between the corner strands.
The total strand pattern shall be concentric with the nominal
concrete section of the pile.

SECTION D-D
(See Non-Drivable Unforeseen Reinforced Precast Pile Splice Detail)

SECTION E-E
See Drivable Prestressed Precast Pile Splice Detaill

ELEVATION

1. Work this Index with the Pile Data Table in the Structures Plans.
2. Concrete:
A. Piles: Class V.
B. Splice: Class IV
C. See "GENERAL NOTES" in Structures Plans for locations where the use of
3. Concrete Strength at time of prestress transfe
A. Piles: 6,000 psi minimum
A. Bars: Meet the requirements of Specification Section 415
A. Bars: Meet ine requds Mer the requirements of Specification Section 933
B.

Tendons: Two seven-wire $1 / 2$ " dia. (Special) Grade 270, low-relaxation strands tensioned to 33.8 kips.
D. Protect all carbon-steel strands permanently exposed to the environment and not
embedded under final conditions in accordance with Specificaion Section 450.
a. One half turn is required for carbon-steel spiral splice
b. One full turn is required at the pile head and tip.
5. Pile Splices:
A. Epoxy: Type $A B$ Epoxy Compound or Mortar must meet the requirements of Specification Section 926.
a. Use a Type AB Epoxy Bonding Compound or Epoxy Mortar, as recommended by the
Manufacturer, to form the joint between pile sections Manufacturer, to form the joint between pile sections
Driving: Resume pile driving after splice concrete reaches a minimum strength of surfaces. 500 ps. 6. Mark piles at the pick-up points to indicate the proper points for attaching handling lines.

\left.| TABLE OF MAXIMUM PILE PICK-UP AND | | |
| :---: | :---: | :---: |
| SUPPORT LENGTHS | | |$\right]$

*The $45^{\prime \prime} \varnothing$ Void in the pile shall be positively vented to water
31/2" Ø Vent Holes at
Head and Tip of Pile
are included in the pile cut-off section, then venting shall
ATION
be provided by the use of a $1^{\prime \prime}$ Ø PVC conduit through the
ELEVATION
substructure cap or column.

2-POINT PICK-UP
PILE PICK-UP DETAILS
Storage and transportation support details

table of maximum pile pick-up and SUPPORT LENGTHS		
Maximum Pile Length (Feet)	Required Storage and Transportation Detail	Pick-Up Detail
122	2, 3, or 4 point	1 Point
174	2, 3, or 4 point	2 Point

```
Work this Idiex with the Pite Data Table in the Structures Plans.
2. Concrete:
    A. Piles: Class V
    A. Splice Collar: Class IV
        See "GENERAL NOTES" in the Structures Plans for locations where the use
        of Highly Reactive Pozzolans is required.
    A. Piles: 4,000 psi minin
    A. Bars: Meet the requirements of Specification Section 415
    B. Prestressing Strands: Use 0.6 dia. carbon-steel,Grade 270, Iow-relaxation strand
    stressed to 44.0 kips that meets the requirements of Specification Section 933
        embedded under final conditions in accordance with Specification Section 450.
    5. Spiral Ties:
    A. One half turn is required for carbon-steel spiral splices
    B. One full turn is required at the head and tip of each pile
    6. Pile Splices:
    A. Epoxy:Type AB Epoxy Compound or Epoxy Mortar must meet the requirements of
        Specification Section 926.
        a. Use a Type AB Epoxy Bonding Compound or Epoxy Mortar, as recommended by
        b. the Manufacturer, to form the joint between pile sections.
        Use a Ty
    B. Splices: Resume pile driving after the splice concrete reaches a minimum strength of
```

Mark piles at the pick-up points to indicate the proper points for attaching handling lines.

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 22 \end{gathered}$	包気DESCRIPTION:	$\begin{gathered} \text { FY 2024-25 } \\ \text { STANDARD PLANS } \end{gathered}$	60" PRESTRESSED CONCRETE CYLINDER PILE	$\begin{gathered} \text { INDEX } \\ 455-060 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 2 \end{aligned}$

a. Stainless Steel: Meet the requirements of Specification Section 931 for Type
the requirements of Specification Section 932.
B. One full turn required for spiral splices.
6. $\begin{aligned} & \text { Pile Splices: Fill dowel holes and form the joint between pile sections with a Type AB Epoxy } \\ & \text { Compound in accordance with Specification Section } 926 \text {. Use an Epoxy Bonding Compound or }\end{aligned}$ 俍

3-POINT PICK-UP PILE PICK-UP DETAILS
2. Concrete:
A. Piles: Class V
B.
B. See "GENERAL NOTES" in the Structures Plans for locations where the use of Highly Reactive Pozzolans is tequired for options using stainless steel strand and reinforcing.
3. Concrete strength at time of prestress transfer
A. Piles: 4,000 psi minimum
4. Reinforcing:
A. Bars: 304, Grade 75
B. Prestressing Strands:
a. Stainless Steel: Seven-wire HSSS, Grade 240
strand, meeting the requirements of Specification Section 933.
5. Spiral Ties: A. Tie each wrap of the spiral strand to a Compound in accordance with Specification Section 926
an Epoxy Mortar as recommended by the Manufacturer.

4-POINT SUPPORT an Epoxy Mortar as recommended by the Manufacturer.

table of maximum pile pick-up and support lengths							
	$D=$ Square Pile Size (inches)					Required Storage and Transportation Detail	Pick-Up Detail
	12	14	18	24	30		
Maximum	48	52	59	68	87	2, 3, or 4 point	1 Point
Len	69	75	85	98	124	2, 3, or 4 point	2 Point
(Feet)	99	107	121	140	178	3 or 4 point	3 Point

TYPICAL PILE SHAPE FOR MOLD FORMS

DETAIL SHOWING TYPICAL COVER

NOTES

1. For Sections D-D, \& E-E, see Index 455-112, 455-114, 455-118, 455-124 or 455-130 for applicable concrete pile size and Pile Splice Reinforcement Details.
2. Prestressing strands, spiral ties and/or reinforcement are not shown for clarity.
3. In cases where pile splices are desired due to length limitations in shipping and/or handling, the "Drivable Preplanned Prestressed Precast Splice Detail" shall be used.
4. When preformed dowel holes are utilized, the $1^{\prime \prime}$ spiral tie pitch shall be continued to 4^{\prime}-0" below the head of the pile, See Index 455-118, 455-124. Preformed holes shall utilize either removable preforming material or stay-in-place corrugated galvanized steel ducts. Stay-in-place ducts shall be fabricated from galvanized sheet steel corrugation (rib) height of 0.12 in. Ducts shall be fabricated with either welded or interlocked seams. Galvanizing of welded seams will not be required.
5. For tension piles where top of Prestressed Pile is less than 3 feet below Pile Cut-off Elevation, extend No. 6 CFRP Bars or No. 10 SS into cap beyond Pile Cut-off Elevation to achieve development as approved by the Engineer.

elevation

ALTERNATE STRAND PATTERNS

$8 \sim 0.6^{\prime \prime} \emptyset$, CFRP 7-Strand, at 31.5 kips
$8 \sim 1 / 2{ }^{\circ}$ Ø. CFRP Single-Strand, at 30.5 kips

SECTION D-D
(See Non-Drivable Unforeseen Reinforced Precast Pile Build-Up Detail)

SECTION E-E
(See Drivable Unforeseen Prestressed Precast Pile Splice Detail)

CFRP PILE SPLICE REINFORCEMENT DETAILS
NOTES:

1. Work this Index with Index 455-101 - Typical Details and Notes for Square CFRP \& SS Prestressed Concrete Piles and Index 455-102
2. Any of the given Alternate Strand Patterns may be utilized
3. Any of the given Alternate Strand Patter
The strands shall be located as follows:

Place one strand at each corner and equally space the
remaining strands between the corner strands.
The total strand pattern shall be concentric with the nominal concrete section of the pile.

ELEVATION

STRAND PATTERN

12 ~ $1 / 2$ " \varnothing, HSSS at 23 kips $8 \sim 0.6^{\prime \prime} \varnothing$, HSSS at 35 kips

SECTION D-D
(See Non-Drivable Unforeseen Reinforced Precast Pile Build-up Detail)

SECTION E-E
(See Drivable Unforeseen Prestressed Precast Splice Detail)

SS PILE SPLICE REINFORCEMENT DETAILS
NOTES:

1. Work this Index with Index 455-101 - Typical Details and Notes for Square CFRP \& SS Prestressed Concrete Piles and Index
.
2. Any of the given Alternate Strand Patter

Place one strand at each corner and place the remaining
Placa one strand at each corner and place the remand
strands equally spaced between the corner strands.
The total strand pattern shall be concentric with the nominal concrete section of the pile.

ALTERNATE STRAND PATTERNS
$12 \sim 0.6^{\prime \prime}$ Ø, CFRP 7-Strand, at 34 kips
12~1/2" Ø, CFRP Single-Strand at 33 kips

NOTES:
Work this Index with Index 455-101 - Typical Details and Notes for
Square CFRP \& SS Prestressed Concrete Piles and Index 455-102
Square CFRP \& SS Prestressed Concrete Pile Splices.
2. Any of the given Strand Patterns may be utilized

The strands shall be located as follows:
Place one strand at each corner and place the remaining
strands equally spaced between the corner strands.
he total strand pattern shall
oncrete section of the pile.

SECTION F-F
divale Preplanned Prestressed Precast Splice Detail)
CFRP PILE SPLICE REINFORCEMENT DETAILS

STRAND PATTERN

$16 \sim 1 / 2 /{ }^{\prime \prime}$, HSSS, at 26 kips
12 ~ $0.6^{\prime \prime}$ Ø. HSSS, at 35 kips

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$		DESCRIPTION:

NOTES:
Work this Index with Index 455-101 - Typical Details and Notes for Square CFRP \& SS Prestressed Concrete Piles and Index
Any of the gquare CFRP \& SS Prestressed Concrete Pile Splices.
The strands shall Strand Patterns may be utilized.
The strands shall be located as follows:
Place one strand at each corner and place the remaining
strands equally spaced between the corner strands. The total strand pattern shall be concentric with the nominal concrete section of the pile.

spiral tie elevation

* See Note 4 on Index 455-102

ALTERNATE STRAND PATTERNS

$16 \sim 0.6^{\prime \prime} \emptyset$, CFRP 7 -Strand, at 42 kips
$20 \sim 1 / 2 \prime$ 日, CFRP Single-Strand, at 35 kips

Notes:
Work this Index with Index 455-101 - Typical Details and Notes for Work this Index with Index 455-101 - Typical Details and Notes
Square CFRP \& SS Prestressed Concrete Piles and Index
455-102-Square CFRP \& SS Prestressed Concrete Pile Splices
2. Any of the given Strand Patterns may be utilized.

The strands stall be located as follows:
Place one strand at each corner and place the remai
strands equally spaced between the corner strands.
Strands equally spaced between the corner strands.
The total strand pattern shall be concentric with the nominal concrete section of the pile.

** See Note 4 on Index 455-102

STRAND PATTERN

$28 \sim 1 / 2$ ø, HSSS at 26 kips $20 \sim 0.6^{\prime \prime} \emptyset$, HSSS at 35 kips

(See Non-Drivable Unforeseen Reinforced Precast Pile Build-Up Detail)

SECTION E-E
See Drivable Prestressed Precast Pile Splice Detail)

SECTION F-F
(See Drivable Preplanned Pile Splice Detail)

1. Work this Index with Index 455-101 - Typical Details and Notes for Work this Index with Index 45 -101- Ty
Square CFRP \& S Prestressed Conctete Piles and Index
455-102-Square CFRP \& SS Prestressed Concrete Pile Splices 455-102-Square CFRP \& SS Prestressed Concret
Any of the given Strand Patterns may be utilized.
The strands shall be located as follows.
Place one strand at each corner and place the remaining
strands equally spaced between the corner strands.
The total strand pattern shall be concentric with the nominal concrete section of the pile.

SS PRESTRESSED PILE DETAILS

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \\ \hline \end{gathered}$		$\begin{gathered} \text { FY 2024-25 } \\ \text { STANDARD PLANS } \end{gathered}$	24" SQUARE CFRP \& SS PRESTRESSED CONCRETE PILE

ELEVATION

LE PICK-UP DETAILS
STORAGE AND TRANSPORTATION SUPPORT DETAILS

	TABLE OF MAXIMUM PILE PICK-UP AND SUPPORT LENGTHS		
	Maximum Pile Length (Feet)	Required Storage and Transportation Detail	Pick-Up Detail
	119	2, 3, or 4 point	1 Point
	170	2, 3, or 4 point	2 Point

the Pile Data Table in the Structures Plans.
2. Concrete:
A. Piles: Class V
C. See "GENERAL NOTES" in Structures Plans for locations where the use of Highly Reactive Pozzolans is required for options using stainless sted strand and reinforcing.
3. Concrete Strength at time of application of the prestressing force:
A. Piles: 6,000 psi minimum
4. Reinforcing:
A. Bars:
a. Stainless Steel: Meet the requirements of Specification Section 931 for Type 304, Grade 75.
Carbon FRP: Me
a. Stainless Steel: Seven-wire HSSS, UNS S32205 (Type 2205) or UNS 53180
strand, meeting the requirements of Specification Section 933.
Carbon FRP. Meet the requirements of Specification Section 933 .
c. Spiral Ties:
a. One half turn is required for carbon steel spiral splice.
5. Pile Splices:

Pile Splices:
A. Epoxy: Type AB Epoxy Compound or Mortar must meet the requirements of
ecification Section 926
Use a Type AB Epoxy Bonding Compound or Epoxy Mortar, as recommended by
. Use a Type AB Epoxy Bonding Compound as a bonding agent on internal pile surfaces.
Driving: Resume pile driving after splice concrete reaches a minimum strength of 5,500 psi.
6. Mark piles at the pick-up points to indicate the proper points for attaching handling lines.

31/2" \varnothing Vent Holes at Head and Tip of Pile
*The $45^{\prime \prime} \varnothing$ Void in the pile shall be positively vented to water
or air after the final pile installation. If the $31 / 2$ " \varnothing vents
are included in the pile cut-off section, then venting shall
be provided by the use of a a 1" \varnothing PVC conduit through the
substructure cap or column.
substructure cap or column.

\left.| TABLE OF MAXIMUM PILE PICK-UP AND | | |
| :---: | :---: | :---: |
| SUPPORT LENGTHS | | |$\right]$

Thickened Slab End

TYPICAL SECTION THRU STRIP SEAL EXPANSION JOINT Begin or End Concrete Girder Bridge shown
Intermediate Supports and Steel Girder Bridge similar. Reinforcing Steel and Girder details not shown for clarity.)

SHOP SPLICE DETAIL

MOVEMENT SCHEMATIC

GENERAL NOTES:

1. Furnish Strip Seal Expansion Joint Systems in accordance with Specification Section 458.
2. Shape of Edge Rall shown is representative, minor variations depending on manufacture
are permitted
 5. Refer to Specification Section 458 for installation and fabrication requirements.

PARTIAL PLAN VIEW OF SKEWED JOINTS

PARTIAL PLAN VIEW OF NONSKEWED JOINTS

PARTIAL SECTION ALONG q JOINT
\qquad JOINT TREATMENT AT HIGH SIDE OF DECK
WITH SLOPE $\geq 1 \%$

(Sidewalk Cover Plate where applicable not shown for clarity)	LAST	DESCRIPTION:
REVISION		

LAST
REVISION
11/01/19

11/01/19

$\left.\begin{aligned} & \left.\begin{array}{l}\text { Expansion } \\ \text { Joint Assembly }\end{array}\right) \mid 6^{\prime \prime} \ldots 6^{\prime \prime}\end{aligned} \right\rvert\, 3^{\prime \prime}$ Max.
PARTIAL SECTION ALONG \& JOINT
\qquad JOINT TREATMENT AT LOW SIDE OF DECK HIGH SIDE OF DECK WITH SLOPE < 1%
(Sidewalk Cover Plate where applicable not shown for clarity)

LExpansion Joint Assembly
partial section along q joint thru traffic separator

UPTURN DETAIL
(TYPICAL AT TRAFFIC BARRIERS AND PARAPETS)

PARTIAL SECTION ALONG \& JOINT
IOINT TREATMENT AT HIGH SIDE OF DECK WITH SLOPES 1% OR GREATER

PARTIAL SECTION ALONG q Joint Joint treatment at traffic separator

Bridge Deck, Approach
Slab or Raised Sidewalk.
PARTIAL SECTION ALONG q JOINT
IOINT TREATMENT AT LOW SIDE OF DECK OR HIGH SIDE OF DECK WITH SLOPES < 1%

Foam Backer Rod (To be sized
for opening per Manufacturer'
recommendations)

Bridge Deck, Approach
Slab, Raised Sidewalk
or Traffic Separator
Bridge Deck, Approach
Slab, Raised Sidewalk
Slab, Raised Sidewalk
or Traffic Separator
TYPICAL SECTION THRU JOINT

PARTIAL PLAN VIEW OF SKEWED JOINTS

This Traffic Raling Retrofit has been structurally evaluated to be equivalent or greater in strength to a design which has been successfully crash tested in accordance with NCHRP Report 350 TL-4 criteria.

CONCRETE: Concrete for Transition Blocks and Curbs shall be Class II (Bridge Deck).
REINFORCING STEEL: Reinforcing steel shall be ASTM A615, Grade 60
THRIE-BEAM GUARDRAIL: Steel Thrie-Beam Elements shall meet the requirements for Class B (10 Gauge) Guardrail of AASHTO M 180, Type II (Zinc coated). The minimum panel length for Thrie-Beam Elements shall be $12^{\prime}-6^{\prime \prime}$. Field drilled holes for Post connections shall be $3 / 4$ " by $2^{1 / /^{\prime \prime}}$ slotted holes.
GUARDRAIL BOLTS: Guardrail bolts, nuts and washers shall be in accordance with AASHTO M180.
GUARDRAIL POSTS AND BASE PLATES: Posts and Base Plates shall be in accordance with ASTM A36 or ASTM A709 Grade 36.
ANCHOR BOLTS, NUTS AND WASHERS: Adhesive-Bonded Anchors and Anchor Bolts shall be fully threaded rods in accordance with ASTM F1554 Grade 105 or ASTM A193 Grade B7. At the Contractor's option, Anchor Bolts for through bolting may be in accordance with ASTM A449. All Nuts shall be single
self-locking hex nuts and in accordance with ASTM A563 or ASTM A194. Flat Washers shall be in accordance with ASTM F436 and Plate Washers (for long slotted holes only) shall be in accordance with ASTM A36 or ASTM A709 Grade 36. After the nuts have been snug tightened, the anchor bolt threads Shall be distorted to prevent removal of the nuts. Distorted threads and the exposed trim
anchors shall be coated with a galvanizing compound in accordance with the Specifications.
COATINGS: All Nuts, Bolts, Anchors, Washers, Guardrail Posts, Anchor Plates and Base Plates shall be hot-dip galvanized in accordance with the Specifications. Guardrail Post Assemblies shall be hot-dip

ADHESIVE-BONDED ANCHORS AND DOWELS: Adhesive Bonding Material Systems for Anchors and Dowels shall comply with Specification Section 937 and be installed in accordance with Specification for $7 /{ }^{\prime \prime}$ Ø anchor bolts; $55,000 \mathrm{lbs}$. for the $11^{1 / 4}$ anchor bolts with $13^{\prime \prime}$ embedment; and 30,500 lbs . for the $11 / 4^{\prime \prime} \varnothing$ anchor bolts with $5^{\prime \prime}$ embedment.

BRIDGES ON CURVED ALIGNMENTS: The details presented in these Indexes are shown for bridges on tangent alignments. Details for bridges on horizontally curved alignments are similar.
POST SPACING: Posts shall be located along the length of the bridge at typical $6^{\prime}-3^{\prime \prime}$ or $3^{\prime}-1 \frac{11 / 2 "}{\prime \prime}$ spaces. Establish post spacing along the bridge and Roadway Guardrail Transition beginning with the Key Post. The variable post spacings located near begin and end bridge may be utilized to optimize the typical post spacing. Variable lengths of guardrail overlap are also permitted to optimize the typical post spacing.

THRIE-BEAM EXPANSION SECTION: Thrie-Beam Expansion Sections shall be installed at locations shown in the Plans. Install nuts for splice bohs finger-tight at $2 / 2$ slots in thrie beam expansion sections. Nuts shall fully engage bolts with a minimum of one bolt thread extending beyond the nuts. Distort the first thread on the outside of the nut to prevent loosening. Tighten guardrail bolts in $33 / 4$ slots at guardrail post(s) that
lie between the slotted expansion splice and bridge deck joint so that the bolt heads are in full contact with thrie-beam elements, but not so tight as to impede movement due to expansion.
BEARING PADS: Provide plain Neoprene pads with a durometer hardness of 60 or 70 and meeting the requirements of Specification Section 932, for ancillary structures,
eLevation markers: Elevation Markers need not be replaced when portions of the existing traffic railing carrying existing elevation markers are removed.

BARRIER DELINEATORS: Install Barrier Delineators at the top of the guardrail offset blocks in accordance with Specification Section 705. Match the Barrier Delineators color (white or yellow) to the near edgeline.
EDESTRIAN SAFETY TREATMENTS: Pedestrian Safety Treatment is required when called for in the Plans. See Index 536-001 for details.

BRIDGE NAME PLATE: If a portion of the existing Traffic Railing is to be removed that carries the bridge name, number and or date, or if the installation of the Traffic Railing (Thrie Beam Retrofit) will obscure the bridge name, number and or date, then replace the information that has been removed or obscured, with $3^{\prime \prime}$ tall black lettering on white nonreflective
sheeting applied to the top of the ad jacent guardrail. The information must be clearly visible from the right side of the approaching travel lane. The sheeting and adhesive backing shall comply with Specification Section 994 and may comprise of individual decals of letters and numbers.
PAYMENT: Payment will be made under Metal Traffic Railing (Thrie-Beam Retrofit) which shall include all materials and labor required to fabricate and install the barrier and lapped guardrail where necessary to maintain post spacing.
Transition Blocks and Curbs, Bridge Name Plate and Barrier Delineators and installation of Elevation Markers, where required, will not be paid for directly but shall be considered as incidental work.

PARTIAL ELEVATION OF INSIDE FACE OF RAILING
MODIFIED POST SPACING AT INTERMEDIATE DECK JOINTS DETAIL FOR INDEX 460-471, 460-475 \& 460-476

PARTIAL ELEVATION OF INSIDE FACE OF RAILING MODIFIED POST SPACING AT INTERMEDIATE DECK JOINTS DETAIL FOR INDEX 460-472, 460-473 \& 460-474

PARTIAL PLAN
INTERMEDIATE JOINT SKEW DETAIL

THRIE-BEAM EXPANSION SECTION

LAST REVISION 01/01/08	DESCRIPTION:	$\begin{array}{cc} \text { FDOT } & \text { FY 2024-25 } \\ \text { STANDARD PLANS } \end{array}$	TRAFFIC RAILING - (THRIE-BEAM RETROFIT) TYPICAL DETAILS \& NOTES	INDEX $460-470$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 3 \end{aligned}$

$8^{\prime \prime} \times 6^{\prime \prime} \times 1^{\prime}-10^{\prime \prime}$ (Nominal) Timber Offset Block $\left(7^{1} / 2^{\prime \prime} \times 5^{1 / 2 " \prime} \times 1^{\prime}-10^{\prime \prime}\right.$
Dressed Dressed Dimensions)
FRONT VIEW

$7^{1 / 2 "}$ Max.	Special
$4^{\prime \prime}$ Min. Offset Block $5^{1 / 2 "}$ Standard Offset Block	

> OFFSET BLOCK NOTES:

1. Offset blocks shall be timber or Approved Alternate. Uniformity of block size and
alignment of guardrail shall be maintained along length of retrofit.
2. Post bolt holes in offset blocks to be
. centered ($\pm 1 / 4^{\prime \prime}$).
3. Timber offset blocks shall be dressed on
all four sides (S4S.
Block assemblies for Special offset Blocks Can be made up of 2 or 3 Special or Standard Offset Blocks, field dressed as required. Pare corner of offset block as required to

SIDE VIEW
$\overline{\bar{Z}}$ OFFSET BLOCK DETAIL $=$

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ \text { O1/01/08 } \end{gathered}$	包DESCRIPTION:	$\begin{gathered} \text { FY 2024-25 } \\ \text { STANDARD PLANS } \end{gathered}$	TRAFFIC RAILING - (THRIE-BEAM RETROFIT) TYPICAL DETAILS \& NOTES

NOTES:

1. On approach end provide Index 536-002 (as shown) or other site specific treatment, see Roadway Plans. For treatment of trailing end see Roadway Plans.
2. Actual joint dimension and orientation vary. For Intermediate Deck Joints use the Modified Post
as required.
3. Areas where existing structure has been removed shall match adjoining areas and shall be finished flat by grouting or grinding as required. Exposed existing reinforcing steel shall be burned off $1^{\prime \prime}$ below existing concrete and grouted over.

CROSS REFERENCES:
For Section A-A see Sheet 2.
For Traffic Railing Notes and Details
see Index $460-470$.

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ \text { O1/01/08 } \end{gathered}$	DESCRIPTION:	$\begin{array}{cc} F Y \text { FDOT } \\ \text { 2024-25 } \\ \text { STANDARD PLANS } \end{array}$	TRAFFIC RAILING - (THRIE-BEAM RETROFIT) NARROW CURB	INDEX $460-471$	SHEET 1 of 4

SECTION A-A
typical section thru railing on bridge deck

SECTION B-B
typical section thru railing along approach slab (SCHEME 2 SHOWN, SCHEME 3 SIMILAR)
*Shim with washers around Anchors as required to maintain tolerance.

Offset may vary $\pm 1^{\prime \prime}$ for Adhesive-Bonded Anchor to clear existing curb reinforcing and provide minimum edge clearance. Offset shall be consistent along length of bridge.

DETAIL "A"

typical section thru existing traffic RAILING SHOWING LIMITS OF REMOVAL (BRIDGE DECK SHOWN, WING WALL SIMILAR)

CROSS REFERENCES:
For location of Section A-A see Sheets $1,3 \& 4$.
For location of Section B-B see Sheets $3 \& 4$.
For application of Dim. A see Post Dimension Tabl
For application of Dim. A see
on Index $460-470$, Sheet 3 .

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ \text { O1/01/08 } \end{gathered}$		STANDARD PLANS	TRAFFIC RAILING - (THRIE-BEAM RETROFIT) NARROW CURB

BILL OF REINFORCING STEEL			BAR BENDING DIAGRAMS
MARK	SIZE	LENGTH	
D	4	$3^{\prime}-7{ }^{\prime \prime}$	$\cdots{ }^{1}-7 \frac{1}{2 \prime \prime} \xrightarrow{5^{\prime \prime}}$
L	4	$4^{\prime}-1{ }^{\prime \prime}$	$\dot{\sigma}^{4}$
M	4	$2^{\prime}-8^{\prime \prime}$	
NOTE:			$=\frac{2^{\prime}-0^{1 / 2 "}}{=}$ DOWEL BAR 4D \qquad BAR 4M

*Shim with washers around Anchors as required to maintain tolerance.
** offset may vary $\pm 1^{\prime \prime}$ for Adhesive-Bonded Anchors to clear existing curb reinforcing and provide minimum edge clearance. Offset shall be consistent along length of bridge.

DETAIL "A"

CROSS REFERENCES:
For location of Section $A-A$ see Sheets $1,3 \& 4$. 4 For location of Section $B-B$ see Sheet
For location of Section $B-B$ see Sheet 4
For location of View $C-C$ see Sheet
For location of View C-C see Sheet 3 .
For application of Dim. A see Post Dimension Table
on Index 460-470, Sheet 3.

NOTES

1. On approach end provide Index 536-002 (as shown) or other site specific treatment, see Roadway Plans. For treatment of trailing end see Roadway Plans.
2. Actual joint dimension and orientation vary. For Intermediate Deck Joints use the Modified Post Spacing at Intermediate Deck Joints Detail, Index 460-470, Sheet 2, as required.
3. Areas where existing structure has been removed shall match adjoining areas and shall be inished flat by grouting or grinding as required. Exposed existing reinforcing steel shall and grouted over.

CROSS REFERENCES:
For Section A-A see Sheet
For Traffic Railing Notes and Details

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ \text { O1/01/O8 } \end{gathered}$		$\begin{gathered} \text { FY 2024-25 } \\ \text { STANDARD PLANS } \end{gathered}$	TRAFFIC RAILING - (THRIE-BEAM RETROFIT) WIDE STRONG CURB TYPE 2

SECTION B-B
TYPICAL SECTION THRU RAILING ALONG APPROACH SLAB (SCHEMES 5 AND 6 SHOWN, SCHEMES 3 AND 4 SIMILAR)

BILL OF REINFORCING STEEL			BAR BENDING DIAGRAMS	
MARK	SIZE	LENGTH		
D	4	3'-7"		
L	4	$4^{\prime}-1{ }^{\prime \prime}$		
M	4	$2^{\prime}-8{ }^{\prime \prime}$		
NOTE:		out to out	DOWEL BAR 4D \qquad BAR 4M	

* Shim with washers around Anchor Bolts and Anchors as required to maintain tolerance.
** Offset may vary $\pm 1^{\prime \prime}$ for Adhesive-Bonded Anchors and Anchor Bolts to clear existing curb reinforcing and provide minimum edge clearance. Offset shall be consistent along length of bridge.

DETAIL "A"

CROSS REFERENCES
For location of Section A-A see Sheet 1,3 and 4.
For location of Sin
For location of Section B-B see Sheet
For location of View C-C see Sheet 3 ,
For Traffic Railing Notes and Details see Index 460-470 For application of Dim. A see Post Dimension Table

SECTION A-A
typical section thru railing on bridge deck

SECTION B-B (SCHEME 2)
TYPICAL SECTION THRU RAILING ALONG APPROACH SLAB
Shim with washers around Anchor Bolts and
Anchors as required to maintain tolerance.
Offset may vary $\pm 1^{\prime \prime}$ for Adhesive-Bonded Anchors to clear existing curb reinforcing and provide minimum edge clearance. Offset
shall be consistent along length of bridge

shall be consistent along length of bridge.

DETAIL "A"

CROSS REFERENCES:
For location of Section A-A see Sheet 1 and 3.
For location of Section B-B see Sheet 3
For application of Dim. A see Post Dimension Table
on Index 460-470, Sheet 3 .

LAST REVISION $07 / 01 / 08$		FDOT\}FY 2024-25 STANDARD PLANS	TRAFFIC RAILING - (THRIE-BEAM RETROFIT) INTERMEDIATE CURB	INDEX $460-474$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 4 \end{aligned}$

partial elevation of inside face of railing
\qquad
railing end treatment for flared wing walls

CROSS REFERENCE:
or application of Dim. A see Post Dimension Table on Index 460-470, Sheet 3.

1. On approach end provide Index 536-002 (as shown) or other site specific treatment, see Roadway Plans. For treatment of trailing end see Roadway Plans.
2. Actual joint dimension and orientation vary. For Intermediate Deck Joints use the Modified Post Spacing a Intermediate Deck Joints Detail, Index 460-470, Sheet 2, as required.
3. Areas where existing structure has been removed shall match adjoining areas and shall be finished flat by grouting or grinding as required. Exposed existing reinforcing steel shall be burned off 1" below existing

CROSS REFERENCES:
For Section A-A see Sheet
For Traffic Railing Notes and Details see Index 460-470

| LAST
 REVISION
 01/01/08 | \|l|l | $\begin{array}{cc} \text { FDOT 2024-25 } \\ \text { STANDARD PLANS } \end{array}$ | TRAFFIC RAILING - (THRIE-BEAM RETROFIT)
 WIDE CURB TYPE 1 | $\begin{gathered} \text { INDEX } \\ 460-475 \end{gathered}$ | SHEET
 1 of 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |

SECTION A-A
typical section thru railing on bridge deck

*Shim with washers around Anchors as required to maintain tolerance.
** offset may vary $\pm 1^{\prime \prime}$ for Adhesive-Bonded Anchors to clear existing curb reinforcing and provide minimum edge clearance. Offset shall be consistent
along length of bridge. along length of bridge.

DETAIL "A"

CROSS REFERENCES:
For location of Section A-A see Sheet $1,3 \& 4$.
For location of Section A-A see Sheet 1,
For location of Section B-B see Sheet 4 .
For
For location of Section B-B see Sheet
For location of View C-C see Sheet 3 .
For location of View C-C see Sheet 3 .
For application of Dim. A see Post Dimension Table
For application of Dim. A see
on Index $460-470$, Sheet 3 .

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ \text { O1/01/08 } \end{gathered}$		STANDARD PLANS	TRAFFIC RAILING - (THRIE-BEAM RETROFIT) WIDE CURB TYPE 1	$\begin{gathered} \text { INDEX } \\ 460-475 \end{gathered}$	SHEET 2 of 4

BILL OF REINFORCING STEEL			BAR BENDING DIAGRAMS
MARK	SIZE	LENGTH	
D	4	3'-7"	$1{ }^{1}-7 \frac{1}{2 \prime \prime} \ldots$
L	4	$4^{\prime \prime}-1{ }^{\prime \prime}$	$\overline{\text { б }}$
M	4	$2^{\prime}-8{ }^{\prime \prime}$	
NOTE:		e out to out	DOWEL BAR 4D \qquad BAR 4M

traffic railing retrofit notes

See Index 536-001 for component details, geometric layouts and associated notes not fully detailed herein.
CONCRETE: Concrete for Transition Blocks shall be Class II (Bridge Deck).
THRIE-BEAM PANEL: Steel Thrie-Beam Elements shall meet the requirements for Class B (10 Gauge) Guardrail AASHTO M 180, Type II (Zinc coated). The minimum panel length for Thrie-Beam Elements shall be 12'-6". Field drilled holes for Post connections shall be $3^{3 / 4}$ by $2^{1 / 2} /^{\prime \prime}$ slotted holes.

BOLTS, NUTS AND WASHERS: Bolts, nuts and round washers shall be in accordance with AASHTO M180. Plate Washers shall be in accordance with ASTM A36 or ASTM A709 Grade 36.
COATINGS: All Nuts, Bolts, Anchors, and Washers shall be hot-dip galvanized in accordance with the Specifications.
BRIDGES ON CURVED ALIGNMENTS: The details presented herein are shown for bridges on tangent alignments. Details for bridges on horizontally curved alignments are similar
thrie-beam expansion Section: Thrie-Beam Expansion Sections shall be installed at locations shown in the Plans Install nuts for splice bolts finger-tight at $2^{1 / 1 / 2}$ slots in thrie-beam expansion sections. Nuts shall fully engage bolts
with a minimum of one bolt thread extending beyond the nuts. Distort the first thread on the outside of the nut to prevent loosening. Tighten bolts in $3^{3 / 4}$ " slots at guardrail post(s) that lie between the slotted expansion splice and
bridge deck joint so that the bolt heads are in full contact with thrie-beam elements, but not so tight as to tight as to impede movement due to expansion.

WOOD BLOCKS: All wood blocks, including required wedge shaped blocks shall be Pressure Treated Lumber in

BRIDGE NAME PLATE: If a portion of the existing Traffic Railing is to be removed that carries the bridge name, number and or date, or if the installation of the Traffic Railing (Thrie-Beam Retrofit) will obscure the bridge name, number and or date, then replace the information that has been removed or obscured, with $3^{\prime \prime}$ tall black lettering on white nonreflective
sheeting applied to the top of the ad jacent guardrail. The information must be clearly visible from the right side of the sheeting applied to the top of the adjacent guardrail. The information must be clearly visible from the right side of the
approaching travel lane. The sheeting and adhesive backing shall comply with Specification Section 994 and may comprise of individual decals of letters and numbers.

PAYMENT: Payment will be made under Thrie-Beam Panel Retrofit which shall include all materials and labor require to fabricate and install the retrofit railing. Transition Blocks and Curbs, Bridge Name Plate and Barrier Delineators,

pLATE WASHER DETAIL

$29 / 32^{\prime \prime} \times 1 \frac{1}{1^{\prime \prime}}$ Slots (12 Per Splice) with $5 / 8^{\prime \prime} \otimes \times 1^{11 / 2 "}$ Long Button Head Bolts
and Recessed Nuts (12 Required) (Typ.)
$34^{\prime \prime} \times 2^{1 / 21} 2^{\prime \prime}$ Slots (2 Per Post) with Post Bolts, Recessed Nuts, Round Washers and Plate Washers (2 of ach required). Not required when
splice is located between posts.

Trailing
Thrie-Beam Panel

Direction of Adjacent Traffic

THRIE-BEAM PANEL SPLICE
NOTE: All Thrie Beam Panels shall be lapped in the direction of adjacent traffic. At the Contractor's option, laps may of adjacent traffic. At the Contractor's option,
be extended. Field drill holes in Trailing Thrie-Beam Panel as required.

THRIE-BEAM EXPANSION SECTION

Wedge Shaped

Match taper of
existing Wingwal

PLAN VIEW

typical section thru class b (10 GAUGE) THRIE-BEAM PANEL (EXPANSION SECTION SIMILAR)

5/8" OVAL SHOULDER BUTTON HEAD BOLT

L (in)	THREAD LENGTH (in)	APPLICATION
$1^{11 / 2}$	Full Length	Splice Bolt
14	4	Post Bolt

LAST REVISION $07 / 01 / 14$	DESCRIPTION:	$\begin{array}{cc} F Y \text { FDOT } \\ \text { 2024-25 } \\ \text { STANDARD PLANS } \end{array}$	THRIE-BEAM PANEL RETROFIT (CONCRETE HANIDRAIL)	$\begin{gathered} \text { INDEX } \\ 460-477 \end{gathered}$	SHEET 1 of 4

HSS TUBES: HSS Tubes shall be ASTM A500 Grade B.
END CAPS AND END TAPER ASSEMBLIES: Steel plate for End Caps and End Taper Assemblies shall be ASTM A709 Grade 36. ANCHOR RODS, NUTS AND WASHERS: Adhesive Bonded anchors shall be fully shall be threaded rods in accordance with ASTM F1554 Grade 36 or ASTM A193 Grade B7. All Nuts shall be single self-locking hex nuts and in accordance with ASTM A563 or ASTM A194. Flat Washers shall be in accordance with ASTM F436. After the nuts have been snug tightened, distort the anchor rod threads to prevent removal of the nuts. Coat distorted threads and the exposed trimmed ends of anchor rods

COATINGS: Galvanize all Anchor Rods, Nuts, Bolts, Washers and HSS Tube Assemblies in accordance with the Specifications. Hot-dip HSS Tubes and Tube Assemblies after fabrication.
ADHESIVE-BONDED ANCHORS AND DOWELS: Adhesive Bonding Material Systems for Anchor Rods shall comply with Specification Section 937 and required by specification section 416 shall be $10,000 \mathrm{lbs}$.
LAST
REVISION
1/01/17
1/01/1

FDOT\} | FY 2024-25 |
| :---: |
| STANDARD PLANS |

TRAFFIC RAILIIN
STANDARD PLANS

SPLICE TUBE DETAIL

ELEVATION

$15 / 16^{\prime \prime} \varnothing$ Thru Holes PLAN

PLAN
$\bar{\square}$ END CAP ASSEMBLY DETAIL $\bar{\square}$

ELEVATION

ANCHOR RODS

TAPERED END ASSEMBLY DETAIL

FACE INSPECTED
ANCHORAGE WITH FILLER INLET

PROCEDURE
Forming injection is completed, Remove Pocket
Inspect Tendon and Rigid Filler Pipe.
3. Vacuum inject as required. If grout is used allow grout to cure. If flexible filler is used, replace
diler displaced by inspection. Remove pipe used for
4. Clean threads and rethread as required
5. Install Threaded Plug into Outlet to form a tight fit.
7. Fliean and roughen sides of pocket.
(3) FILLING POCKET
= FILLER outlet detail at horizontal surfaces =

(3) INSPECTION

Horizontal Surfaces for procedures.)

Inspect Anchorage for voids through Filler
Inlet/Outlet. (See Filler Outlet Detail at
Herizontal Sufaces for

(4) PROTECTION

\qquad TOP INSPECTED ANCHORAGE WITH FILLER INSTALLATION, FILLER INJEC
INSPECTION \& PROTECTION

NOTES

1. Holes used for the Inspection and Filler Inlets/Outlets may be formed using tapered pipes or mandrels.
2. Where a vacuum system is connected to an anchorage,
connect both the anchorage outlet and the cap outlet to
*Round \bigcirc Pocket Former - Gravity fed placement of epoxy grout acceptable Modified Square Pocket Former - Gravity fed placement of epoxy grout acceptable Square \square Pocket Former - Vacuum epoxy grouting required
the vacuum system

INLET END
(EMBEDDED ANCHORAGE SHOWN; ANCHORAGE at CONCRETE SURFACE SIMILAR)
[FILLER INLET AND OUTLET DETAILS FOR BAR TENDONS $=$ (Vertically oriented tendon shown; horizontally oriented tendon similar)

(1) filler outlet connection to tendon

(3) FILLING POCKET

(2) POCKET PREPARATION

PROCEDURE

1. Remove Rigid Filler Pipe or drill Grout in flexible pipe.
2. Inspect tendon for voids.
3. Vacuum inject as required If grout is used allow grout to cure. If flexible filler is use replace filler displaced by inspection. Remove pipe used for vacuum injecting
4. Install Threaded Plug into Outlet to form a tight fit
5. Over-ream hole (${ }^{1 / q^{\prime \prime}} \varnothing$ over-ream). Clean and
roughen sides.
6. Fill pocket with epoxy grout.
$\bar{\square}$ FILLER OUTLET DETAIL AT VERTICAL SURFACES $\overline{=}$

tendons at high points and 3' FROM HIGH POINTS (FILLER OUTLET)

TENDONS AT LOW POINTS
(FILIER INLET / DRAIN)
\qquad
EETAILS FOR C.I.P. BOXES WITH INTERNAL TENDONS SIMILAR. WEB REINFORCING NOT SHOWN FOR CLARITY.

U.S. COAST GUARD NOTIFICATION: Notify the local office of the U.S. Coast Guard at least 30 days prior to
beginning of construction of the Fender System.

14" SQUARE PRESTRESSED CONCRETE PILES - Provide 14" Square Prestressed Concrete Piles of sufficient length to achieve a minimum embedment of 20^{\prime} into soil having a blow count greater than or equal to $6(N \geq 6)$. Pile splices and build-ups are not permitted. Use only $14^{\prime \prime}$ Square Prestressed

PLASTIC LUMBER AND STRUCTURAL COMPOSITE LUMBER WALES: Provide only Plastic Lumber (Thermoplastic Structural Shapes) and Structural Composite Lumber (Reinforced Thermoplastic Structural Shapes) Wales in accordance with Specification Section 973. Wales shall be continuous and spliced only at locations show on the plans.

PLASTIC LUMBER DECKING FOR CATWALKS: Provide Plastic Lumber decking for catwalks when called for in the Plans in accordance with Specification Section 973.
nstall Plastic Lumber Decking according to manufacturer's recommendations using stainless steel \#10 x 3" (minimum) deck screws.
FIBERGLASS OPEN GRATING FOR CATWALKS: Provide Fiberglass Open Grating for catwalks when called for in the Plans. Fiberglass Open Grating shall be a heavy duty design suitable for exterior installations. Maximum gap openiyg distributed load with a maximum deflection of $3 / 8 / 2$ or $L / 120$ at the center of a simple span and a concentrated load of 250 pounds with a maximum deflection of $\frac{1 / 4}{} / 1$ at the center of a simple span. Color of Fiberglass Open Grating shall be gray or black.

Install Fiberglass Open Grating according to manufacturer's recommendations using stainless steel hardware, screws, bolts, nuts and washers. Attach Fiberglass Open Grating to Wales and Deck Supports at a $2^{\prime}-0^{\prime \prime}$ maximum spacing so as to resist pedestrian live loads and uplift forces from wind, buoyancy and wave action

CLEARANCE GAUGE AND LIGHT: Clearance Gauge to be furnished and installed by the Contractor. Clearance Gauge width and numeral height is dependent on visibility distance. The required visibility distance shall be determined by the United States Coast Guard District Commal Provide and install Clearance Gauge Light in accordance with Specification Section 510 and Index 510-001.

NAVIGATION LIGHTS: Provide and install Navigation Lights in accordance with Specification Section 510, Index 510-001 and/or project specific details. Provide and maintain Temporary Navigation Lights during

BOLTS, THREADED BARS, NUTS, SCREWS AND WASHERS: Furnish stainless steel Bolts in accordance with ASTM F593 Type 316. Furnish stainless steel Threaded Bars in accordance with ASTM A193 Grade B8M. Furnish stainless steel Nuts in accordance with ASTM F594 Type 316. Furnish stainless steel Screws in accordance with ASTM F593 Type 305. Furnish stainless steel Washers compatible with Bolts, Threaded Rods and Nuts under
heads and nuts. Torque Nuts on 1" diameter Bolts and Threaded Bars to $150 \mathrm{lb-ft}$ Keep threads on Bolts, Threaded Bars and Nuts free from dirt, coarse grime and sand to prevent galling and seizing during tightening.
SPLICE PLATES: Furnish Splice Plates in accordance with ASTM A240 Type 316
WIRE ROPE: Provide wire rope meeting one of the following requirements:

1. $1 / 2$ " diameter $6 \times 19,6 \times 25$ or 6×37 class IWRC Type 316 stainless steel wire rope with a minimum breaking strengt of $18,000 \mathrm{lbs}$.
2. $1 / 2$ " diameter 6×19 galvanized wire rope with ultraviolet ray resistant polypropylene impregnation having an outsid diameter of $5 / 8$ with a minimum breaking strength of 22,000 ios. Protect alh ends
compatible with the rope's polypropylene that provide an effective water-tight seal.

CROSS REFERENCES
For Sections $A-A$ and $B-B$ see Sheet 4.
For View F-F see Sheet 5.
OTE:

PARTIAL PLAN VIEW (TYPICAL FLARE)
flare at control point b Shown, Control points a, C \& D Similar)
HANDRAIL NOT SHOWN FOR CLARITY)
Navigation Light (See Index
Composite Lumber $10^{\prime \prime} \times 10^{\prime \prime}$ Composite Lumber $10^{\prime \prime} \times 10^{\prime \prime}$ Composite Lumber $10^{\prime \prime} \times 10^{\prime \prime}$ Composite Lumber $10^{\prime \prime} \times 10^{\prime \prime}$

Composite Lumber $10^{\prime \prime} \times 10^{\circ}$
Wales Mark A1

- Wales Mark A1, A2 or A3 Composite Lumber $10^{\prime \prime} \times 10^{\prime \prime}$ Wales Mark A2

Mark F1,F2 or F3 Composite Lumber $10^{\prime \prime} \times 10^{\prime \prime}$
Wales Mark A1, A2 or A3
Plastic Lumber $6^{\prime \prime} \times 10$
Mark F (Back Face, Top
 |ब|| 1

 Lब| ब L凶| $\|$

Composite Lumber $10^{\prime \prime} \times 10^{\prime \prime}$ Wales
Mark A (along Front Face of
A
B

$$
\begin{aligned}
& \text { 4" Sq. Prestressed } \\
& \text { oncrete Piles (Typ.) }
\end{aligned}
$$ Fender) (Typ.)

EXPANDED PARTIAL ELEVATION VIEW

* All Plastic Lumber and Composite Lumber Dimensions and Quantities shown are based on Nominal Lumber Dimensions and may vary depending on Actual

Provide fibergass
** Provide Fiberglass Open Grating in lieu of $2^{\prime \prime} \times 12^{\prime \prime}$ Plastic Lumber when called for in the Plans. Mounting hardware shall be Stainless Steel, install per Manufacturer's

NAVIGATION LIGHT SYSTEM SCHEMATIC FOR SINGLE BRIDGE WITHOUT FENDERS

NAVIGATION LIGHT SYSTEM SCHEMATIC FOR DUAL BRIDGES WITH FENDERS

NAVIGATION LIGHT SYSTEM SChematic FOR DUAL BRIDGES WITHOUT FENDERS

* Use RFL when Pier is at Channel Edge and see CFR, Title 33, part 118 for Mounting Height restrictions. Use RCL otherwise. ${ }^{* *}$ Mounted only on the Pier that defines $C M$, otherwise does not apply.
*** MFL to be located at mid length of straight portion of fender.

NOTE:

Size conduit and conductors per NEC requirements.

$G C L$

TYPICAL ELECTRICAL SCHEMATIC DIAGRAM

elevation of inside face of traffic railing with pedestrian/bicycle bullet railing

SECTION A-A
TYPICAL SECTION THRU BRIDGE DECK (APPROACH SLAB SIMILAR)

NOTES:

1. A Bullet Railing Tapered-End Transition is required for all approach ends of Bullet Railings on traffic Railings. When Guardrail Connection is required terminate the Bullet Railing Tapered-End Transition at beginning of the Traffic Railing End Transition.
2. Where Bullet Railing continues on retaining wall mounted Traffic

Railings or Barriers, provide a Bullet Railing Tapered End Transition at the terminus of the Bullet Railing

CROSS REFERENCES:
Work in conjunction with Index 515-022
For Traffic Railing Details, Reinforcement and Notes see Index 521-427

ELEVATION OF TAPERED END TRANSITION
RAILING NOTES:

1. Work this Index with Index 521-423, 521-427, 521-428, 521-820
2. Shd 515-021 and Specification Section 515,

Shop Drawings: Submit shop drawings prior to fabrication.
A. Include post and rail splice/expansion assembly location for curved
3. Materials:
A. Supply Aluminum materials In accordance with Specification Section 965 and the following: Wrought Aluminum Post: ASTM B221, Alloy 6061-T6 or 6351-T5 Plate and Bars: ASTM B209 Alloy 6061 -T6
Stop Pins: Press-fit aluminum or stainless steel pins or tubes
B. Stainless Steel Fasteners: ASTM F-593, Alloy Group 2 (316).
C. Bearing Pads: Plain or Fiber Reinforced meeting Specification Section
D. Anchor Bolts: Galvanized ASTM A307 Grade 36 Hex Head. Galvanized ASTM 1554 Grade 55 Threaded rods for Adhesive Anchors.
4. Layout:
A. Posts shall be uniformly spaced with reasonable consistency.
B. Tapered End Transitions are required at the terminus of the B. Taperea End transitions are required at the terminus of the Bullet Railings on concrete parapets shielded by a traffic railing do not require Tapered End Transitions unless noted Cotherwise in the Plans
Adjust post spacing's to avoid parapet obstacles, such as armor
D. Rails shall be continuous over a minimum of 3 posts, except that lengths
less than 12 feet need only be continuous over 2 posts.
E. Space splices at 40 feet maximum. Splice all rails in a given railing
F. Proction at about the same center line

Provide rail expansion assemblies in panels between posts on either side of a bridge expansion joint. Rail expansion assemblies are similar to the
rail splice assemblies with increased space at the expansion assembly to allow for movement equal to 15 times the bridge joint opening or ${ }^{11}$ " allow for movement equal to 1.5 times the bridge joint opening or
5. Installation:
A. Set rails near bridge expansion joints to allow for expected movement.
6. Payment: Includes the full cost of installed bullet railing. Cost of the Concrete

VIEW H-H TRANSITION BASE PLATE
(Bullet Rail not shown for Clarity)

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 22 \\ \hline \end{gathered}$	\|	$\begin{gathered} \text { FY } 2024-25 \\ \text { STANDARD PLANS } \end{gathered}$	PEDES TRIIAN/BICYCLE BULLET RAILING DETAILS	INDEX $515-022$	sheet 3 of 3

PLAN
Concrete Curb
PLAN
Scheme 2 shown, other Schemes similar, Reinforcing Steel not shown for clarity)
$30^{\prime}-0^{\prime \prime}$ (Maximum)
Spacing $1 / 2 / 2$ V-Groove

(Scheme 2 shown with Post "A" other Schemes similar Reinf
NOTES:
NOTES:

1. Shop Drawings are required.
2. Shop Drawings are required.
3. Work this Index with Index 515-052 Bicycle/Pedestrian Railing Details (Steel) an

Specification Section 515. Refer to the SPI for Design Criteria and Limits of Use.
3. Materials:
A. Steel: Galvanized after fabrication
a. Fasteners: Hex Head Bolt ASTM A307, Hex Nuts ASTM A563, Washers ASTM F436 b. Support Bracket (Scheme 3) L-shape and Stiffener Plate: ASTM A36
C. Pre-cured Silicone Sealant: Specification Section 932 Fabric Laminated bearing
pads that meet the requirements of Specification Section 932 for Ancillary Structures.
4. See Structures Plans, Superstructure Sheets for bridge information including
4. concrete type, deck expansion joint locations and orientations, and thermal movement.
5. Railings:
A. For thermal movement greater than 4" (up to a maximum of 5"), clear opening
between ad jacent pickets, or must be reduced to $31 / 2$ ".
B. For treatment of railings on skewed bridges see Index 521-427.
6. Curbs
A. Match open curb joints at Deck Expansion Joint locations to the deck joint dimension
B. Construct Concrete Curb (Scheme 2) vertical with the top surface finished

Ievel transversely. See Concrete curb Details Sheet 3 .
c. Provide ${ }^{3 / 4}$ Intermediate open joints in curbs coinciding with the ${ }^{3 / 4}$ joints in the
traffic railing.
Support bracket (Scheme 3) is incidental to the cost of railing. Curb concrete
and reinforcing steel (Scheme 2) are included in the bridge deck quantities.

(Scheme 2 shown, other Schemes similar, Reinforcing Steel not shown for clarity)

Spacing $1 / 2^{\prime \prime}$ V-Groove

roove Spacing

Approa
Rail Expansion Joint (Typ.)
See Detail "B", Sheet 3 3

NOTES:

Deck Joint at Begin Bridge or End Bridge shown; * SHBR ~ Special Height Bicycle Railing
PBR \sim Pedestrian/Bicycle Railing

1. Shop Drawings are required
2. Work this Index with Index 515-062 Aluminum Bicycle/Pedestrian Railing Details and Specification Section 515. Refer to the

IDS for Design Criteria and Limits of Use.
3. Materials: A. Galvani

Galvanized Steel Fasteners: Hex Head Bolt ASTM A307. Hex Nuts ASTM A563, Washers ASTM F436
Aluminum:
a. Support Bracket (Scheme 3) L-shape and Stiffener Plate: ASTM B209, Alloy 6061-T6

Concrete: Same as bridge deck
D. Pre-cured Silicone Sealant: Specification Section 932

Rer
4. See Structures Plans, Superstructure Shection 932 for Ancillary Structures.
expansion joint locations and orientations, and thermge information including concrete type, deck

- or tor hovement.
A. For thermal movement greater than $4^{\prime \prime}$ (up to a maximum of $5^{\prime \prime}$), clear opening between ad jacent pickets, or panels at Rail Expansion Joints above Deck Joints must be reduced to $3 \frac{1}{2}$ ",
Curbs: Bor treatment of railings on skewed bridges see Index 521-427.
A. Match open curb joints at Deck Expansion Joint locations to the deck joint dimension
B. Construct Concrete Curb (Scheme 2) vertical with the top surface finished level transversely. See Concrete Curb Details Sheet 3.
C. Provide 3/" Intermediate open joints in curbs coinciding with the $3 / 4$ "joints in the traffic railing.

7. Payment: Support bracket (Scheme 3) is incidental to the cost of railing. Curb concrete and reinforing steel (Scheme 2) are included in the bridge deck quantities.

\qquad DETAIL "B" EXPANSION JOINT (FIELD SPLICE SIMILAR) \qquad

ALTERNATE REINFORCING (WWR) DETAILS	CONVENTIONAL REINFORCING STEEL BENDING DIAGRAMS		
NOTE: Place wire panels to minimize the end overhang. End Overhangs greater than $43 / 4^{\prime \prime}$ are not permitted. SPLICE DETAIL WWR (Between WWR Sections) SECTION DETAIL	BILL OF REINFORCING STEEL		
	MARK	SIZE	LENGTH
			$2^{\prime}-0^{\prime \prime}$
	5	4	As Reqd.

CURB REINFORCING STEFL NOTES:

1. All bar dimensions in the bending diagrams are out to out.
2. The reinforcement for the curb on a retaining wall shall be
3. All reinforcing steel at the open joints shall have a $2^{\prime \prime}$ minimum cover.
4. Bars 45 may be continuous or spliced at the construction joints.
5. Deformed WWR meeting the requirements of Specifications Section 931 may be used in lieu of all Bars $4 P$ and $4 S$.

ESTIMATED CONCRETE CURB QUANTITIES (SCHEME 2)		
ITEM	UNIT	QUANTITY
Concrete	CY/LF	0.0124
Reinforcing Steel	LB/LF	4.01

Pre-cured Silicone
Sealant (4" wide)

DETAIL "A" - SECTION
INTERMEDIATE OPEN JOINT

TYPICAL SECTION THROUGH BOTTOM RAIL (Post Not Shown for Clarity)
\qquad

TYPICAL SECTION THROUGH BOTTOM RAIL (Post Not Shown for Clarity)

intermediate ioint seal note:

At Intermediate Open Joints, seal the lower $6^{\prime \prime}$ portion of the open joint with Pre-cured Silicone Sealant. Apply sealant prior to any Class V finish coating and remove all curing compount.
application of bonding agent.

| $\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 16 \end{gathered}$ | \|c|che | $\begin{array}{cc} \text { FDOT 2024-25 } \\ \text { STANDARD PLANS } \end{array}$ | BRIDGE PEDESTRIAN/BICYCLE RAILING (ALUMIINUM) |
| :---: | :---: | :---: | :---: |

gENERAL NOTES

CONCRETE: Concrete for the Traffic Railing (Vertical Face Retrofit) shall be Class IV. Concrete for Curb Transition Blocks hall be Class II (Bridge Deck).

DHESIVE-BONDED DOWELS: Adhesive Bonding Material Systems for Dowels shall comply with Specification Section 937 and be nstalled in accordance with Specification section 416. The field testing proof loads required by Specification Section 416 shall ee 23,800 lbs. for Dowel Bars 6 D on the inside face (traffic side) of the ralling (1'-0 embedment) and 18,500 lbs for Dowe Bars 60 along the outside face of the traffic railing ($5^{\prime \prime}$ min embedment).
tandard are shown for bridges on tangent alignments. Details for bridges on horizontally curved alignments are similar
BARRIER DELINEATORS: Barrier Delineators shall meet Specification Section 993. Install Barrier Delineators on top of the raffic Railing along the entire length of the bridge $2^{\prime \prime}$ from the face on the traffic side inaccordance with Specification Section 705. Barrier Delineator color (white or yellow) shall match the color of the near edgeline.
UARDRAIL: See Index 536-001 for quardrail component details, geometric layouts and associated notes not fully detailed herein.

BRIDGE NAME PLATE: If a portion of the existing Traffic Railing is to be removed that carries the bridge name, number and or date, or if the installation of the Traffic Railing (Thrie Beam Retrofit) will obscure the bridge name, number and or date, then eplace the information that has been removed or obscured, with $3^{\prime \prime}$ tall black lettering on white nonreflective sheeting applied he sheeting and adhesive backing shall comply with Specification Section 994 and may comprise individual decals of letters
and numbers.
PAYMENT: Concrete Traffic Railing-Bridge Retrofit - Post \& Beam Railing (EA) includes all material and
abor required to demolish a portion of the existing structure where required and to construct the
oncrete portion of the retrofit railing. Guardrail Approach Transition to rigid Barriers (EA) includes
transition block, and necessary hardware to complete the Guardrail transitions shown

DOWEL DETAIL
Note:
dowel holes to clear if the xisting reinforcement is encountered.

SCHEME 1 - APPROACH ENDS OF BRIDGES \qquad
\qquad WITH FLAT SCHEME 2-APPROACH ENDS OF BRIDGES WITH BEAM OR GIRDER SUPERSTRUCTURE WITH FLAT SLAB SUPERSTRUCTURE \& PARALLEL WINGWALLS (SHOWN) \qquad OR BEAM OR GIRDER SUPERSTRUCTURE \& PARALLEL OR CURVED WINGWALLS (SIMILAR)

3 OR MORE CONTINUOUS RAILING PANELS ADJACENT TO BEGIN OR END BRIDGE

WITH BEAM OR GIRDER SUPERSTRUCTURE

B

2 Continuous railing panels adjacent to begin or end bridge

Existing Bent Cap

SECTION B-B SCHEME 4-APPROACH ENDS OF BRIDGES OR BEAM OR GIRDER SUPERSTRUCTURE \& PARALLEL OR CURVED WINGWALLS (SIMILAR) (SHOWN) \qquad
Existing Reinforcing
Steel (Typ.)
Existing Railing

[^1]
\[

$$
\begin{aligned}
& \text { Remove exposed existing } \\
& \text { reinforcing steel by burning or } \\
& \text { grinding to lo blelow finished end } \\
& \text { of saw cut. Repair resulting holes } \\
& \text { and then coat entire cut end of } \\
& \text { railing or curb with Type F-1 epoxy } \\
& \text { in accordance with Section 926. } \\
& \text { (Typ..) } \\
& \text { Caw cut Railing and Recessed } \\
& \text { Curb and grind flat to align } \\
& \text { with edge of post. } \\
& \text { Existing Recessed Curb }
\end{aligned}
$$
\]

LIMITS OF REMOVAL OF EXISTING STRUCTURE - POST \& BEAM RAILING WITH RECESSED CURB
GUARDRAIL TRANSITIONS-EXISTING POST \& BEAM 521-404
4 of 8

LAST
REVISION
07/01/13
SECTION A-A

2 continuous railing panels on wingwall adjacent to end post
SCHEME 3-APPROACH ENDS OF BRIDGES

Existing Recessed Curb
Existing Bridge Deck

\qquad

(Narrow Curb shown; Recessed Curb similar)

SCHEME 6 \qquad

	20 DESCRIPTION:	$\begin{gathered} \text { FY 2024-25 } \\ \text { FTANDARD PLANS } \end{gathered}$	GUARDRAIL TRANS ITIONS -EXISTING POST \& BEAM BRIDGE RAILINGS (NARROW \& RECESSED CURBS)

GENERAL NOTES
CONCRETE: Concrete for the Traffic Railing (Vertical Face Retrofit) and replacement curb sections shall be Class IV. Concrete for Curb Transition Blocks shall be Class II (Bridge Deck).
REINFORCING STEEL: Reinforcing steel shall be ASTM A615, Grade 60, except Expansion Dowel Bar B which shall be ASTM A36 smooth round bar hot-dip galvanized in accordance with the Specifications.

EXPANSION SLEEVE ASSEMBLY: Pipe sleeve shall be ASTM D2241 PVC pipe, SDR13.5. End Cap shall be ASTM D2466 PVC socket fitting, Schedule 40. End of Sleeve assembly at railing open joint shall be sealed with silicone to prevent concrete intrusion during railing casting. A compressible expanded polystyrene plug is required in the opposite end of the assembly for correct dowel positioning during railing casting. Correct dowel positioning is required in order to provide for thermal movement of

ADHESIVE-BONDED ANCHORS AND DOWELS: Adhesive Bonding Material Systems for Anchors and Dowels shall comply wit Specification Section 937 and be installed in accordance with Specification Section 416. The field testing proof loads
required by Specification Section 416 shall be 23,800 lbs. for Dowel Bars 60 on the inside face (traffic side) of the railing (1'-0" embedment) and 18,500 lbs for Dowel Bars 6 D along the outside face of the traffic railing ($5^{\prime \prime}$ min. embedment).
bRIDGES ON CURVED ALIGNMENTS: The details presented in these Standards are shown for bridges on tangent alignments. Details for bridges on horizontally curved alignments are similar

BARRIER DELINEATORS: Barrier Delineators shall meet Specification Section 993. Install barrier delineators on top of the Traffic Railing along the entire length of bridge $2^{\prime \prime}$ from the face on the traffic side in accordance with Specification Section
705 . Barrier Delineator color (white or yellow) shall match the color of the near edgeline.

PAYMENT: Concrete Traffic Railing - Bridge Retrofit - Post \& Beam Railing (each) includes all materials and labor required to demolish a portion of the existing structure where required and to construct the concrete portion of the retrofit railings. Guardrail Approach Transition to Rigid Barriers (EA) includes
all transition blocks, and necessary hardware to complete the Guardrail transitions shown.

ESTIMATED TRAFFIC RAILING QUANTITIES			
ITEM	UNIT	QUANTITY	
		$9^{\prime \prime}$ Curb	Increment
		0.064	0.003 per in. height
Concrete	CY/FT	0.10 per in. length	
Reinforcing Steel	LB/FT	13.27	0

slope and l'-0" embedment length of Bars $6 D$. If
the curb height or embedment length differs from that shown, increase or decrease quantity by the given per inch increment.)

partial elevation of railing showing finger/sliding plate joint AT BEGIN OR END BRIDGE - SCHEMES 2 THRU 5

Place 1" thick polystyrene blockout over limits of bridge deck expansion joint full width to the end of the Traffic Railing to allow for thermal ove the into the expansion joint leakage into the expansion joint.

partial elevation of railing showing finger/sliding plate
Joint at begin or end bridge - SCHEME
Guardrail Transition not shown for clarity)
LAST
REVISION
II

CONVENTIONAL REINFORCING STEEL BENDING DIAGRAM

CONVENTIONAL REINFORCING STEEL BENDING DIAGRAM				
BILL OF REINFORCING STEEL				Length as Required
MARK	SIZE	LENGTH	NOTE NOS.	
A	4	AS REQD.	3	
B	1" \varnothing	$2^{\prime}-0^{\prime \prime}$	$2 \& 5$	BARS 4A, B, 6 D \& $5 S$
C	4	$2^{\prime}-0^{\prime \prime}$	$1,2 \& 3$	
D	6	AS REQD.	$2 \& 3$	Bar 4N ${ }^{\text {a }}$ - ${ }^{\prime}-0^{\prime \prime}$
L	4	$4^{\prime}-1{ }^{\prime \prime}$	$1 \& 3$	Bar 4M. $3^{3}-10^{\prime \prime}$
M	4	$4^{\prime}-3{ }^{\prime \prime}$	$1 \& 3$	Bar 4L - $3^{\prime}-8^{\prime \prime}$
N	4	$2^{\prime}-5{ }^{\prime \prime}$	$1 \& 3$	
5	5	AS REQD.	$2,3 \& 4$	BARS $4 L, 4 M \& 4 N$
REINFORCING STEEL NOTES: 1. All bar dimensions in the bending diagrams are out to out. 2. The reinforcement for the railing on a retaining wall shall be the same as detailed for a bridge deck. 3. All reinforcing steel in the Vertical Face Retrofit Railing shall have a $2^{\prime \prime}$ minimum cover. 4. Bars 55 may be continuous or spliced at the construction joints. Bar splices for Bars 55 shall be a minimum of $2^{\prime \prime}$ $0^{\prime \prime}$. bar and hot-dip galvanized in accordance with the BARS 4C (12 required per open joint) Specifications.				

OPEN JOINT EXPANSION DOWEL DETAIL (Railing Reinforcing Not Shown For Clarity)

1/2" Preformed Joint Filler at top of Existing Curb shall extend beyond the joint material (Silicone, poured rubber, armored neoprene seal or sliding plates) as shown to prevent concrete intrusion during railing casting and
shall be placed so as not to restrict in any way normal joint movement.

partial plan of railing (SKew angle ø less than 70°)
PARTIAL PLAN OF RAILING (SKEW ANGLE $\varnothing=70^{\circ}$ OR GREATER)
SKEW DETAIL

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 07 / 01 / 13 \end{gathered}$		$\begin{gathered} \text { FY 2024-25 } \\ \text { STANDARD PLANS } \end{gathered}$	GUARDRAIL TRANSITIONS - EXISTING POST \& BEAM BRIDGE RAILINGS (WIDE CURBS)

ont Face of Backwall, Begin or End Bridge \& Match Line (See Sheet 3 of 6)

PARTIAL PLAN OF RAILING

PARTIAL ELEVATION OF INSIDE FACE OF GUARDRAIL

(Existing Wing Post not shown for clarity)

RAILING END TREATMENT FOR

 PERPENDICULAR OR ANGLED WING WALLSSCHEME 1 NOTES:

1. Provide Transition Block (as shown) or Curb if existing Approach Slab does not have a curb, see Roadway Plans. Shape and height of Transition Block or Curb shall match existing bridge curb. Railing End bottom clearance.
2. If a Special Steel Guardrail Post is required for attachment to the top of a sloping Wing Wall, saw cut and remove a wedge shaped portion of the sloping Wing Wall as required to provide a level surface for post installation.

-Front Face of Backwall, Begin or End Bridge \& Match Line (See Sheet 3 of 6)

PARTIAL PLAN OF RAILING

partial elevation of inside face of railing
(Existing Wing Post, Railing Reinforcing and Expansion Dowel Assemblies not shown for clarity)

SCheme 2 notes:
RAILING END TREATMENT FOR PARALLEL CURBS

1. See Roadway Plans for limiting station of Roadway Guardrail Transition or other site specific treatment. If limiting station of Roadway Guardrall Transition is along the Wing Wall, attach Thrie-Beam Terminal Connector to raling as shown above. If limiting station of Roadway Guardrail Transition is on the bridge, see Sheet 3 of 6 . On skewed bridges, if the skew along the dect ock extends across the
and back face of the
2. Provide Transition Block (as shown) or Curb if existing Approach Slab Curb does not extend beyond end of existing End Bent Wing Wall, see Roadway Plans. Shape and height of Transition Block or Curb shall match existing bridge curb. Railing End
3. Field bend Dowel Bars $4 L$ within Transition Block as required to maintain $2^{\prime \prime}$ top and side clearance and $3^{\prime \prime}$ bottom clearance.
LAST
REVISION

SECTION A-A
TYpICAL SECTION THRU TRAFFIC RAILING SECTION THRU BRIDGE DECK SHOWN

NOTES
. Begin placing Railing Bars $5 T$ and 5 X on Approach Slab at the railing end and proceed toward Begin or End Bridge to avoid conflict with guardrail bolt holes. If required, adjustments to the bar spacing for Bars $5 T$ and $5 X$ shall be and rotate Bars $5 T$ and $5 X$ as required to maintain cover in Railing End Transition.
2. Omit Railing End Transition and Guardrail if Concrete raffic Railing is used beyond the Approach Slab or Retaining Wall. See Structures Plans, Plan and Elevation Sheet and Roadway Plans. If Taper and Railing End Transition is omitted, xtend Typical Section to end of the Approach Slab or limiting (Typ.)
$6^{\prime}-8$
Thrie-Beam Terminal Q Thrie-Beam Ter
Connector Bolts
 Bars ${ }_{5 T}$ @ 1^{\prime}-0" sp. (Max.) Field Bend
Bars 55 as Required
${ }^{21 / 2^{\prime \prime}}$

CROSS REFERENCE: For location of Section $A-A$, View $B-B$ and View C-C, see Sheet

VIEW B-B
(END VIEW OF TRAFFIC RAILING END TRANSITION) (Approach Slab shown, Retaining Wall Junction Slab similar)
Solin)

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		$\begin{array}{cc} \text { FDOTY 2024-25 } \\ \text { STANDARD PLANS } \end{array}$	TRAFFIC RAILING - (42" VERTICAL S HAPE)	INDEX $521-422$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 3 \end{aligned}$

BILL OF REINFORCING STEEL			$\begin{gathered} \text { ROADWAY } \\ \text { CROSS-SLOPE } \end{gathered}$	θA	
MARK	SIZE	LENGTH		LOW GUTTER	HIGH GUTTER
5	5	As Reqd.	0\% to 2\%	90°	90°
T	5	$10^{\prime}-8^{\prime \prime}$	2\% to 6\%	87°	83°
x	5	$6^{\prime}-9{ }^{\prime \prime}$	6\% to 10%	84°	96°

\qquad
BAR $5 S$

STIRRUP BAR $5 T$

END TRANSITION STIRRUP BARS $5 T$ To Be Field Cut (7 of each required

STIRRUP BAR 5X

END TRANSITION STIRRUP BARS 5X To Be Field Cut (7 of each required

Pre-cured Silicone

DETAIL "A" - SECTION

at intermediate open Joint
intermediate joint seal notes:

1. At Intermediate Open Joints, seal the lower $6^{\prime \prime}$ portion of the open joint with Pre-cured S
with Specification Section 932 .
2. Apply sealant prior to any Class V finish coating and remove all curing compound and loose material from the surface prior to application of bonding agent.
3. The cost of the Pre-cured Silicone Sealant shall be included in the Contract Unit Price for the Traffic Railing.

SECTION THRU RECESSED "V" GROOVE to form inscribed letters and figures

ESTIMATED TRAFFIC RAILINGQUANTITIES		
ITEM	UNIT	QUANTITY
Concrete	CY/LF	0.145
Reinforcing Steel	LB/LF	30.68

(The above quantities are based on a $6^{\prime \prime}$ thick $\times 6^{\prime}$ wide raised sidewalk at low side of deck, 2% deck
cross slope and counter 2% sidewalk cross slope)

1. All bar dimensions in the bending diagrams are out to out.
2. The $4^{\prime}-6^{3} / 4^{\prime \prime}$ vertical dimension shown for Bars $5 T$ and 5 X is based on a bridge deck with a
$6^{\prime \prime}$ thick $\times 6^{\prime}$ wide raised sidewalk at low side of deck, 2% deck cross slope and a counter 2%
above smunts cross slope. If the raised sidewalk thickness, wiath or cross slope vary from the
3. The reinforcement for the railing on a retaining wall shall be the same as detailed above with
$\varnothing A=90^{\circ}$.
4. Bars 55 may steel at the open joints shall have a $2^{\prime \prime}$ minimum cover.

must consist of Deformed wire meeting the requirements of Specification Section 931 .

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		$\begin{gathered} \text { FDO 2024-25 } \\ \text { STANDARD PLANS } \end{gathered}$	TRAFFIC RAILING - (42" VERTICAL SHAPE)	INDEX 521-422	SHEET 3 of 3

SECTION A-A
typical section thru traffic railing Section Thru Bridge Deck shown)

NOTES:

1. Begin placing Railing Bars $5 T$ and $5 \times$ on Approach Slab at the railing end and proceed toward Begin or End Bridge
to avoid conflict with guardrail bolt holes. If required. to avoid conflict with guardrail bolt holes. If required,
ad justments to the bar spacing for Bars $5 T$ and $5 X$ shall be made immediately ad jacent to Begin or End Bridge. Cut, shift and rotate Bars 5T and 5X as required to maintain cover in Railing End Transition.
2. Omit Railing End Transition and Guardrail if Concrete Traffic Railing is used beyond the Approach Slab or Retaining Wall. See Structures Plans, Plan and Elevation Sheet and Roadway Plans. If Taper and Railing End Transition is omitted extend Typical Section to end of the Approach Slab or limiting
station on Retaining Wall, and space Bars 5T and 5X at $1^{\prime}-0^{\prime \prime}$ (Typ.)

Approach Slab
保 SLAB END VIEW OF TRAFFIC RAILING

CROSS REFERENCE:
For location
see Sheet of Section A-A and View B-B
NOTE: For Bullet Railing Details,
NOTE: For Bullet Rail
see Index 515-022.

DESCRIPTION:
RAILING END DETAIL

CONVENTIONAL REINFORCING STEEL BENDING DIAGRAMS

BILL OF REINFORCING STEEL		
MARK	SIZE	LENGTH
S	5	As Reqd.
T	5	$9^{\prime}-0^{\prime \prime}$
X	5	$5^{\prime}-10^{\prime \prime}$

ROADWAY CROSS-SLOPE	ØA	
	LOW GUTTER	HIGH GUTTER
0% to 2%	90°	90°
2% to 6%	87°	93°
6% to 10%	84°	96°

STIRRUP BAR 5T

BAR 5S

Pre-cured Silicone
Sealant (4 " wide) Sealant (4" wide)

DETAIL "A" - SECTION at intermediate open joint

INTERMEDIATE JOINT SEAL NOTES:

1. At Intermediate Open Joints, seal the lower $6^{\prime \prime}$ portion of the open joint with Pre-cured Silicone Sealant in accordance with Specification Section 932.
2. Apply sealant prior to any Class V finish coating and remov all curing compound and loose material from the surface
3. The cost of the Pre-cured Silicone Sealant shall be included
in the Contract Unit Price for the Traffic Railing.

Surfaces Black

SECTION THRU RECESSED "V" GROOVE TO FORM INSCRIBED LETTERS AND FIGURES

1. All bar dimensions in the bending diagrams are out to out
2. The $3^{\prime}-8^{3} 4^{n}$ vertical dimensions shown for Bars $5 T$ and $5 X$ are based on a bridge deck with a $6^{\prime \prime}$ thick $x 6^{\prime}$ wide raised sidewalk at low side of deck, 2% deck cross slope and a counter 2%
raised sidewalk cross slope. If the raised sidewalk thickness, width or cross slopes vary from the above amounts, adjust these vertical dimensions accordingly to achieve a $6^{\prime \prime}$ minimum embedment int the bridge deck.
3. The reinforcement for the railing on a Retaining wall shall be the same as detailed with $\varnothing A=90^{\circ}$
4. Al reinforcing steel at the open joints shall have a $2^{\prime \prime}$ minimum cover.
5. Bars 55 may be continuous or spliced at the construction joints. Bar splices for Bars 55 shall be
a minimum of $2^{\prime}-2^{\prime \prime}$
6. The Contractor may utilize Welded Wire Reinforcement (WWR) when approved by the Enqineer. WWR must consist of Deformed wire meeting the requirements of Specification Section 931

NOTES:

1. When guardrail approaches are shown in the plans, begin placing Railing Bars $5 R$ and 5 W on Approach Slab at the railing to maintain cover. If required, adjustments to the bar spacing for Bars 5R and 5W shall be made immediately adjacent
to Begin or End Bridge.
2. When a Concrete Barrier is used beyond the Approach Slab form a 5'-0" long Height Transition and raise
Bars 5R up to maintain 2" top clearance.

$$
\ldots \text { Bars 5W@ @ } 1^{\prime}-0^{\prime \prime} \text { sp. (Max.) }-4 \text { sp.@ } 8^{\prime \prime}=2^{\prime}-8^{\prime \prime} .
$$

(Showing Bars 5W and 5S)

\sqrt{C}

ELEVATION - RAILING HEIGHT TRANSITION
Showing Transition to 38 " Single-Slope Barrier
(Showing Transition to 38" Single-Slope Barrier)
Showing Bars 5R and 5S)
\square FY 2024-25
TRAFFIC RAILING
MEDII
\mathbb{N}^{36}
36" S I
REVISION
1/01/23
FDOT\} $\begin{gathered}\text { FY 2024-25 } \\ \text { STANDARD PLANS }\end{gathered}$
(NGIE-SLOPE)
521-426
2 of 4

partial plan view of bridge deck and approach slab with MEDIAN TRAFFIC RAILING

NOTES:

1) Median Traffic Railing reinforcement vertical Bars 5W may be shifted up to 1" (Max.) and rotated up to 10 degrees as required to allow proper placement.
2) Transition Stirrup Bars 5 W shall be used as required at railing ends adjacent to expansion joints to facilitate placement of bars in acute corners. Place Transition Bars 5 W in a fan pattern to maintain spacing. Rotate bars in 10° (Max.) increments as required.
3) Median Traffic Railing ends at deck expansion joints shall follow the deck joint with allowance for joint movement. See Structures Plans, Superstructure and Approach Slab Sheets for Details.
4) $3 / 4$ Intermediate Open Joints and V-Grooves in railing shall be placed perpendicular or radial to the 4 of the median railing. See Structures Plans, Superstructure and Approach Slab Sheets for locations.
5) At begin or end approach slab extend slab at the median railing ends $3^{\prime \prime}$ (open side) as shown to provide a base for casting of the railing.
6) Work this Sheet with Approach Slab Indexes as applicable.
7) Deck Expansion Joint at begin or end bridge shown. Deck Expansion Joints at q Pier or
8) Partial Plan Views shown are intended as guides only. See Structures Plans, Superstructure and Approach Slab Sheets for skew angles, joint orientation, dimensions and details.
9) If Welded Wire Reinforcement is used in lieu of conventional reinforcement, placement of the wWR vertical elements shall be similar to those shown above. Clipping of horizontal elements to facilitate placement shall be minimized where possible. Where clipping is required, supplement horizontal elements by lap splicing with deformed bars having an equivalent area of steel.

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 16 \end{gathered}$	\|	$\begin{array}{cc} \text { FDY 2024-25 } \\ \text { STANDARD PLANS } \end{array}$	TRAFFIC RAILING - (MEDIAN 36" S INGLE-S LOPE)	index 521-426	$\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 4 \end{aligned}$

WWR Piece No. 2

SPLICE DETAIL
(Between WWR Sections)

WWR Piece No. 1

WWR Piece No. 1
SECTION A-A

1. At the option of the Contractor deformed Welded Wire Reinforcement (WWR) may be utilized in lieu of all Bars $5 R$, $5 S$ and 5W. WWR must meet the requirements of Specification Section 931,
WWR at Railing End Transition shall be field bent inward as required (Pieces $1 \& 2$) to maintain cover. The bottom
of Piece 1 shall be cut to allow overlap.
Place WWR panels so as to minimize the end
Overhangs greater than $6^{\prime \prime}$ are not permitted.
overhang of longitudinal wires at Railing Ends and Open Joints.

ROADW AY	ON SLOPE		AT CROWN	
CROSS-SLOPE	øA	$\emptyset B$	$\emptyset A$	${ }^{\circ} \mathrm{B}$
0\% to 2\%	79°	79°	79°	79°
$>2 \%$ to 6%	81°	77°	79°	79°
>6\% to 10\%	84°	74°	79°	79°

BILL OF REINFORCING STEEL		
MARK	SIZE	LENGTH
R	5	$7^{\prime}-2^{\prime \prime}$
S	5	As Reqd.
w	5	$5^{\prime}-10^{\prime \prime}$

$\varnothing A$ and $\varnothing B$ shall be 9° if Contractor elects to place
railing perpendicular to the deck, and approach slabs.

BAR 5S

STIRRUP BAR 5R TRANSITION STIRRUP BAR 5R (5 required per Railing End Transition)

STIRRUP BAR 5W
reinforcing steel notes:

1. All bar dimensions in the bending diagrams are out to out
2. All reinforcing steel at the open joints shall have a $2^{\prime \prime}$ minimum cover
3. Bars 55 may be continuous or spliced at the construction joints. Bar

At the Contractor's option Bars 5 W may be f^{2} -
bar with a 1'-2" lap splice of the bottom legs.

Pre-cured Silicone
Sealant 4" wide (Typ.)

DETAIL "C" - SECTION at intermediate open Joint
intermediate joint seal notes

1. At Intermediate Open Joints, seal the lower $6^{\prime \prime}$ portion of
the open joint with Pre-cured Silicone Sealant in accordance
with Specification Section 932 .
2. Apply sealant prior to any Class V finish coating and remove all curing compound and loose material from the surface prior to application of bonding agent.
3. Include the cost of the Pre-cured Silicone Sealant in the Contract Unit Price for the Traffic Railing.

ESTIMATED TRAFFIC QUANTITIES		
ITEM	UNITING	QUANTITY
Concrete	CY/LF	0.157
Reinforcing Steel	LB/LF	23.99

(The above quantities are based on a crowned roadway, with a 2% cross slope)
\square

FDOTY | FY 2024-25 |
| :---: |
| STANDARD PLANS |

\square
4 of 4

PARTIAL PLAN VIEW OF SKEWED BRIDGE DECK AND APPROACH SLAB WITH SIDEWALK, Single-slope traffic railing and pedestrian/bicycle railing INDEX 521-820 or 521-825, OTHER TRAFFIC RAILINGS SIMILAR

NOTES:

1) Concrete Parapet reinforcement is not effected by skew angle, see Index 521-820 for details.
2) Parapet expansion joint shall match the deck expansion joint which shall be turned perpendicular
or radial to the gutter line. See Structures Plans, Superstructure Sheets for details.
up to 10 degrees as required to allow proper placement. Bars 4 V adjacent to expansion joints shall be field ad justed to maintain clearance and spacing, extra Bars 4V will be required. Cut bottom horizontal portion of 4 V Bars to maintain maximum horizontal length to each vertical leg being placed. Discard the
3) Railing ends at deck expansion joints shall follow the deck
joint at the inside face of parapet shall be turned perpendicular or radial to this line. See Structures Plans, Superstructure and Approach Slab Sheets for details.
4) $3 / 4$ " Intermediate Open Joints and V-Grooves in railing and parapet shall be placed perpendicular or radial to
5) At begin or end approach slab extend slab at the railing ends $3^{\prime \prime}$ (gutter side or back face of railing as required) as shown to provide a base for casting of the railing. Field trim toe of Bars 4 V by 1 inch as required to maintain concrete cover at edge of deck.
6) When Guardrail is shown on the approach, begin placing Railing Bars $4 P$ and $4 V$ on Approach Slab at the railing adjustments to the bar spacing for Bars $4 P$ and $4 V$ shall be made immediately adjacent to Begin or End Bridge.

Begin or End Approach Slab
See Note 3. \rightarrow
partial plan view of skewed bridge deck and approach slab with single-slope traffic railing, other traffic railings similar

NOTES:

1) Railing expansion joint shall match the deck expansion joint which shall be turned perpendicular 2) or radial to the gutter line. See Structures Plans, Superstructure Sheets for details,
2) $3 / 4$ " Intermediate Open Joints and $1 / 2 / 2$ V-Grooves in railing shall be placed perpendicular or radial to the
3) When Guardrail Structures Plans, Superstructure and Approach Slab Sheets for locations.
the railing end and proceed toward Begin or End Bridge to ensure placement of guardrail bolt holes. If required, adjustments to the bar spacing for Bars 4 P and 4 V shall be made immediately adjacent to Begin or End Bridge.

GENERAL NOTES

1) Work this Sheet with Traffic Railing, Pedestrian/Bicycle Railing, and Approach Slab Indexes as applicable.
2) Deck Expansion Joint at begin or end bridge shown. Deck Expansion Joints at q Pier or Intermediate Bents are similar
3) Partial Plan Views shown are intended as guides only. See Structures Plans, Superstructure
and Approach Slab Sheets for skew angles, joint orientation, dimensions and details.
4) Railings on Raised Sidewalks shall be treated similar to the Partial Plan View of Bridge Deck
5ith Traffic Railing.
5) If Welded Wire Reinforcement is used in lieu of conventional reinforcement, placement of the WWR vertical elements shall be similar to those shown above. Clipping of horizontal elements to horizontal elements by lap splicing with deformed bars having an equivalent area of steel.

$\begin{gathered} \text { LAST } \\ \text { REVISION } \end{gathered}$ 11/01/17	匂気DESCRIPTION:	$\begin{array}{cc} \text { FDOT } \\ \text { FY 2024-25 } \\ \text { STANDARD PLANS } \end{array}$	TRAFFIC RAILING - (36" S INGLE-S LOPE)	INDEX 521-427

ELEVATION
drainage slot notes:

1. Use only when required for safety. See Plans for locations and size of drainage slots. Maintain 2" minimum cover to all reinforcing. Trim P Bars over drainage slots and raise For slots greater than $6^{\prime \prime}$ in length, add additional vertical bars ($V \& P$) on each side of
2. Drainage slot heights are $2^{\prime \prime}$ or $3^{\prime \prime}$ See the plans for size and location details.

| LAST REVISION $11 / 01 / 19$ | \|c|c | DESCRIPTION: | $\text { FDOT }\}$ | $\begin{gathered} \text { FY 2024-25 } \\ \text { STANDARD PLANS } \end{gathered}$ | $T \mathrm{RAFFIC} \mathbb{R A} 1$ | $\begin{array}{\|c\|} \text { INDEX } \\ 521-427 \end{array}$ | $\begin{aligned} & \text { SHEET } \\ & 5 \text { of } 5 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Railing height transition
(Begin/End of Bridge)
(Bars 5 V not shown for clarity)

SECTION D-D
(Index 400-091 Shown, 400-090 Similar) (Index 521-427 Bars $4 V$ not shown for Clarity)

DETAIL "B"

CONVENTIONAL REINFORCING STEEL BENDING DIAGRAMS

BILL OF REINFORCING STEEL		
MARK	SIZE	LENGTH
P	5	$7^{\prime}-O^{\prime \prime}$
$S 1$	6	As Reqd.
$S 2$	5	As Reqd.
$T 1 \& T 2$	6	$10^{\prime}-0^{\prime \prime}$
V	5	$5^{\prime}-9^{\prime \prime}$

Length as Required

BARS $6 S 1 \& 5 S 2$

STIRRUP BAR 5P
TRANSITION STIRRUP BAR 5P To Be Field Cut (10 of each required per Railing End Transition)

STIRRUP BAR 5V
END STIRRUP BAR 5 V To Be Field Cut and Lapped

REINFORCING STEEL NOTES:

1. All bar dimensions in the bending diagrams are out to out.
2. All reinforcing steel at the open joints shall have a $2^{\prime \prime}$ minimum cover.
3. Bars 651 may be continuous or spliced at the construction joints. Lap splices
4. The Contractor may utilize deformed WWR when approved by the Engineer.

WWR must meet the requirements of Specification Section 931

Pre-cured Silicone
Sealant (4 wide)

DETAIL "C" - SECTION at intermediate open joint

INTERMEDIATE JOINT SEAL NOTES:

1. At Intermediate Open Joints, seal the lower $6^{\prime \prime}$ portion of the open joint with Pre-cured Silicone Sealant in accordance with Specification Section 932.
2. Apply sealant prior to any Class V finish coating and remove curing compound and loose material from the surface prior to application of bonding agent.
3. The cost of the Pre-cured Silicone Sealant shall be included in the Contract Unit Price for the Traffic Ralling.

SECTION THRU RECESSED " GROOVE TO FORM INSCRIBED LETTERS AND FIGURES

ESTIMATED TRAFFIC RAILING QUANTITIES		
ITEM	UNIT	QUANTITY
Concrete	CY/LF	0.143
Reinforcing Steel	LB/LF	39.34

Note:
estrated railing quantities are based on a 2%
deck cross slope; railing on low side of deck.

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	¢ ${ }_{\text {c }}$ DESCRIPTION:	$\begin{array}{cc} F Y \text { FDOT } \\ \text { 2024-25 } \\ \text { STANDARD PLANS } \end{array}$	TRAFFIC RAILING - (42" S INGLE-S LOPE)	INDEX 521-428

his Traffic Ralling Retrofit has been structurally evaluated to be equivalent or greater in strength to a design which has been successfully crash tested previously and approved for a NCHRP Report 350 Test Level 4 rating, except for the Tapered End Transition on Index 521-484.
ONCRETE:

Concrete for the Traffic Railing (Vertical Face Retrofit) Spread Footing Approaches and replacement curb sections shall be Class IV. Concrete for Curb Transition Blocks shall be Class II (Bridge Deck).
REINFORCING STEEL: Reinforcing steel shall be ASTM A615, Grade 60 , except Expansion Dowel Bar B which shall be ASTM A36 Smooth round bar hot-dip galvanized in accordance with the Specifications.
XPANSION SLEEVE ASSEMBLY: Pipe sleeve shall be ASTM D2241 PVC pipe, SDR13.5. End Cap shall be ASTM D2466 PVC socket fitting, Schedule 40. End of Sleeve assembly at railing open joint shall be sealed with silicone to prevent concrete
intrusion during railing casting. A compressible expanded polystyrene plug is required in the opposite end of the assembly for correct dowel positioning during railing casting. Correct dowel positioning is required in order to provide for thermal movement of the deck.
ADHESIVE-BONDED ANCHORS AND DOWELS: Adhesive Bonding Material Systems for Anchors and Dowels shall comply with Specification Section 937 and be installed in accordance with Specification Section 416. The field testing proof loads
required by Specification Section 416 shall be 23,800 lbs. for Dowel Bars 60 on the inside face (traffic side) of the railing ($1^{\prime}-0^{\prime \prime}$ embedment) and 18,500 lbs for Dowel Bars 6 D along the oulside face of the traffic BRIDGES ON CURVED ALIGNMENTS: The details presented in these Indexes are shown for bridges on tangent alignments. Details for bridges on horizontally curved alignments are simila
be seen on the driver's right side when approaching the bridge. The Date shall be placed on the driver's left side when approaching the bridge. The Date shall be the year the bridge was constructed. Letters and figures may be $3^{\prime \prime}$ tall black
 elevation markers are removed. BARRIER DELINEATORS: Barrier Delineators shall meet Specification Section 993. Install Barrier Delineators on top
of the Traffic Railing $2^{\prime \prime}$ from the face on the traffic side in accordance with Specification Section 705 . Match the Barrier
Delineator color (white or yellow) to the near edgeline. Delineator color (white or yellow) to the near edgeline. railing and incidental work as required for transition blocks, curbs, spread footing approaches, and Barrier Delineators.

> Place 1" thick polystyrene blockout over limits of bridge deck expansion joint full width to the end of the Traffic Railing to allow for thermal movement. Sal Forms to prevent mortar leakage into the expansion joint.

partial elevation of railing showing finger/sliding plate JOINT AT BEGIN OR END BRIDGE - SCHEME 1 Guardrail Transition not shown for clarity)
(Quantities are based on a $9^{\prime \prime}$ curb, no curb cross slope and $I^{\prime} 0^{\prime \prime}$ embedment length of Bars $6 D$. If
the curb height or embedment length differs from that shown, increase or decrease quantity by the given per inch increment.) See Index 521-484, Sheet 4 for Spread Footing Approach Quantities.

Top of Existing Curb

partial elevation of railing showing finger/sliding plate joint - schemes 2 thru 5 (Begin or End Bridge Shown, Intermediate Joints Similar)

FDOT FY 2024-25
TRAFFIC RAILING - (VERTICAL FACE RETROFIT) INDEX TYPICAL DETAILS \& NOTES

| LAST | DESCRIPTION: | 0 |
| :---: | :---: | :---: | :---: |
| REVISION | 気 | |
| $07 / 01 / 19$ | | |

STANDARD PLANS

OPEN JOINT EXPANSION DOWEL DETAIL (Railing Reinforcing Not Shown For Clarity)
the joint material (Silicone, poured rubber, armored neoprene seal or sliding plates) as shown to prevent concrete intrusion during railing casting and

* See Index 521-481 thru 521-484 for spacing of Bars 6D.

PARTIAL PLAN OF RAILING (SKEW ANGLE θ GREATER THAN 20ㅇ) (Skewed Deck Joint at Begin or End Bridge Shown, Skewed Deck Joint at Intermediate Pier or Bent Similar)

PARTIAL PLAN OF RAILING (SKEW ANGLE $\theta=20^{\circ}$ OR LESS)
(Skewed Deck Joint at Begin or End Bridge Shown, Skewed Deck Joint at Intermediate Pier or Bent Similar)
\square

xpansion
Assembly

Existing Bridge Deck
Bars 6D spacing at Railing
Joints (Typ. on bridge except
PARTIAL PLAN OF RAILING
as noted for skewed deck joints)
\& Superstructure
Supports

PARTIAL ELEVATION OF INSIDE FACE OF RAILING

(Expansion Dowel Assemblies \& Bars 4C not shown for clarity)
\qquad TYPICAL TREATMENT OF RAILING ALONG BRIDGE $\bar{\square}$
NOTES
In approach end provide a Roadway Guardrail Transition Index 536-002 (as shown) or other site specific treatment. See Roadway Plans for limiting station of Roadway Guardrail Transition or other site specific treatment. If limiting station Connector to railing as shown above. If limiting station of Roadway Guardinail Transition is along the Wing Wall, see Schemes 2 or 3, Index 521-481, Sheet 2 and 3. On skewed bridges, if the skew along the deck joint extends across the width of the railing, the $2^{\prime}-6^{\prime \prime}$ minimum dimension shall apply to both the front and 521-484 for treatment and Details.
2. Field cut Bars 5 S and Dowel Bars $6 D$ to maintain clearance within Vertical Face Retrofit Railing.
3. Where existing structure has been removed and not encased in new concrete; match adjoining areas and finish flat by grouting or grinding as required. Exposed existing
reinforcing steel not encased in new concrete shall be burned off $1^{\prime \prime}$ below existing

TYPICAL SECTION THRU EXISTING TRAFFIC RAILING SHOWING LIMITS OF REMOVAL (BRIDGE DECK SHOWN, WING WALL SIMILAR)

SECTION A-A
TYPICAL SECTION THRU RAILING ON FULL DEPTH CURB (BRIDGE SHOWN, WING WALL SIMILAR)
LAST
REVISION

REVISION
07/01/13

PARTIAL ELEVATION OF INSIDE FACE OF GUARDRAIL

$$
\begin{gathered}
\overline{\overline{\text { RAILING END TREATMENT FOR }}} \\
\text { SCHEME } 1 \overline{\overline{\text { PERPENDICULAR OR ANGLED WING WALLS }}}
\end{gathered}
$$

SCHEME 1 NOTES:

1. Provide Transition Block (as shown) or Curb if existing Approach Slab does not have a curb, see Roadway Plans. Shape and height of Transition Block or Curb shall match existing bridge curb. Ralling End
opposing traffic.
2. Field bend Dowel Bars $4 L$ within Transition Block as required to maintain 2 " top and side clearance and $3^{\prime \prime}$ bottom clearance

PARTIAL ELEVATION OF INSIDE FACE OF RAILING
(Railing Reinforcing and Expansion Dowel Assemblies not shown for clarity)

RAILING END TREATMENT FOR

 PARALLEL WING WALLSSCHEME 2 NOTES:

1. See Roadway Plans for limiting station of Roadway Guardrail Transition or other site specific treatment. If limiting station of Roadway Guardrail Transition is along the Wing Wall, attach Thrie-Beam Terminal Connector to railing as shown above. If limiting station of Roadway Guardrail Transition is on the bridge, see Index 521-481, Sheet On skewed bridges, if the skew along the deck joint extends across the width of the railing, the $2^{\prime}-6^{\prime \prime}$ minimum
2. Provide Transition Block (as shown) or Curb if existing Approach Slab does not have a curb, see Roadway Plans Shape and height of Transition Block or Curb shall match existing bridge curb. Railing End Transition and Transition Block may be omitted on trailing ends with no opposing traffic.
3. Field bend Dowel Bars $4 L$ within Transition Block as required to maintain $2^{\prime \prime}$ top and side clearance and $3^{\prime \prime}$ botton clearance.

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 07 / 01 / 07 \end{gathered}$	包DESCRIPTION:	$\begin{array}{cc} \text { FDOT } \\ \text { FY 2024-25 } \\ \text { STANDARD PLANS } \end{array}$	TRAFFIC RAILING - (VERTICAL FACE RETROFIT) NARROW CURB

SCHEME 3 NOTE:

1. See Roadway Plans for limiting station of Roadway Guardrail Transition or other site specific treatment. If limiting station of Roadway Guardrail Transition is along the Wing Wall, attach Thrie-Beam Terminal Connector to railing as shown above. If limiting station of Roadway Guardrail Transition is on the bridge, see

PARTIAL ELEVATION OF INSIDE FACE OF RAILING (Railing Reinforcing and Expansion Dowel Assemblies not shown for clarity)
\qquad
RAILING END TREATMENT FOR
FLARED WING WALLS

LAST REVISION $07 / 01 / 07$	DESCRIPTION:	$\begin{array}{cc} \text { FDOT } & \text { FY 2024-25 } \\ \text { STANDARD PLANS } \end{array}$	TRAFFIC RAILING - (VERTICAL FACE RETROFIT) NARROW CURB	INDEX 521-481	$\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 3 \end{aligned}$

Match Line (See Sheet 1)
PARTIAL PLAN OF RAILING

partial elevation of inside face of guardrail

 (Existing Wing Post not shown for clarity)
RAILING END TREATMENT FOR

 PERPENDICULAR OR ANGLED WING WALLSSCHEME 1 NOTES

1. Provide Transition Block (as shown) or Curb if existing Approach Slab does not have a curb, see Roadwa Plans. Shape and height of Transition Block or Curb shall match existing bridge curb. Railing End
Transition and Transition Block may be omitted on trailing ends with no opposing traffic.
2. Field bend Dowel Bars $4 L$ within Transition Block as required to maintain $2^{\prime \prime}$ top and side clearance and $3^{\prime \prime}$ bottom clearance.
3. If a Special Steel Guardrail Post is required for attachment to the top of a sloping Wing Wall, saw cut and remove a wedge shaped portion of the sloping Wing Wall as required to provide a level surface for post

Front Face of Backwall, Begin or End Bridge \& Match Line (See Sheet 1)

PARTIAL PLAN OF RAILING

partial elevation of inside face of railing
(Existing Wing Post, Railing Reinforcing and Expansion Dowel Assemblies not shown for clarity)

railing end treatment for parallel curbs

SCheme 2 Notes:

1. See Roadway Plans for limiting station of Roadway Guardrail Transition or other site specific treatment. If limiting station of Roadway Guardrail Transition is along the wing Wall, attach Thrie-Beam Terminal Connector to railing as shown above. If limiting station of Roadway Guardrail Transition is on the bridge, see Sheet 1 . On skewed bridges, if the skem along the deck joint extends
and back face of the railing.
2. Provide Transition Block (as shown) or Curb if existing Approach Slab Curb does not extend beyond end of existing End Bent Wing Wall, see Roadway Plans. Shape and height of Transition Block or Curb shall match existing bridge curb. Railing End
3. Field bend Dowel Bars 4L within Transition Block as required to maintain $2^{\prime \prime}$ top and side clearance and $3^{\prime \prime}$ bottom clearance

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ \text { O7/01/05 } \end{gathered}$	20 DESCRIPTION:	FDOT) FY 2024-25	TRAFFIC RAILING - (VERTICAL FACE $\mathbb{W E T R O F I T})$ WIDE CURB

Existing Perpendicular Wing Wall show
Existing Angled Wing Wall similar
isting Angled Wing Wall similar
Dowel Bars

PARTIAL PLAN OF GUARDRAIL

partial elevation of inside face of guardrail

$$
\begin{gathered}
\text { RAILING END TREATMENT FOR } \\
\text { PERPENDICULAR OR ANGLED WING WALLS }
\end{gathered}
$$

SCHEME 1 NOTES:

1. Provide Transition Block (as shown) or Curb if existing Approach Slab does not have a curb, curb. Railing End Transition and Transition Block may be omitted on trailing ends with no opposing traffic.
2. Field bend Dowel Bars $4 \angle$ within Transition Block as required to maintain $2^{\prime \prime}$ top and side clearance and $3^{\prime \prime}$ bottom clearance.
3. If a Special Steel Guardrail Post is required for attachment to the top of a sloping Wing Wall saw cut and remove a wedge shaped portion of the sloping Wing Wall as required to provide a level surface for post installation.

PARTIAL ELEVATION OF INSIDE FACE OF RAILING (Railing Reinforcing and Expansion Dowel Assemblies not shown for clarity)

RAILING END TREATMENT FOR

PARALLEL WING WALLS
SCHEME 2 NOTES:

1. See Roadway Plans for limiting station of Roadway Guardrail Transition or other site specific treatment. If limiting station of Roadway Guardrail Transition is along the Wing Wall, attach Thrie-Beam Terminal Connector to railing as shown above. If limiting station of Roadway Guardrail Transition is on the bridge,
see Sheet 1. On skewed bridges, if the skew along the deck joint extends across the width of the railing see Sheet 1. On skewed bridges, if the skew along the deck joint extends across the width of the railing, 2. Provide Transition Block (as Shown) or Curb if existing Approach Slab Eurb does not extend beyond end of existing bridge curb. Railing End Transition and Transition Block may be omitted on trailing ends with no opposing traffic
2. Field bend Dowel Bars $4 L$ within Transition Block as required to maintain $2^{\prime \prime}$ top and side clearance and 3 bottom clearance.

Bars 55 (Field Bend)
\qquad Existing Flared Wing Wall Spacing Max. (Front and
Back row of bars only)
Expansion Dowel
Sleeve Assembly End Bength of Existing \qquad Roadway Guardrail Transition
(See Note 1, This Sheet \& No (See Note 1, This Sheet \& Note 1, Sheet 1) End Bent Wing Wall)
sCheme 3 note:

1. See Roadway Plans for limiting station of Roadway Guardrail Transition or other site specificic treatment. If limiting station of Roadway Guardrail
Transition is along the Wing Wall. attach Thrie-Beam Terminal Connector ransition is along the Wing Wall, attach Thrie-Beam Terminal Connector Transition is on the bridge, see Sheet 1
ront Face of Backwall, Begin or End Bridge \& Match Line or End Bridge
(See Sheet 1)

PARTIAL PLAN OF RAILING

partial elevation of inside face of railing
(Railing Reinforcing and Expansion Dowel Assemblies not shown for clarity)

* Guardrail or Crash Cushion may also be Shown in the
Contract Plans, in lieu of the Tapered End Transition.

SCHEMATIC PLAN VIEW - NEAR LANE APPROACH

sChematic plan view - opposing lane approach

ROOS REFERENCES:
For General Notes, Dowel Details, Expansion Dowel Details, Reinforcing Steel Notes and Reinforcing Steel Bending Diagram see Inde

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVISION } \\ 07 / 01 / 09 \end{array}$	DESCRIPTION:	$\begin{array}{cc} \text { FDOT } & \text { FY 2024-25 } \\ \text { STANDARD PLANS } \end{array}$	TRAFFIC RAILING - (VERTICAL FACE RETROFIT) SPREAD FOOTING APPROACH	INDEX 521-484	SHEET 1 of 10

ESTIMATED TRAFFIC RAILING RETROFIT SPREAD FOOTING APPROACH QUANTITIES		
ITEM	UNIT	QUANTITY
		9" Curb
Concrete - Typical Section	CY/Ft.	0.25
Reinforcing Steel - Typical Section	Lb./Ft.	38
Concrete - 20'-0" Tapered End Transition plus Footing	CY	4.57 Total
Reinforcing Steel - 20'-0" Tapered End Transition plus Footing	Lb.	776 Total

NOTE: Quantities are based on a 9" curb, no curb cross slope.

SECTION X-X (TYPICAL CURB, TYPE VARIES, TYPE F SHOWN) (See Index 520-001 and Plans for Details)

SECTION C-C

* Match Cross Slope of high side and low side at begin or end bridge or approach
* Match curb height of adjacent bridge and approach slab. Adjust height in Transition area to match adjoining Roadway curb.

CROSS REFERENCES:
For location of Sections $A-A, B-B$
and $X-X$ see Sheet 2 .
a $A-A, B-B$ loe
For location of Section $C-C$ see

- Front Face of Backwall, Begin or

End Bridge \& Match Line (S
Index 521-483 Sheet 1)

PARTIAL ELEVATION OF inside face of railing
(Expansion Dowel Assemblies and Bars 4C not shown for clarity)

Note:
curb height at adjoinin existing end bent wing.

工 SCHEME 6 ~ MODIFICATION FOR INDEX 521-483 SCHEME $2=$
RAILING END TREATMENT FOR PARALLEL CURBS AND WING WALLS WITH INTERMEDIATE CURBS

CROSS REFERENCES:
For Section A-A se
For Section A-A see Sheet 4 .
For Section D-D see Sheet 5
For Section D-D see Sheet 5 .
For Expansion Dowel Assembly
and placement of Dowel Bars 6 D
a
Details see Index $521-480$.

Begin or End Approach Slab

PLAN (BRIDGE MOUNTED RAILING/NOISE WALL SHOWN WALL OR FOOTING MOUNTED RAILING/NOISE WALL SIMILAR (Reinforcing Steel not shown for clarity)

ROSS REFERENCE
For Detail "B" and V-Groove Lettering
For Section $A-A$ see Sheet 3.
For Section C-C and Detail "A" see
Sheet 5 .
NAME, DATE AND BRIDGE NUMBER : For Railing/Noise Wall on bridges, place the Name as shown in the General Notes in the Structures Plans and Bridge Number on the Traffic Railing so as to be seen on the drivers right side when approaching the bridge. Place the Date on the drers eeted. For a widening when the existing railing is removed, use both the existing date and the year of the widening. Black plastic letters and figures $3^{\prime \prime}$ in height may be used, as approved by the Engineer, in lieu of the letters and figures
\qquad

Spacing $1 / 2^{\prime \prime} \quad$-Groove

On Bridges see Superstructure and Approach Slab Sheets for actual dimensions and joint orientation Open Railing/Noise Wall Joints at Deck Expansion Joint locations shall match the dimensions of the Deck Joint. For treatment of Railing/Noise Walls on skewed bridges see Index 521-427. Deck Joint at Begin Bridge
Footing similar.

Construct $3 \mathrm{~m}^{1}$ Intermediate Open Joints plumb and provide at
(2) - Construction Joints for Junction Slabs and Footings. Railing/Noise Wall shown
e mounted railing/noise wall shown
T-Shaped Spread Footing Shown,
L-Shaped Spread Footing, Trench L-Shaped Spread Footing, Trench
Footing and Junction Slab similar

Notes

1. Work this with Indexes 521-512 through 521-515.
2. Construct Traffic Railing/ Noise Wall and joints plumb, not perpendicular to the roadway surface
3. Concrete
A. Class II for slightly aggressive environments.
B. Class IV for moderately or extremely aggressive environments.
4. Provide $3 / 4$ " open joints every 30 to 90 feet. Align open joints with construction joints in the

Junction Slab or footing
5. Install Barrier Delineators $2^{\prime \prime}-4^{\prime \prime}$ above the riding surface in accordance with Specification

Section 705. Match the Delineator color (White or Yellow) to the near edgeline.

LAST REVISION 11/01/18		$\begin{gathered} \text { FDOT } 5 \text { 2024-25 } \\ \text { STANDARD PLANS } \end{gathered}$	TRAFFIC RAILING/NOISE WALL (8'-0") - BRIDGE

```
*)
```


ELEVATION OF RAILING/NOISE WALL REINFORCING STEEL (INTERMEDIATE OPEN JOINT SHOWN, DECK JOINT SIMILAR) Bars $5 S 1$ in Railing not shown for clarity)
elevation of railing/noise wall end taper (adjacent to traffic railing SHOWN, GUARDRAIL ATTACHMENT SIMILAR SEE DETAIL "A", SHEET 5) (Bars 5 S1 in Railing not shown for clarity

* Field Cut Bars $5 R \& 5 S 1$ to maintain clearance
** Terminate $3 / /^{\prime \prime} V$-groove at construction joint \& cast top of
railing with End Taper Traffic Railing continues. For transition to guardrail see Sheet

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 18 \end{gathered}$		DESCRIPTION:	$\text { FDOT\} }$	$\begin{gathered} \text { FY 2024-25 } \\ \text { STANDARD PLANS } \end{gathered}$		$\begin{gathered} \text { INDEX } \\ 521-509 \end{gathered}$	SHEET 2 of 5

REINFORCING STEEL BENDING DIAGRAMS

REINFORCING STEEL BENDING DIAGRAMS								
Bill of Reinforcing Steel			$\begin{gathered} \text { BRIDGE } \\ \text { CROSS-SLOPE } \end{gathered}$		LOW GUTTER		HIGH GUTTER	
MARK	SIZE	LENGTH			ØA	øB	өA	\varnothing ¢
				0\% to 2\%	90°	90°	90°	90°
R1	5	$5^{\prime \prime}-2^{\prime \prime}$	-	2\% to 6\%	93°	87°	87°	93°
R2	5	$5^{\prime}-2^{1 / 2}{ }^{\prime \prime}$						
R3	5	$4^{\prime}-10^{\prime \prime}$		6\% to 10\%	96°	84°	84°	96°

SECTION THRU RECESSED "V" GROOVE TO FORM INSCRIBED LETTERS AND FIGURES

INTERMEDIATE JOINT SEAL NOTES

1. At Intermediate Open Joints,
seal the lower $6^{\prime \prime}$ portion of
Silicone Sealant in accordance
with Specification Section 932.
2. Apply sealant prior to any Class V finish coating and remove all curing
compound and loose material from the surface prior to application of bonding agent.

3. The cost of the Pre-cured Silicone

Sealant shall be included in the Contract
Sealant shafo the Traffic Railing.
Unit Price for the
DETAIL "B" - SECTION AT INTERMEDIATE OPEN JOINT

ESTIMATED TRAFFIC		
RAILING/NOISE WALL QUANTITIES		
ITEM	UNIT	QUANTITY
Concrete (Railing)	CY/LF	0.107
Concrete (Noise Wall)	CY/LF	0.136
Reinforcing Steel (Typical)	LB/LF	69.36
Additional Reinf. @ Open Joint	LB	226.85

(The above quantities are based on the bridge mounted typical
(The above quantities are based on the bridge mounted typical
section, 2% deck cross slope and railing on low side of deck.)

LAST	z DESCRIPTION:
EVISISION	-

LEVISION
1/01/18

PLAN - RAILING END TRANSITION (Showing Bars 5R, and Bars 5S1) (Bars 5V \& Noise Wall Reinforcement not shown for Clarity)

PLAN - RAILING END TRANSITION
(Showing Bars 5V and Bars 5S1) (Bars 5 R not shown for Clarity)

DETAIL "A" NOTES:
Begin placing Railing Bars 5V at the railing end and proceed toward the guardrail (thrie beam) terminal connector to ensure placement of guardrail bolt holes. Pair Bars $5 R$ with Bars 5 V as shown. Clearance
of Bars $5 R \& 5 \mathrm{~V}$ to guardrail bolt holes shall be checked to prevent cutting of bars if holes are to be drilled. Shift bars locally where conflicts occur.
2. For Guardrail connection details see Index 533-001

Omit Railing End Transition if a $36^{\prime \prime}$ Single-Slope Traffic Railing is used beyond the End Taper. See the
Field cut Bars 5R2 to maintain cover. Field cut Bars 5 V and lap as necessary to maintain cover; field cut \& bend Bars 5R1 front leg (more plumb) to maintain cover and tie to S1 Bars.

option 2 - elevation view

OPTION 3 - PLAN VIEW
WITH GAP BETWEEN BARRIER AND PEDESTAL TO ALLOW SLIP FORMING

option 2-typical section at light pole pedestal (Approach Slab Similar)

option 3 - typical section at light pole pedestal With gap between barrier and pedestal to allow slip forming

CROSS REFERENCE:
For Detail "A", Anchor Plate Detail and Light Pole Pedestal Notes, see Sheet 4. NOTE: Anchor Bolt, Nuts, Washers and Anchor Plate are dashed for clarity.

Reinforcing steel notes:

a. When Pedestal is attached to Pedestrian/Bicycle Railing - Index 521-820 or an $8^{\prime \prime}$ wide concrete curb and the Bridge Deck or Approach Slab
thickness is less than $11^{\prime}-1 / 2^{\prime \prime}$, Bars 4 F3 shall have leg length and bar hickness is less than $1^{\prime}-1 \frac{112 \prime \prime}{\prime \prime}$
length shown in parentheses.
b. The number of bars shown in parentheses is for Bars $4 F 4$ when Pedestal is attached to Pedestrian/Bicycle Railing - Index 521-820 or an $8^{\prime \prime}$ wide concrete curb, and the Bridge Deck or Approach Slab thickness is less than $1^{\prime}-1 \frac{1}{2 \prime \prime}$."
Lap Splices for Bars 4F1, 4F2\&4F3 shall be a minimum of $1^{\prime}-4$
Lap Splices for Bars $4 F 4 \& 4 F 5$ shall be minimum of $1^{\prime}-8$ "
d. Bars $4 J 1$ and $4 J 2$ are not required when Pedestal thickness is less than
$1^{\prime}-51 /{ }^{\prime \prime}$. Field trim height of bars to maintain cover when Pedestal 1'-51/2". Field trim height of bars to maintain cover when Pedestal Wall Coping to maintain cover.
All bar dimensions in the bending diagrams are out to out.

	BILL OF REINFORCING STEEL				
	MARK	SIZE	NO. REQD.	LENGTH	NOTES
	F1	4	16	$5^{\prime}-8{ }^{\prime \prime}$	c
	F2	4	4	$4^{\prime}-88^{\prime \prime}$	a
	F3	4	4	$\begin{gathered} 4^{\prime}-2^{\prime \prime} \\ \left(3^{\prime}-6^{\prime \prime}\right) \end{gathered}$	a, c
	F4	4	8 (6) $[4$ for Option 3]	$8^{\prime}-9^{\prime \prime}$	b, c
	F5	4	4	$6^{\prime}-9{ }^{\prime \prime}$	c
	F6	4	4	2'-11"	-
	F7	4	4	$3^{\prime}-8^{\prime \prime}$	-
	F8	4	12	$4^{\prime \prime}-4^{\prime \prime}$	-
	G	$\begin{array}{\|c} \hline 4 \\ {[5 \text { for Option 3] }} \end{array}$	$\begin{array}{\|c\|} \hline \text { [24 for } \\ \hline \text { Option 3] } \end{array}$	$6^{\prime}-0^{\prime \prime}$	-
	H1	4	2	$15^{\prime \prime}-8^{\prime \prime}$	-
	H2	4	2	$13^{\prime}-10^{\prime \prime}$	-
	J1	4	8	$4^{\prime}-8^{\prime \prime}$	d
	J2	4	12	$4^{\prime}-0^{\prime \prime}$	d

BAR 5G

() See Reinforcing Steel Note $a \& b$.

ANCHOR PLATE DETAIL

CROSS REFERENCE:
DETAIL "A"

LIGHT POLE PEDESTAL NOTES

1. Concrete and Reinforcing Steel required for the construction of the Pedestal shall meet the same requirements as the Traffic Railing or
2. Light Pole Pedestal may be used with the following: Index 521-422 - Traffic Railing (42" Vertical Shape),
Index 521-423 - Traffic Railing (32" Vertical Shape) Index 521-423-Traffic Railing (32" Vertical Shape)
Index 521-427-Traffic Railing ($36^{\prime \prime}$ Single-Slope) Index 521-427-Traffic Railing (36 Single-SIope),
Index 521-428-Traffic Railing (42" Single-Slope), Index 521-820-Pedestrian/Bicycle Railing,
Index 515-021 - Pedestrian/Bicycle Balllet Railing for Index 515-509 - Traffic Railing /No
3. Unless otherwise noted, Traffic Railing (36" Single-Slope) is shown in Views and Sections. The Pedestal details for other Traffic Railings or Pedestrian/Bicycle Railing are similar.

TABLE 1 - DESIGN LIMITATIONS FOR ANCHOR BOLTS (1" Dia.)				
$\begin{aligned} & \hline \text { WIND } \\ & \text { SPEED } \\ & \text { (MPH) } \end{aligned}$	$\begin{gathered} \text { ARM } \\ \text { LENGTH } \\ \text { (Ft.) } \end{gathered}$	BRIDGE DECK HEIGHT (Ft.)*		
		40 Ft .	45 Ft .	50 Ft
130	≤ 15	75	75	75
150	≤ 15	75	75	75
170	$8 \& 10$	75	75	45**
170	12 \& 15	75	75	25**

* Above natural ground or MLW.
** Use 111/4" diameter Anchor Bolt for Bridge Deck Height greater than shown, in Table 1, up to 75

4. ANCHOR BOLTS:
 configurations shown on Index 715-002.
Anchor Bolt Diameter: See Table 1
Anchor Bolts: ASTM F1554 Grade 55.
Nuts: ASTM A563 Grade A Heavy-Hex
Washers: ASTM F436 Type 1
Anchor Plate: ASTM A709 (Grade 36) or ASTM A36.
Gith Bolts Washers, in accordance with ASTM $F 2329$.

The Contractor is responsible for ensuring the anchor bolt configuration is ompatible with the light pole base plate. Submit modifications of the anchor olt design to the Engineer for approval.
5. Install Anchor Bolts plumb.
6. For Conduit, Embedded Junction Boxes (EJB), Expansion/Deflection Fitting and adjacent Reinforcing Steel Details, see Utility Conduit Detail Sheets and Index 630-010
7. PAYMENT: The cost of Wire Screen, Anchor Bolts, Nuts, Washers and Anchor Plates shall be included in the Bid Price for Light Poles. The cost of all Labor, Concrete and Reinforcing Steel required for the Construction of the Pedestals, and shall be included in the Bid Price for the Traffic Railing or Pedestrian/Bicycle Railing the Pedestal is attached to.

ESTIMATED LIGHT POLE PEDESTAL QUANTITIES PER LIGHT POLE		
ITEM	UNIT	QUANTITY
Concrete Per Pedestal Thickness	CY/In.	0.040
Reinforcing Steel	LB	195 (182)

(The Reinforcing Steel quantity shown in parenthesis is for a Pedestal attached to Pedestrian/Bicycle Railing - Index 521-820 with Bridge Deck or Approach Slab thinner than $11^{\prime}-1 /{ }^{1 / \prime \prime}$. Add 59 Lbs. for
Bars $4 J 1 \& 4 J 2$ when Pedestal Thickness is $1^{\prime}-5 /{ }^{\prime \prime \prime}$ or greater

Index	Sheet
$521-660$	4 of 4

elevation of inside face of railing (Reinforcing Steel not shown for clarity)

See Structures Plans, Superstructure Sheets for actual dimensions and joint orientation. Open Parapet Joints at Deck Expansion Joint
locations shall match the dimension of the Deck Joint. For treatment of Railings on skewed bridges see Index 521-427. Deck Joint at Begin Bridge or End Bridge shown. Deck Joint at \& Pier or Intermediate
Bridge or
Bent similar
Open Joints shall be provided at locations
coinciding with $3 / 4$ " Joints for the Traffic Railing.
pedestrian/bicycle railing notes:
CONCRETE PARAPET: Concrete parapet shall be placed vertical and top surface shall be level transversely.
Assembly fabrication and installation details Splice/Expansion BRIDGE FENCING: For Bridge Fencing see Index 550-010
thru 550-013 in lieu of Posts and Rails on Index 515-022.
PAYMENT: Concrete parapet shall be paid for under the contract and Rails shall be paid for under Bullet Railings,

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 18 \end{gathered}$		$\begin{array}{cc} \text { FDOTY 2024-25 } \\ \text { STANDARD PLANS } \end{array}$	27" CONCRETE PARAPET WITH PEDESTRIAN/BICYCLE BULLET RAILING	$\begin{gathered} \text { INDEX } \\ 521-820 \end{gathered}$	SHEET 1 of 2

ALTERNATE REINFORCING (WELDED WIRE REINF.) DETAILS
NOTE: Place wire panels to minimize the end
overhang. End Overhangs gre

= WELDED WIRE REINFORCEMENT (WWR)

D19.7 (Horizontal) (V19.7 (Vertical)
SPLICE DETAIL
(Between WWR Sections)
reinforcing steel notes:

1. All bar dimensions in the bending diagrams are out to out.
2. The reinforcement for the parapet on a retaining wall shall
be the same as detailed above for a $8^{\prime \prime}$ deck.
3. All reinforcing steel at the open joints shall have a $2^{\prime \prime}$
. Bars 4 S may be continuous or spliced at the construction
joints. Bar splices for Bars 4 S shall be a minimum of 1'-8
4. Bars $4 P 2$ may be used in lieu of Bars $4 P$

At the option of the Contractor deformed WWR may be used
in lieu of all Bars 4P or 4P2 and 4S. in lieu of all Bars 4P or 4P2 and 4S.

DETAIL "A" - SECTION AT INTERMEDIATE OPEN JOINT

NTERMEDIATE JOINT SEAL NOTE:

1. At Intermediate Open Joints, seal the lower $6^{6 \prime}$ portion of the open joint with Pre-cured Silicone Sealant meeting the requirements
Apply sealant prior to any cia coating and remove all curing compound and loose material from the surface prio to application of bonding agent.
2. The cost of the Pre-cured Silicone Sealant for the Concrete Parapet.

ESTIMATED CONCRETE QUANTITIES				
ITEM	UNIT	QUANTITY		
Concrete CY/LF	0.056			
Reinforcing Steel (P1 \& S	LB/FT	6.35		
Reinforcing Steel (P2 \& S)	LB/FT	6.68		(The above quantities are based on a deck with
:---				
a 2% cross slope)				

(Reinforcing Steel not shown for clarity)
See Structures Plans, Superstructure Sheets for actual dimensions and joint orientation. Open Railing Joints at Deck Expansion Joint
locations shall match the dimension of the Deck Jint. For treatme locations shall match the dimension of the Deck Joint. For treatment
of Railings on skewed bridges see Index 521-427. Deck Joint at Begin of Railings on skewed bridges see Index 521-427. Deck Joint at Begin
Bridge or End Bridge shown. Deck Joint at \& Pier or Intermediate Bent similar.

FENCING NOTES

FENCE INSTALLATION:
Install posts plumb (within a tolerance of $\pm 11^{\prime \prime}$ ". Use shim plates as required to achieve plumb. The required quantity and
thickness of shim plates will be determined in the field. Install chain link fence in accordance with ASTM F567 as applicable.
TRAFFIC RAILING DETAILS:
TRAFFIC RAILING DETAILS:
SOe Superstructure Sheets for Traffic Railing details,
CONCRETE PARAPET DETALLS:
CONCRETE PARAPET DETAILS:
See Index $521-820$ - Pedestrian/Bicycle Railing for Concrete Parapet details. Provide fencing in lieu of aluminum bullet railing
as shown on Index 521-820.
LIMITS OF FENCING.
Limits of fencing are from begin of approach slab at Begin Bridge to end of approach slab at End Bridge, unless otherwise
shown in the plans.
PAYMENT.

PAYMENT:
Payment will be made under Fencing, Type R. Payment includes posts, horizontal and expansion rails, brace rails and bands,
Payment will be made under rencing, Type R. Payment includes posts, horizontar and expansion ralls, brace ralls and bands,
rail ends, combination rail ends, boulevard clamps, chain link fabric tension wire, ties, hog rings, tension bars and bands, post rail loop caps, pipe clamps, base plates, anchor rods, bolts, nuts, washers, shim plates, spacers, bearing pads, miscellaneous fence fittings and hardware and all incidental materials and labor required to complete installation of the fence.

CROSS REFERENCE:
For Table of Fence Components, Table of Post Attachment Components, View A-A and Detail "A"
see Sheet 2.
For Pull Post Assembly Detail for Traffic Railings see Sheet 3.
For Pull Post Assembly Detail for Traffic Railings see Sheet 3. "B.

LAST REVISION $11 / 01 / 17$ 11/01/17	\| 2	DESCRIPTION:	$\text { FDOT\} }$	FY 2024-25 STANDARD PLANS	$\mathbb{B} I \mathrm{I} G \mathbb{E} \mathbb{F} \mathbb{N} C I \mathbb{N G}(\mathbb{V E R T I C A L}$)	$\begin{gathered} \text { INDEX } \\ 550-010 \end{gathered}$	SHEET 1 of 4

Bridge Deck (shown
or Raised Sidewalk
\qquad

PULL POST ASSEMBLY DETAIL FOR CONCRETE PARAPETS

DETAIL "B"

bASE PLATE DETAIL

CROSS REFERENCE:
For location of Detail "B" see Sheet 1

EXPANSION RAIL DETAIL

| $\begin{gathered} \text { LAST } \\ \text { REVISION } \end{gathered}$ $11 / 01 / 17$ | \|c|che | F |
| :---: | :---: | :---: |

FDOT | FY 2024-25 |
| :---: |
| STANDARD PLANS |

FENCING NOTES

fENCE APPLICATION:
This bridge fence can only be used on sidewalk installations separated from traffic by a traffic railing
and thickness of shim phin a tolerance of $\pm 1 \frac{1 / 21}{}{ }^{\prime \prime}$. Use shim plates as required to achieve plumb. The required quantity
applicable.
CONCRETE PARAPET DETAILS:
See Index 521-820-Pedestrian/Bicycle Bullet Railing for Concrete Parapet details. Provide fencing in lieu of aluminum bullet railing as shown on Index 521-820.
LIMIT OF FENCING:
LIMITS OF FENCING:
Limits of fencing are from begin of approach slab at Begin Bridge to end of approach slab at End Bridge, unless otherwise Shown in
PAYMENT:
Payment will be made under Fencing, Type R. Payment includes posts, horizontal and expansion rails, brace bands, rail ends, combination rail ends, boulevard clamps, chain link fabric, ties, tension bars and bands, post and loop caps, base plates, anchor rods, bolts, nuts, washers, shim plates, neoprene pads, miscellaneous fence fittings and hardware and all incidental materials and labor required to complete installation of the fence.

CROSS REFERENCE
For Table of Fence Components and Pull Post Assembly Detail see Sheet 2 For Table of Post Attachment Components and Detail "A" see Sheet 3

TABLE OF POST ATTACHMENT COMPONENTS			
COMPONENT	$\begin{gathered} \hline \text { ASTM } \\ \text { DESIGNATION } \\ \hline \end{gathered}$	COMPONENT INFORMATION	
Base Plates	$\begin{gathered} \text { A36 or } \\ \text { A709 Grade } 36 \\ \hline \end{gathered}$	3/4"Steel R	
Shim Plates	A36 or A709 Grade 36 or B209 Alloy $6061-T 6$ or B221 Alloy $6063-T 5$	Plate thicknesses as required, Holes in shim plates will be $3 / 4 "$ Ø	
Adhesive Anchor Rods	F1554 Grade 36	Fully threaded Headless Anchor Rods $\sim 7 / /^{\prime \prime} \\| \times 141 /{ }^{\prime \prime}$	
C-I-P Anchor Rods	F1554 Grade 36	Hex Head Anchor Rods $\sim 7 / /^{\prime \prime} \varnothing \times 141 /{ }^{\prime \prime}$	
Nuts	A563	Hex Nuts for Base Plate Connections	
Washers	F436	Flat Washers for Base Plate Connections	
Bearing Pads (Plain)	-	In accordance with Specification Section 932 for ancillary structures	

POST ATTACHMENT NOTES

ANCHOR RODS, NUTS AND WASHERS: After the nuts have been tightened, distort the Anchor Rod threads to prevent removal of the nuts. Coat distorted threads and exposed trimmed ends of anchors with a galvanizing compound in accordance with Specification Section 562
COATINGS:
Hot-dip: galvanize all Nuts, Washers, Bolts, C-I-P Anchor Rods, Adhesive Anchors and Fence Framework (Posts, Internal Sleeves, Shim Plates and Base Plates) in accordance with Specification Section 962. Hot-dip galvanize Fence Framework after fabrication.
ADHESIVE-BONDED ANCHORS AND DOWELS: with Specification Section 416. Cutting of reinforcing steel is permitted for drilled hole installation.
WELDING
All welding will be in accordance with the American Welding Society Structural Welding Code (Steel) ANSI/AWS D1.1 (current edition). Weld metal will be E60xX or E70XX. Nondestructive testing of welds is not required.

DETAIL "A"

base plate detail

CROSS REFERENCE:
For location of Detail "A" see Sheet 1 .

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 23 \end{gathered}$		DESCRIPTION:	$\overline{F D O T}\}$	FY 2024-25 STANDARD PLANS	$\mathbb{B} I D G E \quad F E \mathbb{N} C \mathbb{N G}$ ON PARAPET ($\mathbb{C U R V E D} T$	$\begin{gathered} \text { INDEX } \\ 550-011 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 3 \end{aligned}$

table of Chain link fence components		
COMPONENT	$\begin{array}{c\|} \hline \text { ASTM } \\ \text { DESIGNATION } \\ \hline \end{array}$	COMPONENT INFORMATION
Posts	F1083	Galvanized Steel Pipe - 3" NPS, Schedule 40 Regular Grade
Horizontal Rails and Internal Sleeves	F1083	Galvanized Steel Pipe - 21/2" NPS, Schedule 40 Regular Grade
Expansion Rails	F1083	Galvanized Steel Pipe - $2^{\prime \prime}$ NPS, Schedule 40 Regular Grade
Chain Link Fabric (2" mesh with knuckled bottom selvages)	A392	Zinc Coated Steel - 9 gage (coated wire diameter), Class 2 Coating
	A491	Aluminum Coated Steel - 9 gage (coated wire diameter)
	F668	Polyvinyl Chloride (PVC) Coated Steel - 9 gage Class 2 b Zinc Coated Wire
Tension Wire	A824 \& A817	Type II (Zinc Coated Steel Wire)-7 gage, Class 4 Coating
		Type I (Aluminum Coated Steel Wire) - 7 gage
Tie Wires	F626	Zinc Coated Steel Wire - 9 gage
Hog Rings	F626	Zinc Coated Steel Wire - 12 gage
Brace Bands	F626	12 gage (Min. thickness) $\times 3 / 4$ " (Min. width) Steel Bands (Beveled or Heavy)
Tension Bars	F626	3/6" (Min. thickness) x 3/4" (Min. width) x Variable Height Steel Bars ~ Height $=$ Tangent or Hoop Length - Barrier or Parapet Height - 2" max.
Tension Bands	F626	14 gage (Min. thickness) $\times 3 / 4 / 1$ (Min. width) Steel Bands
Miscellaneous Fence Components	F626	Zinc Coated Steel ~ (includes horizontal rail ends, combination rail ends, boulevard clamps and all other miscellaneous fittings and hardware)
Bolts	A307	$3 / /^{\prime \prime} \emptyset \times 4 \frac{1 / 4 "}{}$ Hex Head Bolts for Internal Sleeve connections 1/4" $\varnothing \times 4 \frac{1 / 4 "}{4}$ Hex Head Bolts for Expansion Rail connections
Nuts	A563	Hex Nuts for Internal Sleeve and Expansion Rail connections
Washers	F436	Flat Washers for Internal Sleeve and Expansion Rail connections

table of post attachment components			
	COMPONENT	$\begin{gathered} \hline \text { ASTM } \\ \text { DESIGNATION } \\ \hline \end{gathered}$	COMPONENT INFORMATION
Pipe Clamps		$\begin{gathered} \text { A36 or } \\ \text { A709 Grade } 36 \\ \hline \end{gathered}$	1/4' Steel R
Base Plates		A36 or A709 Grade 36	3/4" Steel R
Shim Plates		A36 or A709 Grade 36 or B209 Alloy 6061-T6 or B221 Alloy 6063-T5	Plate thicknesses as required; Holes in shim plates will be $3 / 4 " \varnothing$
Spacers		-	Plate thickness varies based on Traffic Railing type. (See Detail "A")
	Adhesive Anchor Rods	F1554 Grade 36	Fully threaded Headless Anchor Rods $\sim 5 /{ }^{\prime \prime} \varnothing \times 6^{\prime \prime}$ (no spacer) or $5 / 8^{\prime \prime} \varnothing \times\left(6^{\prime \prime}+\right.$ spacer thickness)
	C-I-P Anchor Rods	F1554 Grade 36	Hex Head Anchor Rods $\sim 5 /{ }^{\prime \prime} \emptyset \times 6^{\prime \prime}$ (no spacer) or 5/8" $\varnothing \times\left(6^{\prime \prime}+\right.$ spacer thickness)
$\begin{aligned} & 0 \\ & \frac{0}{0} \\ & \frac{0}{a} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Adhesive Anchor Rods	F1554 Grade 36	Fully threaded Headless Anchor Rods ~ $7 / 3^{\prime \prime} \emptyset \times 141 / 2^{\prime \prime}$
	C-I-P Anchor Rods	F1554 Grade 36	Hex Head Anchor Rods $\sim 7 /{ }^{\prime \prime} \varnothing \times 14{ }^{1 / 2}$
Bolts		A307	$3 / 80 \times 43 / 4 "$ Hex Head Bolts for Pipe Clamp Connections to Posts
Nuts		A563	Hex Nuts for Pipe Clamp and Base Plate Connections
Washers		F436	Flat Washers for Pipe Clamp and Base Plate Connections
Bearing Pads (Plain)		-	In accordance with Specification Section 932 for Ancillary Structures

POST ATTACHMENT NOTES

ANCHOR RODS, NUTS AND WASHERS: After the nuts have been tightened, distort the Anchor Rod threads to prevent removal of the nuts. Coat distorted threads and exposed trimmed ends of anchors with a galvanizing compound in accordance with Specification Section 56
Hot-dip galvanize all Nuts, Washers, Bolts, C-I-P Anchor Rods, Adhesive Anchors and Fence Framework (Posts, Internal Sleeves, Shim Plates, Base Plates, Pipe Clamps and Spacers) in accordance with Specification Section 962. Hot-di galvanize Fence Framework after fabrication
ADHESIVE-BONDED ANCHORS AND DOWELS.
Adhesive Bonding Material Systems for
Specification Section 937 and be installed in accor Dowels will comply with Section 416. Cutting of reinforcing steel is permitted for drilled hole installation.
WELDING:
All welding will be in accordance with the American Welding Society Structural Welding Code (Steel) ANSI/AWS D1.1 (current edition). Weld metal will be E60X

1. Expansion Rails are required at expansion joint locations where the total movement exceeds $1^{\prime \prime}$: 2. Install expansion rails midway between the fence posts spanning the expansion joint. Assembly includes Expansion Rails and two pull posts (see Sheet 3). When the Expansion Jint Opening is greater than $9^{\prime \prime}$ add an additional length to the free end of the Expansion Rail equal
to the difference between the Expansion Joint Opening and $9^{\prime \prime}$.
2. Install nut for the expansion rail finger-tight. The nut will fully engage bolts with a minimum of Install nut for the expansion rail finger-tight. The nut will fully engage bolts with a minimum of
one bott thread extending beyond the nuts. Distort the first thread on the outside of the nut to

FENCING NOTES

Install posts plumb (within a tolerance of $\pm 1^{1 / 2} 2^{\prime \prime}$). Use shim plates as required to achieve plumb. The required quantity and thickness of shim plates will be determined in the field. Install chain link fence in accordance with ASTM F567 as applicable. TRAFFIC RAILING DETAILS:
See Superstructure Sheets for Traffic Railing details.
Limits of fencing are from begin of approach slab at Begin Bridge to end of approach slab at End Bridge, unless otherwise
shown in the plans.
Payment will be made under Fencing. Type R. Payment includes all materials and labor required to complete installation of the fence:

CROSS REFERENCE:
For Table of Fence Components, Table of Post Attachment Components, View A-A and Detail "A" see Sheet 2
For Pull Post Assembly Detail for Traffic Railing see Sheet 3.

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 23 \end{gathered}$	DESCRIPTION:	$\begin{gathered} \text { FY 2024-25 } \\ \text { STANDARD PLANS } \end{gathered}$	$\mathbb{B} I D G E \quad F E \mathbb{N} C \mathbb{N} G$ ON B ARRIER (CURVED TOP)	$\begin{gathered} \text { INDEX } \\ 550-013 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 3 \end{aligned}$

table of Chain link fence components		
COMPONENT	$\begin{gathered} \hline \text { ASTM } \\ \text { DESIGNATION } \\ \hline \end{gathered}$	COMPONENT INFORMATION
Posts	F1083	Galvanized Steel Pipe - 31/2" NPS, Schedule 40 Regular Grade
Chain Link Fabric (2" mesh with twisted top and knuckled bottom selvage)	A392	Zinc Coated Steel - 9 gage (coated wire diameter), Class 2 Coating
	A491	Aluminum Coated Steel - 9 gage (coated wire diameter)
	F668	Polyvinyl Chloride (PVC) Coated Steel - 9 gage Class 2b
Tie Wires	F626	Zinc Coated Steel Wire - 9 gage
Brace Bands	F626	12 Gage (Min. thickness) × 3/4" (Min. width) Steel Bands (Beveled or Heavy)
Tension Bars	F626	3/16" (Min. thickness) $\times 3 / 4 \prime \prime \prime$ (Min. width) $\times 6^{\prime}-10^{\prime \prime}$ (Min. height) Steel Bars
Tension Bands	F626	14 Gage (Min. thickness) x 3/4" (Min. width) Steel Bands
Miscellaneous Fence Components	F626	Zinc Coated Steel ~ (includes post or loop caps, horizontal and brace rail ends, combination rail ends, boulevard clamps and all other miscellaneous fittings \& hardware)
Tension Wire	A824 \& A817	Type II (Zinc Coated Steel Wire) - 7 gage, Class 4 Coating
		Type I (Aluminum Coated Steel Wire) - 7 gage
Hog Rings	F626	Zinc Coated Steel Wire - 12 gage
Brace Rails	F1083	Galvanized Steel Pipe - 11/4"NPS, Schedule 40 Regular Grade

table of post attachment components		
COMPONENT	$\begin{gathered} \text { ASTM } \\ \text { DESIGNATION } \\ \hline \end{gathered}$	COMPONENT INFORMATION
Pipe Clamps	$\begin{gathered} \text { A36 or } \\ \text { A709 Grade } 36 \\ \hline \end{gathered}$	1/4" Steel P
Base Plates	$\begin{gathered} \text { A36 or } \\ \text { A709 Grade } 36 \\ \hline \end{gathered}$	3/4"Steel R
Shim Plates	$\begin{gathered} \text { A36 or } \\ \text { A709 Grade } 36 \text { or } \\ \text { B209 Alloy } 6061-T 6 \\ \text { or B221 Alloy } 6063-T 5 \end{gathered}$	Plate thicknesses as required; Holes in shim plates will be $3 / 4 / 4$
Spacers	-	Plate thickness varies based on traffic railing type (See Detail "A")
	F1554 Grade 36	Fully threaded Headless Anchor Rods $\sim 5 / 8^{\prime \prime} \varnothing \times 6^{\prime \prime}$ (no spacer) or $5 / 8^{\prime \prime} \varnothing \times\left(6^{\prime \prime}+\right.$ spacer thickness)
	F1554 Grade 36	Hex Head Anchor Rods ~ $5 / /^{\prime \prime} \varnothing \times 6^{\prime \prime}$ (no spacer) or $5 / /^{\prime \prime} \varnothing \times\left(6^{\prime \prime}+\right.$ spacer thickness $)$
Bolts	A307	$3 / /^{\prime \prime} \varnothing \times 43 / 4$ Hex Head Bolts for Pipe Clamp Connections to Posts
Nuts	A563	Hex Nuts for Pipe Clamp Connections
Washers	F436	Flat Washers for Pipe Clamp Connections
Bearing Pads (Plain Neoprene)	-	In accordance with Specification Section 932 for Ancillary Structures

CONDUIT GENERAL NOTES:

1. Furnish and install approved Conduits, Fittings and Embedded Junction Boxes (EBJ's) in accordance with Specification Sections 630 and 635 , this Standard, the National Electric
Code (NEC) and as directed by the Engineer.
2. Furnish and install Embedded Junction Boxes (EJB) with weatherproof covers sized in accordance with NEC requirements and the maximum size limits shown. Install EJB adjacent
to the Begin and End of Bridges, Begin and End of Retaining Walls, (except omit EJB to the Begin and End of Bridges, Begin and End of Retaining Walls, (except omit EJB adjacent to the Bridge unless a precast Traffic Railing with junction slab is used), and at
other locations as necessary to maintain 300 foot maximum spacing. See Plans for additional locations and details.
3. For Conduit not designated for future use, see Plans for details. For Conduit designated for future use, stub out and cap the Conduit. Drive a $3^{\prime}-0^{\prime \prime} \pm$ long $3 /{ }^{\prime \prime}$ (min.) diameter Steel Pipe flush with the ground line adjacent to the end of the Conduit as shown on Sheets 2, 3 or As-Built Plans.
4. Shift vertical Railing reinforcement symmetrically to provide 2" clearance to EJB. Space shifted vertical reinforcement at minimum $3^{\prime \prime}$ centers. Cut horizontal Railing reinforcement to provide 2" clearance to EJB and provide supplemental reinforcement as shown. To facilitate placement of Conduit, Expansion Fittings, and Expansion/Deflection Fittings, shift reinforcing bundle Conduits, or Conduit and horizontal reinforcement.
5. Place conduits as indicated in this Standard unless Structures Plans indicate fewer.

EJB "A"
Double or Triple Conduit (Maximum Dimensions)

$E J B$ " ${ }^{\prime \prime}$ EJB "B"
Single Conduit (Maximum Dimensions)

See Conduit Stub-Out Detail below

VIEW OF MEDIAN TRAFFIC RAILING ALONG BRIDGE

SECTION A-A
Median Traffic Railing (See Note 4)

DESCRIPTION:	

FDOTi	FY 2024-25
STANDARD PLANS	

BRIDGE AND APPROACH SLAB WITH MEDIAN TRAFFIC RAILING

$\begin{gathered} \text { LAST } \\ \text { REVISION } \end{gathered}$	${ }_{0}^{2}$
11/01/17	

工 PARTIAL PLAN VIEW ALONG APPROACH SLAB = With continuing concrete barrier
 SLAB WITH CONTINUING Concrete Barrier
(Retaining Wall Mounted Concrete Barrier shown,
Traffic Railing similar)

Index 521-610 Concrete BarrieriJunction Slab shown, other rallings and parapets similar
** EJB "A" shown EJB "B" similar. See EJB "B" Detail on Sheet 2.

APPROACH SLAB AND RETAINING WALL WITH CONCRETE BARRIER

| $\begin{array}{\|c\|c\|} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 22 \end{array}$ | \|r|c|c | DESCRIPTION: | FDOTY | FY 2024-25
 STANDARD PLANS | CONDUIT DETAILS - EMBEDDED | $\begin{gathered} \text { INDEX } \\ 630-010 \end{gathered}$ | $\begin{aligned} & \text { SHEET } \\ & 4 \text { of } 4 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

BOX GIRDER MAINTENANCE LIGHTING NOTES:

1. Submit shop drawings to the Engineer detailing the layout of the maintenance lighting system for the entire structure The shait layout and installation details through diaphragms around post
(PT) ducts, lateral bracing and cross
b. Conduit access through box girder end diaphragms with minimum $1^{\prime \prime}$ clearance in all directions.
c. Conduit expansion fitting details
e. Single line diagram showing mini power centers, switches, contactors, timers, etc.
f. Mini power center details including circuit breaker details.
g. Mini power center mounting details if required.
2. Ensure installation meets all requirements of the latest edition of the National Electrical Code (NEC) and local ordinances. Install grounding in accordance with NEC Article 250. Maintain separation between 480V and 120 V Conductors / Conduits throughout.
3. Furnish all labor, equipment, materials, and incidentals required for a complete and functional installation
4. Use only new, unused and Underwriters Laboratories (UL) listed equipment and materials for outdoor use.
5. Furnish and install polyvinyl chloride (PVC) conduit in conformance with UL Section 651 , NEC Section 347 and NEMA TC-2, UV-resistant and schedule 80. Bend conduits as necessary to connect to loads.
6. Provide PVC sleeve ${ }^{\prime}$ larger in diameter than condur to acommodate construction tolerance.
7. Install a UL labeled expansion fitting for specified PVC conduit at all structure expansion joints. Provide certification that the expansion fitting meets the following minimum requirements: Compatibility w
allows longitudinal movement equal to that of the Expansion Joint.
8. Use only Alloy 316 stainless steel supporting hardware. Provide minimum $3 / /^{\prime \prime} \varnothing$ fasteners. For concrete or SIP form mounting, provide anchor bolts (expansion, drop-in or adhesive) suitable for dynamic loading (due to vibration caused by traffic). Install fasteners to avoid conflicts with reinforcing steel and PT ducts. For structural steel mounting, do not attach fasteners to main members, i.e. webs
9. Furnish power distribution at 480V AC, 1 phase, with step down transformers at regular intervals. Furnish 7.5 KVA mini power center with eight 20A breakers as the step down transformer, feeding a maximum of 20 lamps and 20 receptacles. Each mini power center will provide power to no more than 1000^{\prime} of bridge, preferably 500^{\prime} on each side of the mini powe
10. Furnish and install lighting contactors to switch the 480V AC feeding the mini power centers.
11. Furnish and install copper conductors, Type XHHW. Do not use any conductor larger than \#4 AWG.
12. Provide enough slack in all interior cable terminations to allow for minor shifting of the structure

Frinish and
Conformance with the NEC
Fur receptacles is \#12 AWG
15. Furnish and install surface mounted, fully enclosed, incandescent light fixtures with gasketed clear globes and wire guards 50' maximum on centers. Provide 100 watt, 130 volt, vibration resistant and brass base incandescent lamps.
16. Provide six hour reset timers for each circuit to turn off the lighting system automatically.

CROSS REFERENCES:

1. For Maintenance Light Details, see Sheet 2
2. For actual bridge section, see Structures Plans.

[^0]: * NOTE:

[^1]: DETAIL A

