GENERAL NOTES

1. Install conduit in accordance with Specification 630 .
2. When sidewalk is damaged by conduit installation,
replace entire sidewalk slab.
3. Trench not to be open more than 250° at a time when constructio area is subject to venicurar or pedestrian traff
4 Sawcut asphalt at the edges of the trench to leave neat lines.
4. Provide route marker and route marker label in accordance with
Specification 630 .

\qquad

PLAN

LAST		
REVISION		
$11 / 01 / 21$	苞	DESCRIPTION:

$\overline{\bar{Z}}$ PLACEMENT WITHIN THE UTILITY STRIP $\bar{\square}$

LACEMENT UNDER SIDEWALK

PLACEMENT NOT EXPOSED $=$ TO VEHICULAR TRAFFIC

PLACEMENT UNDER NEW ROADWAY $\bar{\square}$ PRIOR TO INSTALLATION OF base and pavement

NOTES:

1. Pavement Removal: The removal and replacement of the additional
pavement width (i.e., $6^{\prime \prime}$ Width either side of trench) will not be
required when the trench can be constructed without disturbing the
asphalt surface on either side.
2. Placement Under Existing Pavement: Place conduit prior to installation of base and pavement, unless otherwise shown in the Plans or approved by the Engineer.

工 PLACEMENT UNDER EXISTING PAVEMENT $=$ ADJACENT TO GUTTER

below existing

above existing - Depth 2'-6" or greater

ABOVE EXISTING - DEPTH 2'-6" OR LESS
PLACEMENT ACROSS EXISTING DRAINAGE PIPES OR UTILITIES=

PLAN
\qquad

NOTES:

1. Where conduits are to be installed ove existing underground structures (e.g.,
drainage pipes or utility lines) which drainage pipes or utility lines) which are
less than $2^{\prime}-6^{\prime \prime}$ deep, encase the conduit in Class NS concrete for the entire elength
of conduit that is installed at a depth of conduit that is
of less than $2^{2}-6^{\prime \prime}$
2. Place $3^{\prime \prime}$ Warning Tape when new conduit is installed at a depth of $1 l^{\prime}$-6" or or greater
and the new conduit is not encased in and the
concrete.

LAST REVISION RE $01 / 18$	迢	DESCRIPTION:		FY 2023-24 STANDARD PLANS	CONDUIT INSTALLATION DETAILS	$\begin{gathered} \text { INDEX } \\ 630-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 4 \text { of } 4 \end{aligned}$

CABLE DROP AND TERMINATION WITH FIGURE 8 CABLE $=$

$\overline{\bar{Z}}$ CABLE DROP AND TERMINATION WITH MESSENGER WIRE AND COMPRESSION CLAMP=

= CABLE DROP AND TERMINATION WITH MESSENGER WIRE AND SUSPENSION CLAMP

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 18 \end{gathered}$	\|	$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	$A E R I A L T N T E R C O N N E C T$	$\begin{gathered} \text { INDEX } \\ 634-002 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 1 \end{aligned}$

PLAN

PLAN

NOTES:

1. Provide fiber optic splice boxes with cable hanger racks designed to support cables and splice enclosures.
2. Install a $1^{1}-0^{\prime \prime}$ wide (Min.) concrete apron around all boxes using Class NS concrete. Slope the apron away from the box
3. Where multiple pull boxes are placed side by side, maintain at least $8^{\prime \prime}$ between the pull boxes.
4. Rectangular boxes shown, others similar

GENERAL NOTES:

1. It shall be the contractors responsibility to provide a complete service assembly

2s per the plans and service specifications.
2. The service installation shall meet the requirements of the national electric code

Shop drawings are not required for service equipment, unless noted in the plans.
4. A Pull Box is required at each service point, see Index 635-001.

GENERAL NOTES

1. Work these Index Sheets with the Strain Pole Schedule in the Plans. See Index 634-00 for corresponding signal cable and span wire installation details.
2. Shop Drawings:

This Index is considered fully detailed and no shop drawing are necessary. Submit shop
drawings only for minor modifications not detailed in the Plans.
3. Materials:
A. Concrete:
B.Prestress Strands \& Spiral Reinforcing:
C.Hand and coupler cover plates:
D. Screws:

Class V with 4 ksi minimum strength at transfer or Class VI with 6.5 ksi minimum strength at transfer Specification 641
Non-corrosive material
Round headed, chrome plated
4. Fabrication:
A. Pole Total Taper shown is for pole width, strands, reinforcing and void (0.081 in/ft per face),
B. Concrete Cover: l' $^{\prime \prime}$ minimum.
and butt ends of the pole.
D. The design dimensions for Front Face (FF) and Back Face (BF) of the poles may vary transversely from the section shown by $\pm 1 / 4 / 4$ to assist with removal from forms. Balance addition and subtraction
E. Tie ground wires to the interior of reinforcing steel to prevent displacement during concreting operations.
F. Cut the tip
F. Cut the tip end of the prestressed strand either first or simultaneously with the butt end.
. Provide cover plates and screws for hand hole and couplers. Attach cover plates to the poles using lead
anchors or embedded threaded inserts.
a. Financial Project ID.
b. Pole Manufacturer

Standard Pole Type Number
d. Pole Length (L)
5. $\frac{\text { Support Points: }}{\text { Support Points }}$

Horizontal Pole Support Points shown are for strand release, storage, handling and transport
of the horizontal pole. Keep Back Face oriented downward until final erection.
6. Two point attachment: Provide an eye bolt hole for the messenger wire.
7. Tether wire: When required, field-drill the eyebolt hole prior to installation.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Service Pole - Type P-II (12 ft.)
3	Service Pole - Type P-IIB (36 Ft.)
4	Pedestal Pole - Type P-IIC (12 Ft.)
5	Pedestal Poole - Type P-IID (16 Ft.)
6	Pole - Type P-III
7	Strain Pole - Type P-IV
8	Strain Pole - Type P-V
9	Strain Pole - Type P-VI
10	Strain Pole - Type P-VII
11	Strain Pole - Type P-VIII

> Butt End (Bottom) -
\qquad
(Type P-VII Shown, Others Similar)

$\begin{gathered} \text { LAST } \\ \text { REVISIION } \\ \text { 11/01/22 } \end{gathered}$		$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	CONCRETE POLES	$\begin{gathered} \text { INDEX } \\ 641-010 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 11 \end{aligned}$

SPIRAL REINFORCING ELEVATION
(Strands and Fixtures Not Shown)

SECTION A-A - (Tip End) $=$

SECTION B-B (Typical Square Section) $\bar{\square}$

NOTES:

1. Provide a minimum $3^{\prime \prime}$ concrete plug at the Tip End.
2. For final erection, tilt pole upright with single point
attachment located a distance of 4 feet from the Tip
3. Dimension may vary from $21 / 4$ " to $31 / 2$ " to accommodate
smaller radius of optional stepped (PVC) void. The minimum void diameter is $2^{\prime \prime}$.
4. Strands shown are continuous from Tip End to Butt End.
5. Strands are not shown in the elevation views for clarity.

LEGEND

- Prestressed Strand:
0.5 in. ~ 24 kips before transfer or
0.375 in. ~ 14 kips before transfer (4 strands total)

SERVICE POLE - TYPE P-IIA (12 Ft.)

SPIRAL REINFORCING ELEVATION (Strands and Fixtures Not Shown)

\qquad
Strands and Reinforcing Not Shown)

工 SECTION C-C (Tip End)

SECTION D-D (Typical Square Section) $=$

NOTES:

1. Provide a minimum $3^{\prime \prime}$ concrete plug at the Tip End.
2. For final erection, tilt pole upright with single point attachment located a distance of 10 feet from the Tip End
3. Dimension may vary from $2 \frac{1 / 4}{}{ }^{\prime \prime}$ to $3 / /^{\prime \prime}$ to accommodate smaller radius of optional stepped (PVC) void. The minimum void diameter is $2^{\prime \prime}$.
4. Strands shown are continuous from Tip End to Butt End.
5. Strands are not shown in the elevation views for clarity.

LEGEND

- Prestressed Strand:
0.5 in. -24 kips before transfer or
0.375 in. ~ 14 kips before transfer a 375 in. 114 kips before transfer
(4 strands total) (4 strands total)

SERVICE POLE TYPE P-IIB (36 Ft.)

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ \text { 11/01/22 } \end{gathered}$		$\begin{array}{ccc} \text { FDOTX 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	CONCRETE POLES	$\begin{gathered} \text { INDEX } \\ 641-010 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 11 \end{aligned}$

SPIRAL REINFORCING ELEVATION (Strands, Holes, and Fixtures Not Shown

(Strands and Reinforcing Not Shown)

SECTION F-F (Typical Square Section)

NOTES:

1. Provide a minimum $3^{\prime \prime}$ concrete plug at the Tip End.
2. For final erection, tilt pole upright with single point
attachment located a distance of 4 feet from the Tip attachment located a distance of 4 feet from the Tip End.
3. Dimension may vary from $2 \frac{1 / 2}{} /$ to $31 / 2$ to accommodate smaller radius of optional stepped (PVC) void. The minimum void diameter is $2^{\prime \prime}$.
4. Strands shown are continuous from Tip End to Butt End
5. Strands are not shown in the elevation views for clarity.

LEGEND:

- Prestressed Strand:
0.5 in. -24 kips before transfer or
0.375 in. ~ 14 kips before transer
0.375 in. ~ 14 kips before transfer
(4 strands total)

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 22 \end{gathered}$	\|	FDOTY $\begin{gathered}\text { FY 2023-24 } \\ \text { STANDARD PLANS }\end{gathered}$	CONCRETE POLES	$\begin{gathered} \text { INDEX } \\ 641-010 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 4 \text { of } 11 \end{aligned}$

SPIRAL REINFORCING ELEVATION

(Strands and Reinforcing Not Shown)

$\bar{\Longrightarrow}$ SECTION A-A (Tip End) \qquad

DESCRIPTION:
LAST
REVISION
REVISION
11/01/22
高

SECTION B-B (Typical Square Section)

NOTES:

1. Provide a minimum $3^{\prime \prime}$ concrete plug at the Tip End.
2. For final erection, tilt pole upright with single point attachment located a distance of 5 feet from the Tip End.
3. Dimension may vary from $21 / 4$ " to $3 / 2 / 2$ to accommodate smaller radius of optio
diameter is $2^{\prime \prime}$.
4. Strands shown are continuous from Tip End to Butt End
5. Strands are not shown in the elevation views for clarity.

LEGEND:

- Prestressed Strand:
0.5 in. ~ 24 2ins
0.5 in. - 24 kips before transfer or
0.35 in. 14 kips before transfer
0.375 in. 14 kips before transfer
(4 strands total)

SERVICE POLE TYPE P-IID (16 Ft.)

SPIRAL REINFORCING ELEVATION SPIRAL REINFORCING ELEVATION

general notes

Work this Index with Specification 641.
2. This Index is considered fully detailed and no shop drawings are necessary. Submit Shop
Drawings for minor modifications not detailed in the Plans.

Provide either round or 12 -sided Poles
4. See Index 635-001 for additional Pull Box details.
5. See Index 676-010 for cabinet installation details.
6. Materials
A. Pole: Use Class VI concrete with 6 ksi minimum strength at transfer
B. Prestressing Strands: ASTM A416, Grade 270 low relaxation
C. Reinforcing Steel: ASTM A615, Grade 60
D. Spiral Reinforcing: ASTM A1064 Cold-Dran
D. Spiral Reinforcing: ASTM A1064 Cold-D
E. Bolts: ASTM F1554, Grade 55

Nuts: ASTM A563, Grade A Heavy Hex
Washers: ASTM F436
Washers: AATM F436 4 . Steel plates and Pole Cap: ASTM A36 or ASTM A709, Grade 50
F. Steel plates and pole Cap: ASTM A36 or ASTM A709,
G. Galvanization: Bolts, nuts and washers: ASTM F232
All other steel. ASTM Al23
7. Fabrication:
A. Cut the tip end of the prestressed strand first or simultaneously with the butt end
B. For spiral reinforcing, one turn is required for spiral splices and two turns are required C. at the top and bottom, of poles.
C. For Reinforcing Steel, lap splice to consist of a $3^{\prime}-0^{\prime \prime}$ lap length at each splice. No more C. For Reinforcing Stteel, lap splicice to consist of a $3^{\prime \prime}-0^{\prime \prime}$ lap length at each splice. No more
than two opposing rebar to be spliced at the same cross section. Stagger lap splices as needed
than two opposing rebar to be spliced at the same cross section. Stagg
D. Provided a class 3 surface finish in accordance with Specification 400.
E. Provide all
E. Provide a 1 " minimum cover.
F. Provide hand hole and coupler

Provide hanahole and coupler cover plates made of non-corrosive materials. Attach cover
with round headed chrome plated screws.
W. Wround headed chrome plated screws.
Grovide Identification Markings on the poles where indicated on the following sheets. Include
the following information using inset numerals with $1^{\prime \prime}$ height or as aporoved in the produce
Financial Project ID Pole Manufa
Pole Length
H. Tie ground wires to the interior of reinforcing steel as necessary to prevent displacement
I. Storage, Handling and Erection locations shown may vary within $\pm 3^{\prime \prime}$.
8. Pole Installation:
A. Install the Pole plumb.
B. Install Pole with the handhole located away from approaching traffic.
9. Cabinet Installation:
A. Splice fiber optic cables in cabinet to preterminated patch panel.
B. Furnish and install Surge Protection Devices (SPDs) on all cabling in cabinet
C. Furnish and install secondary SPDs protection on outlets for equipment in cabine
D. Ensure that all lelectronic equipment powection on outlets for equipment in cabinet.
E. Ensure that and conditioned with SPDs.
Equipment
E. Ensure that equipment cabinet is bonded to CCTV pole grounding ss
F. Install the pole mounted cabinet with the hinges next to the pole.
F. Install the pole mounted cabinet with the hinges next to the pole.
and cand types of conduits and innerducts for network communications between the pullbox
and cabet are stated in the Contract Documents.
10. Lowering Device Installation:
A. Place the lowering cable that moves within the pole in an interior conduit to prevent it from
tangling or interfering with any electrical wire that is in the pole. Ensure that any electrical tangiting or interfering with any electrical wire that in in the porle. Ensure that any electrical
wire within the pole is routed securely and free from slack.
Bount lowering arm perpendicular to the roadway or as shown in the plans. Position CCTV
pole so that the camera can be safely lowered without requiring lane closures.
Mole so that the camera can be safely reved without requiring lane closures.
cordinate all lowering device hardware requirements (including Tenon, Tenon mounting plates,
parking stand, etc.) with lowering device manufacturer.

CCTV POLE ASSEMBLY

NOTES:

1. Diameter of 12 -sided poles are measured flat to flat.
2. Total Taper applies to pole, strands and reinforcing.
3. For 12-Sided Pole and Round Roles Option 2, Stress prestressed strand to 70%
of Ultimate before transter For Round Pole Option 1 stress prestressed strand of Ultimate before transfer. For Round Pole Option 1, stress prestressed strand
to 60% of Ultimate before transfer.
4. Pole Design Tables, Burial Depth is based on level ground (flatter than 1:5). Increase the burial depth in accordance with the Additional Burial Depth Due To Ground Slope table
for foundations with slopes $1: 5$ and steeper. Use the higher value for slope or diameter the burial depth in accordance with the Additional Burial Depth Due To Ground Slope table
for foundations with slopes $1: 5$ and steeper. Use the higher value for slope or diameter
values that fall between those shown on the table.

12-SIDED POLE DESIGN TABLE (See Note 1)

12-SIDED POLE DESIGN TABLE (See Note 1)										
$\begin{gathered} \text { Pole } \\ \text { Length } \\ (\mathrm{ft}) \end{gathered}$	Pole Height (ft)	Burial Depth (ft)	$\begin{gathered} \text { Total } \\ \text { Taper } \\ \text { (inftr) } \\ \text { (See Note 2) } \end{gathered}$	$\begin{aligned} & \text { Void } \\ & \text { Taper } \\ & \text { (in/ft) } \end{aligned}$	Min. Wall Thickness Tip (in)	Min. Wall Thickness Butt (in)	Tip Diamete (in)	$\begin{gathered} \text { Butt } \\ \text { Diameter } \\ \text { (in) } \end{gathered}$	$\left\lvert\, \begin{aligned} & \text { Strand } \\ & \text { Pattern } \end{aligned}\right.$	Strand Diameter
63	50	13	0.18	0.18	3	3	12	23.34	1	$0.6^{\prime \prime}$
69	55	14	0.18	0.18	3	3	12	24.42	1	$0.66^{\prime \prime}$
75 80	60 65	15 15	0.18 0.18	0.18 0.18	3	3	12	25.50 26.40	2	$\frac{0.6 "}{0.6{ }^{\prime \prime}}$
86	70	16	0.18	0.18	3	3	12	$\stackrel{27.48}{ }$	2	$0.6{ }^{\text {0 }}$

> Conduit Entry Hole Ground Lug Handole Pole Identification Markings

C
Conduit Entry Hole

$\overline{\bar{Z}} A S S E M B L Y=$

NOTES:

1. Install all handhole and opening covers prior
.
2. Install 12 " $\varnothing \times 5^{\prime \prime}$ long stud with hex nut in
3. As an alternate, embed $4-1 / 1^{\prime \prime} \otimes \times 11^{\prime \prime}$
stainless steel threaded rods with a stainless steel threaded rods with a
threaded nut. At top of rod, triead a
coupling nut to attach plate wh $4 \sim / /^{\prime \prime} \times 13^{\prime \prime}$
stainess stel coupping nut to attach
stainless steel bolts.
4. Handhole frame may be Cast Aluminum 356.2.
5. Work these details with Data Tables on Sheet 2

$\overline{=}$ TENON CAP

PLAN VIEW

ELEVATION
$\overline{=}$ TENON COVER=

Plate o.D. =Tip Dia. $\left(\pm^{\left.1 / 4^{1}\right)}\right.$,
PLAN VIEW
$3^{3} /{ }^{\prime \prime} \not \theta^{\prime \prime}$ Eye Bolt
With $1^{\prime \prime}$ Inner \varnothing
3/8" \varnothing Nut (Typ.)

EyE bolt option

PLAN VIEW

elevation
lowering device tenon
elevation CAP PLATE DETAIL CAP PLATE DETAIL
(Without Lowering Device)
\qquad
 $1 / 22^{\prime \prime}$ Thick
Sch. 40 Pipe

PIPE OPTION

PLAN VIEW

NOTES:

1. Work this Index with Specification 646
2. For Pedestrian Signals see Index 653-001
3. For Pedestrian Detector Assembly (i.e., Pushbutton
and Sign) details see Index 665-001
4. Footing may be Cast-In-Place (C-I-P) or Precast.
5. As an alternative to the direct buried "Post Mounted Pedestrian Detector Assembly shown below, the post may be installed on a transformer base. Use a
transformer base included on the transformer base included on the APL approved
an alternative to a "Post Mounted" assembly
 bly (Typ)

ADJACENT TO SIDEWALK
in Sidewalk curb

POST MOUNTED

FY 2023-24 STANDARD PLANS	ALUMINUM POST AND PEDESTAL MOUNTED PEDESTRIIAN DETECTORS AND SIGNALS	INDEX	SHEET 1 of 1
ST ANDARD PLANS	PEDES TRIAN DETECTORS AND SIGNALS	646-001	1 of 1

NOTES:

1. Work with Index 634-001 for grounding and span wire details. See the Plans for clamp
spacing, cable sizes and forces, signals and sign mounting locations and details.
2. Shop Drawings:

This Index is considered fully detailed, only submit shop drawings for
minor modifications not detailed in the Plans.
3. Materials:
A. Strain Pole and Backing Rings:
a. Less than $3 / 6^{\prime \prime}:$ ASTM A10

C. ASTM A595 Grade A
Steel Plates: ASTM A36
B. Steel Plates: ASTM
C. Weld Metal: E7OXX

BoIt S. Nuts and Washers:
a. High Strength Bolts: ASTM F3125, Grade A325, Type 1
b. Nuts: ASTM A563 Grade DH Heavy-Hex
C. Washers: ASTM F436 Type 1, one under turned element
E. Anchor Bolts, Auts and Washers
a. Anchor Bolts: ASTM F1554 Grade 55
b. Nuts: ASM A563 Grade A Heavy-Hex (5 per anchor bolt)
c. Plate Washers: ASTM A36 (2 per bolt). Split-lock washers and
F. Hand hole Frame: ASTM A709 or ASTM A36, Grade 36
F. Hand hole Frame: ASTM A709 or ASTM A36, Grade 36
G. Handole Cover: ASTM A1011 Grade 50, 5 , 60 or 65
H. Atuminum Pole Caps and Nut Covers: ASTM B26 (319-F)
T. Stainless Steel Screws: AISI Type 316
. Mraared Bar S/Studs: ASTM A36 or ASTM A307
K. Concrete: Cass IV (Dilled Shaft) for all environmental classifications.
4. Fabrication:
A. Pole Taper:: Change diameter at a rate of 0.14 inches per foot, round or
B. Upright splices are not permitted. Transverse welds are only permitted at the base.
C. Provide bolt hole diameters as follows:
a. Bolts (except Anchor Bolts): Bolt
b. Achor Bolts: :

a. $2^{\prime \prime} \times$ ation (Max.): alumminum details for approval.)
b. Locate on the insidetion tas
b. Locate on the inside of the pole and ivsible from the handhole.
c. Secure to pole with $1 / g^{\prime \prime}$ diameter stainless steel rivets on screw.
c. Secure to pole with $1 /{ }^{\prime \prime}$ " diameter stainless steel

1. Financial Proj
2. Pole heicht
3. Manufature
4. Manufactur ${ }^{\text {5. Fy }}$ of Steel
Name
5.

G. Perform all welding in accordance with Specification 460-6.4

Fabricate longitudinal seam welds in pole with 60 percent minimum penetration or
fusion welds except, within 6 "of the base plate connection use full-penetration
groove welds.
Hot Dip Galvanize after fabrication.
5. Coatings:
A. All Nuts, Bolts, Washers and Threaded Bars/Studs: ASTM F2329
B. All other steel items including plate washers: ASTM A123
6. Construction:
A. Foundation: Specification 455, except that payment is included in the cost of the strain pole.
B. After installation, place wire screen between top of foundation and bottom of base plate in accordance B. After installation, place
with Specification $649-6$.

ELEVATION AND NOTES

GENERAL NOTES:

2. This Index is considered fully detailed; only submit shop drawings for minor modifications not detailed in the plans.
3. See Index 635-001 for additional Pull Box details.
4. See Index 676-010 for cabinet installation details.
5. Materials:
A. Pole: ASTM A1011 Grade $50,55,60$ or 65 (less than $1 / 4{ }^{\prime \prime}$) or ASTM A572 Grade 50,60 or 65 (greater than or equal to $1 / 4$ ") or ASTM A595 Grade A (55 ksi yield) or Grade B (60 ksi yield)
B. Steel Plates and Pole Cap: ASTM A36 or ASTM A709 Grade 50 .
C. Bolts: ASTM F3125, Grade A325, Type 1 Nuts: ASTM A563.
Washers. ASTM F-436.
E. Anchor Bolts: ASTM F1554 Grade 55 with ASTM A563 Grade A heavy-hex nuts and ASTM A36 plate washers.
F. Handhole Frame: ASTM A709 Grade 36 or ASTM A36
G. Handhole Cover: ASTM A1011 Grade 50, 55, 60 or 65
I. Stainless Steel ASrews: AISI Type 316
I. Reinforcing Steel: ASTM A615 Grade 60
6. Galvanization: Bolts, nuts and washers: ASTM F2329 All other steel including plate washer: ASTM A123
7. Fabrication:
a. Specification 460-6.4 and
b. AASHTO RFD Specification for Structural Supports for Highway Signs, Luminaires, and Traffic Signals Section 14.4.4.
B. $\begin{aligned} & \text { a. Round or } 16 \text {-sided (Min.) }\end{aligned}$
a. Taper pole diameter at ot 14 inches per foot
C. Farricate Pole longitudinal seam welds 12 ma
f. Fabricate Pole longitudinal seam welds (2 maximum) with 60 percent minimum penetration or fusion welds except as follows:
 length of one and one-half times the inside diameter of the female seclion plus 6 inches.
e. Circumferentially welded pole shafts and laminated pole shafts are not permitted
c. Identification Tag: (Sumbit detail's for approval)
a. $2^{\prime \prime} \times 4^{\prime \prime}$ (Max.)) luminum tag
a. $2^{\prime \prime} \times 4^{\prime \prime}$ (Max.) aluminum tag
b. Locate on the inside of the
b. Lecate on the inside of the pole and visible from the handhole
c. Secure with $1 / 8^{\prime}$ diameter stainless
d. Include the following information on the ID Tivets or screws.
8. Pole Type
9. Pole Height
10. Manufacturers' Name
11. Yield Strength (Fy of Steel)
12. Base Wall Thickness
13.

D. Exept for Anchor Bolts, , , olt hole diameters are bolt diameter plus $1 / 6^{\prime \prime}$ and anchor bolt holes are bolt diameter
plus $1 / 2$ (Ma) prior to galvanizing.
7. Pole Installation:

位 (nditional wire access holes (not shown in this Index) with a diameter that exceeds $11 / 2$ in diameter. B. Install Anchor Bolts in accordance with Specification 649-5.
C. Cable Supports: Electrical Cable Guides and Eyebolts.
a. Locate top and bottom cable guides within the pole aligned with each other
. Position other cable quide 1" directly below th
d. Position Park Stabe gid
D. Install Pole with the handhole located away from approaching traffic.
E. Install the Pole plumb.
8. Cabinet Installation:
A. Splice fiber optic cables in cabinet to preterminated patch panel B. Furnish and install Surge Protection Devices (SPDS) on all cabling in cabinet. C. Furnish and install secondary SPDs protection on outlets for equipment in cabinet.
D. Ensure that all electronic equipment power is protected and conditioned with SPDs. D. Ensure that all electronic equipment power is protected and conditioned win
E. Ensure that equipment cabinet is bonded to CCTV pole grounding system
E. Ensure that equipment cabinet is bonded to CCTV pole grounding
F. Install the pole mounted cabinet with the hinges next to the pole
G. Sizes and types of conduits and inner ducts for network communications between the

Lowering Device Installation:
9. Lowering Device Installation:
from tangling or interfering moves within the pole in an interior conduit to prevent it any electrical wire within the pole is routred securely and free from slack
B. Mount lowering device perpendicular to the roadway or as shown in the plans. Position
CC TV pole so that the camera CC TV pole so that the camera can be safely lowered without requiring lane closures. c. Coordinate all loovering device hardware requirements cincluding Tenon, Tenon mount ing
plates, parking stands, etc.) with lowering device manufacturer.

LAST REVISION
 EVISION

DESCRIPTION:
FDOTY $\begin{gathered}\text { FY 2023-24 } \\ \text { STANDARD PLANS }\end{gathered}$

SHAFT DESIGN TABLE			
Pole Overall Height (ft)	Shaft Diameter	Shaft Length	Longitudinal Reinforcement
50	$4^{4}-0^{\prime \prime}$	11'-0"	(14) \#11
55	$4^{4}-0^{\prime \prime}$	${ }^{12}{ }^{\prime \prime} 0^{\prime \prime}$	(14) \#11
60	$4^{\prime \prime}-6^{\prime \prime}$	$13^{\prime \prime}-0^{\prime \prime}$	(16) \#11
65	$4^{\prime}-6^{\prime \prime}$	$13^{\prime \prime}-0^{\prime \prime}$	(16) \#11
70	$5^{\prime \prime}-0^{\prime \prime}$	$14^{-00^{\prime \prime}}$	(18) \#11

$\overline{=}$ ASSEMBLY $\overline{=}$

FOUNDATION NOTES:

1. Shaft Length is based on $1^{\prime}-0^{0 \prime}$ height above the finished grade.
2. Shaft Design Table Shaft Length is based on level ground (flatter
than 1.5) Increase the shaft depth in accordance with the than 1:5). Increase the shaft depth in accordance with the
Additional Shaft Depth Due To Ground Slope table for foundations with slopes $1: 5$ and steeper. Use the higher value for slope o

BASE PLATE AND ANCHOR BOLT DESIGN TABLE							
Pole Overall Height (ft)	Base Plate Diameter (in.)	Base Plate Thickness (in.)	Anchor Bolt Circle (in.)	$\begin{gathered} \hline \text { Number } \\ \text { of } \\ \text { Bolts } \end{gathered}$	Anchor Bolt Diameter (in.)	Anchor Bolt Embedment (in.)	Minimum Anchor Bolt Projection (in.)
50	27	2.5	22	6	1.25	31	8.5
55	28	2.5	23	6	1.25	33	8.5
60	33	2.5	27	6	1.50	34	9.5
65	35	2.5	29	6	1.50	35	9.5
70	40	2.5	33	6	1.75	38	10.5

ARM AND BASE PLATE										
Arm IDAxx-ArmLength S-SingleArm D-DoubleArm H-HeavyDuty	$\begin{gathered} \text { Total } \\ \text { Arm } \\ \text { Angth } \\ \text { (ft) } \end{gathered}$	Arm			Arm Extension			Base Plate		
		$\underset{\substack{F A / S A \\(f t)}}{ }$	$\underset{\left(\begin{array}{c} \text { (in) } \end{array}\right.}{ }$	$\begin{array}{\|c} F D / S D \\ (i n) \end{array}$	$\underset{(f t)}{F E / S E}$	$\begin{array}{\|c\|} \hline F G / S G \\ (i n) \end{array}$	$\underset{\substack{\text { FH/SH) } \\ \hline \text { (in) }}}{ }$	$\underset{(i n)}{H T}$	$\begin{aligned} & \text { FJ/SJ } \\ & \text { (in) } \end{aligned}$	FK/SK (in)
A30/S	30	30	11	0.25	--	--	--	22	25	3
A30/S/H			12							
A30/D			11					30	36	
A30/D/H			12							
A40/S	40	40	13	0.25	--	--	--	22	27	3
A40/5/H			14							
A40/D			13					30	36	
A40/D/H			14					30	36	
A50/S	50	32.5	12	0.25	20.5	14	0.313	22	29	3
A50/S/H			13			15		22	29	
A50/D			12			14		30	36	
A50/D/H			13			15		30	36	
A60/S	60	35.5	12	0.25	27.5	15	0.375	30	36	3
A60/S/H			13			16				
A60/D			12			15				
A60/D/H			13			16				
A70/S	70	38	13	0.25	35	17	0.375	30	36	3
A70/S/H			14			18				
A70/D			13			17				
A70/D/H			14			18				
A78/S	78	39	13	0.25	42	18	0.375	30	36	3
A78/5/H			15			20				
A78/D			13			18				
A78/D/H			15			20				

Pole, base plate and arm connection																		
$\begin{aligned} & \text { Pole ID } \\ & \text { Px-PoleNo } \\ & \text { S-SingleArm } \\ & \text { D-DoubleAR m } \\ & \text { L-Luminaire } \end{aligned}$	Upright				Base Plate					Arm-Upright Connection								
	$\underset{(f t)}{(f)}$	$\begin{aligned} & u D_{\text {in }} \end{aligned}$	$\begin{aligned} & \text { (in) } \end{aligned}$	$\begin{aligned} & u G \\ & (f t) \end{aligned}$	$\begin{aligned} & \text { Noor } \\ & \text { Bolts } \end{aligned}$	$\begin{aligned} & B A \\ & (i n) \end{aligned}$	$\begin{aligned} & B B \\ & (\text { in) } \end{aligned}$	$\begin{aligned} & B C \\ & (i n) \end{aligned}$	$\begin{aligned} & \text { BF } \\ & \text { (in) } \end{aligned}$	$\underset{\text { (in) }}{H T}$	$\begin{aligned} & F J / S J \\ & (\text { (in) } \end{aligned}$	$\underset{(i n)}{F L / S L}$	$\begin{gathered} F N / S N \\ (i n) \end{gathered}$	$\begin{aligned} & \text { FO/SO } \\ & \text { (in) } \end{aligned}$	$\underset{(i n)}{F P / S P}$	$\begin{gathered} F R / S R \\ (i n) \end{gathered}$	$\underset{(i n)}{F S / S S}$	($\begin{gathered}\text { FT/ST } \\ \text { (in) }\end{gathered}$
P1/S	25	16	0.375		6	32	2.5	2	40	22	25	0.75	0.438	14	1.25	2	8.5	0.438
P1/S/L	39			37.5														
$\frac{P 1 / D}{}$	25			37.5						30	36			23		2.75	12.5	
P2/S	25	18	0.375		6	34	2.5	2	40	22	27	0.75	0.438	15	1.25	2	8.5	0.438
P2/S/L	39			37.5						22	27			15		2		
P P2/D	25 39			37.5						30	36			23		2.75	12.5	
P3/S	25	20	0.375		6	36	2.5	2	40	22	29	0.75	0.438	16	1.25			0.438
P3/S/L	39			37.5						22	29			16		2	8.5	
$\frac{P 3 / D}{\text { P3/D/L }}$	25			37.5						30	36			23		2.75	12.5	
P4/S	25	22	0.375		8	38	2.5	2	40	30	36	0.75	0.438		1.25	2.5	12.5	0.438
P4/S/L	39			37.5										17				
P4/D	25													23				
P4/D/L	39			37.5					40									
P5/S/L	39	24	0.375	37.5	8	40	2.5	2		30	36	0.75	0.5	18	1.25	2.5	12.5	0.5
P5/D	25																	
P5/D/L	39			37.5										23				
P6/S	25	24	0.5		8	40	2.5	2	40	30	36	0.75	0.625	18	1.5	2.5	12	0.625
P6/S/L	39			37.5														
$P 6 / D$ $P 6 / D / L$	25			37.5										23				
P7/5	25	26	0.5		8	42	2.5	2	40	30	36	0.75	0.625	19	1.5	2.5	12	0.625
P7/D	25																	
P7/D/L	39			37.5										23				

NOTE

. Work this Index with Index 649-031.

LUMINAIRE AND CONNECTION											
$\begin{aligned} & \angle A \\ & (f t) \end{aligned}$	$\begin{gathered} \angle B \\ (f t) \end{gathered}$	$\underset{(i n)}{L C}$	$\underset{(i n)}{C D}$	LE	$\begin{aligned} & \stackrel{L F}{(f t)} \\ & (f) \end{aligned}$	$\underset{(i n)}{\stackrel{L G}{ }}$	$\underset{(i n)}{L(i n)}$	$\underset{\text { (in) }}{L \prime}$	$\underset{(i n)}{L K}$	$\begin{gathered} (\mathrm{LLeg}) \end{gathered}$	$\begin{aligned} & u g \\ & (f t) \end{aligned}$
40	10	3	0.125	0.5	8	0.5	0.75	0.25	0.25	0	37.5

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 22 \end{gathered}$	20 DESCRIPTION:	$\begin{array}{cc} F Y \text { 2023-24 } \\ \text { FDANDARD PLANS } \end{array}$	STANDARD MAST ARM ASSEMBLIES	$\begin{gathered} \text { INDEX } \\ 649-030 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 1 \end{aligned}$

GENERAL NOTES:
Shop Drawings: This Index is considered fully detailed, only submit shop drawings
for minor modifications not detailed in the plans.
2. Prior to Fabrication: Verify the installed foundation elevation will result in the
required signal elevation and ad just the Pole height as needed.
3. Details for Signal and Sign locations, Signal Head attachment, Sign attachment,
Pedestrian Head attachment, and Foundation Conduit are not shown for simplicity
4. Materials: A. Poles, Mast Arms and Backing Rings:
a. Less than $3 / 1$ " $^{\prime \prime}$ ASTM A1011 Grade 50, 55, 60 or 65
b. Greater than or equal to $3 / 1 /{ }^{\prime \prime \prime}$. ASTM AST2 Arade 5 Grade $50,55,60$ or 65 B. Steel Plates: ASTM A36
C. Weld Metal. FTOXX
C. Weld Metal: ETOXX
D. Bolts, Nuts and Washer
D. Bolts. Nuts and Washers:
a. High Strength Hex Head Bolts: ASTM F3125, Grade A325, Type 1
b. Nuts: ASTM A563 DH Heavy-Hex b. Nuts: ASTM A563 DH Heavy-H.
c. Washers: ASTM F436 Type 1, one under turned element
c. Washers: ASTM F436 Type 1, one und
E. Anchor Bolts, Nuts and Washers:'
a. Anchor Bolts: ASTM F1554 Grade 55
b. Nuts: ASTM A563 Grade A Heavy-Hex (5 per anchor bolt)
c. Plate Washers: ASTM A36 (2 per bolt)
F. Threaded Bars/Studs: ASTM A36 or ASTM A30
G. Handhole Frame: ASTM ATO9 or ASTM A36, Grade 36
H. Hand hole Cover: ASTM A1011 Grade 50, 55, 60 or 65
I. Pole Caps and Nut Covers: Fabricate from cast aluminum
or galvanized carbon steel.
J. Stainless Steel Screws: AISI Type 316
K. Concrete: Class IV (Drilled Shaft) for all environmental classifications.
L. Reinforcing Steel: Specification 415
5. $\frac{\text { Fabrication: }}{\text { A. Welding: }}$

Welding:
a. Specification $460-6.4$ and
b. AASTIO LRFD Speceification for Structural Supports for
Highway Signs, Luminaires, and Traffic Signals Section
Highway Signs, Luminaires, and Traffic Signals Section 14.4.4
B. Poles and Mast Arms:
a. Round or 12 -sided (Min.)
a. Round or
b. Taper pole diameter at ot 0.14 inches per foot
C. Upright poles must be a single esection
U. Upright poles must te a single section. For arms and upright
poles, circu
permitted.
d. Arms may be either one or two sections. See Sheet 4 for
telescopic splice detail
e. Fabricate Iongitudinal
penetration or fusion welds welds with 60 percent minimum 1. Use a full-penetration groove we
circumferential tube-to-plate connect within 6 inches of the 2. Use full-penetration groove welds on the female end section
of telescopic (i.e slip type) of telescopic (i.e., slip type) field splices for a minimum
length of one and one-half times the inside diameter of the female section plus 6 inches.
Locate longitudinal seams weld al
f. Locate Iongitudinal seams weld along the

1. Lower quadrant of the arms.
2. Same side of the pole as the arm connections
g. Face handhole perpendicular trom arm onnections
perpendicular from the first arm of doule arm poles, perpendicular from the first arm of double arms poles facing
away from traffic or see special instructions on the Mast Arm
Tabulation Sheet.
Provide a
h. Provide a 's' or 'C' hook
support (See Sheet 6)
i First and Second arm camber angle $=2$
j. Bolt holes diameters as for
3. Bolts (except Anchor bolts): Bolt diameter plus $1 / 16^{\prime \prime}$ prior 2. Anchor Bolts: Bolt diameter plus $1 / 2$ " (Max.).
4. $\frac{\text { Coatings: }}{\text { A. AII } N}$
A. AII: Nuts, Bolts, Washers and Threaded Bars/Studs: ASTM F2329
5. Construction:
A. Foundation: Specification 455 Drilled Shaft, except that payment is
included
included in the cost of the Mast Arm.
B. Install Pole vertically.
B. Install Pole vertically.
C. Place structural grout
C. Place structural grout pad with drain between top of foundation and bottom of
baseplate in accordance with Specification $649-7$
baseplate in accordance with Specification $649-7$.
D. Attach Sign anals and Signals centered on the elevation of the Mast Arm.
E. Wire Access holes are $11 / 2$ or less in diameter.
Aluminum Identification Tag not to exceed $2^{\prime \prime} \times 4^{\prime \prime}$. Secure to pole
by $1 / 8^{\prime \prime}$ stainless steel rivets or screws. Fabricators to provide dit
details for approval. Identifications. Tag located on inside of pole
visibile from handhole, or on outside of pole inside Terminal visible from handhole, or on outside of pole inside Terminal
compartment. Tag to be stamped with the following information:

Standard Design
Einancial Project
Pole Type
Arm Type
Nanufacturer's Name
Pole Base (Fy of
Arm (F_{y} of Steel)

> Special Design Financial Project ID Manufacturer's Name Pole Base (Fy of Steel) Arm (Fy of Steell St Pole Wall Thickness (in.) Arm Wall Thickness (in.)

Bottom
of Plate
Signal Conduit
(For No. \& Size
See Signal Plans)
1~2" Conduit Per Assembly
~~" Additional Conduit in
Foundation
(Drilled Shat
Drilled Shaft
See Sheet 2)

Single Arm Shown, Double Arm Similar (Luminaire Arm Not Shown)

ELEVATION AND NOTES
LAST
REVIIION
11/O1/21

NOTES:

1. As an option, pedestrian signals may be installed on concrete poles and pedestals using lead anchors
(two bolts same size per hub) in lieu of the stainless (two bott s sal sal
steel bands.
2. Repair drilled or punched holes in galvanized stee poles or ped stals in accorrance with Speciftication
562 Install grommets or bushings in each hole.
3. Meet grounding requirements of Specification 620 .
4. See APL for Department-approved Pedestrian
Signal Assemblies and hardware.
5. For Prestressed Concrete Poles see Index 641-010.
6. For Steel Strain Poles see Index 649-010.
7. For Pedestal Mounted Signal posts and foundations
see Index $646-001$

new construction

existing construction
\qquad
CONCRETE POLE MOUNTED SIGNAL $\bar{\square}$ \qquad $\overline{=}$ PEDESTAL MOUNTED SIGNAL $\bar{\square}$

NOTES

A. Sign panels, wind beams and associated hardware: See Index 700-020
B. Sign ad justable hangers, wire rope clamps and associated hardware: See APL
C. Wire and additional hardware requirements: See Specification 634
2. Type B and C Attachments.
B. Number of sign hangers rein $6^{\prime \prime}$ of the sign edge.

Number of sign hangers required based on sign width:
sign width < 4'-0": One
b. $4^{-}-0^{\prime \prime} \leq$ sign width $\leq 8^{\prime}-0^{\prime \prime}$: Two
c. Number of wind beams required based on sign depth
a. Sign depth < $3^{\prime}-6^{\prime \prime}:$ One
b. $3^{3^{\prime}-6^{\prime \prime} \leq S i g n ~ d e p t h ~} \leq 7^{\prime}-0^{\prime \prime}:$ Tw
3. Type D Attachments:
$\frac{\text { Type D Attachments: }}{\text { Maximum sign width }}=3^{\prime}-0^{\prime \prime}$
4. Align the bottom edges of signs to approximately the same elevation
5. Use a minimum of 2 bolts with a minimum spacing of $2^{\prime \prime}$ for overlapped connection of the adjustable hangers.

[^0]

GENERAL NOTES:

1. Lowering device to be shipped ready for pole attachment to include 100 ft . of composite power and signal cable
prewired to lowering device at the factory.
2. The lowering device manufacturer shall supply both a portable lowering tool with a manual hand crank and a half-inch chuck variable-speed reversible industrial-duty electric drill that matches the winch's manufacturer-recommended
revolutions per minute. One lowering tool per every 10 lowering devices is required.
3. The lowering device manufacturer shall provide an on-site installation inspection and operator instruction and
certification. This ensures the product is assembled correctly and that all necessary per sons are trained in the proper, safe operation of the system. Before erecting the fir st pole the contractor must contact the lowering device
supplier and schedule a manufacturer's representative to
4. Design camera mounting arm and connection to tenon according to FDOT Structures Manual (current edition).

CAMERA LOWERING DEVICE DETAIL
5. Camera to be mounted to camera junction box and stabilizing weight via $1 / 2 / 2$ Standard NPT Pipe Thread.
6. Use air terminal extension when the pole top junction box is wider than top of pole.
7. The stainless steel device lowering cable shall be installed inside the pole within a $1 \frac{1}{4 \prime \prime}$ diameter PVC conduit
8. All communication and power cables must be neatly bundled and secured.
9. Use a Camera Lowering Device listed on the Approved Product List (APL).
10. See Index 641-020 for concrete pole details and Index 649-020 for steel pole details.

Camera mounting with lowering device

GENERAL NOTES:

1. If the loop lead-in is 75 'or less from the edge of the loop
detector to controller cabinet, continue the twisted pair to the
 twisted pair an Intermediate Pullbox, splice to shielded lead-in
wire and continue to the controller cabinet.
2. Provide sufficient saw-cut width to allow unforced placement of
loop wires or lead-in cables into the saw-cut Except expansion joints, saw-cut to a standard depth of 3^{4}, but no more han 4 " below the top of surface.
3. On resurfacing or new roadway construction projects, install the
loop wires and lead-in cables in the asphalt structural course prior to to placement of the asphalt friction course. Place the
looo wires and lead-in cables in a saw cut in the structural course.
4. Use nonmetallic hold down material to secure loop wires and
lead-ins to the bottom of saw-cuts. Place the hold down material approximately $12^{\prime \prime}$ intervals around loops and $24^{\prime \prime}$ intervals on lead-ins.
5. The minimum distance between the twisted pairs of loop lead-in
wire is $6^{\prime \prime}$ from the loop to $12^{\prime \prime}$ from the pavement edge or curb.
6. Splice Connections in pull boxes with UL listed, watertight,
insulated enclosures. Place one enclosure over the end of conductor and place a third enclosure over the exposed end of the shielded cable. As an alternate, a larger diameter enclosure that will accommodate both the splices of the conductors and the
exposed end of the shielded cable may be used.
7. Do not disturb more than a $6^{\prime \prime} \times 6^{\prime \prime}$ area of asphalt. Restore
asphalt as directed by the Engineer.
8. Alternative installations may be approved by the State Traffic

NOTES:

1. Cut a slot in the edge of the roadway of
sufficient size and depth to snugly place sufficient size and depth to snu
the end of the flexible conduit.
2. Install the conduit at least $6^{\prime \prime}$ into the roadway pavement and approximately
$2^{\prime \prime}$ below the top of the roadway surface.
3. The departure angle of the conduit from
the roadway is between 30° to 45°.

ELEVATION

INSTALLATION WITHOUT CURB \& GUTTER

3. Place the top of the rigid conduit approximately $2^{\prime \prime}$ belo
4. Fill the hole with loop sealant to the level of the
5. Use a nonmetallic material to prevent excessive 100
sealant from entering the rigid conduit
alternative 1
alternative 2

NOTES:

. If cabinet mounting requires relocation of hole in concrete pole, fill existing hole with concren

Liquidtight flexible conduit is approved for use from the electrical disconnect to the cabinet
when both are installed on the same pole.

metal pole
 CONCRETE POLE
 WOOD POLE

- pole mounted controller cabinet \qquad

NOTES

. Maintenance Service Slab: Use Class NS concrete and slope $1 / 4$ " to $1^{\prime \prime}$ for drainage. Not required in sidewalk, pavement areas, or where R/W is restricted.
2. The number, size and orientation of conduit sweep will vary according to site condition or locations. Povided two spare $2^{\prime \prime}$ PVC conduits in all bases. Place the exits of the spare conduits in the and into a pull box. If obstructions prevent the spare conduit from exiting to the rear, or the rear the cabinet is located on the R/W line, locate sweeps with a weatherproof fitting.

NEW CONTROLLER CABINET

front elevation

EXISting controller cabinet

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 22 \end{gathered}$	20 DESCRIPTION:	FDOT\} $\begin{gathered}\text { FY 2023-24 } \\ \text { STANDARD PLANS }\end{gathered}$	CABINET INS TALLATION DETAILS	$\begin{gathered} \text { INDEX } \\ 676-010 \end{gathered}$	SHEET 1 of 3

NOTES:

1. Maintenance Service Slab: Use Class NS concrete and slope $1 / 4^{\prime \prime}$ to $1^{\prime \prime}$ for drainage. Not required in sidewalk, pavement areas, or where R/W is restricted.
2. If cabinet mounting requires relocation of hole in concrete pole, fill existing hole with concrete or cover
with a noncorrosive cover plate.
3. Liquidtight flexible conduit is approved for use from the electrical disconnect to the cabinet when both are installed on the same pole.
4. Where a pull box is to be placed within the maintenance service slab, the slab width must be extended to provid for the required pull box concrete apron as detailed in Index 635-001.
5. Coordinate placement of maintenance service slab with proposed final grade. Grade and compact side slopes around the maintenance service slab to provide a sta
and level working area and tie into the proposed embankment.

side elevation
metal pole

PLAN VIEW
DETAIL ' A^{\prime}

POLE MOUNTED INTELLIGENT TRANSPORTATION SYSTEMS (ITS) CABINET

NOTES:

1. Maintenance Service Slab: Use Class NS concrete and slope $1 / 4^{\prime \prime}$ to $1^{\prime \prime}$ for drainage. Not required in sidewalk. pavement areas, or where R/W is restricted.
2. The number, size and orientation of conduit sweep will vary according to site condition or locations. Provided the spar PVC conduits in all bases. Place the exits rear of the cabinet base and into a pull box. If obstructions prevent the spare conduit from exiting to RW spare conduit sweeps with a weatherproof fitting
3. When a pull box is to be placed within the maintenance service slab, the slab width must be extended to provide for the required pull box apron as detailed in Index 635-001
4. Coordinate placement of maintenance service slab with proposed final grade. Grade and compact side slopes around the maintenance service slab to provide probosed embankment.

front elevation

ide elevation

pLAN VIEW

NEW ITS CABINET

GROUND MOUNTED INTELLIGENT TRANSPORTATION SYSTEMS (ITS) CABINET=

| $\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 22 \end{gathered}$ | \|c|cos | $\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$ | CABINET INS TALLATION DETAILS | $\begin{gathered} \text { INDEX } \\ 676-010 \end{gathered}$ | SHEET
 2 of 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |

front elevation
$\overline{\overline{ }}$ PEDESTAL MOUNTED CABINET $\bar{\square}$

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 22 \end{gathered}$	20 DESCRIPTION:	$\begin{array}{cc} \text { FDOT } & \text { FY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	CABINET INS TALLATION DETAILS	INDEX $676-010$	$\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 3 \end{aligned}$

CABINET BACKPLANE DETAIL

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$	2 DESCRIPTION:	$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	TRAFFIC MONITORING SITE	$\begin{gathered} \text { SHEET } \\ 3 \text { of } 9 \end{gathered}$

LAST REVISION 11/01/21	DESCRIPTION:	$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	TRAFFIC MONITORING SITE	INDEX $695-001$	$\begin{aligned} & \text { SHEET } \\ & 5 \text { of } 9 \end{aligned}$

$\overline{\bar{Z}}$ TYPE I CONFIGURATION-B
(Vehicle Classification System)

NOTE:

Configuration-A and Configuration-B are based on the vehicle Speed/classification unit. Contact
the TMS Manager in the Transportation Data and Analytics Office for the correct configuration

LANE CONFIGURATION FOR TMS inductive loop and strain gauge/quartz axle sensor

(Commercial Vehicle Weight Enforcement System)
lane configuration for mainline inductive loop and quartz axle sensor

$\begin{aligned} & \text { LAST } \\ & \text { REVISION } \\ & 11 / 01 / 21 \end{aligned}$		FDOTY $\begin{gathered}\text { FY 2023-24 } \\ \text { STANDARD PLANS }\end{gathered}$	TRAFFIC MONITORING SITE	$\begin{gathered} \text { INDEX } \\ 695-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 7 \text { of } 9 \end{aligned}$

[^0]: = TYPICAL INSTALLATIONS FOR SIGN PANEL(S) MOUNTED ON SPAN WIRE=

