FY 2023-24 STANDARD PLANS FOR ROAD CONSTRUCTION

Effective for Projects with Lettings in the Fiscal Year (FY) from
July 1, 2023 through June 30, 2024
patented devices, materials and processes
The use of any design, method, process, material or device either expressed or implied by these standards that are covered by patent, copyright, or proprietary privilege is the sole responsibility of the user. Any infringement on the rights of the inventor, patentee, assignee or licensee shall be the sole responsibility of the user. For additional information refer to Subsection 7 - 3 of the FDOT Standard Specifications for Road and Bridge Construction.
dis tribution of exempt public documents:

It is the policy of the Department to protect the State Highway System's infrastructure by defining the responsibilities for disclosure and use of sensitive documents showing the structural elements used in the design and construction of Department structures. Section $119.071(3)(b)$, Florida Statute (F.S.), provides that these sensitive documents are exempt from Chapter 119 , F.S., Florida's public records law. In accordance with Section 119.071(3)(b), F.S., the Department has adopted Procedure 050-020-026, Distribution of Exempt Public Documents Concerning Department

Structure is define in Section 334.0327) F.S. as a bride, viadut turel, causway a
Structure is defined in Section 334.03(27), F.S., as "a bridge, viaduct, tunnel, causeway, approach, ferry slip, culvert, toll plaza, gate, or other similar facility used in connection with a transportation facility" which would include related pipes and pipe systems. However, for the purpose of the public records law and Procedure 050-020-026, the Department has determined that the term "structure" includes "bridges with an opening of more than 20 feet between, undercopings of abutments or spring lines of arches or extreme ends of openings for multiple boxes, and those
other bridges subject to safety inspection under Section 335.074, F.S." A roadway is not otherwise a structure for the purposes of Procedure $050-020-026$.

Therefore, plans, blueprints, schematic drawings, and diagrams of structures owned by the Department are exempt from the public records provisions of Chapter 119, F.S. This exemption includes draft, preliminary, and final formats as described in Procedure 050-020-026 and includes paper, electronic, and other formats. The Department has provided for the limited release of such documents in Procedure 050-020-026.

Entities or persons outside the Department requesting or receiving copies of any portion of plans or other documents considered Exempt Documents under Procedure 050-020-026 must complete and submit a request form (Form No. 050-020-26). The form also advises the requestor that the entity or person receiving the documents shall maintain their exempt status. This procedure applies
to all Department internal or contracted staff who have access to such Exempt Documents in their Department work. Refer to Procedure 050-020-026 for additional requirements.

CERTIFICATION STATEME NT

I hereby certify that these Standard Plans were prepared by me or under my responsible charge, compiled from designs prepared, examined, adopted and implemented by the Florida Department of Transportation in accordance with established procedures, and as approved by the Federal Highway Administration.

This document has been digitally signed and sealed by Derwood Sheppard. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

Florida Department of Transportation

RON DESANTIS GOVERNOR

605 Suwannee Street
Tallahassee, FL 32399-0450

October 17, 2022
James Christian
Division Administrator
Federal Highway Administration
3500 Financial Plaza, Suite 400
Tallahassee, Florida 32312

Re: Office of Design
FY 2023-24 Standard Plans for Road and Bridge Construction

Dear Mr. Christian:
In accordance with the Stewardship and Oversight Agreement on Project Assumption and Program Oversight by and between the Federal Highway Administration, Florida Division, and the State of Florida Department of Transportation we are requesting approval of the FY 2023-24 Standard Plans for Road and Bridge Construction (Standard Plans) for use on federal aid projects. Copies of all revised Indexes for the FY 2023-24 Standard Plans were previously provided to the Florida Division Office for review and approval. All comments from the reviews have been addressed.

Derwood Sheppard, P.E.
State Standard Plans Engineer

For FHWA Florida Division Office use:
Approved for Use on Federal Aid Projects:

For James Christian, P.E.
Division Administrator

ABBREVIATIONS

Abbreviation	Meaning	Abbreviation	Meaning	Abbreviation	Meaning
AASHTO	American Association of State Highway And Transportation Officials	CSIP	Cost Savings Initiative Proposal	G	Shear Modulus
AC	Alternating Current	CSL	Cross-hole Sonic Logging	9	Gram
Accel.	Acceleration	CTPB	Cement Treated Permeable Base	Ga.	Gauge or Gage
ACI	American Concrete Institute	Ctr., Ctrs.	Center	Galv.	Galvanized
ADA	Americans with Disabilities Act	Cu. Ft.	Cubic Feet	GFI	Ground Fault Interrupter
ADT	Average Daily Traffic	cu. Yd., cy,	Cubic Yard	GFRP	Glass Fiber Reinforced Polymer
AFAD	Automated Flagger Assistance Device	-----------	D ----------------	Grd.	Ground
AISC	American Institute of Steel Construction	D	Depth, Distance or Diameter		H ----
AISI	American Iron and Steel Institute	Dia. or \varnothing	Diameter	Hd.	Head
Alt.	Alternate	Db.	Double	H.S., HS	High Strength
Alum.	Aluminum	Decel.	Deceleration	HDPE	High Density Polyethylene
ANSI	American National Standards Institute	Deg.	Degree	Horiz.	Horizontal
aOS	Apparent Opening Size	Dim.	Dimension	HP	Horsepower or H-Pile
APL	Approved Products List	Dist.	Distance	HSHV	High Strength Horizontal Vertical
App.	Approach	DMM	Domestic Mail Manual	------	I ----------------
Approx.	Approximate	DPI	Ditch Point Intersection	ID, I.D.	Inside Diameter or Identification
ARTBA	American Road \& Transportation Builders Association	Dt	Ditch	in.	Inch(es)
Asph.	Asphalt	dtoe	District Traffic Operations Engineer	Inc.	Incorporated
Assem.	Assembly	-----------------	E ----------------	Int.	Interior
ASTM	American Society For Testing And Materials	e	Superelevation Rate	Inv.	Invert
ATPB	Asphalt Treated Permeable Base	E.P. or EOP	Edge Of Pavement	ITS	Intelligent Transportation Systems
Auxil.	Auxiliary	EA or Ea.	Each	----	J -----------------
awg	American Wire Gauge	EIA	Electronic Industries Alliance	JCT	Junction
AwS	American Welding Society	El. or Elev.	Elevation	Jt.	Joint
----	B -----------------	Embed.	Embedment	---------------	K ----------------
Bot.	Bottom	EPDM	Ethylene Propylene Diene Monomer	k	kip
Brkwy.	Breakaway	Eq.	Equation or Equal	kip	1000 Pounds
b / w	Between	Equip.	Equipment	ksi	Kips Per Square Inch
----	c ---------------	etc.	Et Cetera (And So Forth)	kVA	Kilovolt Ampere
cc, c to C	Center to Center	ETP	Electronic Tough Pitch	---	L ------------------
$c \& G$	Curb And Gutter	Ex.	Example	L	Length
c.c.	Crash Cushion	Exist.	Existing	LA	Limited Access
cCTV	Closed-Circuit Television	Exp.	Expansion	lb or lbs.	Pound(s)
CFR	Code of Federal Regulations	Ext.	Extension	lb/sy	Pounds Per Square Yard
CFRP	Carbon Fiber Reinforced Polymer	--	-----------------	lbf	Pound force
cfs, CFS	Cubic Feet Per Second	FAC	Florida Administrative Code	LBR	Lime rock Bearing Ratio
CIP, C.I.P. or C-I-P	Cast In Place	FC	Friction Course	LF	Linear Foot (Feet)
cJP	Complete Joint Penetration	Fdn.	Foundation	Lgth.	Length
ckt.	circuit	F.L. or $\frac{1}{\text { I }}$	Flow Line	Long.	Longitudinally or Longitudinal
\&	Center Line	FI.	Florida	LRFD	Load Resistance Factor Design
Cl .	Clearance	FDEP	Florida Department Of Environmental Protection	LRS	Low-Relaxation Strand
CMP	Corrugated Metal Pipe	FDOT	Florida Department of Transportation	LS	Lump Sum
con.	Connection	fHWA	Federal Highway Administration	LSD	Lump Sum per Day
conc.	Concrete	FIB	Florida-I Beam	Lt.	Left
const.	Construct or Construction	F.S.	Florida Statutes		
Cont.	Continuation or Continuous	FS	Far Side		
Corr.	Corrugated	FSB	Florida Slab Beam		
Cov.	Cover	Ft.	Foot or Feet		
CP	Concrete Pipe	FTP	Florida Traffic Plans		

ABBREVIATIONS

Abbreviation	Meaning
m	Meter
m^{2}	Meter Square
Mach.	Machine
MAS	Motorist Awareness System
MASH	Manual for Assessing Safety Hardware (AASHTO)
Max.	Maximum
MES	Mitered End Section
M.H.	Manhole or Mounting Height
mHw	Mean High Water
Mid.	Middle
Mil or Mils	One-Thousandth of An Inch
Min.	Minimum or Minute
Misc.	Miscellaneous
mLW	Mean Low Water
mm	Millimeter
Mod.	Modification
MOT	Maintenance Of Traffic
MPH or mph	Miles Per Hour
MUTCD	Manual On Uniform Traffic Control Devices
----------------- N ------------------	
N	Standard Penetration Number
NA or N/A	Not Available or Not Applicable
NC	Normal Crown
NCHRP	National Cooperative Highway Research Program
ndcbu	Neighborhood Delivery And Collection Box Unit
NEMA	National Electrical Manufacturers Association
NHW	Normal High Water
No.	Number
Nom.	Nominal
NPS	Nominal Pipe Size
NPT	National Pipe Thread
NS or N.S.	Near Side
NS	Non-Structural
NTS	Not To Scale
-- 0 -----------------	
o.c.	On Center
0 to 0 or 0.0.	Out to Out
o.b.G.	Optional Base Group
OD or O.D.	Outside Diameter
Oz.	Ounce
----------	-----------------
Pavt.	Pavement
PBR	Pedestrian/Bicycle Railing
PC	Point Of Curvature
PCC	Plain Cement Concrete
pcf	Pounds per Cubic Foot
PCMS	Portable Changeable Message Sign
P.E. or PE	Professional Engineer

Abbreviation	Meaning	Abbreviation	Meaning
Pen.	Penetration	St. or ST.	Street
PPB	Pier Protection Barrier	Sta.	Station
PPP	Polypropylene pipe	Std.	Standard
Prest.	Prestressed	Stg.	Strong
PRS	Portable Regulatory Sign	Stl.	Steel
psf	Pounds Per Square Foot	SW	Skewed Angle
PSI or psi	Pounds Per Square Inch	Swk.	Sidewalk
PT	Point of Tangency or Pressure Treated	SYM	Symmetrical
PTFE	Polytetrafluoroethylene	----------------- T	-----------------
PVC	Polyvinyl Chloride	Tor t	Thickness, Tangent Distance or Time
----	--------------	Tan	Tangent
Q	Flow Volume	T\&G	Tongue and Groove
Qty.	Quantity	TCP	Traffic Control Plan(s)
----	----------------	tCz	Traffic Control Zone
R or Rad.	Radius	Temp.	Temperature or Temporary
Rt.	Right	Theo.	Theoretical
R/W	Right of Way	thw or thwn	Insulation (Flame Retardant, Moisture
RC	Reverse Crown		And Heat Resistant Thermoplastic)
RCP	Reinforced Concrete Pipe	TMA	Truck/Trailer Mounted Attenuator
Rd.	Road or Round	TN	Ton
Rdwy.	Roadway	Trans.	Transition or Transverse
Rect.	Reticuline or Rectangular	tTC	Temporary Traffic Control
Ref.	Reference	TVSS	Transient Voltage Surge Suppression
Reinf.	Reinforced or Reinforcement	TX	Transmit
Req. or Reqd.	Required	Typ.	Typical
RGS	Rigid Galvanized Steel	- U	--------------
RPM	Raised Pavement Markers	UL	Underwriters Laboratories
R / R or R R	Railroad	UPS	Uninterruptible Power Supply
RSDU	Radar Speed Display Unit	USPS	United States Postal Service
RU	Rack Unit	Util.	Utilities
RX	Receive	uv	Ultraviolet
-----	-----------------	--------------- V	------------------
Sors	Speed, Spacing or Second	Veh.	Vehicle
Sch.	Schedule	vert.	Vertical
SHBR	Special Height Bicycle Railing	VPD or Vpd.	Vehicles Per Day
Shldr.	Shoulder	--- w	-----------------
SHW	Seasonal High Water	w	Width or wide
SIP	Stay In Place	wT	Weight
SP	Superpave	wwm	Welded Wire Mesh
Spa., Spcg. or Sp.	Space(ing)(s)	wwr	Welded Wire Reinforcing
Spec.	Specification	Y	-----------------
sq	Square	Yd.	Yard
Sq. Ft., SF, sf or S.F.	Square Foot	Yr.	Year
sq. in.	Square Inch		
Sq. Yd., SY or S.Y.	Square Yard		
SR	State Road		
FSB	Florida Slab Beam		
SS	Stainless Steel		

TABLE OF CONTENTS

fy 2023-24 STANDARD PLANS FOR ROAD CONSTRUCTION

Standard Plans Index	Index Title	Standard Plans Index	Index Title
Miscellaneous		Bituminous Treatments, Surface Courses, and Concrete Pavement	
000-510	Superelevation Transitions - High Speed Roadways	Concrete Pavement	
000-511	Superelevation Transitions - Low Speed Roadways	330-001	Paved and Graded Driveways
000-525	Ramp Terminals	350-001	Concrete Pavement Joints
General Construction Operations		353-001	Concrete Slab Replacement
Maintenance of Traffic		370-001	Bridge Approach Expansion Joint - Concrete Pavement with Special Select Soil Base
102-100	Temporary Barrier	Structures	
102-110	Type K Temporary Concrete Barrier System	Concrete Structures	
102-120	Low Profile Barrier	400-010	Cantilever Retaining Wall ($C-I-P$)
102-600	General Information for Traffic Control Through Work Zones	400-011	Gravity Wall
102-601	Two-Lane and Multilane Roadway, Work Beyond Shoulder	400-021	Concrete Steps
102-602	Two-Lane and Multilane, Work on Shoulder	Inlets, Manholes and Junction Boxes	
102-603	Two-Lane, Two-Way, Work within the Travel Way	425-001	Supplementary Details for Manholes and Inlets
102-604	Two-Lane, Two-Way, Intersection Work	425-010	Structure Bottoms - Type J and P
102-606	Two-Lane Roadway, Lane Closure Using Temporary Traffic Signals	425-020	Curb Inlet Tops - Types 1, 2, 3 and 4
102-607	Mobile Operations	425-021	Curb Inlet Tops - Types 5 and 6
102-608	Two-Lane, Two-Way, Temporary Diversion Connection	425-022	Curb Inlet - Type 7
102-613	Multilane Roadway, Lane Closures	425-023	Curb Inlet - Type 8
102-615	Multilane Roadway, Intersection Work	425-024	Curb Inlet Top - Type 9
102-620	Multilane Roadway, Temporary Diversion	425-025	Curb Inlet Top - Type 10
102-625	Temporary Road Closure	425-030	Median Barrier Inlets Types 1 and 2
102-628	Two-Way Left-Turn Lanes	425-031	Adjacent Barrier Inlet
102-655	Traffic Pacing	425-032	Curb and Gutter Barrier Inlet
102-660	Sidewalk Closure	425-040	Gutter Inlet - Type S
102-661	Bicycle Facility Closures	425-041	Gutter Inlet - Type V
102-665	Limited Access Temporary Opening	425-050	Ditch Bottom Inlet - Type A
102-680	Haul Road Crossing	425-051	Ditch Bottom Inlet - Type B
Clearing Construction Site		425-052	Ditch Bottom Inlets - Types C, D, E and H
Clearing and Grubbing		425-053	Ditch Bottom Inlets - Types F and G
110-100	Tree Protection and Preservation	425-054	Ditch Bottom Inlet - Type J
110-200	Mailboxes	425-055	Ditch Bottom Inlet - Type K
Earthwork and Related Operations		425-060	Back of Sidewalk Drainage
120-001	Embankment Utilization	425-061	Closed Flume Inlet
120-002	Subsoil Excavation	425-070	Skimmer for Outlet Control Structures
125-001	Utility Adjustments thru Existing Pavement	425-080	Utility Conflicts thru Drainage Structures
141-T01	Settlement Plate	425-090	Safety Modifications for Inlets In Box Culverts
160-001	Miscellaneous Earthwork Details		

table of contents

FY 2023-24 STANDARD PLANS FOR ROAD CONSTRUCTION

Standard
Plans

ipe Culverts - End Treatment

430-001 Miscellaneous Drainage Details
430-010 U-Type Concrete Endwalls with Grates - 15" to 30" Pipe
430-011 U-Type Concrete Endwalls - Baffles and Grate Optional - 15" to 30" Pipe
430-012 U-Type Concrete Endwall - Energy Dissipator - 30" to $72^{\prime \prime}$ Pip
430-020 Flared End Section
430-021 Cross Drain Mitered End Section
430-022 Side Drain Mitered End Section
430-030 Straight Concrete Endwalls - Single and Multiple Pipe
430-031 Straight Concrete Endwalls - Single and Double 60" Pipe
430-032 Straight Concrete Endwalls - Single and Double 66" Pipe
330-033 Straight Concrete Endwalls - Single and Double 72" Pipe
430-034 Straight Concrete Endwalls - Single 84" Pipe
430-040 Winged Concrete Endwalls
430-090 Safety Modifications for Endwalls
Structures - Miscellaneous Drainage
436-001 Trench Drain
440-001 Underdrain
440-002 Underdrain Inspection Box
443-001 French Drain
443-002 Skimmers for French Drain Outlets
444-T01 Deep Well Injection Box
446-001 Concrete Pavement Subdrainage

tructures Foundations - Sheet Pile Wall

455-400 Precast Concrete Sheet Pile Wall (Conventional)
455-440 Precast Concrete Sheet Pile Wall (CFRP/GFRP \& HSSS/GFRP)

Incidental Construction

scellaneous
508-T01 Traffic Control Devices for Movable Span Bridge Signals
509-070 Railroad Grade Crossing Traffic Control Devices
509-100 Advance Warning for R/R Crossing
etal Pedestrian/Bicycle Railings, Guiderails and Handrails
515-052 Pedestrian/Bicycle Railing (Steel)
515-062 Pedestrian/Bicycle Railing (Aluminum)
515-070 Pipe Guiderail (Aluminum)
515-080 Pipe Guiderail (Steel)
Concrete Gutter, Curb Elements and Traffic Separator
520-001 Curb and Gutter
520-005 Concrete Shoulder Gutter Spillway
520-010 Median Opening Flume
520-020 Traffic Separators

Standard
Plans
\qquad
Concrete Barriers Traffic Raings, and Parapet
521-001 Concrete Barrier
521-002 Pier Protection Barrier
521-010 Opaque Visual Barrier
521-510 Concrete Barrier/Noise Wall ($\left.8^{\prime}-0^{\prime \prime}\right)$
521-511 Concrete Barrier/Noise Wall (14'-0")
521-512 Concrete Barrier/Noise Wall-Junction Slab
521-513 Concrete Barrier/Noise Wall T-Shaped Spread Footing
521-514 Concrete Barrier/Noise Wall L-Shaped Spread Footing
521-515 Concrete Barrier/Noise Wall Trench Footing
521-600 MSE Wall Coping (Precast or C-I-P)
521-610 Concrete Barrier/Junction Slab - Wall Coping
521-611 Concrete Barrier/Junction Slab-Wall Coping (FRP)
521-620 Concrete Barrier/Raised Sidewalk - Wall Coping
521-630 Parapet with C-I-P Sidewalk - Wall Coping
521-640 Drainage Inlet Openings in Junction Slab - Wall Coping
521-650 Light Pole Pedestal - Wall Coping
Concrete Sidewalk and Driveways
522-001 Concrete Sidewalk
522-002 Detectable Warnings and Sidewalk Curb Ramp
522-003 Concrete Flared Driveways
Ditch and Slope Pavement
524-001 Ditch Pavement and Sodding
Noise and Perimeter Walls
534-200 Noise Walls (Precast)
534-250 Perimeter walls
Guardrail
536-001 Guardrail
536-002 Guardrail Transitions and Connections for Existing Bridges
Crash Cushions
544-001 Crash Cushion Transition Details
Rumble Strips
546-001 Raised Rumble Strips
546-010 Ground-In Rumble Strips

Retaining Wall Systems

548-020 MSE Retaining Wall Systems - Permanent
548-030 MSE Retaining Wall Systems - Temporary
Fencing
550-001 Fence - Type
550-002 Fence - Type B
550-003 Cantilever Slide Gate - Type B Fence
550-004 Fence Location

TABLE OF CONTENTS

FY 2023-24 Standard plans for road construction

Standard

Plans

Performance Tur
570-001 Permanent Erosion Control
570-010 Shoulder Sodding and Turf on Existing Facilities
andscape
580-001 Landscape Installation
Traffic Control Signals and Devices
630-001 Conduit Installation Details
634-001 Signal Cable and Span Wire Installation Details
634-002 Aerial Interconnect
635-001 Pull and Splice Boxes
639-001 Service Point Details
639-002 Electric Power Service
641-010 Concrete Poles
641-020 Concrete CCTV Pole
646-001 Aluminum Post and Pedestal Mounted Pedestrian Detectors and Signals
649-010 Steel Strain Pole
649-020 Steel CCTV Pole
649-030 Standard Mast Arm Assemblie
649-031 Mast Arm Assemblies
653-001 Pedestrian Control Signal Installation Details
654-001 Rectangular Rapid Flashing Beacon Assembly
659-010 Span Wire Mounted Sign Details
659-020 Camera Mounting Details
660-001 Vehicle Loop Installation Details
665-001 Pedestrian Detector Assembly Installation Details
671-001 Standard Signal Operating Plans
676-010 Cabinet Installation Details
695-001 Traffic Monitoring Site

Signing, Pavement Markings and Lighting

Highway Signing
700-010 Single Column Ground Signs
700-011 Single Column Cantilever Ground Mounted Sign
700-012 Single Post Sign Support Barrier Side-Mounted
700-013 Single Post Sign Support Barrier Top-Mounted
700-020 Multi-Column Ground Sign
700-030 Wind and Hanger Beams for Overhead Signs
700-031 External Lighting for Signs
700-040 Cantilever Sign Structure
700-041 Span Sign Structure

Plans Index Title
 Highway Signing (Cont.)

700-050 Free-Swinging, Internally-Illuminated Street Sign Assemblies
700-090 Dynamic Message Sign Walk-In
700-091 Catwalk Detail
700-101 Typical Sections for Placement of Single and Multi-Column Signs
700-102 Special Sign Details
700-104 Signing for Motorist Services
700-105 Welcome Center Signing
700-106 Rural Narrow Bridge Treatment
700-107 Bridge Weight Restrictions
700-108 Typical Signing for Truck Weigh and Inspection Stations
700-110 Mounting Exit Number Panels to Signs
700-120 Enhanced Highway Signing Assemblies
Pavement Markings
706-001 Typical Placement of Raised Pavement Markers
711-001 Pavement Markings
711-002 Bicycle Markings
711-003 Interchange Markings
Highway Lighting Systems
715-001 Conventional Lighting
715-002 Standard Aluminum Lighting
715-003 Utility Conflict Pole
715-010 High Mast Lighting
Railroad Crossing
830-T01 Railroad (Grade) Crossings

FY 2023-24 REVISIONS LOG

$\begin{gathered} \text { Standard } \\ \text { Plans } \\ \text { Index } \end{gathered}$	Description
102-200	Sheet 1: Changed the bridge design type in General Notes. Sheet 2: Removed double bearing note. Sheet 3: Corrected the raker beam connection; Removed double bearing Notes. Sheet 4: Removed double bearing Notes and details. Sheet 5: Removed double bearing Notes and details. Sheet 6: Added slight gap between beam stops and beam.
102-201	Sheet 2: Updated guardrail backplate details to add clarifying information and remove errors.
102-604	Sheet 1: Deleted Note 6 "District Traffic Operations Engineer must approve temporary signal phasing modifications prior to beginning or work". Added note to Specification 102-9.
102-606	Deleted Note 2 "District Traffic Operations Engineer must approve the installation and timing of temporary signals modifications prior to beginning or work. Adjust timing based on changing field conditions as approved by the Worksite Traffic Supervisor. Obtain approval from the District Traffic Operations Engineer for any timing changes that are either reoccurring or last longer than 24 hours". Added note to Specification 102-9.
102-607	Sheet 1: Deleted "Flashing" from the Arrow Board Mode.
102-615	Sheet 1: Deleted Note 3 and added to Specification 102-9.
102-680	Deleted Note 2 and added Note to Specification 102-9.
400-090	Sheet 1: Updated Note 9 into 2 Notes.
415-010	Sheet 1: Added new bar bend type.
425-060	Sheet 2: EDITORIAL - Revise both Section A-A Details to show the short side \#5s in the slab on the bottom of the long side \#4s.
455-001	Sheet 1: Changed Class V (Special) concrete to Class V.
455-030	Reverted to the previous version of the Standard.
455-031	Reverted to the previous version of the Standard.

$\begin{gathered} \text { Standard } \\ \text { Plans } \\ \text { Index } \end{gathered}$	Description
455-054	Sheet 1: Changed Class V (Special) concrete to Class V.
455-060	Sheet 1: Changed Class V (Special) concrete to Class V.
455-101	Sheet 1: Changed Class V (Special) concrete to Class V.
455-154	Sheet 1: Changed Class V (Special) concrete to Class V.
455-160	Sheet 1: Changed Class V (Special) concrete to Class V.
455-400	Sheet 1: Changed Class V (Special) concrete to Class V.
455-440	Sheet 1: Changed Class V (Special) concrete to Class V. Sheet 2: Updated Dimension B which takes into account the latest FRP bar bending radius's; Removed note 5 which was only required because of dimension B.
515-022	Sheet 3: Corrected the relative location and dimensions of the base plate and post with respect to the edge of the bullet rail.
521-001	Sheet 1: Note 1 - Changed Concrete Surface Finish Class 3 to General Surface Finish; Note 7 - Clarified that doweled joint connection includes Wall Coping barriers. Sheet 2: Changed "NOTES" heading to "MEDIAN BARRIER NOTES" to clarify applicability throughout Index; Note 2 - Changed wording of "Space joints" to "Place joints" to clarify need for joints; Elevation - Removed junction slab callout; Note 5 Replaced existing redundant note with "Minor Grade Separation" note. Sheet 13: Elevation - Added Wall Coping Barrier to callout at dowel connection; Changed "NOTES" heading to "SHOULDER BARRIER NOTES" to clarify applicability throughout Index. Sheet 19: Section A-A Option 'B' - Corrected height callout of 36" Height Traffic Railing to remove $1 / 16^{\prime \prime}$ CADD error. Sheet 20: Elevation - Added Wall Coping Barrier to callout at dowel connection.
521-010	Sheet 1: Section Views - Added barrier delineator placement details and callout; Note 9: Added explanation for how to locate barrier delineators with split barrier sections.
521-512	Sheet 2: Changed BILL OF REINFORCING STEEL table MARK A Type 1 to 7-10'"' and TYPE 2 to 8'-10"; Changed dimension in BAR 5A TYPE 1 to $6^{\prime}-0^{\prime \prime}$ and TYPE 2 to $7^{\prime}-0^{\prime \prime}$.

Standard Plans Index	Description
$521-600$	Sheet 1: Added note to clarify the type of concrete for the CIP buildup above the wall. CIP buildup can be Class NS.
$521-610$	Sheet 2: Corrected 6 1/2" Asphalt dimension to be consistent at 6" with the other details and configurations; Added note to clarify the type of concrete for the CIP buildup above the wall. CIP buildup can be Class NS.
Corrected language in Note 9 which allows contractor to form	
stirrup out of a single bar rather than two. The note stated	
use a \#5 but there are two conditions, one for a \#4 and one	
for \#5. Adjusted the language accordingly.	

| Standard
 Plans
 Index | Description |
| :---: | :---: | :---: |
| 630-010 | Sheet 2: Changed the conduit to extend the run of conduit that exists in
 the barrierltraffic rail to the longitudinal end of the
 barrier/traffic rail. |
| Sheet 4: Changed the conduit to extend the run of conduit that exists in | |
| the barrierltraffic rail to the longitudinal end of the | |
| barrier/traffic rail. | |$|$

Standard Plans Index	Description
$700-013$	All Sheets: Renamed Index "Single Post Sign Support Barrier Top- Mounted".
Sheet 1: Updated Notes to General Notes; Added New Note 1 - "Meet the	
requirements of Specification 700."; Deleted Note 3; Moved	
Note 4 to Specification 962; Deleted Note 5; Renumbered Notes;	
Deleted Note 8; Added "or Traffic Railing" to the Concrete	
Barrier callouts in the ELEVATION detail.	

Standard Plans Index	Description

Sheet 1: Updated Notes to General Notes; Added New General Note 1 "Meet the requirements of Specification 700."; Deleted Notes 4 through 7; Moved Note 5.B to Sheet 5 Notes; Renumbered Notes.
Sheet 2: Deleted Note 7; Added new note detailing the weld pattern of the 'BD' plates indicating that they should be welded in a star pattern: Added Washers to the FOUNDATION details; Added new callout " 5 Nuts Per Anchor Bolt (Typ.)" in the DRILLED SHAFT detail: Changed dimension 'BK' extents in the Elevation View to match calculations and Updated the Plate Washer callout and the weld references in the BASE PLATE CONNECTION detail.
Sheet 3: Updated line work on Section A-A to correctly reflect correct geometry.
Sheet 4: Corrected reference in Detail F.
Sheet 5: Added General Note 5.B as New Note 3 - "Chord Splices: "SD" Panel from upright is the closest panel in which chord splice may be used; See Plans for CANTILEVER SIGN STRUCTURE DATA TABLE; Minimum splice spacing is two truss panel lengths apart."

Sheet 1: Updated Notes to General Notes; Added New General Note 1 "Meet the requirements of Specification 700"; Deleted Notes 4 through 7; Moved Note 5.B and 5.C to Sheet 5 Notes, Renumbered Notes.
Sheet 2: Added Note 6 detailing the weld pattern of the ' $B D^{\prime}$ and ' $C D$ ' plates indicating that they should be welded in a star pattern; Changed dimension 'DF' extents in Base Plate Connection detail to match calculations.
Sheet 3: Updated line work on Section A-A to correctly reflect correct geometry.
Sheet 4: Update member orientations in Truss Front Elevation to reflect correct geometry.
Sheet 5: Added General Note 5.B and 5.C as New Note 2 - "Chord Splices: Minimum splice spacing is three truss panel lengths apart and three truss panel lengths from the uprights when panel lengths are 10'-0" or less. Chord Splices may be either the Standard Splice or the Alternate Splice, but not both on the same structure." and Note 3 - "Upright splice: Not allowed unless the upright exceeds available mill lengths (35' - 40')."

Sheet 1: Updated General Note 1 - "Meet the requirements of Specification 700."; Deleted Note 5; Renumbered General Notes.

Standard Plans Index	Description
700-091	Sheet 1: Updated General Note 1 - "Meet the requirements of Specification 700."; Deleted Note 9 through 11; Renumbered General Notes.
700-110	Updated Notes to General Notes; Added New General Note 1 - "Meet the requirements of Specification 700."; Deleted Note 2 and 3.B.; Renumbered General Notes.
700-120	Sheet 1: New General Note 1 - "Meet the requirements of Specifications 646 and 700."; Deleted Notes 1, 2, and 4; renumbered General Notes. Sheet 9: Added Solar Power Assembly details: Updated call out references; Updated Notes.
711-001	Sheet 2: Changed "SHADOW" with "CONTRAST" in the 10-30' Skip Line and Dotted Line Details; Added Longitudinal Solid Lane Line With Contrast Markings detail. Sheet 8: EDITORIAL - Revised 75' min dimension to face of stop line. Sheet 10: EDITORIAL - Revised 25^{\prime} min dimension to face of stop line.
711-003	Sheet 1 and 2: EDITORIAL - RPM's added on extension from the gores.
715-001	Sheet 1: Added a detail to define luminaire tilt angle for designers and contractors; Added reference to Index 715-002 \& 715-003 to the Metal Pole Detail; Changed sheet title to "Wiring and Installation Details" to capture the installation details beyond wiring.
715-002	Sheets 1-9: Updated all sheet numbers in details, Notes, and borders to account for new Sheet 5 . Sheet 2: Added a spread footing example in elevation details; Changed elevation titles to explain shaft footing option and new spread footing option; Added callout and Index 522-001 reference for cold joint connection between spread footing and raised curb. Sheet 4: Changed sheet title to "Shaft Foundation Option with Light Pole \& Base Details"; Changed table and elevation detail titles from "Foundation" to "Shaft Foundation". Within Tables, changed "Assembly Height" to "Mounting Height" for consistency with SPI and FDM. Sheet 5: Added all-new sheet for "Spread Footing Foundation Option".

SYMBOL:
\Longrightarrow Direction of Traffic
NOTES:

1. These details apply to both paved and grassed shoulders. For median shoulders use 0.05 in lieu of 0.06
2. SHOULDER ON HIGH SIDE: A shoulder slope of 0.06 downward from the edge of travel way will be maintained until a 0.07 break in slope at the pavement edge is reached due to superelevation of the pavement. As the pavement superelevation increases, the 0.07 break in slope will be maintained and the shoulder flattened until
the shoulder slope reaches the minimum of of 0.02 downward from the edge of travel way. Any further increase the shoulder slope reaches the minimum of 0.02 downward from the edge of travel way. Any further increase
in pavement superelevation will necessitate sloping the inside half of the shoulder toward the travel way and the outer half outward, both at 0.02 for superelevations $0.06-0.09$ and both at 0.03 for superelevation 0.10 . For shoulders with paved widths 5 feet or less see Special Shoulder Break Over Details on Sheet 2 of 2.
3. SHOULDER ON LOW SIDE: Maintain 0.06 cross slope across shoulder until pavement cross slope reaches 0.06 For pavement cross slopes greater than 0.06 , shoulder to have same slope as pavement. See SHOULDER slopes on superelevation section (Sheet 2).

SECTION A-A
NORMAL CROWNED SECTION

SECTION D-D PLANE INCLINED SECTION LT SUPERELEVATION TRANSITION RT

SECTION B-B SUPERELEVATION SECTION LT. \& RT.

SECTION C-C SUPERELEVATION SECTION LT. PLANE INCLINED SECTION RT.

SECTION E-E SUPERELEVATION TRANSITION LT. FULL SUPERLEVATION RT.

SECTION F-F FULL SUPERELEVATION LT. \& RT

8-LANE PAVEMENT WITH TWO LANES SLOPED TO MEDIAN

With 4' or less paved WIDTHS,

8' FULL WIDTH SHOUIDER 8' FULL WIDTH SHOULDER
WITH 5' PAVED WIDTH

6' FULL WIDTH SHOULDER WITH 5' OR LESS PAVED WIDTH

SPECIAL SHOULDER BREAK OVER DETAILS

SHOULDER SLOPES ON

SUPERELEVATION SECTIONS

1. For shoulders with paved widths 5 feet or
less see special shoulder break over details.
2. For Concrete pavement, the first $1^{1}-0^{\prime \prime}$ of the outside shoulder is cast with the outside travel
lane and will have the same cross slope as the lane and will have the same cross slope as the at the outside edge of the outside slab.

LAST REVISION 11/01/18	2	DESCRIPTION:		FY 2023-24 STANDARD PLANS	S UPERELEVATION TRANS ITIONS HIGH SPEED ROADWAYS	-	$\begin{array}{\|c\|} \text { INDEX } \\ \text { OOO-510 } \end{array}$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 2 \end{aligned}$

one or two travel lanes each direction

two travel lanes each

_ UNDIVIDED FACILITIES

ONE OR TWO TRAVEL LANES EACH DIRECTION WITH MEDIAN

two travel lanes each direction

three travel lanes each direction with median

GENERAL NOTES:

1. Obtain Superelevation by rotating the plane successively about the break points of the section until the plane has
attained a slope equal to that required by the Plans. Should attained a slope equal the hat required by the Plans.
the rotation traverse the entire section and further superelevation be required, the remaining rotation of the plane shall be about the low edge of the inside travel lane.
Crown is to be removed in the auxiliary lane to the outside Crown is to be removed ine ad joining travel lanes require positive superelevation.
2. When positive superelevation is required, continue the slope of the pavement across the gutter on the high side.
3. Place short vertical curves at all angular profile breaks within the limits of the superelevation transition.
4. The variable superelevation transition length "L" has a minimum value of 50 feet for design speeds of $25-30 \mathrm{MPH}$ and 75 feet for design speeds of $40-45$ MPH.
5. Roadway sections having lane arrangements different from those shown, but composed of a series of planes, are superelevat

SUPERELEVATION TRANSITION SECTIONS FOR LOW SPEED HIGHWAYS

NOTE:
The sections and profiles shown are
examples of superelevation transitions Similar schemes should be used for roadways having other sections.

LINE	DESCRIPTION
T	Inside Travel Lane
U	Inside Lane Line
V	Inside Median Edge Pavement
W	\& Construction
X	Outside Median Edge Pavement
Y	Outside Lane Line
Z	Outside Travel Lane
Inside And Outside Are Relative To Curve Center	

SECTION O-A to O-D

TWO LANES EACH DIRECTION

SLOPE RATIOS FOR SUPERELEVATION TRANSITIONS	
DESIGN SPEED MPH	$1: d$
$25-35$	$1: 100$
40	$1: 125$
45	$1: 150$
1:125 May Be Used For 45 mph Under Restricted Conditions.	

two lanes each direction with median and auxiliary lane

| $\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$ | \|l|l | FDOT
 FY 2023-24
 STANDARD PLANS | S UPERELEVATION TRANS ITIONS LOW SPEED HIGHWAYS | $\begin{gathered} \text { INDEX } \\ \text { OOO-511 } \end{gathered}$ | $\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 2 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

Shown with Shoulder Gutter)

THREE APPROACH LANES - TWO THRU LANES
(Shown Without Shoulder Gutter)

GENERAL NOTES:

1. Taper-Type exit and entrance terminals as detailed shall not be used on ramps for which a speed of 50 MPH or greater cannot be maintained
2. Taper-Type exit and entrance terminals as detailed shall not be used on ramps for which a speed of 50 MPH or greater cannot be
For such ramps, parallel deceleration and acceleration lanes shall be used in place of tapers with lengths set according to AASHTO.
3. Shoulder Pavement:
A. Concrete Pavement Projects: Where shoulder pavement adjacent to shoulder gutter is less than 6^{\prime} wide, it shall be identical to the adjacent roadway pavement beginning with the transverse joint nearest the point of σ^{\prime} width
B. Flexible Pavement Projects: where shoulder pavement used in conjunction with shoulder gutter is less than 6^{\prime} uniform width, it shall be identical to the adjacent roadway pavement.
4. For concrete pavement joint details and layouts at entrance and exit ramp terminals, see Index 350-001

Single lane ramps - exit terminals

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	\|rest	$\begin{array}{ccc} F D & \text { FY 2023-24 } \\ \text { FTANDARD PLANS } \end{array}$	RAMP TERMINALS	$\begin{gathered} \text { INDEX } \\ \text { OOO-525 } \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 5 \end{aligned}$

= THREE THRU LANES - APPROACH AUXILIARY LANE=
(Shown Without Shoulder Gutter)

Limits Of Pay For Mainline Thickness__ Limits of Pay For Ramp Thickness
flexible pavement thickness transition
\qquad

TWO LANE RAMPS - EXIT TERMINALS

GENERAL NOTES

1. Temporary barrier systems may be any of the following:
A. Type K Temporary Concrete Barrier System (Index 102-110) installed as either Free-Standing or Anchored
B. Proprietary Temporary Barrier Systems on the Approved Product List (APL)
a. Concrete Barrier (Free-Standing or Anchored)
b. Steel Barrier (Anchored)
c. Water Filled Barrier (Free-Standing)
2. Where existing flexible pavement is not present, construct a minimum 2" thick temporary Asphalt Pad using Miscellaneous Asphalt Pavement in accordance with Specification 339 with the exception that the use of a pre-emergent herbicide is not required.
3. For Barrier Delineators, see Specification 102. Mount on top of temporary barriers. Color must match 3. For Barrier Delineators, see Specificatio
4. Remove all grass debris, loose dirt, and sand for the pavement, bridge deck, or asphalt pad surface within the barrier footprint just prior to placement of the temporary barrier
5. Ensure the setback distance is clear of any grass, construction debris, stockpiled materials, equipment, and objects.
6. Transitions are required between Type K Barrier and free-standing, anchored, back-filled or other types of temporary barrier. See Index 102-110 for transitions between Type K Barrier and permanent bridge or traffic alling. Refer to the APL for transitions allowed for Proprietary Temporary Barrier Systems.
7. Anchoring (Bolting) of temporary barrier or crash cushions is not permitted on bridge superstructures that contain post-tensioned tendons within the concrete deck (top flange of concrete box girders) or on bridge superstructures consisting of longitudinally prestressed, transversely post-tensioned, solid or voided concrete slab units.
8. Anchor abutting segments of temporary barrier terminated with a Crash Cushion as shown in Index 102-110 or the APL.
9. The requirements of this Index do not apply to Temporary Low Profile Barrier, See Index 102-120.
10. Setback requirements below cover most Temporary Barrier options. Provide additional setback distance for APL products that require additional setback (deflection) space

INSTALLATION DATA			
CONDItION	LATERAL offset	SETBACK distance	PAVEMENT/ ASPHALT WIDTH
Anchored	2^{\prime} Min.	2^{\prime} Min. (See Note)	1' Min.
Free-standing	2^{\prime} Min.	$4{ }^{4} \mathrm{Min}$.	4 Min .

SIDE INSTALLATION

MEDIAN INSTALLATION

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$	20 DESCRIPTION:	$\begin{array}{cc} F Y \text { 2023-24 } \\ \text { FDOT } \\ \text { STANDARD PLANS } \end{array}$	$T E M P O R A R Y$ BARRIER	$\begin{gathered} \text { INDEX } \\ 102-100 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 4 \end{aligned}$

= APPROACH SHOULDER BARRIER TRANSITION ON UNDIVIDED FACILITIES \qquad

$\bar{\Longrightarrow}$ APPROACH SHOULDER BARRIER TRANSITION ON DIVIDED FACILITIES $\bar{\square}$

$\overline{\bar{\sim}}$ DEPARTURE SHOULDER BARRIER TRANSITION ON UNDIVIDED FACILITIES

—DEPARTURE (TRAILING) SHOULDER BARRIER TRANSITION ON DIVIDED FACILITIES

SYMBOL:
\Longrightarrow Direction of Traffic

BARRIER AND TRANSITION LOCATED ON SHOULDERS

BARRIER AND TRANSITION WITH LANE DROP ON MULTILANE FACILITIES=
(Right Lane Merge Left Shown - Inverted For Left Lane Merge Right)

NOTE:

$L=$ Taper Length, See Index 102-600 for "L"
and channelizing device spacing values.
SYMBOLS:
Zllan work Area

- Channelizing Device (See Index 102-600)
[c. C. Crash Cushion
\longmapsto Lane Identification and Direction of Traffic

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$	包DESCRIPTION:	$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	TEMPORARY BARRIER	$\begin{gathered} \text { INDEX } \\ 102-100 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 4 \text { of } 4 \end{aligned}$

GENERAL NOTES

Weet the requirements of Index 102-100
2. For fabrication details see Sheets 15 thru 17.
3. HANDLING: Do not lift or move the Barrier Units by using Bars $6 D$ that extend from the ends of the units. Approximate weight of one unit equals 2.7 tons.
4. CONNECTION PIN ASSEMBLY: Use steel for Connection Pin and Top Plate assemblies in accordance with ASTM A36 or ASTM A709 Grade 36. Nondestructive lesting of welds is not required. At the Contractor's option, a $3^{\prime \prime}$ diameter hole may be provided at the bottom of the Connection Pin, as shown, for the installation of a vandal resistance bolt.
5. CONNECTION PIN INSTALLATION: Initially set Barrier Units by using a $3 / 8 /$ wooden block between ends of adjacent units. Install Connection Pin between adjacent Barrier Units as shown, then pull newly placed Barrier Unit away from adjacent Barrier Unit to remove slack between Connection Pin and Bars 6D (except as shown on Sheet 2). Do not use Barrier Units unconnected.
6. REUSE OF CONNECTION PINS AND STAKES: Connection pins and stakes may be reused if they have the structural integrity of new pins.
7. REMOVAL OF BOLTS, STAKES AND KEEPER PINS: Upon removal or relocation of Barrier Units, remove all Anchor Bolts and completely fill the remaining holes in bridge decks, approach slabs and roadway rigid pavements that are to remain with Magnesium Ammonium Phosphate Concrete in accordance with Specification 930 or with an Epoxy Resin Compound, Type F or Q, in accordance with Specification 926 . If a flexible pavement is present and is to remain completely fill the remaining holes in the flexible pavement wh hot or cold patch asphalt material.
8. TYPE K ANCHORED TO FREE-STANDING TRANSITIONS: Use the 3-3-2-1 Anchorage Transition Detail when transitioning Free-Standing and Anchored Units or when connecting Free-Standing runs to Crash Cushions, as shown in this Index.

THRIE-BEAM GUARDRAIL SPLICE INSTALLATION NOTES:

1. THRIE-BEAM GUARDRAIL: Provide Thrie-Beam Guardrail for splices meeting the requirements of specification 967 and as follows: Two panels per splice (One panel per side) of Class B (10 Gauge), or Four panels per splice (Two nested panels per side) of Class A (12 Gauge). Use a $122^{\prime-6 " g u a r d r a i l ~ p a n e ~}$ Provide and install all other associated metallic guardrail components (Terminal Connectors, Shoulder Bolts, Hex Bolts and Nuts, Filler Plates, etc.) in
accordance with Index $536-001$. Install five Guardrail Anchor Bolts at each end of each splice in any of the standard seven anchor bolt holes in the ccordance with Index 536-001. Install five Guardrail Anchor Bolts at each end of each splice in any of the standard seven anchor bolt holes in th Thrie-Beam Terminal Connector so as to clear reinforcing steel within the given tolerances or select a different bolt hole to use. Do not drill or cut through reinforcing steel within Type K Barrier Units. Drilling or cutting through reinforcing steel within permanent concrete traffic railings is permitted.
2. GUARDRAIL OFFSET BLOCKS: Provide and install timber Offset Blocks meeting the requirements of Specification 967. Field trim offset Blocks as required for proper fit Utilize Offset Blocks as shown and required in order to prevent bending or kinking of Thrie-Beam Guardrail panels.
3. CONCRETE FOR FILLING TAPERED TRAFFIC RAILING TOES: Provide concrete for filling tapered toes of Traffic Railings as shown meeting the material requirements of Specification 346, any Class, or a commercially available pre-bagged concrete mix (3000 psi minimum compressive strength). Sampling, testing, evaluation and certification of the concrete in accordance with Specification 346 is not required. Saturate with water the surfaces upon and against which the concrete fill will be placed prior to placing concrete. Place and finish concrete fill using forms or by hand methods to the general
configurations shown so as to provide a smooth shape transition between the Type K Barrier and the ad jacent traffic railing. A low slump is desirable plaing and finishing concrete by hand methods. Cure the concrete fill by application of a curing compound or by covering with a wet tarp or burlap for a minimum of 24 hours. Completely remove the concrete fill upon relocation or removal of the Type K Temporary Concrete Barrier.

$1 / 2$ I
$1^{3 / /^{\prime \prime}} \varnothing$ Hole (Centered)

TOP PLAT
DETAIL
\qquad
SYMBOL:

Dot indicates number and
position of Bolts or Stakes

NOTE: Traffic Side for Transition to Median
Traffic Railings, see Sheet 6
$=$ THROUGH BOLTED ANCHOR $\overline{=}$

NOTES FOR BOLTED INSTALLATIONS

Bridge deck shown, approach slab or rigid pavement similar; installation adjacent to drop-off shown, median transition installation similar. IIMITATION OF USE: This installation technique can only be used on rigid pavement and concrete bridge decks as shown. Anchor Bolts must not be installed on both sides of the Barrier Units. Do not bolt down Barrier Units across bridge finger or modular expansion joints.

ANCHOR BOLTS, NUTS AND WASHERS: When using Adhesive-Bonded Anchor Bolts, use fully threaded rods in accordance with ASTM F 155 Grade 36. Install Anchor Bolts for through bolting in accordance with ASTM A 307 or ASTM $F 1554$ Grade 36. Install nuts in accordance with ASTM A 563 or ASTM A 194 Install Flat Washers in accordance with ASTM F 436 and Plate Washers in accordance with ASTM A 36 or ASTM A 709 Grade 36.

Install three (3) Anchor Bolts per Barrier Unit on the traffic side of the Barrier Units as shown, except for Transition Installations. For the number and positions of Anchor Bolts required in Transition Installations see Sheets 8 and 9 and Index 102-100. Drilling through deck reinforcing steel to install Anchor Bolts is permitted. Unless otherwise shown in the Plans, at the Contractor's option drill into or $\begin{gathered}\text { may be instaled by through bolting (where geometricaly possible) or by the use of Adhesive-Bonded Anchor Bolts. Do not }\end{gathered}$ Nuts so that the maximum extension beyond the face of the Barrier Units is $1 / 2$ ". Snug tighten the Nuts on the Anchor Bolts. For through bolted installations, snug tighten the double Nuts on the underside of the deck against each other to minimize the potential for loosening.

Omit one (1) Anchor Bolt within a single Barrier Unit if a conflict exists between the Anchor Bolt location and a bridge deck expansion joint or drain. The adjacent Barrier Units must each be installed with the standard three (3) Anchor Bolts.

Omit one (1) Anchor Bolt within a single Barrier Unit as shown in the Treatment at Bridge Deck Expansion Joint Schematic if the Barrier Unit straddles a bridge deck expansion joint. The adjacent Barrier Units must each be installed with the standard three (3) Anchor

ADHESIVE-BONDING MATERIAL SYSTEMS: When using Adhesive Bonding Material Systems for Anchor Bolts, Use Type HSHV in accordance with Specification 937 and installed them in accordance with Specification 416. Prior to installation of the Barrier Units in the Plan ocation(s), install a demonstration Barrier Unit using the proposed production installation method, at a location approved by the Engineer. In lieu of the production test requirements of Specification 416, install six (6) Adhesive-Bonded Anchor Bolts in the demonstration arrier unit and test each Anchor Bolt with a a 29,800 pound tensile proof load. Install and test additional demonstration Barrier Units
when requested by the Engineer. Remove the demonstration Barrier Unit prior to testing the Anchor Bolts. Remove the test Anchor Bolts When requested by the Engineer. Remove

typical bridge section

typical median section

typical roadway section
free-standing installation notes:

1. For Bridge Decks only, use Keeper Pins that are ${ }^{1 \# 2 \text { " diameter, smooth steel bar in }}$ order to limit vibration induced translation of the Barrier Units, install Engineer in it vibration induce
2. If traffic is on both sides of the Barrier (i.e. Median Installation), alternate Keeper Pin
Iocations from side to side of Barrier Units along the length of the installation If locations srom side to side of Barrier Units along the lenthth of the installation.If
traffic is on only one side of the barrier install keeper pins on the traffic side as shown
3. Do not drill into or otherwise damage bridge deck expansion joints or drains

NOTE:

Provide Excavatable Flowable Fill il accordance with Specification 121.
typical section
ADJACENT to retaining wall with flowable fill back-fill

FLOWABLE FILL BACK-FILL ROADSIDE INSTALLATIONS

TYPICAL SECTION
adjacent to retaining wall with soil back-fill

TYPICAL SECTION
WITH SOIL BACK-FILL

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{array}$	\|	FDOTT	FY 2023-24 STANDARD PLANS	$T Y P E \mathbb{K} T E M P O R A R Y$ CONCRETE BARRIER SYSTEM	$\begin{gathered} \text { INDEX } \\ 102-110 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 4 \text { of } 17 \end{aligned}$

= approach transition from free-standing to anchored type K temporary concrete barriers= \qquad

=APPROACH TRANSITION FROM FREE-STANDING TO BACK-FILLED TYPE K TEMPORARY CONCRETE BARRIERS=

=TRAILING END TRANSITION FROM ANCHORED TO FREE-STANDING TYPE K TEMPORARY CONCRETE BARRIERS=

NOTE:
Where Barrier is located within Clear Zone of opposing traffic, Approach Transition is required.

SYMBOLS:

Dot indicates number and
position of Bolts or Stakes
$\stackrel{H}{\Perp}$
\Longrightarrow Direction of Traffic

$\overline{\Longrightarrow \text { TRAILING END TRANSITION FROM BACK-FILLED TO FREE-STANDING TYPE K TEMPORARY CONCRETE BARRIERS }=-10] ~}$

-
Edge of Travel Way
= transition from free-standing type K temporary concrete barriers to bridge traffic railing or roadway concrete barrier wall $=$

Anchored Type k Barrier

partial plan view at median traffic railing

partial plan view at shoulder traffic railing

partial elevation view

FOR F AND NEW JERSEY SHAPE TRAFFIC RAILINGS AND $8^{\prime} \& 14^{\prime}$ traffic Railing / NOISE WALLS (CONCRETE BARRIER WALL SIMILAR)

SYMBOL:
\Longrightarrow Direction of Traffic

NOTE:
See Thrie-Beam Guardrail Positioning Detail, Notes for Thrie-Beam Guardrail

32" Florida Corral Traffic Railing (Shown)
$32^{\prime \prime} \& 42^{\prime \prime}$ Vertical Shape Traffic Railings (Similar) Anchored Type K Barrier \qquad

partial plan view

partial elevation view - florida corral traffic railing

partial elevation view - Vertical shape traffic railings FOR FLORIDA CORRAL AND VERTICAL LORIDA CORRAL AND VERT
SHAPE TRAFFIC RAILINGS

CROSS REFERENCES
See Sheet 10 for Section A-A,
Section $B-B$ and Section $C-C$.

partial plan view

FOR F AND TRAILING END SPLICE DETAIL
AND 8'\& 14' TRAFFIC RAILING / NOISE WALIS

SYMBOL:
\Longrightarrow Direction of Traffic

FOOTY

NOTE:
See Thrie-Beam Guardrail Positioning Detail, and Notes for Thrie-Beam Guardrail

$$
\text { installations, Sheet } 1
$$ STANDARD PLANS

Free-Standing Type K Barrier (Shown)

partial plan view

FOR TRAILING END SPLICE DETAIL $\overline{\overline{C A L}}$ SHAPE TRAFFIC RAILINGS

CROSS REFERENCES:
See Sheet 10 for Section A-A,
Section $B-B$ and Section $C-C$.

TYPE
PE K TEMPORARY CONCRETE BARRIER SYSTEM
INDEX
$102-110$
\square

approach transition from free-standing proprietary temporary barriers to anchored type k temporary concrete barriers

approach and trailing end transitions from free-standing type k temporary concrete barriers to free-standing proprietary temporary barriers

NOTE:

Where Barrier is located within Clear Zone of opposing traffic, Approach Transition is required SYMBOLS:
$\left(\begin{array}{l}\text { Dot indicates number and } \\ \text { position of Bolts or Stakes }\end{array}\right.$ \ldots
\Longrightarrow Direction of Traffic
trailing end transition from anchored type k temporary concrete barriers to free-standing proprietary temporary barriers

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	TYPE K TEMPORARY CONCRETE BARRIER SYSTEM	$\begin{gathered} \text { INDEX } \\ 102-110 \end{gathered}$	SHEET 11 of 17

Ty yee K-Proorietary Barier
Transition Unit A or B (See $A P L$)

NOTE:

Where Barrier is located within Clear Zone of opposing traffic, Approach Transition is required

SYMBOLS:

Dot indicates number and
position of Bolts or Stakes \ldots
\longrightarrow Direction of Traffic
trailing end transition from back-filled type k temporary concrete barriers to free-standing proprietary temporary barriers

median approach and trailing end transitions from free-standing type k temporary concrete barriers to free-standing proprietary temporary barriers

TYPE K-PROPRIETARY TEMPORARY CONCRETE BARRIER TRANSITIONS $=$

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	2 DESCRIPTION:	$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	TYPE K TEMPORARY CONCRETE BARRIER SYSTEM

NOTE:
When subjected to reverse direction hits, construct Transition Panels from Temporary Barrier to Crash Cushions; for additional details refer to the applicable crash cushion drawings on the APL.

SYMBOLS:

Dot indicates number and
position of Bolts or Stakes 1.
\Longrightarrow Direction of Traffic

unidirectional - SEPARATED traffic

two-way traffic with crash cushion located within opposing lane clear zone

END TREATMENT WHEN SHIELDED BY A CRASH CUSHION shoulder - Right or left (right side shown)

Shielding ends with redirective crash cushions (redirective option)

| $\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$ | \|c|che | $\begin{array}{cc} \text { FDYT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$ | TYPE K TEMPORARY CONCRETE BARRIER SYSTEM | $\begin{gathered} \text { INDEX } \\ 102-110 \end{gathered}$ | $\begin{gathered} \text { SHEET } \\ 14 \text { of } 17 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

FABRICATION NOTES:

In order to maintain crashworthiness of the Barrier System, do not substitute different grades, sizes, shapes or types of reinforcing stee In order to maintain crashworthiness of the Barrier System, do not substitute different grades, sizes, shapes or types of reinforcing stee
for those shown for constructing Type K Barrier Units. Also, do not substitute different type, size, length or material grade anchor bolts, nuts, washers, adhesives, connector pins, stakes, keeper pins, or guardrail components for installing Type K Barrier Units.

FABRICATOR PREQUALIFICATIONS:
A. The Concrete Plant that meets the requirements,
a. Specification 450 for prestressed concrete
b. Specification 105 for precast.

CONCRETE:
A. Construct Barrier Units with Class IV concrete in accordance with Specification 346
B. Specification 346-10 is not applicable
C. Barrier Units represented by concrete acceptance strength tests which fall below 5000 psi will be rejected.

REINFORCING STEEL:
A. Use only steel reinforcing that meet ASTM A 615, Grade 60 , with the exception of Bars 6D1, 602 and 603 .
B. Bars $6 D 1,6 D 2$ and $6 D 3$ use steel reinforcing that meets ASTM A 706 , with the exception that a $23 / 4$ diameter pin must be used for the 180 degree bend test.
C. After steel reinforcing fabrication, hot dip galvanized in accord
in accordance with Specification 562, all or part of Bars 6 .
D. At the Fabricator's option, the entire length of Bars 60 may be galvanized or coated.
E. The minimum limit of galvanizing or coating is shown in the Bending Diagrams.
the plan dimensions.
H. At the option of the Fabricator, Deformed Welded Wire Fabric in accordance with Specification 931 and the details shown on Sheet 15 may be utilized in lieu of Bars 4A and 5B.

1. All dimensions in the Bending Dlagrams are out to out.

LIFTING SLEEVE ASSEMBLY:
A. Inclusion of the Lifting Sleeve Assemblies is optional
B. Use steel in accordance with ASTM A 53 for the Pipe Sleeve,

SURFACE FINISH:
A. Construct Barrier Units in accordance with Specifications 400 and 521
B. Finish the top and sides of the Barrier Units with a General Surface Finish.
C. Finish the bottom of the Barrier Units to a dense unifo with ace floating in lieu of the General Surface Finish.

MARKING:

A. Permanently mark the top left end of each Barrier Unit by the use of an embedded and anchored metallic plate with letters and figures a minimum of $0.5^{\prime \prime}$ tall.
B. Ink stamps are not allowed
C. Permanently mark with the following information:

- Type K1

Fabricator's name or symbol
Date of manufacture (day, month and year)

$\begin{aligned} & \text { LAST } \\ & \text { REVISION } \\ & 11 / 01 / 17 \end{aligned}$	Diclen	FDOT) $\begin{gathered}\text { FY 2023-24 } \\ \text { STANDARD PLANS }\end{gathered}$	TYPE K TEMPORARY CONCRETE BARRIER SYSTEM

BAR 6C

$\xrightarrow{10^{\prime \prime}}$
No. 4 DRAIN BAR OVER DRAIN SLOTS
(CONVENTIONAL STEEL) D 17.2 (Typ.
Vertical Bar)
(See Note 2)

BAR 4F

TOP VIEW $-.-1$

SIDE VIEW BARS 6D1, 6D2 \& 6D3

STIRRUP BAR 4A1

BILL OF REINFORCING STEEL			
MARK	SIZE	NUMBER	LENGTH
A1	4	10	$6^{\prime}-1^{\prime \prime}$
$A 2$	4	2	$5^{\prime \prime}-5^{\prime \prime}$
B	5	5	$12^{\prime}-3^{\prime \prime}($ Straight $)$
C	6	6	$3^{\prime}-1^{\prime \prime}$
D1	6	2	$8^{\prime}-4^{\prime \prime}$
D2	6	2	$7^{\prime \prime}-6^{\prime \prime}$
D3	6	2	$8^{\prime \prime}-6^{\prime \prime}$
E	4	4	$2^{\prime}-0^{\prime \prime}$

CONVENTIONAL REINFORCING
STEEL BENDING DIAGRAMS STEEL BENDING DIAGRAMS

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	\|	DESCRIPTION:	

O. DRAIN BAR OVER DRAIN SLOTS
(CONVENTIONAL STEEL)

NOTES:

1. Place 2 ~No. 5 Bars (12'-3" long) in bottom of Welded Wire
2. Match D17.2 spacing to Bars 4 A in the Elevation View, Sheet 15 .
3. Field trim D17.2 to clear drain slot by $2^{\prime \prime}$.
4. Place 2 ~No. 5 Bars (12'-3" long) tied to D 19.7 inside of bottom
5. Match D19.7 spacing to Bars 4A in the Elevation View, Sheet 15.
6. Field trim D19.7 to clear drain slot by $2^{\prime \prime}$

SECTION A-A (SHOWN) (SECTION B-B SIMILAR)

SECTION C-C
Bars 6 D not shown for clarity)

NOTES:

1. Provide $3 / 4^{\prime \prime}$ Chamfer at top and bottom corners of Barrier
2. Provide a minimum of $2^{\prime \prime}$ cover on the top and bottom.
3. Provide a minimum of $1^{33 / 4}$ cover on both sides.

ALTERNATE REINFORCING STEEL DETAIL

\qquad $\overline{ }$ CROSS SECTION $=$ WELDED WIRE REINFORCEMENT

GENERAL NOTES:

1. Pursuant to 35 United States Code, Chapter 18, also known as the Bayh Dole Act of 1980 , the non mountable curb was developed through federal funding. The 'Portable Temporary
Low Profile Barrier For Roadside Safety' is a licensed design by the University Of Florida Low Profile Barrier For Roadside Safety' is a licensed design by the University of Florida.
Any infringement on the rights of the designer shall be the sole responsibility of the user.
2. This Index is provided by the Florida Department of Transportation solely for use by the Department and its assignees. The purpose for this Index is to indicate the approval of use of the barrier on the State Highway System; to provide sufficient pictorials for
3. This legally mandated relationship is unique to federally funded University patents that Department contractors use on Contracts. Pursuant to federal law, the University may by the University of Florida will be allowed for installation on the State Highway System in Florida. Barrier wall units shall conform to Specification 521 and shall be produced in Department-approved plants with quality control plans for precasting concrete barrier walls. to the manufacturer, the producing precast concrete plant and the date of production. This permanent identification mark will serve as certification that the unit has been manufactured in accordance with University of Florida drawings and specifications, and the approved quality control program.
4. The low profile barrier is to be installed only with hardware and accessories furnished by
the licensed barrier producer. Units shall be used for no purpose other than as the licensed barrier producer. Units shall be used for no purpose other than as firm contact with adjoining units. Nuts on tensioning rods shall be installed snug tight.
5. The low profile barrier is applicable for work zone speeds of 45 mph or less.
6. If the plans specify Low Profile Barrier then substitution with other barrier types is not permitted.
7. Tubular markers shall be orange in color and installed along the run of barrier at the ends and at 50^{\prime} centers on tangents and 25^{\prime} centers on radii. The markers shall be fixed to the top of the barrier by an adhesive or other method approved by the engineer. Approach end units shall be marked with a Type I object marker. The cost of the tubular markers and
8. Information regarding licensing, shop drawings, specifications, quality control and certification of compliance can be obtained from the University Of Florida: Office of Technology Licensing, Fax: 352-392-6600. Reference UF\#11052.
9. The Portable Temporary Low Profile Barrier For Roadside Safety shall be paid for under the contract unit price for Barrier Wall (Temporary) Low Profile Concrete, LF, and will be full
compensation for furnishing installing,
10. Setback distance shall be kept clear of any grass, construction debris, stockpiled materials. equipment, and objects.

| $\begin{aligned} & \text { LAST } \\ & \text { REVISION } \\ & 11 / 01 / 19 \end{aligned}$ | \|r| | DESCRIPTION: | FDOT | FY 2023-24 STANDARD PLANS | LOW PROFILE BARRIER | $\begin{gathered} \text { INDEX } \\ 102-120 \end{gathered}$ | $\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 5 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Beveled Washer
concave connection
Traffic Face

PARALLEL CONNECTION

CONVEX CONNECTION

PLAN VIEWS OF CONNECTIONS $=$

$$
\begin{gathered}
\stackrel{0}{0} \\
\stackrel{0}{0} \\
1 \\
\hline
\end{gathered}
$$

11/2" High Strength ASTM A722 Threaed Bar with
Extra Thick GR. 8 Flat Washer and Nut at Each End
\qquad
$\overline{\bar{Z}}$

SYMBOLS:

\rightarrow Type I Object Marker
\Longrightarrow Direction of Traffic

WORK ZONE SPEED	LATERAL OFFSET	SETBACK DISTANCE
45 MPH OR LESS	1^{\prime} MIN' 2^{\prime} PREFERRED	$9^{\prime \prime}$

with Specification 339 with the exception that with Specification 339 with the exception that the use of a pre-emergent herbicide is not required. Payment for asphalt pad will b included in the cost of the barrier.
3. Minimum $9^{\prime \prime}$ on 1:10 or flatter slopes for Portable Temporary Low Profile Barrier For Roadside Safety.' For values A, B, D and x see Index 102-600

NOTES:

1. LIMITATION OF USE: This installation technique can only be used on flexible or rigid pavement.
2. ASPHALT PAD: Where existing pavement is not

Approach Traffic \square
Tangent Extension

Height to Bottom of Type 1
Object Marker is 18"
$\bar{\Longrightarrow} A P P R O A C H$ END OFFSET $=$ \qquad

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 22 \end{gathered}$	20 DESCRIPTION:	$\begin{array}{cc} F Y \text { 2023-24 } \\ \text { FDANDARD PLANS } \end{array}$	LOW PROFILE BARRIER	$\begin{gathered} \text { INDEX } \\ 102-120 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 5 \end{aligned}$

SHEET	TABLE OF CONTENTS
1	General Notes, TTC Tables
2	Definitions Temporary Traffic Control Devices Overhead Work Railroads Sight Distance Above Ground Hazard
3	Clear Zone Widths For Work Zones Superelevation Length Of Lane Closures Overweight/Oversize Vehicles Lane Widths High-Visibility Safety Apparel Speed Reduction Signing
4	Flagger Control Survey Work Zones Signs
5	Work Zone Sign Supports
6	Commonly Used Warning and Regulatory Signs In Work Zones
7	Manholes/Crosswalks/Joints Truck Mounted Attenuators Signals Channelizing Devices Channelizing Devices Consistency Advanced Warning Arrow Boards
8	Drop-0ffs In Work Zones
9	Business Entrance Temporary Asphalt Separator
10	Channelizing Devices Notes Temporary Barrier Notes
11	Pavement Markings

GENERAL NOTES

his index contains information specific to the Federal and State guidelines and standards for the preparation of traffic control plans and for the execution of traffic control in work zones, for construction and maintenance operations and utility work on highways, roads and streets on the State Highway System. Certain requirements in this Index are based on the high volume nature of (City/county) having jurisdiction may adopt requirements based on the minimum requirements provided in the MUTCD.
2. Use this Index in accordance with the Plans and Indexes 102-601 through 102-680. Indexes 102-601 through 102-680 are Department-specific typical applications of commonly encountered situations. Adjust device location or number thereof as recommended by the Worksite Traffic Supervisor and signals, signs, pavement markings, and channelizing devices. Comply with MUTCD or applicable Department criteria for any changes and document the reason for the change.
3. Except for emergencies, any road closure on State Highway System must comply with Section 335.15, F.S.

TABLE 1 CHANNELIZING DEVICE SPACING					TABLE 2 TAPER LENGTH "L"			
$\begin{aligned} & \text { Work } \\ & \text { Zone } \\ & \text { Speed } \\ & \text { (mph) } \end{aligned}$	Max. Spacing (feet)				Work Zon			
	Cones or Temporary Uubular Markers		Type I Barricades, Type II Barricades, Vertical Panels, or Drum		Speed (mph)	Length (feet)		
			≤ 40	$L=\frac{W S^{2}}{60}$				
≤ 45	25	50			25	50	≥ 45	$L=W S$
≥ 50	25	50	50	100	$\begin{aligned} & \text { Where: } W=\text { width of off set } \\ & \text { in feet } \\ & s=\text { speed in mph } \end{aligned}$			

TABLE 3	3 SPACING " X "
Road Type	Min. Spacing (feet)
Arterials and Collectors with Work Zone Speed $\leq 40 \mathrm{mph}$	200
Arterials and Collectors with Work Zone Speed $\geq 45 \mathrm{mph}$	500
Limited Access Roadways *	1,500
* For Limited access roadways with work zone speed ≤ 55 mph, the minimum spacing may be reduced in accordance with the MUTCD and as approved by the Engineer	

TABLE 4 BUFFER LENGTH "B"	
Work Zone Speed (mph)	$\begin{gathered} \text { Min. } \\ \text { Length (feet) } \end{gathered}$
25	155
30	200
35	250
40	305
45	360
50	425
55	495
60	570
65	645
70	730
Note: When Bu cannot be attain the greatest leng but not less	fer Length "B" traints use ngth possible, an 155 feet.

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$	\}	$\begin{array}{cc} F Y \text { 2023-24 } \\ \text { FDTANDARD PLANS } \end{array}$	GENERAL INFORMATION FOR TRAFFIC CONTROL THROUGH WORK ZONES	$\begin{gathered} \text { INDEX } \\ 102-600 \end{gathered}$	SHEET 1 of 11

DEFINITIONS

Regulatory Speed (In Work Zones)
The maximum permitted travel speed posted for the work zone is
indicated by the regulatory speed limit signs must be shown or noted in the plans. This speed should be used as the minimum design speed to determine runout lengths, departure rates, flare rates, lengths of need, clear zone widths, taper lengths, crash cushion requirements, marker spacings, superelevation and other similar features.

Advisory Speed
The maximum recommended travel speed through a curve or a hazardous area

Travel Way

The portion of the roadway for the movement of vehicles. For traffic on shoulders and any ones, travel way may include the temporary us of shoulders and any other permanent or temporary surf
for use as a lane for the movement of vehicular traffic
a. Travel Lane: The designated widths of roadway pavement marked to carry through traffic and to separate it from opposing traffic or traffic occupying other traffic lanes.
b. Auxiliary Lane: The designated widths of roadway pavement marked to separate speed change, turning, passing and climbing maneuvers

Detour, Lane Shift, and Diversion
A detour is the redirection of traffic onto another roadway to bypass the temporary traffic control zone. A lane shift is the redirection of traffic onto a different section of the permanent pavement. A diversion is the redirection of traffic onto a temporary roadway, usually adjacent to the

Aboveground Hazard

An aboveground hazard is any object, material or equipment other than traffic control devices that encroaches upon the travel way or that
located within the clear zone which does not meet the Department's safety criteria, i.e., anything that is greater than $4^{4 \prime}$ in height and is firm and unyielding or doesn't meet breakaway requirements.

TEMPORARY TRAFFIC CONTROL DEVICES:

- All temporary traffic control devices shall be oN the Department's Approved Products List (APL). Ensure the appropriate APL number is permanently marked on the device in a readily visible location.
temporary traffic control devices shall be removed as soon as practical when they are no longer needed. When work is suspended for short periods of time, temporary traffic control devices that are no longer appropriate shall be removed or covered. Do not store temporary traffic control devices on the shoulder, sidewalk, or other roadway facility not affected by th

3. Arrow Boards, Portable Changeable Message Signs, Radar Speed Display Trailer, Portable Regulatory Signs, and any other trailer mounted device shall be delineated with a channelizing device placed at each corner when shielded by a barrier or crash cushion when not in use.

OVERHEAD WORK

Work is only allowed over a traffic lane when one of the following options is used OPTION 1 (OVERHEAD WORK USING A MODIFIED LANE CLOSURE) Overhead work using a modified lane closure is allowed if all of the following conditions are met:
a. Work operation is located in a signalized inter section and
limited to signals, signs, lighting and utilities.
b. Work operations are 60 minute
c. Speed limit is 45 mph or less.
d. Aerial lift equipment in the work area has high-intensity, rotating,
flashing, oscillating, or strobe lights operating.
e. Aerial lift equipment is placed directly below the work area to close the lane.

Traffic control devices are placed in advance of the vericle/equipment closing
the lane using a minimum 100 foot taper
flagmen and/or a traffic control officer.
option 2 (OVERHEAD Work above an open traffic LANE)
overhead work above a open traffic lane is allowed if all of the following conditions are met:
a. Work operation is located on a utility pole, light pole, signal pole, or their appurtenances.
b. Work operations
b. Work operations are 60 minutes or less,
c. Speed limit is 45 mph or less.
d. No encroachment by any part of the work activities and equipment within an e. Aerial lift equipment in the work area has high-intensity, rotating tlashing oscillating, or strobe lights operating.
. Volume or complexity of the roadway may dictate additional devices, signs, flagmen and/or a traffic control officer
g. Adequate precautions are taken to prevent parts, tools, equipment and other
falling into open lanes of traffic.
. Other Governmental Agencies, Rail facilities, or Codes may require a greater .
option 3 (OVERHEAD WORK ADJACENT to an open traffic LaNe)
Overhead work adjacent to an open traffic lane is allowed if all of the following conditions are met:
a. Work operation
appurtenances.
b. Work operations are 1 day or les
c. Speed limit is 45 mph or less.
d. No encroachment by any part of the work activities and equipment within 2 encroachment by any part of the work activities and equipment over the open traffic lane (except as allowed in Option 2 for work operations of 60 minutes or less).
e. Aerial lift equipment in the work area has high-intensity, rotating, flashing, oscillating, or strobe lights operating.
. Volume or complexity of the roadway may dictate additional devices, signs,
. Adequen and/or a traffic control officer
g. Adequate precautions are taken to prevent parts, tools, equipment and other
objects from fallin int - otherts from falling into open lanes of traffic
or Codes may require a greater clearance. The greater clearance required prevails as the rule.

OVERHEAD WORK: (Cont.)

option 4 (overhead work maintaining traffic with no ENCROACHMENT BELOW THE OVERHEAD WORK AREA)
Iraffic shall be detoured, shifted, diverted or paced as to not encroach in the area directly below the overhead work operations in accordance with the

placement.
a. Beam, girder, segment, and bent/pier cap place
b. Form and falsework
c. Concrete placement.
d. Railing construction.
e. Structure demolition.
option 5 (CONDUCTOR/CABLE PULLING ABOVE AN OPEN TRAFFIC LANE verhead cable and/or de-energized conductor installations initial pull to proper ension shall be done in accordance with the appropriate Index or temporary traffic control plan.

Continuous pulling operations of secured cable and/or conductors are allowed Ver open lane(s) of traffic with no encroachment by any part of the work anes, materials or equipment within the minimal vertical clearance above the travel way. The utility shall take precautions to ensure that pull ro

On Limited Access facilities, a site specific temporary traffic control plan is equired. The temporary traffic control plan shall include
a. The temporary traffic control set up for the initial pulling of the pull
rope across the roadway
b. During pulling operations, advance warning consisting of no less than a Changeable Message Sign upstream of the work area with alternating
messages, "Overhead Work Ahead" and "Be Prepared to Stop" followed by a traffic control officer and police vehicle with blue lights flashing during the pulling operation.

RAILROADS:

Railroad crossings affected by a construction project should be evaluated for traffic controls to reduce queuing on the tracks. The evaluation should include as a minimum: traffic volumes, distance from the tracks to the intersections.

SIGHT DISTANCE

1. Tapers: Transition tapers should be obvious to drivers. If restricted sight distance is a problem (e.g., a sharp vertical or horizontal curve), the taper should begin well in advance of the view obstruction. The beginning of tapers should not be hidden behind curves.
2. Intersections: Traffic control devices at intersections must provide sight distances for the road user to perceive potential conflicts and to traverse the intersection safely. Construction equipment and materials shall not

ABOVEGROUND HAZARD:

1. Aboveground hazards (see definitions) are to be considered work areas during working hours and treated with appropriate work zone traffic control procedures. During nonworking hours, all objects, materials and equipment that constitute an aboveground hazard must be stored/placed outside the tr
crash cushion.
. For aboveground hazards within a work zone the clear zone required should be based on the regulatory speed posted during construction.

CLEAR ZONE WIDTHS FOR WORK ZONES:

the term 'clear zone' describes the unobstructed relatively flat area, impacted by construction extending outward from the edge of the traffic lane. The conditions other than for roadside canals; where roadside canals are present, clear zone widths are to conform with the distances to canals as described in
the FDOT Design Manual 215.2.

TABLE 5
CLEAR ZONE WIDTHS FOR WORK ZONES

WORK ZONE SPEED (MPH)	 MULTILANE RAMPS (feet)	 SINGLE LANE RAMPS (feet)
$60-70$	30	18
55	24	14
$45-50$	18	10
$30-40$	14	10
ALL SPEEDS CURB \& GUTTER	4 BEHIND FACE OF CURB	4 ' BEHIND FACE OF CURB
NOTE: For temporary conditions where existing curb has been removed but not reconstructed curb and gutter values may be used.		

but not reconstructed, curb and gutter values may be used

NOTES
x = Work Zone Sign Spacing
When called for in the Plans, use this detail in accordance with the Plans nd Standard Plans. Place the speed reduction signs (W3-5 and R2-1) in (W20-1F) as shown
3. Do not use this detail in conjunction with the Motorist Awareness System
4. For speed reductions greater than 10 MPH , reduce the speed in 10 MPH crements of ' x ' distance. Do not reduce the speed below the minimu statutory speed for the class of facility.
5. Place additional "Speed Limit" signs (R2-1) at intervals of no more than one mile for rural conditions and 1,000 feet for urban conditions.
6. For undivided roadways, omit the signs shown in the median

Remove temporary requlatory speed signs as soon as the conditions requiring reduced speed no longer exist. Once the work zone regulatory sillas are removed, the regulatory speed existing prior to construction automatically go back into effect.

SUPERELEVATION:

Horizontal curves constructed in conjunction with work zone traffic ontrol should have the required superelevation applied to the desig adii. Under conditions where normal crown controls curvature,

TABLE 6	
MINIMUM RADII FOR	
NORMAL	
NROWN	

LENGTH OF LANE CLOSURES:

or interstates and state highways with a posted speed of includes taper, buffer, and work zone) in any given direction and must not close two consecutive interchanges.

OVERWEIGHT/OVERSIZE VEHICLES:
Restrictions to Lane Widths, Heights or Load Capacity can Contractor shall notify the Engineer who in turn shall notify the State Permits Office, phone no. (850) 410-5777, at least seven calendar days in advance of implementing a maintenance of vehicles. Information provided shall include location, type of restriction (height, width or weight) and restriction time frames. When the roadway is restored to normal service the State Permits office shall be notified immediatery.

LANE WIDTHS:

Lane widths of through roadways should be maintained through work zone travel ways wherever practical. Provide minimum widths for work zone travel lanes as follows: 11' for Interstate with at least
one 12 lane provided in each direction, unless formally excepted by one 12 lane provided in each direction, 1 ness all other limited acces
the Federal Highway Administration; 11^{\prime} for all roadways; and 10^{\prime} for all other facilities.

HIGH-VISIBILITY SAFETY APPAREL:

All high-visibility safety apparel shall meet the requirements of the International Safety Equipment Association (ISEA) and the American National Standards Institute (ANSI) for "High-Visibility Safety Apparel", and labeled as ANSI/ISEA 107-2004 or newer. The apparel background (outer) material color shall be either fluorescent orange-red or fluorescent yellow-green as defined by the standard. The retroreflective material shall be orange, yellow, white, silver, yellow-green, or a
fluorescent version of these colors, and shall be visible at a minimum distance of 1,000 feet. Class 3 apparel may be substituted for Class 2 apparel. Replace apparel that is not visible at 1,000 feet.
WORKERS: All workers within the right-of-way shall wear ANSI/ISEA Class 2 apparel. Workers operating machinery or equipment in which loose clothing could Workers inside the bucket of a bucket truck are not required to wear high-visibility safety apparel
UTILITIES: When other industry apparel safety standards require utility workers to wear apparel that is inconsistent with FDOT requirements such as NFPA, OSHA, ANSI, etc., the other standards for apparel may prevail.

FLAGGERS: For daytime activities, Flaggers shall wear ANSI/ISEA Class 2 apparel For nighttime activities, Flaggers shall wear ANSI/ISEA Class 3 apparel.

3 DESCRIPTION:

FLAGGER CONTROL

Regulatory Speed (In Work Zones
Where flaggers are used, a FLAGGER symbol or legend sign must replace

The flagger must be clearly visible to approaching traffic for a distance sufficient to permit proper response by the motorist to the flagging instructions, and to permit traffic to reduce speed or to stop as required before entering the work stite. Flaggers shall be positioned to maintain maximum color contrast between the Flagger's high-visibility safety appar

Hand-Signaling Devices
STOP/SLOW paddles are the primary hand-signaling device. The STOP/SLOW paddle haced on a rigid staff the minimum rigid handle. If the STOP/SLOW paddle is of the paddle to the end of the staff that rests on the ground, must not be less than 6 ft. STOP/SLOW paddles shall be at least 24 inches wide with letters at least 6 inches high and should be fabricated from light semirigid material. The background of the STOP face shall be red with white letters and border. The
background of the SLow face shall be orange with black letters and border. When used at night-time, the STOP/SLOW paddle shall be retroreflectorized.

Flag use is limited to immediate emergencies, intersections, and when working on the centerline or shared left turn lanes where two (2) flaggers are required a minimum of 24 inches square, made of a good grade of red material, and securely fastened to a staff that is approximately 36 inches in length. When used at nighttime, flags shall be retroreflectorized red
Flashlight, lantern or other lighted signal that will display a red warning light shall be used at nigh.

Flagger Stations
Flagger stations shall be located far enough in advance of the work area so that approaching road users will have sufficient distance to stop before
entering the work area. When used at nighttime, the flagger station shall be illuminated.

SURVEY WORK ZONES:

The SURVEY CREW AHEAD symbol or legend sign shall be the principal Advance Warning Sign used for Traffic Control Through Survey Work - Trafic Coiro Throun Work Zoas is beito

When Traffic Control Through Work Zones is being used for survey purposes only, the END ROAD WORK sign as called for on certain 102 Series of Indexes should be omitted.
Survey Between Active Traffic Lanes or Shared Left Turn Lanes The following provisions apply to Main Roadway Traffic Control Work Zones. traffic conditions when the Survey Work Zone includes intersections.
A) A STAY IN YOUR LANE (MOT-1-06) sign shall be added to the Advance Warning Sign sequence as the second most immediate sign from the work area.
(B) Elevation Surveys-Cones may be used at the discretion of the Party Chief to protect prism holder and flagger(s). Cones, if used, may be placed at up
work zone.
(C) Horizontal Control-With traffic flow in the same direction, cones shall be used to protect the backsight tripod and/or instrument. Cones shal e placed at the equipment, and up to 50^{\prime} intervals for at least 200' towards the flow of traffic.
(D) Horizontal Control-With traffic flow in opposite directions, cones shal be used to protect the backsight tripod and/or instrument. Cones shal be placed at the equipment, and up to 50^{\prime} intervals for at least 200^{\prime}
in both directions towards the flow of traffic.

SIGNS:

SIGN MATERIALS

Mesh signs and non-retroreflectice vinyl signs may only be used for dayligh operations. Non-retroreflectice vinyl signs must meet the requirements of Specifications Section 994
stal day exce 994 may be used for daylight or night operations not to exceed 1 day except as noted in the Indexes.
Rigid or Lightweight sign panels may be used in accordance with the vendor APL drawing for the sign stand to which they are attached.

Intersecting road signing

Signing for the control of traffic entering and leaving work zones by way of intersecting crossroads shall be adequate to make drivers aware of work WORK AHEAD sign on the side street entering the work zone
ADJOINING ANDIOR OVERLAPPING WORK ZONE SIGNING Adjoining work zones may not have sufficient spacing for standard placemen of signs and other traffic control devices in their advance warning areas or
in some cases other areas within their traffic control zones. Where such restraints or conflicts occur or are likely to occur, one of the following methods will be employed to avoid conflicts and prevent conditions that could lead to misunderstanding on the part of the traveling public as to the intended travel way by the traffic control procedure applied
(A) For scheduled projects the engineer in responsible charge of project design will resolve anticipated work zone conflicts during the development of the project traffic control plan. This may entail revision of plans on preceding projects and coordination of plans on concurrent projects.
(B) Unanticipated conflicts arising between adjoining in progress highway construction projects will be resolved by the Resident Engineer for
projects under his residency, and, by the District Construction Engineer for in progress projects under ad joining residencies.
(C) The District Maintenance Engineer will resolve anticipated and occurring conflicts within scheduled maintenance operations.
(D) The Unit Maintenance Engineer will resolve conflicts that occur within routine maintenance works; between routine maintenance work, unscheduled work and/or permitted withen between unit controlled maintenance orks and highway construction projects.

SIGNS: (Cont.)

sign covering and intermittent work stoppage signing Existing or temporary traffic control signs that are no longer applicable or
nconsistent with intended travel paths shall be removed or fully covered.

Sign blanks or other available coverings must completely cover the existing sign. igid sign coverings shall be the same size as the sign it is covering, and bolted in a manner to prevent movement.

Sign covers are incidental to work operations and are not paid for separately
SIGNiNG FOR DETOURS, LANE SHIFTS AND DIVERSIONS Detours should be signed clearly over their entire length so that motorists can easily determine how to return to the original roadway. The reverse curve (w1-4) warning sign should be used for the advanced warning for a lane shift. A diversion should be signed as a lane shift.

EXtended distance advance warning sign Advance Warning Signs shall be used at extended distance of one-half mile or more when limited sight distance or the nature of the obstruction may require a motorist to bring their vehicle to a stop. Extended distance Advanced Warning Signs may be required on any type roadway, but particularly be considered multilane divided highways
range (45 MPH or more).

UTILITY WORK AHEAD SIGN

he UTILITY WORK AHEAD (W21-7) sign may be used as an alternate to the ROAD WORK AHEAD or the ROAD WORK XX FT (W2O-1) sign for utility operations on or djacent to a highway.

LENGTH OF ROAD WORK SIGN

The length of road work sign (G20-1) bearing the legend ROAD WORK NEXT MILES is required for all projects of more than 2 miles in length. The number of miles entered should be rounded up to the nearest mile. The sign shall be

grooved pavement ahead sign

the GROOVED PAVEMENT AHEAD sign is required 500 feet in advance of a milled or grooved surface open to traffic. The W8-15P placard shall be used in Conjunction with the GROOVED PAVEMENT AHEAD sign

END ROAD WORK SIGN

The END ROAD WORK sign (620-2) should be installed on all projects, but may be mitted where the work operation is less than 1 day. The sign should be placed approximately 500 feet beyond the end of a construction or maintenance project Maintenance Operations occur within 1 mile this sign should be omitted and signing coordinated in accordance with Index 102-600, ADJOINING AND/OR overlapping work zone signing

move/merge left
mOVE/MERGE RIGH
MOVE/MERGE OR
LEFT

- Minimum Required Lamps

Additional Lamps Allowed
MODES
NOTES:
A arrow board in the arrow or chevron mode shall be used only for stationary or moving lane closures on multilane roadways.

For shoulder work, blocking the shoulder, for roadside work near the shoulder, or for temporarily closing one lane on a two-lane, two-way oadway, an arrow board shall be used only in the caution mode.

A single arrow board shall not be used to merge traffic laterally more han one lane. When arrow boards are used to close multiple lanes, a
single board shall be used at the merging taper for each closed lane.

When Advance Warning Arrow Boards are used at night, the intensity of he flashers shall be reduced during darkness when lower intensities are desirable.

ADVANCE WARNING ARROW BOARDS

\qquad

NOTES:
Manholes extending $1^{\prime \prime}$ or more above the travel lane and crosswalks having an uneven surface greater than $1 /{ }^{\prime \prime}$ shall have a temporary asphalt apron constructed as shown above
All transverse joints that have a difference in elevation of $1^{\prime \prime}$ or more shall have a temporary asphalt apron constructed as shown above.

The apron is to be removed prior to constructing the next lift of asphalt. The cost of the temporary asphalt shall be included in the contract unit price for Maintenance of Traffic, LS.

L

ptionally, use "Flagger Ahead" sign with text (W20-7A)
stead of "Flagger Ahead" sign with symbol (W20-7).
SIDE ROAD INTERSECTING THE WORK zONE

SIGNALS:

Existing traffic signal operations that require modification in order to carry out work zone traffic control shall be included in the Plans and be approved by the District Traffic Operations Engineer

Refer to Specification 102-9 for additional information

CHANNELIZING DEVICES

Channelizing devices for work zone traffic control shall be a prescribed in Part VI of the MUTCD, subject to supplementa
revisions provided in the contract documents and the 102 Series of Indexes. Lighting Devices must not be used to supplement channelization. Omit tapers and channelizing devices for paved shoulders less than $4^{\prime \prime}$ in width.

CHANNELIZING DEVICE CONSISTENCY:
Barricades, vertical panels, cones, tubular markers and drums shall not be intermixed within either the lateral transition or within the tangent alignment.

TRUCK/TRAILER-MOUNTED ATTENUATORS:
Truck/Trailer-mounted attenuators (TMA) can be used for moving
operations and short-term stationary operations. For moving operations and short-term stationary operations. For moving operations, see Part VI of the MUTCD.

DROP-OFF CONDITION NOTES

1. These conditions and reat fall within a properly signed work zone
2. When drop-offs occur within the clear zone due to construction or maintenance activities, protection devices are required (See Table 8). A drop-off is defined as a drop in elevation, parallel to the adjacent travel lanes, greater than $3^{\prime \prime}$ with
slope ($A: B$) steeper than 1:4. In superelevated sections, the algebraic difference in slopes should not exceed 0.25 (See Dropated sections, the ald
3. Drop-offs may be mitigated by placement of slopes with optional base material per Specifications Section 285. Slopes shallower than 1:4 may be required to avoid algebraic difference in slopes greater than 0.25 . Include the cost for the placement and removal of the material in Maintenance of Traffic, LS. Use of this treatment in lieu of a temporary barrier is not eligible for CSIP consideration. Conduct daily adverse conditions. Repair any deficiencies immediately.
4. For Setback Distance, refer to the Index or Approved Products List (APL) drawing of he selected barrier.
5. For Conditions 1 and 3 provided in Table 8, any drop-off condition that is created and restored within the same work period will not be subject to use of temporary barriers; however, channelizing devices will be required.
6. When permanent curb heights are $\geq 6^{\prime \prime}$, no channelizing device will be required. For curb heights < $\sigma^{\prime \prime}$, see Table 8

DROP-OFF CONDITION DETAIL

Table 8 Drop-off Protection Requirements			
Condition	$\begin{gathered} x \\ (f t) \end{gathered}$	$\begin{gathered} D \\ \text { (in.) } \end{gathered}$	Device Required
1	0-12	>3	Temporary Barrier
2	> $12-\mathrm{Cz}$	>3 to ≤ 5	Channelizing Device
3	O-Cz	5	Temporary Barrier
4	$\begin{aligned} & \text { Remov } \\ & \text { Retain } \end{aligned}$	Bridge or all Barrier	Temporary Barrier
5	$\begin{array}{r} \text { Remova } \\ \hline \end{array}$	prtions of Deck	Temporary Barrier

travel lane treatment for

MILIING OR RESURFACING NOTES

1.This treatment applies to resurfacing or milling operations between adjacent travel lanes.
2. Whenever there is a difference in elevation between adjacent travel lanes, the W8-11 sign with "UNEVEN LANES" is required at intervals of $1 / 2$ mile maximum
3. If D is $1 \frac{1}{2}$ " or less, no treatment is required
4. Treatment allowed only when D is $3^{\prime \prime}$ or less.
5. If the slope is steeper than 1:4 (not to be steeper than 1:1), the R4-1 and MOT-1-06 signs shall be used as a supplement to the w8-11; this condition should never exceed 3 miles in length.

TRAVEL LANE TREATMENT FOR milling or resurfacing detail

PEDESTRIAN WAY DROP-OFF CONDITION NOTES

1. A pedestrian way drop-off is defined as.
a. a drop in elevation greater than $10^{\prime \prime}$ that is closer than 2^{\prime} from the edge of the pedestrian way
b. a slope steeper than 1:2 that begins closer than 2' from the edge of the pedestrian way when the total drop-off is greater than 60
Protect any drop-off adjacent to a pedestrian way with pedestrian Iongitudinal Channelizing devices, temporary barrier wall. or approved handrail

2. For single business entrances, place one $24^{\prime \prime} \times 36^{\prime \prime}$ business sign for each driveway entrance affected. Signs shall show specific business names. Logos
may be provided by business owners. Standard BUSINESS ENTRANCE sign in Index 700-102 may be used when approved by the Engineer.
3. When several businesses share a common driveway entrance, place one $24^{\prime \prime} \times 36^{\prime \prime}$ When several businesses share a common driveway entrance, place one $24 \times$
standard BUSINESS ENTRANCE sign in accordance with Index 700-102 at the common driveway entrance.
4. Channelizing devices shall be placed at a reduced spacing on each side of the driveway entrance, but shall not restrict sight distance for the driveway users.
5. Business entrance signs are intended to guide motorist to business entrances moved/modified or disturbed during construction projects. Business entrance signs are not required where there is minimal disruption to business driveways which is often the case with resurfacing type projects.

PLACEMENT OF BUSINESS ENTRANCE SIGNS AND CHANNELIZING DEVICES AT BUSINESS ENTRANCE

Lane Divider
W6-4
$B / 0$

FIXED (SURFACE MOUNTED)
channelizing devices

SECTION A-A

1. Temporary lane separators shall be supplemented with any of the following approved fixed (surface mounted) Channelizing devices: temporary tubular markers, vertical panels, or opposing traffic lane divider pane/s. opposing traffic lane divider panels (W6-4) shall only be used as center lane dividers to separate opposing vehicular traffic on a two-Iane, two-way operation. Temporary Tubular Markers, Vertical Panels and Opposing Traffic Lane Divider panels shall not be intermixed within the limits where the temporary lane separator is used. The connection
between the channelizing device and the temporary lane separator curb shall hold the channelizing device in vertical position.
2. Reflectorized materials shall have a smooth sealed outer surface which will display the same approximate color da and night. Furnish channelizing devices having retroreflective sheeting meeting the requirements of Section 990 .
3. 12" openings for drainage shall be constructed in the asphalt and portable temporary lane separator at a maximum spacing of 25^{\prime} 'in areas with grades of 1% or less or 50^{\prime} in areas with grades over 1% as directed by the Engineer.
4. Tapered ends shall be used at the beginning and end of each run of the temporary lane separator to form a gradual increase in height from the pavement level to the top of the temporary lane separator.
5. The Contractor has the option of using portable temporary lane separators containing fixed channelizing devices in lieu of the temporary asphalt separator and channelizing devices detailed on this sheet. The portable temporary lane separator shall come in portable sections that can be connected to maintain continuous alignment between the separate curb sections. Each temporary lane separator section shall be 36 inches to 48 inches in total length. portable temporany lan mant in temporary la separators shall be one of those listed on the Approved Products List.

TEMPORARY LANE SEPARATOR

CHANNELIZING DEVICE NOTES:

The details shown on this sheet are for the following purposes
a. For ease of identification and
supplements or supersedes that provided by the MUTC
. The Type III Barricade shall have a unit length of $6^{\prime}-0^{\prime \prime}$ only. When barricades of greater lengths are required those lengths shall be in multiples of the $6^{\prime}-0^{\prime \prime}$ unit.
3. No sign panel should be mounted on any channelizing device unless the channelizing device/sign combination was found to be crashworthy and the sign panel is mounted in accordance with the
Products List (APL)

[^0]4. Ballast shall not be placed on top rails or any striped rails or higher than 13" above the driving surface.
5. The direction indicator barricade may be used in tapers and transitions where specific directional guidance to drivers is necessary. If used, direction indicator barricades shall be used in series to direct the driver through the transition and into the intended travel lane.
6. The splicing of sheeting is not permitted on channelizing devices or MOT signs.
. For rails less than $3^{\prime}-0^{\prime \prime}$ long, $4^{\prime \prime}$ stripes shall be used
8. Cones shall:
a. Be used only in active work zones where workers are present.

Be reflectorized as per the MUTCD with Department-approved
heive coliars when used at night.
9. For pedestrian Iongitudinal channelizing devices, the device shall have a minimum of $8^{\prime \prime}$ continuous detectable edging above the walkway. A gap not exceeding a height of height of $32^{\prime \prime}$ and have a $1 / /^{\prime \prime}$ or less difference in any plane at all connection points between the devices to facilitate hand trailing. The bottom and the top surface of the device shall be in the same vertical plane. If pedestrian drop-off protection is required the device shall have a footprint or offset of at least 2^{\prime}, otherwise the device must be least $42^{\prime \prime}$ in height above the walkway and be anchored or ballasted to withstand
200 lb lateral point load at the top of the device.

EMPORARY BARRIER NOTES:
Where a barrier is specified, any of the types below may be used in accordance with the applicable Index:

```
Index Description
02-100 Temporary Barrier
536-001 Guardrail
```

2. Traller Mounted Barriers may be used to provide positive protection for workers within the work areas. APL drawings may be used as a ide to develop project specific Temporary Traffic Control Plans that are signed and sealed by the Contractor's Engineer.

TION:

rpm placement on multilane roadways
(Lane Shift Shown, Other Multilane Typical Applications Similar)

NOTES:

1. Install RPMs as a supplement to.
a. All lane lines
b. Edge lines in transitions (e.g., merges, diversions, lane shifts)
c. Edge lines of gore areas
2. Extend pavement marking and 5^{\prime} RPM spacing by 100^{\prime} in each direction for all transitions regardless of the line type.
3. Place RPMs in accordance with this detail and Index 706-001

SYMBOLS:

```
    Lane Identification and Direction of Traffic
```


NOTES:

1. This Index applies to Two-Lane, Two-Way and Multilane Roadways,
including Medians of divided roadways, with work beyond the shoulder.
2. Use Index 102-602 when the work operation (excluding establishing and terminating the work area) requires that two or more work vehicles cross the offset Zone in any one hour period.
3. Use Index 102-660 when Work Area encroaches a Sidewalk.

SYMBOLS:Work Area

NOTE:

1. This Index applies to Two-Lane, Two-Way
and Multilane Roadways, and Multilane Roadways, including Medians of divided roadways, with work on the shoulder.
2. $L=$ Taper Length
$x=$ Work Zone Sign Spacing
$B=$ Buffer Length
See Index 102-600 for "L", "X", "B", and channelizing device spacing values.
3. Where work activities are between 2 and 15^{\prime} from the edge of traveled way, the Engineer may omit signs and channelizing devices for work operations 60 minutes or less.
4. When four or more work vehicles enter the through traffic lanes in a one hour period (excluding establishing and terminating the work area), use a flagger or lane closure
to accommodate work vehicle ingress and egress.
5. For work less than 2^{\prime} from the traveled way and work zone speed is greater than 45 MPH use a lane closure.
6. The "Speeding Fines Doubled When Workers Present" signs (MOT-13-06) and "End Road Work" Signs (G20-2) along with the associated work zone sign spacing distances may be omitted when the hours or less.
7. Temporary pavement markings may be omitted when the work operation is in place for 3 days or less.
8. Omit "Shoulder Closed" signs (W21-5a) along with associated work zone sign spacing distances for work on the median
9. When there is no paved shoulder, the "Worker" sign (W21-1) may be used instea

SYMBOLS:

Work Area

- Channelizing Device (See Index 102-600)
© Work Zone Sign
Lane Identification and Direction of Traffic

TWO-LANE ROADWAY

SHOULDER WORK LESS THAN 2' FROM THE TRAVELED WAY WITH WORK ZONE SPEED OF 45 MPH OR LESS

SHOULDER WORK BETWEEN 2' AND 15' FROM THE TRAVELED WAY

SHOULDER WORK LESS THAN 2' FROM THE TRAVELED WAY SHOULDER WORK LESS THAN 2' FROM THE TRAVELED
WITH WORK ZONE SPEED OF 45 MPH OR LESS

『 Work Zone Sign
\Rightarrow Lane Identification and Direction of Traffic
\qquad SHOULDER WORK BETWEEN 2' AND 15' FROM THE TRAVELED WAY

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$	DESCRIPTION:	$\begin{array}{cc} \text { FDOT } & \text { FY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	TWO-LANE AND MULTMLANE, WORK ON SHOULDER	$\begin{gathered} \text { INDEX } \\ 102-602 \end{gathered}$	SHEET 2 of 2

NOTES:

1. This Index applies to Two-Lane, Two-Way Roadways with work within the traveled way
$L=$ Taper Length
B $=$ Buffer Length
$X=$ Work Zone Sign Spacing
See Index $102-600$ for " L ", " " " X " and channelizing device spacing values.
2. Optionally, use "Flagger Ahead" sign with symbol (W2O-7) instead of "Flagger Ahead" sign with text (W20-7A).
3. Use temporary raised rumble strips when the existing posted speed is 55 mph or greater and the work duration is greater than 60 minutes. If temporary raised rumble strips are not used, omit "Rumble
Strips Ahead" signs (MOT-18-10) and associated work zone sign spacing.
4. Additional one-way control may be provided by the following means:
a. Flag-carrying vehicle
b. Official vehicle
c. Pilot vehicles
d. Traffic signals

When flaggers are the sole means of one-way control, the flaggers must be in sight of each other or in direct communication at all times.

SYMBOLS:

Zllla work Area

- Channelizing Device (See Index 102-600)
[Work Zone Sign
\square Flagger Lane
Identification and Direction of Traffic
The "Speeding Fines Doubled When Workers Present" signs (MOT-13-06) and "End Road Work" signs (G20-2), Iong with associated work zone sign spacing, may be mitted when the wo hours or less.

7. Automated Flagger Assistance Devices (AFADs) may be used in accordance with Specification Sections 102,990 and the APL vendor drawings.
8. Railroad Crossings:
a. If an active railroad crossing is located closer to the Work Area than the queue length plus 300 feet extend the Buffer Space as shown on Sheet 2 .
b. If the queuing of vehicles across an active railroad crossing cannot be avoided, provide a uniformed traffic control officer or flagger at the highway-rail grade crossing to prevent vehicles from stopping within the highway-rail grade crossing, even if automatic train warning devices are in place.

OPTION - 1
REMOVABLE STRIPING TYPE

OPTION - 2
PORTABLE TYPE
LAST
REVISION DESCRIPTION:

- TEMPORARY RAILROAD CROSSING BUFFER SPACE EXTENSION=

SYMBOLS:

Tll/ Work Area

- Channelizing Device (See Index 102-600
[] Work Zone Sign
- Flagger

Lane Identification and Direction of Traffic
SPECIAL CONDITIONS

| index | sheet |
| :---: | :---: | :---: |

11/01/21

GENERAL NOTES:

1. This Index applies to two-lane, two-way roadways with work within or near the intersection
2. $x=$ Work Zone Sign Spacing

See Index 102-600 for "x" and channelizing device See Index $102-600$
spacing values.
3. Optionally, use "Flagger Ahead" sign with text (W20-7A) instead of "Flagger Ahead" sign with symbol (W2O-7).
4. If vehicles in a parking zone block the line of sight to TCZ signs, locate and post mount signs in accordance with Index 700-101.
5. If the work area extends across a crosswalk, close the crosswalk in accordance with Index 102-660.
6. For unsignalized intersections, use Temporary Raised Rumble Strips in accordance with Index 102-603. Placement of Rumble Strips and additional signs should begin at FLAGGER sign location.
. The "End Road Work" signs (620-2) along with the associated work zone sign distances may be omitted when the work zone will be in place for 24 hours or less.
8. As an option to the "STOP" sign (R1-1) and Restricted Left/Right Turning Movement sign (R3-1 or R3-2), the operation from Index 102-600 may be used.

SYMBOLS

Zllan work Area

- Channelizing Device (See Index 102-600)
[b Work Zone Sign
\triangle Type Ill Barricad
- Stop Bar
- Flagger

Lane Identification and Direction of Traffic

$\overline{\bar{\Longrightarrow}}$ LANE CLOSURE FOR WORK LESS THAN 200' FROM INTERSECTION $\bar{\Longrightarrow}$

NOTES:

1. $L=$ Taper Length

B $=$ Buffer Length
Se Work Zone Sign Distance $102-600$ for "L", "B", "X", and channelizing device spacing values.
2. Optionally, use "Signal Ahead" signs with symbols (W3-3) instead of
3. Use temporary raised rumble strips in accordance with Index 102-603.
4. The "Speeding Fines Doubled When Workers Present" signs (MOT-13-06) and "End Road Work" signs (G20-2), along with associated work zone sig distances, may be omitted when the work operation will be in place for 24 hours or less.
5. For the maximum distance between temporary traffic signals, do not exceed the distance at which the temporary traffic signals can safely communicate. When the distance temporary traffic signals is greater tha 0.25 miles, use a combination of a pilot vehicle and manually-controlled temporary traffic signals.
6. Monitor temporary traffic signals by having one or more workers present during operation. In the event of a temporary traffic signal failure, use laggers to control traffic.

SYMBOLS

Work Area

- Channelizing Device (See Index 102-600)
(b) Work Zone Sign

8 Temporary Traffic Signal
Lane Identification and Direction of Traffic

GENERAL NOTES:

1. This Index applies to two-lane, two-way and multilane roadways with work that requires a moving operation.
2. Mount vehicle-mounted signs with the bottom of the sign at a minimum height of 48 inches above the pavement. Vehicle mounted changeable message signs may be used in lieu of truck mounted static signs and arrow boards. Ensure Changeable message signs flash alternately to read "Left or Right Lane" or use arrow boards in combination with truck mounted changeable message signs or obscure boards with equipment, supplies, signs, or enclosure. Cover or turn sign legends from view when work is not in progress.
3. For multilane roadways with curb and no paved shoulder, omit the shadow vehicle that would have been used on the paved shoulder. In such instances, the warning sign should be mounted on the shadow vehicle farthest from the work vehicle.
4. Where work activities within 2^{\prime} of the edge of travel way are incidental (i.e., Mowing, Litter Removall, the Engineer may omit requirements for signs and the Shadow vehicle on the shoulder.
5. Minimize the longitudinal spacing between vehicles to deter road users from driving in between.
6. Use inverted plan of the illustrations for work on left side of roadways.
7. Ensure that all vehicles in the mobile operation convoy have functional two-way communication
8. If the speed of the mobile operation exceeds the existing posted minimu speed limit on limited access roadways and one half the existing posted speed limit on other roadways, the Engineer may delete requirements for
shadow vehicles and attenuators. In such situations, mount arrow board and sign on the work vehicle.
9. The distance between the advance warning sign and the work location should not exceed 5 miles.

SYMBOLS:

Lane Identification and Direction of Traffic
(A) Truck/Trailer Mounted Attenuator (TMA)

W\|IV Work Vehicle With Warning Lights
SIld Shadow (S) Vehicle with Warning Lights And Arrow Board
[J Work Zone Sign

(Two-Lane Roadway Shown, Multilane Roadway Similar)

WORK in traveled way - two-lane roadway, lane closure =

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 22 \end{gathered}$	DESCRIPTION:	$\begin{array}{cc} \text { FDOTY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	MOBILE OPERATIONS	$\begin{gathered} \text { INDEX } \\ 102-607 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 2 \end{aligned}$

= work in traveled way - multilane roadway, single lane closure $\overline{=}$

ב WORK IN TRAVELED WAY - MULTILANE ROADWAY, DOUBLE LANE CLOSURE $\bar{\square}$

WII Work Vehicle with Warning Lights
SID Shadow (S) Vehicle with Warning Lights
[A] Truck/Trailer Mounted Attenuator (TMA)
Lane Identification and Direction of Traffic
$\overline{\bar{Z}}$ WORK IN TRAVELED WAY - MULTILANE ROADWAY, TRIPLE LANE CLOSURE =

SYMBOLS:

पllat work Area

- Channelizing Device (See Index 102-600
[b Work Zone Sign
\& Arrow Board
\longrightarrow Lane Identification and Direction of Traffic

GENERAL NOTE:

1. $L=$ Taper Length
$X=$ Work Zone Sign Distance
$X=$ Work Zone Sign Distance " "L", " C ", and channelizing device spacing values.
2. On undivided highways the median signs as shown are to be omitted.
3. On limited access facilities, omit "Right Shoulder Closed" signs (W21-5a) and associated work zone sign spacing distances.
4. If the paved shoulder is less than 4^{\prime} in width, omit the taper and channelizing devices from the paved shoulder.
5. The "Speeding Fines Doubled When Workers Present" signs (MOT-13-06) and End Road Work" signs (G20-2) and "Right Shoulder Closed" (W21-5a), along with associated work zone sign distances, may be omitted when the work operation will be in place for 24 hours or less. For Single Lane Closures, will be in place for 60 minutes or less and the speed limit is 45 mph or less.
6. Use inverted plan of the illustrations for work on left side of roadways.
7. Temporary pavement markings may be omitted when the work operation is in place for 3 days or less.

double lane closure

SYMBOLS:

Zllat work Area

- Channelizing Device (See Index 102-600)
b Work Zone Sign
: Arrow Board
Lane Identification and Direction of Traffic
$-2-2$
2 of 5

triple lane closure

SYMBOLS:

- Channelizing Device (See Index 102-600)

■ Work Zone Sign
: Arrow Board
Lane Identification and Direction of Traffic
LAST
REVISION
$11 / 01 / 20$
102-613
3 of 5

lane closure with lane shift $=$

NOTE:
If the tangent distance " T " is less than 600', then use "Double Reverse
Curve" signs (W24-1A) instead of the first pair of "Reverse Curve" sign
($\mathrm{W} 1-4 \mathrm{~B}$) and omit the second pair of "Reverse Curve" signs.

SYMBOLS:
Ola work Area

- Channelizing Device (See Index 102-600)
[] Work Zone Sign
ः Arrow Board
Lane Identification and Direction of Traffic
\qquad

SYMBOLS:
■ Work Zone sign
(1) PCMS = Portable Changeable (Variable) Message Sign
(2) PRS= Portable Regulatory Sign-Speed Limit When Flashing
(2) RSDU= Radar Speed Display Unit
\longrightarrow Lane Identification and Direction of Traffic

NOTES

1. Use the Motorist Awareness System (MAS) for lane closures of at least 5 days (consecutive or not) on multilane divided facilities with a posted speed of 55 or greater when workers are present and not protected by a barrier.
2. Locate the Motorist MAS devices (i.e., PCMS, PRS, and RDSU) within the advance warning signs as shown. Continue with the remainder of the work
zone signs and devices in accordance with the zone signs and devices in accordance with the
Plans or Standard Plans after the appropriate "Lane Closed Ahead" (W20-XX) sign.
3. For a posted speed of 65 mph or greater, display speed with a ten mph reduction. For a posted speed of 60 mph , display a reduced speed of 55 mph . For area the work zone speed.
4. Omit the PCMS in the median for roadways with three lanes or less in the same direction of traffic.

TYPICAL PCMS DISPLAY
with speed reduction:
Message 1: WORKERS PRESENT AHEAD Message 2: SPEED REDUCED NEXT XXM

Without speed reduction:
Message 1: WORKERS PRESENT AHEAD Message 2: NEXT XX MILES

GENERAL NOTES

1. $L=$ Taper Length
$B=$ Buffer
$x=$ Work Zone Sign Distance
See Index 102-600 for "L", " B ", " X ", and channelizing device spacing values.
2. If vehicles in a parking zone block the line of sight to TCZ signs, locate and post mount signs in accordance with Index 700-101.
3. Use temporary "STOP" sign (R1-1) where the existing stop bar is more than 30^{\prime} from the taper, remove or cover existing sign.
4. The "Speeding Fines Doubled When Workers Present" sign (MOT-13-06) and "End Road Work" Sign (G20-2), along with associated Work Zone and "End Road Work" Sign (G20-2), along with associated Work Zone
Sign Distances, may be omitted when the work operation will be in place for 24 hours or less. Additionally, arrow boards may be omitted when the work operation will be in place for 60 minutes or less and the speed limit is 45 mph or less.
5. If the work area extends across a crosswalk, close the crosswalk in accordance with Index 102-660
6. Dual signs are required for divided roadways.

SYMBOLS:

Tllar work Area

- Channelizing Device (See Index 102-600)
(b) Work Zone Sign
\triangle Type III Barricade
: Arrow Board
- Stop Ba

Lane Identification and Direction of Traffic

NOTE:
Comine work operations to the following lane or lane
a. Outside travel lane
b. Outside auxiliary lane
c. Outside travel lane and adjoining auxiliary lane
d. Inside travel lane
e. Inside auxiliary lane
f. Inside travel lane and adjoining auxiliary lane

If the work area is confined to an auxiliary lane, the work area must be barricaded. Replace the RIGHT (IEFT) LANE CLOSED AHEAD signs with ROAD WORK AHEAD signs, and omit the merge symbol signs and arrow board.

SYMBOLS:

Illt Work Area
Channelizing Device (See Index 102-600
(b) Work Zone Sign
\boxtimes Type III Barricade
¿ Arrow Board

- Stop Bar

Lane Identification and Direction of Traffic

NOTES: combinations:
a. Outside travel lane
b. Outside auxiliary lane
c. Outside travel lane and adjoining auxiliary lan d. Inside travel lane
e. Inside auxiliary lane
f. Inside travel lane and adjoining auxiliary lane

If the work area is confined to an auxiliary lane,
the work area must be barricaded. Replace the RIGHT (LEFT) LANE CLOSED AHEAD signs with ROAD WORK AHEAD signs, and omit the merge symbol signs and arrow board.
2. Provide sufficient Queue Length so that left-turning vehicles do not block through lanes.

\qquad

SYMBOLS:

ZOIII Work Area

- Channelizing Device (See Index 102-600)
© Work Zone Sign
\boxtimes Type III Barricade
¿ Arrow Board
- Stop Bar

Lane Identification and Direction of Traffic

double lane closure for work less than 200' from intersection

SYMBOLS:
(See General Note 5)
Wlls Work Area 102-600
[Channelizing Devic
: Arrow Board
\rightleftharpoons Stop Bar
Lane Identification and Direction of Traffic

NOTE:
Temporary pavement markings may be omitted whe
the work operation is in place for 3 days or less.

SYMBOLS:
ZIIII Work Area

- Channelizing Device (See Index 102-600)
[Work Zone Sign
\triangle Type III Barricade
\because Crash Cushion
Lane Identification and Direction of Traffic

(Multilane Roadway Shown, Two-Lane Roadway Similar)

SYMBOLS

VIIII Work are

[b Work Zone Sign
Traffic Control Officer
Lane Identification and Direction of Traffic

NOTES:

1. This Index applies to two-lane, two-way and multilane roadways, except limited access facilities, with temporary
daytime roadway closures of 5 minutes or less.
2. $B=$ Buffer Length
3. $\begin{aligned} & \text { B } \\ & X=\text { Work Zone Sign Distance }\end{aligned}$

See Index 102-600 for "B" and "X" values.
3. For Two-Lane Roadways, a Flagger may substitute the . For Two-Lane Roadways, a Flagger may substitute the
traffic control officer with approval of the Engineer.
4. Traffic volume or complexly of the roadway may dictate additional signs, devices or traffic control officers
5. Optionally, use FLAGGER AHEAD sign with symbol (W20-7) 5. Optionally, use FLAGGER AHEAD sign with symbol (W20-7)
6. Dual Signs are required for divided roadways only.

LAST	D DESCRIPTION:
$\begin{aligned} & \text { REVISION } \\ & 11 / 01 / 20 \end{aligned}$	

TEMPORARY TWO-WAY LEFT-TURN LANE CLOSURE, TWO-LANE, TWO-WAY ROADWAY, WORK WITHIN THE traveled way with lane closures of 24 HRS OR LESS AND WORK ZONE SPEED OF 45 MPH OR LESS

SYMBOLS:

Zlllan work Area

- Channelizing Device (See Index 102-600)

『 Work Zone Sign
\square Flagger
\Longleftrightarrow Lane Identification and Direction of Traffic

TEMPORARY SHIFT TO TWO-WAY LEFT-TURN LANE, WORK WITHIN THE TRAVELED WAY WITH LANE CLOSURES OF 24 HRS OR LESS AND WORK ZONE SPEED OF 45 MPH OR LESS

SYMBOLS:

M,

- Channelizing Device (See Index 102-600)

『 Work Zone Sign
: Arrow Board
१ Flagger
Lane Identification and Direction of Traffic

TYPICAL PCMS DISPLAY:

During day of pacing operation:
Message 1: ROAD WORK TONGHT Message 2: EXPECT PERIODIC DELAYS

During pacing operation:
Message 1: SLOW TRAFFIC AHEAD
Message 2: BE PREPARED TO STOP
One week prior to pacing operation (Optional): Message 1: EXPECT DELAYS

SYMBOLS:

UTIII Work Area

- Portable Changeable Message Sign (PCMS)

Yap Traffic Control officer
Lane Identification and Direction of Traffic

NOTES

1. $P=$ Traffic Pacing Length

For "P" value, see Traffic Pacing Length table or calculate using Formulas.
2. See the Plans for traffic pacing restrictions.
3. Do not exceed work duration of 30 minutes or traffic pacing length of 10 miles
4. Coordinate with the traffic control officer supervisor to provide the correct number of traffic control officers for each traffic pacing operation. Ensure with the pacing plan.
5. Ensure that the necessary equipment is properly positioned for the work before requesting that the traffic control officer supervisor initiate the traffic pacing operation
6. If workers or equipment are within the traveled way during the traffic pacing operation, use a truck- or trailer-mounted attenuator with portable changeable message sign to protect the work:
7. For work durations of less than five minutes (e.g, moving large vehicles across the roadway), portable changeable message signs and truck-mounted attenuator are not required. Use traffic pacing length values from the five minute column of the table.
8. Where feasible, do not pace traffic past the last available existing egress untir the work has been complete
9. When more than one traffic pacing operation is required in a calendar day, allow sufficient time between pacing operations to permit traffic to return to normal speed and flow.
10. Maintain communications with all police vehicles throughout the traffic pacing

TRAFFIC PACING LENGTH "P"						
Wacing Speed $=20 \mathrm{mph}$						
Work Zone	Woration (minutes)					
Speed (mph)	5	10	15	20	30	
70	2.3	4.7	7.0	9.3	-	-
65	2.4	4.8	7.2	9.6	-	-
60	2.5	5.0	7.5	10.0	-	-
55	2.6	5.2	7.9	-	-	-
50	2.8	5.6	8.3	-	-	-

NOTES: (1) All lengths in the above table are in miles.
(2) For work durations with no values shown above, calculate
length using a reduced pacing speed, but not less than 10 mph .

FORMULAS:

$S_{w}=$ Work Zone Speed (mph)
$S_{p}=$ Pacing Speed (mph)
$t_{w}=$ Work Duration (minutes)
$P=$ Traffic Pacing Length (miles)

$$
\begin{aligned}
& P=\frac{t_{w}}{60} S_{P}\left(\frac{S_{P}}{S_{W}-S_{P}}+1\right) \\
& P=P_{C}+P_{W}
\end{aligned}
$$

$P_{C}=$ distance paced vehicles must trave before the vehicles at regulatory
speed have cleared the work zone

$$
\begin{aligned}
& P_{c}=\left(\frac{\frac{t_{w}}{60} \times S_{p}^{2}}{S_{w}-S_{p}}\right) \\
& P_{w}=\begin{array}{c}
\text { distance paced vehicles } \\
\text { travel while work is performed }
\end{array} \\
& P_{w}=\left(\frac{t_{w}}{60} \times S_{p}\right)
\end{aligned}
$$

LAST	\geq DESCRIPTION:
REVISION	\bigcirc

NOTES

1. Cover or deactivate pedestrian traffic signal display(s) controlling closed crosswalks.
2. Place pedestrian LCDs across the full width of the closed sidewalk.
3. For post mounted signs located near or adjacent to a sidewalk, maintain a minimum $7^{\prime \prime}$ clearance from the bottom of the sign panel to the surface of the sidewalk.
4. "Sidewalk Closed" signs (R9-XX) may be mounted on pedestrian LCDs in accordance with the manufacturer's instructions.
5. Omit the Advance Closure LCD if it blocks access to other pedestrian facilities (e,g,, transit stops, residences, or business entrances),

SYMBOLS

Vllla work Area
[b Work Zone Sign

- Pedestrian Longitudinal Channelizing Device (LCD) Lane Identification and Direction of Traffic

LAST		
REVISION		
$11 / 01 / 20$		DESCRIPTION:

NOTES:

1. $x=$ Work Zone Sign Distance, see Index 102-600 for "X" value.
2. Use mitered end sections for any end sections within the clear zone.
3. Match cross slope of existing shoulder for widening.
4. Provide 2' of unpaved shoulder outside of the widening.
5. No more than two (2) access openings will be allowed on each project.
6. Do not vary from the plan detail without approval of the Engineer

LENGTH OF ACCESS LANES		
Grade	D (feet)	E (feet)
2\% or less	590	1540
3 to 4\% Upgrade	530	2310
3 to 4\% Downgrade	710	925

SYMBOLS:

§ Work Zone Sign
Lane Identification and Direction of Traffic

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$	DESCRIPTION:		FY 2023-24 STANDARD PLANS	LIMITED ACCESS TEMPORARY OPE $\mathbb{N I N G}$	$\begin{gathered} \text { INDEX } \\ 102-665 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 1 \end{aligned}$

(Two-Lane Roadway Shown, Multilane Roadway Similar)

SYMBOLS:

[Work Zone Sign
(8) Temporary Traffic Signal

Y Flagger
\longrightarrow Lane Identification and Direction of Traffic

NOTES:

1. This Index is intended for two-way and multilane roadways, excluding limited access facilities, with haul roads that intersect the roadway.
2. $X=$ Work Zone Sign Distance, see Index 102-600 for "X" values.
3. Use Type III Barricades to block haul road access when the haul road is not in operation and a flagger/signal operator is not on duty, except when the haul road is an existing properly marked road.
4. Optionally, use "Signal Ahead" signs with symbols (W3-3) instead of "Signal Ahead" signs with text (W3-3A)
5. The "End Road Work" signs (G20-2) may be omitted when the work operation is in place for 24 hours or less.
6. Optionally, use temporary traffic signals for control of the haul road.

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 22 \end{gathered}$	DESCRIPTION:	$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	HAUL ROAD CROSSING	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 1 \end{aligned}$

NOTES
Critical Root Zone: Extends in all directions rrom trunk of tree to a distance equal to one foot per diameter at breast height.
2. Staging, storage, dumping, washing and operation of equipment is not permitted within the limits of the tree
protection barrier, including during barrier installation
3. Install all tree protection prior to commencement of construction and remove when directed by the Enginee

For closely spaced groups of trees, place the tree protection barrier around the entire group.
5. Inspect trunk protection and tree quarterly to prevent
girdling. Ad just bands to allow tree growth as needed
6. See plans for any additional requirements or modifications
7. Place weather resistant sign every 50^{\prime} along the barrier . Place weather resitant sign and provide text in English and
with $6^{\prime \prime}$ minimum text height an
Spanish. Sign should read "Keep Out Tree Protection Area".
8. Alternate tree protection systems approved by the Engineer
may be used in lieu of the tree protection barrier detailed may be used in lieu of the tree protection barrier detailed
on this Index as long as the critical root zone is protected.
9. The Critical Root Zone may be reduced, in the field, by a位tified Arborist or Landscape Architect.
Install At Depth Sufficient \qquad

Protect any portion of canopy
that extends beyond barrier unless pruning is required.'
Pruning must be supervised by a Pruning must be
Certified Arborist.
Orange Construction Barrier Secure Barrier To Posts
To Hold Barrier Taut Root Pruning Trench, As
Required Per Construction Required Per Construction
Documents Documents Maintain Existing Grade within
The Tree Protection Barrier Underground Utility

Trenching May Occur
Outside of The Crutical
Root Zone, See Note 1
\qquad
 Protect any portion of
canopy that extends canopt that extends
beyond barrier, unless
pruning is required pruning is requir
Pruning must be Pruning must be
supervised by a Certified
Arborist.

PLAN
\qquad
$10-100 \quad 1$

GENERAL NOTES:

The location and construction of mailboxes shall conform to the rules and requlations of the United States Postal Service as modified by this Index.
2. Mailboxes will not be permitted on Interstate highways, freeways, or other highways where prohibited by law or regulation
3. The contractor shall give the Postmaster of the delivery route(s) written notice of project construction 7 days prior to the beginning of work, with Saturdays, Sundays

The Contractor shall furnish and install one mailbox in accordance with this Index at each mail patron delivery location and maintain the box throughout the contract
The Contractor shall apply box numbers to each patron box in accordance with identification specifications of the Domestics Mail Manual of the U. S. Postal Service Where local street names and house numbers are authorized by the postmaster as a postal address, the Contractor shall inscribe the house number on the box; if the box located on a different street from the patrons residence, the Contractor shall inscribe the street name and house number on the box.

The Contractor shall coordinate removal of the patrons existing mailboxes. Immediately after installing the new mailboxes the Contractor must notify each "Mail Delivery Patron" by Certified Mail that removal of the existing mailboxes must be accomplished in 21 days fter receipt of notices. Patrons shall have the option of removing their existing he Contractor shall be included in the contract unit price for Mailbox. Each. The Contractor shall dispose of mailboxes and supports in areas provided by him.

Reuse of existing mailboxes by the Contractor will not be a requirement under any construction project; however where an existing mailbox meets the design requirements hay elect to reuse the existing mailbox in lieu of constructing a new mailbox. Any use of existing mailboxes must be approved by the Engineer.
4. Mailboxes shall be light sheet metal or plastic construction, in traditional style only, and Mailboxes shall be light sheet metal or plastic construction, in traditional style only, and
only in Size 1 as prescribed by the Domestic Mail Manual of the U. S. Postal Service (DMM) Mailbox production standards, lists of approved manufacturers and suppliers of mailboxes, design approval and guidance may be obtained by writing to the Rural Delivery Division,
Delivery Service Department, Operations Group, USPS Headquarters, Washington, DC 20260
5. Mailboxes shall be located on the right-hand side of the roadway in the direction of the delivery route, except on one-way roads and streets where they may be placed on the eft-hand side.

Mailboxes on rural highways shall be set with the roadside face of the box offset from he edge of the traveled way a minimum distance of the greater of the following
a. Shoulder width plus $8^{\prime \prime}$ to $12^{\prime \prime}$
b. 10^{\prime} for ADT over $10,000 \mathrm{vpd}$
8^{8} for ADT 100 to 10,000 vpd
6^{\prime} for ADT under 100 vpd
$2^{\prime}-6^{\prime \prime}$ for low speed and ADT under 100 vpd
When a mailbox is installed within the limits of guardrail it should be placed behind the uardrail whenever practical.
Mailboxes on curbed highways, roads, and streets shall be set with the face of the box etween $6^{\prime \prime}$ and 12 " behind the face of curb. If the sidewalk abuts the curb or if an boxes at the curb, the Contractor, with concurrence of the local postal authority, may be permitted to install all mailboxes at the back edge of the sidewalk, where they can be served by the carrier from the sidewalk.
6. Mailboxes shall be set with the bottom of the box between $42^{\prime \prime}$ and $48^{\prime \prime}$ above the mail stop surface, unless the U.S. Postal Service establishes other height restrictions.
7. No more than two mailboxes may be mounted on a support structure unless the support structure and mailbox arrangements have been shown to be safe by crash testing in accordance with NCHRP Report 350

Neighborhood Delivery and Collection Box Units (NDCBU) are a specialized multiple mailbox installation that must be located outside the highway and street clear zones. The location of NDCBUS is the sole responsibility of the Postmaster for the delivery route under consideration
8. Lightweight newspaper receptacles may be mounted below the mailbox on the side of the support post in conformance with the USPS Domestic Mail Manual. The mail patron shall be responsible for newspaper receptacle installation and maintenance.
9. Wood and steel support posts for both single and double mailbox mountings shall be embedded no more than $24^{\prime \prime}$ into the ground

Concrete, block, brick, stone or other rigid foundation structure or encasement, either above or below the shoulder ground line, will not be permitted for mailboxes on rural highways. On urban roads and streets where mailbox support posts are set within gid pavement back of curb, the support posts shall a a minimum of $1^{\prime \prime}$ of expansion material.

Support posts shall not be fitted nor installed with surface mount base plates.
10. At driveway entrances mailboxes shall be placed on the far side of the driveway in the direction of the delivery route.

At intersecting roads mailboxes shall be located 100^{\prime} or more from the centerline of the intersecting road on the far side in the direction of the delivery route, with the istance increased to 200' when the route volume exceeds 400 vehicles per day.

1. Wood support posts shall be in conformance with the material and dimensional requirements of Specification 952 and the treatment requirements of Specification 955 Steel support posts shall have an external finish equal to or better than two coats of weather resistant, air dried or baked, paint or enamel. Surface(s) shall be cleaned of all loose scale prior to finishing. The Postal Service prefers that posts be painted hite, but other colors may be used when approved by the Engineer. When galvanize posts are used painting is not required.
wounting brackets, plates, platforms, shelves and accessory hardware surface finishes are to be suited to support post finish.
2. Mailboxes shall be paid for under the contract unit price for Mailboxes, Each. Payment shall be full compensation for boxes, posts and accessory items essential for installation it accordance with this standard; erection; adjustments to suit construction needs; and, for identification letters and numbers.
Payment shall be limited to one mailbox per patron address whether the mailbox is new reused, salvaged, reset or relocated. Payment shall be per maillbox regardless of the number of mailboxes per support or grouping arrangement.
he above compensation shall include any work and cost incurred by the contractor for emoval and disposal of existing mailboxes.
there shall be no payment participation for NDCBU furnishing, assembly, installation, resetting or relocation.

general notes:

1. Roadway dimensions are representative. Subgrade dimensions and control lines are standard. The details shown on this Index do
not supersede the details shown in the Plans or Indexes 120 not supersede the details shown in the Plans or Indexes 120-00
and 160-001.
2. Plastic (P) soils may be placed above the existing water level (at the time of construction) to within 4 feet of the proposed base. It should be placed uniformly in the lower portion of the embankment for some distance along the project rather than full depth for short distances.
3. High Plastic (H) soils excavated within the project limits may be used in embankment construction as indicated on this Index. High plastic soils are not to be used for embankment construction when obtained from outside the project limits.
4. Select (S) soils having an average organic content of more than two and one-half (2.5) percent, or having an individual test value which exceeds four (4) percent, are not permitted in the subgrade portion of the roadbed. Select (S), Plastic (P), or High Plastic
soils having an average organic content of more than five (5) soils having an average organic content of more than five (5) seven (7) percent, are not permitted in the portion of embankment inside the control line, unless written authorization is provided by the District Geotechnical Engineer; these soils may be used for embankment construction outside the control line, unless restricted
by the Plans or otherwise specified in the Plans, provided they by the Plans or otherwise specified in the Plans, provided they
can be compacted sufficiently to sustain a drivable surface for operational vehicles as approved by the Engineer. Determine average organic content from the test results from a minimum of three randomly selected samples from each stratum or stockpile of a particular material. Perform tests in accordance with
5. Highly organic soils, composed primarily of partially decayed organic matter, often dark brown or black in color with an odor of decay, and sometimes fibrous, are designated as muck. Further, any stratum or stockpile of soil which contains pockets of highly soils are not permitted within the subgrade or embankment portion of the roadbed.

DIVIDED ROADWAYS

UNDIVIDED ROADWAY

SYMBOL SOIL CLASSIFICATION (AASHTO M 145)
5 Select A-1, A-3, A-2-4 **
H High Plastic A-2-5, A-2-7, A-5 or A-7 (ALL wITH LL > 50)
M Muck A-8
Classification listed left to right in order of preference.
See General Notes Nos. $4 \& 5$ for utilization of soils classified as organic material or muck.

* Certain types of A-2-4 material are likely to retain excess moisture and may be difficult to dry and compact. They should be used in the embankment above the water level existing at time of construction. They may be used in the subgrade portion of the roadbed when approved by the District Materials Engineer. A-2-4 material placed below the existing water level must e nonplastic and contain less than 15\% passing the No 200 US . Standard sieve.

For cut sections this dimension may be reduced to 24"; see Index 120-002. For minor collectors and local facilities this dimension may be reduced to $18^{\prime \prime}$.

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 18 \end{gathered}$		$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	EMB ANKME	index $120-001$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 3 \end{aligned}$

DIVIDED ROADWAYS

UNDIVIDED ROADWAY

SYMBOL	SOIL	CLASSIFICATION (AASHTO M 145)
5	Select	A-1, A-3, A-2-4 **
s+	Special Select	A-3 *** With Minimum Average Lab Permeability of $5 \times 10^{-5} \mathrm{~cm} / \mathrm{sec} .(0.14 \mathrm{ft}$./day) as per AASHTO T 215
P	Plastic	A-2-5, A-2-6, A-2-7, A-4, A-5, A-6, A-7 (ALL WITH LL<50)
H	High Plastic	A-2-5, A-2-7, A-5 Or A-7 (ALL WITH LL>50)
M	Muck	A-8

1 See General Notes Nos. 4 \& 5 for utilization of soils classified as organic material or muck.
** When called for in the Plans, some types of A-2-4 material may be approved in writing by the District Materials Engineer This material must meet the minimum lab permeability requirement, be nonplastic, and not exceed 12% passing the No. 200 Standara sieve.
** Certain types of A-2-4 material are likely to retain excess moisture and may be difficult to dry and compact. They should be used in the embankment above the water level existing at time of construction. A-2-4 material placed
below the existing water level must be nonplastic and contain less than 15% passing the No. 200 U.S. Standard sieve.
Special Stabilized Subbase: $3^{\prime \prime}$ of \#57 or \#89 Coarse Aggregate Mixed Into Top $6^{\prime \prime}$.

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 18 \end{array}$	DESCRIPTION:	FDOT) $\begin{gathered}\text { FY 2023-24 } \\ \text { STANDARD PLANS }\end{gathered}$	$\mathbb{E} M B A \mathbb{N} M E \mathbb{N T}$ UTILIZATION	$\begin{gathered} \text { INDEX } \\ 120-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 3 \end{aligned}$

with overburden - half section

without overburden - half section

with overburden - half section

Without overburden - half section

* Remove overlying material and organic material within the limits shown and backfill in accordance with Index 120-001,
unless approved otherwise by the District Geotechnical Engineer; The limits include full median width when applied
to divided facilities with median widths up to 64'; When median width is greater than 64^{\prime} and for bifurcated roadways the organic material removal limits will be set by a $1: 2$ control line complimentary to the outer roadway that will
accommodate one future median lane on each roadway unless specified otherwise by the plans.

GENERAL NOTES:

1. All details shown on this Index for removal of organic and plastic materials apply unless otherwise shown on the plans. 2. Utilize excavated materials in accordance with Index 120-001
2. Where organic or plastic material is undercut, backfill with suitable material in accordance with Index 120-001,
unless otherwise shown on the plans.
3. The term "Plastic Material" used in this Index in conjunction with removal of plastic soil is as defined under soil
classifications for Plastic (P) and High Plastic (H) on Index 120-001.
4. See Index 160-001 for miscellaneous earthwork details.
5. The term "Organic Material" as used on this Index is defined as any soil which has an average organic content greater than five (5.0)
percent, or an individual organic content test result which exceeds seven (7.0) percent. Remove organic material as shown on this percent, or the plans unless directed otherwise by the District Geotechnical Engineer. Determine the average organic content from the test results from a minimum of three randomly selected samples from each stratum. Perform tests in accordance with AASHTO T267

In areas of curbed roadway, where underdrain is
In areas of curbed roadway, where underdrain is to be constructed beneath the proposed pavement, the grade of the underdrain filter
material will not extend above the bottom of the stabilized section of the subgrade. Gradation of the filter material must conform to
Standard Specifications. The minimum grade of underdrain pipe is 0.2%.

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	\|	$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	SUBSOIL EXCAVATION	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 2 \end{aligned}$

typical cut section on tangent

typical cut section on superelevation

DIVIDED FREEWAYS, ARTERIALS, MAJOR COLLECTORS HAVING FLUSH = medians, on undivided arterials and major collectors

typical cut section on tangent

typical cut section on superelevation

INTERSTATE FACILITIES, FREEWAYS, DIVIDED ARTERIALS $\bar{\square}$ and major collectors having depressed medians

NOTES:

1. See Sheet 1 for the general notes,
2. When the typical cut details are applied to minor collectors and local facilities, the undercut may be reduced from $24^{\prime \prime}$ to $18^{\prime \prime}$.
3. Where frequency of median breaks indicates that it is impractical to leave plastic material in the median, the designer may elect to
indicate total removal of this material. If during construction it becomes apparent, due to normal required construction procedures,
that it is impractical to leave the plastic material in the median that it is impractical to leave the plastic material in the median,

Refer to roadway cross sections to determine whether minimu 4. Refer to roadway cross sections
or preferable removal is used.
5. Where the Preferable Removal method is shown in the plans and it conflict with storm drain trunk lines remove to I Cun Cut limit and place underdrain at location shown for Minimum Removal. (See Special Removal Detail)
6. Cross slopes of 0.02 shown above are minimums. Follow the cross slope of the pavement to the extent possible.

PAVEMENT REMOVAL AND REPLACEMENT

1. Pavement shall be mechanically sawed.
2. The replacement asphalt shall match the existing structural and friction courses for type and thickness in specifications.
3. The new base materials shall be either of the same type and composition as the materials removed or of
equal or greater structural adequacy. BACKFILL OPTION
4. COMPACTED AND STABILIZED FILL
A. Place backfill material in accordance with Specification 125
B. In Stage \#1, construct compacted fill beneath the haunches of the pipe, using mechanical tamps suitable
for this purpose. This compaction applies to the material placed beneath the haunches of the pipe and for this purpose. Th
above any bedding.
C. In Stage \#2, construct compacted fill along the sides of the pipe and up to the bottom of the base, with
the upper 12" receiving Type B Stabilization. In lieu of Type B Stabilization, the Contractor may construct the upper 12 "receiving Type B Stabilization. In lieu of Type B Stabilization, the Contractor may construct
using optional Base Group 3.
5. FLOWABLE FILL
A. If compaction can not be achieved through normal mechanical methods then flowable fill may be used.
B. Flowable fill is to be placed in accordance with Specification 121, as approved by
the Engineer.
C. Do not allow the utility being installed to float. If a method is provided to
occurring, Stages $\# 1$ and $\# 2$ can be combined, if approved by the Engineer
D. In Stage \#1, place flowable fill midway up on both sides of the utility. Allow to harden before placing
Stage \#2.
E. In Stage \#2, place flowable fill to the bottom of the existing base course.
=FLEXIBLE PAVEMENT CUT

GENERAL NOTES

1. The details provided in this Index apply to cases in which jack and bore or directional boring methods are not required
2. Flowable fill shall not be placed directly over loose, or high plastic, or muck material (see Index 120-001) which will cause settlement
due to fill weight. Where highly compressible material exists, the amount, shape and depth of flowable fill must be engineered to prevent pavement settlement.
3. These details do not apply to utility cuts longitudinal to the centerline of
geotextiles, special bedding and backfill, or other special requirements.
4. Method of construction must be approved by the Engineer
5. Some pipe may require special granular backfill up to $6^{\prime \prime}$ above top of pipe. Geotextiles may be required to encapsulate the special

PAVEMENT REMOVAL AND REPLACEMENT

2. Pavement shall be mechanically sawed and restored to conform with existing pavement joints within 12 hours.
(See Index $350-0011$) BACKFILL OPTION

1. GRANULAR BACKFILL
A. Any edgedrain system that is removed shall be replaced with the same type materials. Any edgedrain system
B. Fill material shall be placed in accordance with the Standard Specifications. Fill material shall be special
B. Fill material shall be placed in accordance wit
select soil in accordance with Index $350-001$.
C. In Stage \#1, construct compacted fill beneath the haunches of the pipe, using mechanical tamps suitable for
this purpose. This compaction applies to the material placed beneath the haunches of the pipe and above this purpose. This compaction applies to the material placed beneath the haunches of the pipe and above
any bedding.
D. In Stage \#2, construct fill along the sides of the pipe and up to the bottom of replacement pavement 2. FLOWABLE FILL
A. If mechanical compaction can not be achieved through normal mechanical methods then flowable fill may be used.
B. Flowable fill is to be placed in accordance with Specification 121, as approved by the Engineer.
C. Do not allow the utility being installed to float. If a method is provided to prevent flotation from occurring, D. In Stage \#1, place flowable fill midway up on both sides of the utility. Allow to harden before placing Stage \#2. E. In Stage \#2, place flowable fill to the bottom of the stone layer.

RIGID PAVEMENT CUT

6. Where asphalt concrete overlays exist over full slab concrete pavement, the replacement pavement shall have an overlay constructed
over the replacement slab. The overlay shall match the existing asphalt pavement thickness. The replacement friction course shall over the replacement siab. The overlay shal match the existing asphat pavement thickness. The replacement tric
match the existing friction course, except structural course may be used in lieu of dense graded friction course.
All shoulder pavement, curb, curb and gutter, and their substructure disturbed by utility trench cut construction shall be restored in kind
7. The use of flowable fill to reduce the time traffic is taken off a facility is acceptable but must have prior approval by the Enginee Tlowable fill use is allowed only when properly engineered for apaement rcossings. whether straight or diagonal, and shall not be
installed for significant depths or lengths. The maximum length shall be fifty (50) feet and a maximum depth of six (6) feet unless

8. Excavatable flowable fill is to be used when the flowable fill option is selected

TRENCH CUTS AND RESTORATIONS ACROSS ROADWAYS

Direction of Traffici-=:-
$\overline{\overline{\bar{Z}}}$ PARTIAL CUTS FOR RING AND COVER ADJUSTMENTS $\bar{\square}$

NOTES

1. Cut-Lines must be straight and cleanly sawed
2. See Sheet 1 for replacement pavement.
3. Adjust manholes prior to placing friction course when pavement resurfacing is occurring in the
area adjacent to the manhole.
4. Align Longitudinal Cut-Lines with pavement joint or center of traffic lane to avoid wheel path.
5. For rigid pavement, align Transverse Cut-Lines with nearest existing joint.

NONTRENCH PAVEMENT CUTS FOR UNDERGROUND UTILITY STRUCTURES IN PAVEMENT $\underset{\text { LAST }}{\text { REVISION }}$

DESCRIPTION:
FDOT FY 2023-24
$\mathbb{U T I L I T Y}$ ADJUS TMENTS THRU EXISTING PAVEMENT index

\qquad

Direction of Trafficin

NOTES

1. When the median has curb or curb and gutter, stabilize 4" back of curb.
2. When the median has shoulder with no curb or curb and gutter, stabilize to normal shoulder width
3. See the details above for stabilizing requirements at crossroads.
4. Stabilize entire area under all paved traffic islands.
5. Stabilize full width under all traffic separator
6. Provide select soil where shown above and as defined on Index 120-001. For minor collectors and local facilities the depth of select material thickness may be reduced from $24^{\prime \prime}$ to $18^{\prime \prime}$
7. Limits of Stabilization for Intermediate U-Turn Crossovers and, unless otherwise specified in the Plans, at paved and unpaved private roads and unpaved public roads.

drainage section

Roadway Shoulder,
Driveway Taper or
Driveway Auxiliary
iveway Auxiliary Lanes

driveway profile and end view
= FLUSH SHOULDER ROADWAY - DRIVEWAY CONSTRUCTION

LIMITS OF CLEARING \& GRUBBING,
STABILIZING AND BASE AT DRIVEWAYS

DRIVEWAY ENTRANCES NOTES:

1. See Plans for Driveway Width (W) and Return Radius (R)
2. See the Plans for drainage pipe size and length or as determined by the Engineer. The size will be no less than $15^{\prime \prime}$ diameter or equivalent.
3. Stable material may be required for graded driveways to private property as directed by the Engineer in accordance with Specification 102-8.
4. The driveway pavement requirement at graded connections may be waived for connections serving one or two homes or field entrances with less than 20 trips per day, or 5 trips per hour as approved by the Engineer, or when not shown in the Plans.
5. Point of Connection:
a. Construct paved driveways for all paved connecting facilities. The connecting point will be determined by the Engineer.
b. Construct paved driveways for all business, commercial, industrial or high volume esidential graded connecting facilities. Construct the connecting point $30^{\prime}-0^{\prime}$ from edge of travel way or at R/W tine whichever is tess.
c. Construct paved driveways for all side road connections. The R/W is the connecting point.

friction course transition

$\overline{\bar{Z}}$ DETAIL "A"

\ldots TYPE I - Typical Automobile Traffic \ldots TYPE II - Typical Truck-Trailer Traffic ...
DRIVEWAY TYPES \Longrightarrow

AREAS FOR ONE 5' DEEP DRIVEWAY APRON (SY)				
Drive Width (Ft.)	Intersection			
	Normal		Skewed	
	Type I	Type II	Type I	Type II
12	26	51	31	60
14	27	52	33	61
16	28	53	34	63
18	29	54	35	64
20	31	55	37	65
22	32	56	38	67
24	33	57	39	68
26	34	58	40	69
28	35	59	42	70
30	36	61	43	72
32	37	62	44	73
34	38	63	46	74
36	39	64	47	76
38	41	65	48	77
40	42	66	49	78
42	43	67	51	79
44	44	68	52	81
46	45	69	53	82
48	46	71	55	83
50	47	72	56	85
52	48	73	57	86
54	49	74	58	87
56	51	75	60	88
58	52	76	61	90
60	53	77	62	91

MATERIAL TYPES AND THICKNESSES FOR PAVED CONNECTIONS

Course	Materials	Minimum Thickness (in.)	
		Connections	Roadway*
Structural	Asphaltic Concrete	$1^{1 / 2^{\prime \prime}}$	$11^{1 / /^{\prime \prime}}$
Bases	Optional Base (See Specification 285)	0.B.G. 2	0.3 .3

* Travel way flares (bypass lanes), auxiliary lanes serving more than a single connection, and all median crossovers including their auxiliary lanes and/or transition tapers.

NOTES

1. Use same material for driveway structural course and roadway overbuild or structural course, except as approved by the Engineer for graded connections. Other Department-approved equivalent pavements may be used at the discretion of the Engineer.
2. Auxiliary lanes and their transition tapers shall be the same structure as the abutting travel way pavement thickness or any of the roadway structures tabulated above, whichever is thicker.
3. If an asphalt base course is used for a driveway, its thickness may be increased to match the edge of travel way pavement thickness in lieu of a separate structural course. $6^{\prime \prime}$ of Portland cement concrete will be acceptable in lieu of the asphalt base and structural courses. See Notes 4 and 5 below
4. A structural course is required for flexible pavements when they are used for auxiliary lanes serving more than a single connection.
5. Use Class NS concrete at least $6^{\prime \prime}$ thick for driveways paved with Portland Cement Concrete. Construct in accordance with Specifications 347, 350, and 522.
6. The Department may require other pavement criteria where local conditions warrant

section at - new construction

GENERAL NOTES

. Driveways are to be constructed or resurfaced for low volume (single family, duplex, farm, etc.) residential connections as directed by the Engineer
2. Driveways construction is not required for low volume residential connections where roadway shoulders are paved.
3. Match existing paved shoulder widths ≥ 4. For all other shoulders conditions, construct at 5^{\prime} wide.
4. Connections beyond the shoulder width are to be constructed as directed by the Engineer.
5. Construct Driveway Base in accordance with Specification 286.
6. Payment for structural course and friction course is to be included in roadway pavement pay item

FDOTS	FY 2023-24 STANDARD PLANS	PAVED AND GRADED DRIVEWAYS	$\begin{gathered} \text { INDEX } \\ 330-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 2 \end{aligned}$

BUTT CONSTRUCTION JOINT
A. Tie bars are deformed \#4 or \#5 reinforcing steel bars meeting the
requirements of Specification 931 .
B. Provide a tied joint with \#4 bars
$25^{\prime \prime}$ in length at $24^{\prime \prime}$ spacing or \#5 $25^{\prime \prime}$ in length at $24^{\prime \prime}$ spacing or \#5
bars $30^{\prime \prime}$ in length at $36^{\prime \prime}$ spacing.
2. Transverse joints are to be spaced at
a maximum of 15'. Dowel Bars are a maximum of 15. Dowel Bars are
required at all transverse joints unless therwise noted in the plans.
3. For bridge expansion joints, see Index
370-001.
4. Punch clean holes in preformed jo
filler greater than bar diameter.

Coat plain steel dowel bars and welded wire basket assemblies in accordance With Specification 931. Lubricate dowel
bars in accordance with Specification 350 .
6. New and rehabilitation projects, backer rod bond breaker is required. Shoulde must be repaired if proper joint shape
7. Sheet metal bottom strips in accordance
with Specification 931. Not required with with Specificat
asphalt base.

LANE-TIE JoINT

BUTT CONSTRUCTION JOINT Used At Discontinuance Of Work)

CONTRACTION JOINT (Sawed Method)

$$
\overline{\bar{Z}} \text { LONGITUDINAL JOINTS } \overline{=}
$$

CONCRETE-CONCRETE JOINTS

note:
"d" and "w" = 3^{3} ", unless specified in the Plans. CONCRETE-ASPHALT SHOULDER JOINTS

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 22 \end{gathered}$	\|ren	$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	CONCRETE PAVEMENT JOINTS	$\begin{array}{\|c\|} \hline \text { INDEX } \\ 350-001 \end{array}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 5 \end{aligned}$

\qquad

SECTION A-A

SECTION B-B

CONTRACTION ASSEMBLY

SECTION C-C

SECTION D-D

EXPANSION ASSEMBLY

| LAST REVISION $11 / 01 / 22$ | \|c|c|c | DESCRIPTION: | $\text { FDOT\} }$ | $\begin{gathered} \text { FY 2023-24 } \\ \text { STANDARD PLANS } \end{gathered}$ | CONCRETE PAVEMENT JOINTS | $\begin{gathered} \text { INDEX } \\ 350-001 \end{gathered}$ | $\begin{gathered} \text { SHEET } \\ 2 \text { of } 5 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

MANHOLE WITH LONGITUDINAL JOINT

MANHOLE WITH DIVERTED $\overline{=}$ LONGITUDINAL CONTRACTION JOINT

— MANHOLE WITH TRANSVERSE JOINT

MANHOLE WITH DIVERTED TRANSVERSE CONTRACTION JOINT

PLAN

elevation

NOTES

. Use boxouts when utility structure is in the path of construction joints. Provide a 1 foot minimum clearance between the exterior limit of the structure clearance between the
to the diamond boxout.
2. Adjust transverse joint to intersect manhole, if possible.
3. If distance between the longitudinal joint and the edge of manhole is 2 feet or less, divert the longitudinal joint at a 2:1 taper rate to the center of the manhole. place reinforcement divert the round the manhole.
4. If the distance from the edge of the manhole to the nearest transverse joint is 4 feet or less, redirect joint at $2: 1$ taper to intersect the center of the manhole. If distance is greater than 4 feet, do not divert the joint, manhole.
5. Align transverse joint with one edge of inlet when practical
6. All manholes, meter boxes and other projections into the
pavement shall be boxed-in with $1 / 2$ " preformed expansio

$$
\text { pavement shall be boxed-in with } 1 / 2 \text { " preformed expansion }
$$

> pavement shall joint material.

ISOLATION JOINT DETAIL

figure 10.2-REPAIR METHOD: NONE OR CLEAN AND SEAL

figure 10.3-fULL SLAB full depth replacement

Epoxy Saw Overrun (Typical)
During Slab Replacement
$-\sigma^{\prime}-0^{\prime \prime}(\operatorname{Min}) \xrightarrow{-} \quad$ Remainder
\qquad

PARTIAL SLAB FULL DEPTH REPLACEMENT

figure 10.5 - full-depth repair on both sides of the joint

figure 10.6-multiple sLab full depth replacement

GENERAL NOTES

1. For Repair and Replacement Criteria see Sheet 2
2. Full depth repairs consist of removing and replacing at least a portion of the existing slab to the bottom of the concrete.
3. Repair boundaries shall be sawed full-depth with diamond saw blades. On hot days, it may not be possible to make this cut without first making a wide, pressure relief cut within the repair boundaries. A carbide-tipped wheel saw may be used for this purpose, but the wheel saw must not intrude on the adjacent lane, unless the lane is slated for repair. The wheel saw cuts produce a ragged edge that promotes excessive spalling along joints. Hence, if wheel saw cuts are made, diamond saw cuts must be made 18 in. outside the wheel saw cuts. To prevent damage to the base, the wheel saw must not
4. No additional base or subgrade material shall be added and all loose base or subgrade material shall be removed prior to placement of the new concrete slab. The concrete slab shall be placed to the full depth of the material removed. No additional compensation will be allowed for additional concrete required to bring proposed concrete slab up to finished grade.
5. Removal of the damaged concrete pavement shall be by lifting. Any good concrete pavement which is damaged during removal of damaged areas shall be removed and replaced by the contractor at his expense.
6. If the roadway contract includes grinding, then the slab replacement shall be performed first.
7. During slab replacement operations, fill any saw cut over runs into adjacent slabs with epoxy.
8. Install tie bars at longitudinal joints when two full adjacent or multiple replaced slabs.

| $\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$ | \|c|cher | $\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$ | CONCRETE SLAB REPLACEMENT |
| :---: | :---: | :---: | :---: |

DISTRESS PATTERN	SEVERITY/DESCRIPTION		REPAIR METHOD	REFERENCE
CRACKING				
Longitudinal	Light	< $1 / 8^{\prime \prime}$, no faulting, spaling <1/2" wide	None	Figure 10.2
	Moderate	/1/8" <width < ${ }^{1 / 2}$ /", spalling <3" wide	Clean and Seal	Figure 10.2
	Severe	width >1/2", spalling >3" faulting >1/2"	Replace	Figure 10.3
Transverse	Light	<1/8", no faulting, spalling <1/2" wide	None	Figure 10.2
	Moderate		Clean and Seal	
	Severe	width >1/2", spalling >3" faulting >1/2"	Replace	Figure 10.3, 10.4 and 10.5
Corner Breaks	A corner of the slab is separated by a crack that intersects the adjacent Iongitudinal and transverse joint, describing an approximate 45° angle with the direction of traffic.		Full Depth	Figure 10.4 and 10.5
Intersecting Random Cracks (Shattered S/ab)	Cracking patterns that divide the slab into three or more segments.		Full Depth	Figure 10.3 and 10.4
JOINT DEFICIENCIES				
Spall Nonwheel Path	Light	spall width <11/2", < $1 / 3$ slab depth, <12" in length	None	Figure 10.4 and 10.5
	Moderate	$1^{1 / 2} 2^{\prime \prime}<$ spall width $<3^{\prime \prime},<1 / 3$ slab depth, <12" in length	None	Figure 10.4 and 10.5
	Severe	spall width $>3^{\prime \prime}$ or length $>12^{\prime \prime}$	Full Depth	Figure 10.4 and 10.5
Spall Wheel Path	Light	spall width < $1^{1 / 2} 2^{\prime \prime}$, <than $1 / 3$ slab depth, <12" in length	None	Figure 10.4 and 10.5
	Moderate	$1^{1 / 2} 2^{\prime \prime}<$ spall width $<3^{\prime \prime},<1 / 3$ slab depth, <12" in length	Full Depth	Figure 10.4 and 10.5
	Severe	spall width $>3^{\prime \prime}$ or length $>12^{\prime \prime}$	Full Depth	Figure 10.4 and 10.5
SURFACE DETERIORATION				
Pop Outs Nonwheel Path	Small pieces of surface pavement broken loose, normally ranging from 1 to 4 in . diameter and $1 / 2$ to 2 in . in depth.			
	Light	Not deemed to be a traffic hazard	Keep under observation	
	Severe	Flying debris deemed a traffic hazard	Full Depth	Figure 10.4
Pop Outs Wheel Path	Small pieces of surface pavement broken loose, normally $>3^{\prime \prime}$ diameter and $2^{\prime \prime}$ in depth.			
	Light	Deemed to be a traffic hazard	Full Depth	Figure 10.4
	Severe	Flying debris deemed a traffic hazard	Full Depth	Figure 10.4
MISCELLANEOUS DISTRESS				
Faulting	Elevation differences across joints or cracks.			
	Light	Faulting <4/32"	None	
	Moderate	4 <Faulting <16/32"	Grind	
	Severe	Faulting $>16 / 32^{\prime \prime}$	Grind	
Lane To Shoulder Drop-Off	Light	0 <drop-off < ${ }^{\text {" }}$	None	N/A
	Moderate	$1^{\prime \prime}<$ drop-off <3"	Build Up	
	Severe	drop-off >3"	Build Up	
Water Bleeding Or Pumping	Seeping or ejection of water through joints or cracks.		Install appropriate drainage, edge drain, permeable subbase, reseal joints, etc.	N/A
Blowups	Upward movement at transverse joints or cracks often accompanied by shattering of the concrete.		Full Depth	Figure 10.3 and 10.4

gENERAL NOTES

\triangle Construct Expansion Joints Parallel To The Existing
Transverse Pavement Joints on Rehabilitation Projects, And
Parallel To The Standard Transverse Pavement Joints Shown
In The Plans For New Construction.

Finish surface smooth. Cure with heavy coating
of wax base white pigmented curing compound. of wax base white pigmented curing compound
Apply second application immediately prior to placing pavement.

1. For asphalt base, use four expansion joints, spaced at 15 feet, per Index 350-001.
2. The centerline of roadway and the centerline of bridge do not necessarily coincide. Determine the centerline of the roadway pavement prior to the placement of the expansion joint.
3. For information on other types of concrete pavement joints see Index 350-001
4. Pay quantity for expansion joint is the length of joint to be constructed across the roadway and shoulder pavements, measured at right angles to the centerline of the roadway. Payment for expansion joint is full compensation for joint
construction, including reinforced concrete subslab. sheet metal strip and compression seal, but, not including roadway pavement reconstruction associated with joint replacement or reconstruction. Expansion joint to be paid for under the contract
unit price for Bridge Approach Expansion Joint. LF.

SECTION A-A

Subslab

rigid shoulder pavement NOTES

1. Immediately prior to placing the seal, thoroughly clean the joint of all foreign material. Immediately after the seal is placed, bend up the sheet metal strip against the pavement edge.

sodded shoulder or flexible shoulder pavement
2. Use a minimum 16 gage steel, $12^{\prime \prime}$ wide sheet metal strip, Galvanized in accordance with ASTM A-526, Coating Designation 690.

NOTE:
Thoroughly coat all contacting surfaces between the compression seal and concrete with a lubricant-adhesive.

JOINT DIMENSIONS

optional seals

NOTES
traffic railings or parapets:
If there is a Traffic Railing or Parapet on the wall, align Wall Joints with V-Grooves, and Wall Expansion Joints with Barrier Open Joints.
foundation:
Prepare the soil below the footing in accordance with the requirements for spread footings in Specification Section 455.

BARS G1

BARS J\&K
NOTE:
All bar dimensions are out-to-out

LAST REVISION $11 / 01 / 20$		$\begin{array}{cc} \text { FDOT } \\ \text { FY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	$\mathbb{C A N T I L E V E R ~ R E T A I N I N G ~ W A L L ~ (C - I - P) ~}$

GENERAL NOTES

KEYWAY \& WALL JOINT DETAIL (TOP VIEW)

TYPICAL SECTION

C-I-P Gravity Walls constructed as extensions of reinforced concrete retaining walls, except walls of proprietary designs, shall have the same face texture and finish as the
reinforced concrete retaining wall. 2. Concrete for Gravity Wall shall be Class NS per Section 347 .
Concrete for Scheme 3 Junction Slab and Traffic Railing shall Concrete for Scheme 3 Junction Slab and Traffic Railing shall be Class II
the plans.
3. Reinforcing steel shall meet the requirements of Specification Section 931 (Grade 40 or 60). Smooth or Deformed Welded Wire
Reinforcement (WWR) may be substituted on an equal area basis. Reinforcement (war mire spacing for Grade 60 reinforcing steel
Do not increase bar/wire

> Do not it. or WWR.
. When required, for adjunct guiderail, see Index 515-070 or 515-080 as appropriate. For adjunct Type B fence see Index 550-002
Joint Seal: Organic Felt bond breaker in accordance with
Specification Section 400 or Type D-5 geotextile fabric in accordance with Specification Section 985. Mop all contact surfaces of concrete and Organic Felt or geotextile fabric with cut-back asphalt. Stop Organic Felt or geotextile fabric $6^{\prime \prime}$ below top of wall.
wall heights 3 ft . and hi clean gravel or crushed rock drain for Type D-3 geotextile fabric in accordance with Specification Section end of the PVC Drain Pipe. Provide $2^{\prime \prime} \varnothing$ PVC Drain Pipe (Sch. 40) at 10 ft . max. spacing (when Drainage Layer is required). Locate outermost edge of Drain Pipe a minimum of $2^{\prime}-0^{\prime \prime}$ from wall joints. . Cost of reinforcing steel, face texture, finish, joint seal, drain pipes, included in the Contract Unit Price for Concrete Class NS, Gravity Wall. Cost of concrete for Junction Slab in Scheme 3, to be included in Contract Unit Price for Concrete Traffes to be paid for weparately. Slab. Adjunct railings or fences to be paid for separately.

GENERAL NOTES:

1. Use a 1-piece cover, unless the 2 -piece cover is called for in the Plans, except at inlets and manholes
2. Include "Adjustable" on the cover for Type I manhole ad justable frames.
3. For square or rectangular precast drainage structures, use either deformed or smooth WWR meeting the requite orth onsecification 931. WWR must be continuous arove the box and lapped
4. Lap splice horizontal steel in the walls of rectangular structures in accordance with Option 1, 2 or 3 Lap splice horizontal steel in the walls of rectan
as shown in the Wall Reinforcing Splice Details.
5. Welding of splices and laps is permitted. Use AASHTO M259 requirements and restrictions on welds.
6. Rebar straight end embedment of peripheral reinforcement may be used in lieu of ACI standard hooks for top and bottom slabs, except when hooks are specifically called for in the Plans.
7. Precast opening for pipe must be the pipe $O D$ plus $6^{\prime \prime}\left(\pm 2^{\prime \prime}\right.$ tolerance). Use mortar to seal the pipe Dry-pack mortar may be used to seal openings less than $21 / 2^{\prime \prime}$ wide.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes, Contents, Manhole Top Overview, and Manhole Covers
2	Manhole Frames and Manhole Tops
3	Inlet Locking Grates, Subgrade and Base Temporary Drains, and Pipe to Structure Filter Fabric Wrap
4	Drainage Structure Invert, Sump Bottom, Wall Reinforcing Splice Details, and Typical Slab to Wall Details
5	Precast Option and Equivalent Reinforcement substitution
6	Construction Joints and Minimum Box Riser Segment Dimensions
7	Skewed Pipe in Rectangular Structures
8	Miscellaneous Pipe Connection Details

воттом

elevation
ELEVATION
-PIECE COVER
2-PIECE COVER

LAST REVISION $11 / 01 / 20$	\|chen	$\begin{array}{cc} F Y \text { 2023-24 } \\ \text { FDANDARD PLANS } \end{array}$	S UPPLEMENTARY DETAILS FOR DRAINAGE STRUCTURES	$\begin{gathered} \text { INDEX } \\ 425-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 8 \end{aligned}$

TABLE 1

WEIGHT OF CASTINGS (Ib) Frame \begin{tabular}{l|l|l|}
\& $2^{\prime}-0^{\prime \prime}$ OPENING \& $3^{\prime}-0^{\prime \prime}$ OPENING

\cline { 2 - 3 } \& \&

\hline $\begin{array}{l}\text { Frame } \\
\text { Type }\end{array}$ \& Frame \& Cover (Std.) \& Frame \& $\frac{\text { 2-Piece Cover }}{\text { Inside Outside Total }}$

\hline 1 \& 1220 \&

\hline
\end{tabular}

II	145	190	255	190	220
III	90	190	180	190	220

Frame Type I in Table 1, includes Adjustable frames.

PLAN

SECTION \qquad $\underset{\text { (For Curb Inlets Types } 7 \text { \& 8) }}{\text { TYPE }}$

- TYPE

NOTES:

. Use Class II concrete for Manhole top Type 7 slabs.
2. Manhole top Type 7 slabs may be of cast-in-place or precast construction. The optional key is for precast tops and in lieu of dowels. Omit
3. Manhole top Type 8 may be of cast-in-place, precast concrete construction, or brick construction. For concrete construction, use the same
4. Use construction joint options, as shown on Sheet 6 to secure manhole tops to structures.
5. Frames may be adjusted to a maximum 12" height with brick or precast ASTM C478 grade rings.
6. Manhole ton Type 8 may be substituted for a Type 7 , if the minimum dimensions are not reduced
7. Manhole top Type 7 may be substituted for Type 8, if the minimum thickness (h) above pipe opening cannot be maintained with Type
=TYPE I ADJUSTABLE FRAME
D DESCRIPTION:

THRU-BOLT

J-TYPE

ADHESIVE BONDDED
ANCHOR

NOTES:

1. Install either a $1 / 2^{\prime \prime} \varnothing \times 1^{\prime \prime}$ Diameter Threaded Straight (Thru-Bolt), a J-Type
or an adhesive Bonded Anchor Eyebolt.
2. Install a $5 / 16^{\prime \prime}$ Chain and $3 / 16^{\prime \prime}$ Cold Shuts. When chaining two grates
together provide adequate loop for easy handling.
3. Install adhesive bonded anchor option with a minimum of $4^{\prime \prime}$ embedment, and

EYEBOLT AND TABLE 2					
CHAIN REQUIREMENTS					

LOCKING GRATES TO INLETS

NOTES:

1. Bevel cut upper stub to match forming for apron face. Capping or plugging of upper stub is not required. Remove friable base material at stub opening to permit covering of opening with structural course material.
2. Remove riprap, cement PVC cap on lower stub, and place compacted fill in entrance prior to placing base material.
\qquad

NOTE: For all structures unless excluded by special detail.
\qquad

NOTES:

1. Construct sumps in inlets and manholes connecting to

French Drains unless excluded in the Plans.
2. Construct sumps only where called for in the Plans at all other locations.
3. Construct weep holes in sump bottom only where called for in the Plans.
(Option 1) Lap Splice: At Quarter Point
(30 Bar Diameter or vertical wire
Spacing Plus 2" for WWR)

NOTES

1. See Sheet 6 for optional construction joints.

Bend bars as required to maintain cover.

example table of equivalent steel area								
SCHEDULE	GRADE 60 REINFORCING BAR		EQUIVALENT GRADE 40 REINFORCING BAR		EQUIVALENT 65 KSI SMOOTH WELDED WIRE REINFORCEMENT		EQUIVALENT 70 KSI DEFORMED WELDED WIRE REINFORCEMENT	
	Bar Size \& Spacing	$\begin{gathered} \text { Steel } \\ \text { Area } \\ \text { (in²/ft) } \end{gathered}$	Bar Size \& Spacing	$\begin{gathered} \hline \text { Steel } \\ \text { Area } \\ \left(i i^{2} / f t\right) \end{gathered}$	Style Designation	$\begin{gathered} \hline \text { Steel } \\ \text { Area } \\ \text { (in } 1 / \text { ft }) \end{gathered}$	Style Designation	$\begin{gathered} \hline \text { Steel } \\ \text { Area } \\ \text { (in } / \text { /ft }) \end{gathered}$
A	$\begin{aligned} & \text { \#3 @ 6¹2" Ctrs. } \\ & \text { \#4 @ 12" Ctrs. } \end{aligned}$	0.20	\#3 @ 41/2" Ctrs. \#4@ 8" Ctrs. \#5 @ 12" Ctrs.	0.30	$\begin{aligned} & \hline 3^{\prime \prime} \times 3^{\prime \prime}-W 4.6 \times W 4.6 \\ & 4^{\prime \prime} \times 4{ }^{4 \prime}-W 6.2 \times W 6.2 \\ & 6^{\prime \prime} \times 6^{\prime \prime}-W 9.2 \times W 9.2 \end{aligned}$	0.1846	$\begin{aligned} & \hline 3^{\prime \prime} \times 3^{\prime \prime}-D 4.3 \times D 4.3 \\ & 4^{4} \times 4^{\prime \prime}-D 5.7 \times D 5.7 \\ & 6^{\prime \prime} \times 6^{\prime \prime}-D 8.6 \times D 8.6 \end{aligned}$	0.1714
B	$\begin{aligned} & \text { \#3 @ } 51 / 2 /^{\prime \prime} \text { Ctrs. } \\ & \text { \#4 @ 10" Ctrs. } \end{aligned}$	0.24	\#3 @ $3^{1 / 2}$ Ctrs. \#4 @ $6^{1 / 2}$ " Ctrs. \#5 @ 10" Ctrs	0.36	$3^{\prime \prime} \times 3^{\prime \prime}-W 5.5 \times W 5.5$ $4^{\prime \prime} \times 4^{\prime \prime}-$ W7.4xW7. 4 $6^{\prime \prime} \times 6^{\prime \prime}-$ W $11.1 \times$ W 11.1	0.2215	$\begin{gathered} 3^{3} \times 3^{4 " D}-D 5.1 \times D 5.1 \\ 4^{4} \times 4^{4-}-D 6.9 \times D 6.9 \\ 6^{\prime \prime} \times 6^{\prime \prime}-D 10.3 \times D 10.3 \end{gathered}$	0.2057
Special 1	$\begin{aligned} & \text { \#3@ 5" Ctrs.. } \\ & \text { \#4@ 9" Ctrs. } \end{aligned}$	0.267	\#3 @ 3" Ctrs. \#4 @ 6" Ctrs \#5 @ 9" Ctrs.	0.40	$\begin{gathered} 3^{\prime \prime} \times 3^{\prime \prime}-W 6.2 \times W 6.2 \\ 4^{\prime \times} \times 4^{\prime \prime}-W 8.2 \times W 8.2 \\ 6^{\prime \prime} \times 6^{\prime \prime}-W 12.3 \times W 12.3 \end{gathered}$	0.2465	$\begin{gathered} 3^{\prime \prime} \times 3^{\prime \prime}-D 5.7 \times D 5.7 \\ 4^{4 \prime} \times 4^{\prime \prime}-D 7.6 \times D 7.6 \\ 6^{\prime \prime} \times 6^{\prime \prime}-D 11.4 \times D 11.4 \end{gathered}$	0.2289
c	$\begin{aligned} & \text { \#3 @ 31/2" Ctrs. } \\ & \text { \#4 @ } 6^{1 / 2} \text { ctrs. } \\ & \text { \#5 @ 10" Ctrs. } \end{aligned}$	0.37	\#4 @ 4" Ctrs. \#5 @ 61⁄2" Ctrs. \#6 @ $9^{1 / 2 / 2}$ Ctrs.	0.555	3"×3"-W8.5×W8.5 $4^{\prime \prime} \times 4^{\prime \prime}-$ W $11.4 \times$ W 11.4 $6^{\prime \prime} \times 6^{\prime \prime}-W 17.1 \times W 17.1$	0.3415	$\begin{gathered} 3^{\prime \prime} \times 3^{\prime \prime}-D 7.9 \times D 7.9 \\ 4^{4} \times 4^{\prime \prime}-D 10.6 \times D 10.6 \\ 6^{\prime \prime} \times 6^{\prime \prime}-D 15.9 \times D 15.9 \end{gathered}$	0.3171
D	\#4 @ 41/2" Ctrs. \#5 @ 7" Ctrs. \#6 @ 10" Ctrs	0.53	\#4 @ $3^{\prime \prime}$ ctrs. \#5 @ 41/2" Ctrs. \#6 @ 6 ¹/2" Ctrs.	0.795	$3^{\prime \prime} \times 3^{\prime \prime}-$ W $12.2 \times$ W 12.2 $4^{\prime \prime} \times 4^{\prime \prime}-$ W $16.3 \times$ W 16.3 6"x6"-W24.5xW24.5	0.4892	$3^{\prime \prime} \times 3^{\prime \prime}-D 11.4 \times D 11.4$ $4^{4 \prime} \times 4^{\prime \prime}-D 15.1 \times D 15.1$ $6^{\prime \prime} \times 6^{\prime \prime}-\mathrm{D} 22.7 \times \mathrm{D} 22.7$	0.4543
E	\#4@ 3" ctrs. \#5 @ $5^{\prime \prime}$ Ctrs. \#6 @ 7" Ctrs.	0.73	\#5 @ $31 / 2^{\prime \prime}$ Ctrs. \#6 @ 41/2" Ctrs. \#7 @ $61 / 2$ Ctrs.	1.095	$3^{\prime \prime} \times 3^{\prime \prime}-$ W $16.8 \times$ W 16.8 $4^{\prime \prime} \times 4^{\prime \prime}$-W22.5 WW22.5 $6^{\prime \prime} \times 6^{\prime \prime}-$ W $33.7 \times$ W 33.7	0.6738	$3^{\prime \prime} \times 3^{\prime \prime}-D 15.6 \times D 15.6$ $4^{4 \prime} \times 4^{\prime \prime}-D 20.9 \times D 20.9$ $6^{\prime \prime} \times 6^{\prime \prime}-D 31.3 \times D 31.3$	0.6257
F	$\begin{gathered} \text { \#5 @ 31/2" ctrs. } \\ \text { \#6 @ 5" Ctrs. } \\ \text { \#7 @ } 7^{\prime \prime \prime} \text { ctrs. } \end{gathered}$	1.06	\#6 @ 3" Ctrs. \#7 @ 41/2" Ctrs. \#8 @ $6^{\text {" }}$ Ctrs.	1.59	$3^{\prime \prime} \times 3^{\prime \prime}-W 24.5 \times$ W24.5 $4^{\prime \prime} \times 4^{\prime \prime}-$ W $32.6 \times$ W 32.6 $6^{\prime \prime} \times 6^{\prime \prime}-W 48.9 \times W 48.9$	0.9785	$\begin{aligned} & 3^{\prime \prime} \times 3^{\prime \prime}-D 22.7 \times D 22.7 \\ & 4^{\prime \prime} \times 4^{\prime \prime}-D 30.3 \times D 30.3 \\ & 6^{\prime \prime} \times 6^{\prime \prime}-D 45.4 \times D 45.4 \end{aligned}$	0.9086
Special 2	$\begin{aligned} & \text { \#5 @ 3" Ctrs. } \\ & \text { \#6 @ 4 } 4^{\prime \prime} \text { Ctrs. } \\ & \text { \#7 @ } 5^{1 / 2} \text {. Ctrs. } \end{aligned}$	1.24	$\begin{aligned} & \text { \#7 @ 4" Ctrs. } \\ & \text { \#8 @ } 5^{\prime \prime} \text { Ctrs. } \end{aligned}$	1.86	$3^{\prime \prime} \times 3^{\prime \prime}-W 28.6 \times W 28.6$ $4^{4 \prime} \times 4^{\prime \prime}-W 38.2 \times$ W 38.2 $6^{\prime \prime} \times 6^{\prime \prime}-W 57.2 \times W 57.2$	1.1446	3"×3"-D26.6×D26.6 $4^{\prime \prime} \times 4^{\prime \prime}-D 35.4 \times D 35.4$ $6^{\prime \prime} \times 6^{\prime \prime}-D 53.1 \times D 53.1$	1.0629
G	$\begin{aligned} & \text { \#6 @ } 3^{1 / 2}{ }^{\prime \prime} \text { ctrs. } \\ & \# 7 \text { @ } 5^{\prime \prime} \text { Ctrr. } \end{aligned}$	1.46	$\begin{aligned} & \text { \#7 @ } 3^{\prime \prime} \text { Ctrs. } \\ & \text { \#8 @ 4" Ctrs. } \end{aligned}$	2.19	3" $\times 3^{\prime \prime}-$ W $33.7 \times$ W 33.7 $4^{\prime \prime} \times 4^{\prime \prime}-W 44.9 \times W 44.9$	1.3477	$\begin{aligned} & 3^{\prime \prime} \times 3^{\prime \prime}-D 31.3 \times D 31.3 \\ & 4^{\prime \prime} \times 4^{\prime \prime}-D 41.7 \times D 41.7 \end{aligned}$	1.2514

NOTES:

1. See inlet indexes for optional precast inlet construction details up to depths of 15'
2. Interior dimensions of an Alt. "B" Bottom may be ad justed to reflect these inlet interior
dimensions when precast units are used in conjunction with Alt. "B" Structure Bottoms. dimensions when precast units are used in conjunction with Alt. "B" Structure Bottoms,
Index 425-010.
3. Use concrete meeting the requirements of ASTM C478 or Class IV for precast structures with $6^{\prime \prime}$ wall or slab thickness.
4. Reinforcement may be deformed bar reinforcement or welded wire reinforcement. Bar
reinforcement other than 60 ksi may be used, however only two grades are recogized reinforcement other than 60 ksi may be used, however only two grades are recognized:
Grade 40 and Grade 60 . Smooth welded wire reinforcement will be recognized as having a design strength of 65 ksi and deformed welded wire reinforcement will be recognized
as having a design strength of 70 ksi . The area of reinforcement required as having a design strength of 70 ksi. The area of reinforcement required may be
ad justed in accordance with the Equivalent Steel Area Table provided. Use the following ad justed in accordance with the Equivalent Steel Area Table provided. Use the followi
equations to determine the steel area and spacing for bars not otherwise specified:

$$
\text { Grade } 40 \text { Steel Area }=\text { As } 40=60 / 40 \times \text { As60 }
$$

Smooth Welded Wire Reinforcement Steel Area $=$ As65 $=60 / 65 \times$ As60
Deformed Welded Wire Reinforcement Steel Area $=$ As70 $=60 / 70 \times$ As60
When a reduced area of reinforcement is provided, any maximum bar spacing shown
must also be reduced as determined by the following equations, unless otherwise shem
Max. Grade 40 Bar Spacing $=$ Grade 60 Bar Spacing
Max. Smooth Welded wire Spacing $=$ Grade 60 Bar Spacing $\times 0.86$
Max. Deformed Welded Wire Spacing $=$ Grade 60 Bar Spacing $\times 0.74$
When an increased area of reinforcing is provided, the maximum bar spacing may be
increased by the squared ration of increased steel area, but not to exceed $12^{\prime \prime}$:
Max. Bar Spacing Provided $\leq=$ Max. Bar Spacing Required $\times\left(\frac{\text { Steel Area Provided }}{\text { Min. Steel Area Required }}\right)^{2}$ Use wire no smaller than than W3.1 or D4.O, or larger and with spacing $8^{\prime \prime}$ or less. Use bar Use wire no smaler than than wi.1 or D4.0, or larger and with spacing 8" or less. Use bar
reinforcement displaying the minimum yield designation grade mark, or either the number 60 or reinforcement displaying the minimum yield designation grade mark, or either the number 60 or
one (1) grade mark line to be acceptable at the higher value. Use maximum bar spacing no greater
than than two (2) times the slab thickness with a maximum spacing of 12 " or three (3) times the wall thickness, with a maximum spacing of 18 "for vertical bars and $122^{\prime \prime}$ for horizontal bars. Wires
smaller than W3.1 or D4.0 may be used in the walls of ASTM C 478 round structure bottoms smaller than w3. 1
and round risers.
5. Fiber-reinforced concrete may be substituted for conventional steel reinforcement in accordance with the Structures Design Guidelines. Submit shop drawings corresponding to an approved

top slabs to wall joints

NOTES:

1. One or more types of joints may be used in a single structure, except brick wall structure. Brick wall construction is permitted on circular units only.
2. All grouted joints are to have a maximum thickness of $1^{\prime \prime}$.
3. Keyways are to be a minimum of $11 / 2^{\prime \prime}$ deep.
4. Joint dowels are to be \#4 bars, $12^{\prime \prime}$ long with a minimum of 6 bars per joint approximately evenly spaced for circular structures or at maximum 12" spacing for rectangular structures. Bars may be either Adhesive Bonded Dowels in accordance with Specification 416, or placed approximately $6^{\prime \prime}$ into fresh oncrete leaving the remainder to extend into the secondary cast. Welded w equivalent steel area table on Sheet 5 .
5. Minimum cover on dowel reinforcing bars is $2^{\prime \prime}$ to outside face of structure
6. Seal joints between wall segments and between wall segments and top or bottom slabs with preformed plastic gasket material inaccordance with Specification 430 or non-shrink grout in accordance with Specification 934.
7. Insert products approved by the Engineer may be used in lieu of dowel embedment.

When
Then (Reqd.) $h \geq 0.4 \mathrm{H}$ $h \geq H$ (Min.)

H (Min.) $\leq h \geq 0.4 \mathrm{H}$
NOTES:
8. Segments may pe inverted. Opening for pipe is
the pipe 00 plus $6^{\prime \prime}\left(\pm 2^{\prime \prime}\right.$ tolerance).
9. If h can not be attained, then a top or bottom slaab
must be attached to the segment as shown below.

TABLE 3	
Minimum Value for H	
H (min. $)$	Box or Riser Diameter
$I^{\prime}-0^{\prime \prime}$	$3^{\prime}-6^{\prime \prime} \& 4^{\prime}-0^{\prime \prime}$
$I^{\prime}-6^{\prime \prime}$	$5^{\prime}-0^{\prime \prime} \& 6^{\prime \prime}-0^{\prime \prime}$
$2^{\prime}-0^{\prime \prime}$	$>^{\prime \prime} 6^{\prime}-0^{\prime \prime}$

RISER SEGMENTS OTHER THAN DOWEL \qquad

NOTES:

1. h may be less than $\sigma^{\prime \prime}$ when approved by the Engineer
but not for inlet segments at finish grade elevation.
2. Dowel construction joint or monolithic cast only.

- SEGMENTS for slab to wall dowel construction joints or monolithic cast \qquad
- CONSTRUCTION JOINT OPTIONS \qquad MINIMUM BOX AND RISER SEGMENT DIMENSIONS \qquad

CONSTRUCTION JOINT OPTIONS AND MINIMUM BOX AND RISER SEGMENT DIMENSIONS
N:

PLAN VIEW
 for Cast-In-Place Structures or elliptical pipe openings when approved by the Engineer.
MAXIMUM PIPE SKEW FOR PRECAST ROUND OPENINGS

PLAN VIEW
NOTE:
vertical wire sar diameter for deformed wire or bar, but not less than — MULTIPLE PIPE CONNECTIONS PRECAST ROUND STRUCTURES \qquad

multiple parallel pipe connections - rectangular structures

GENERAL NOTES:

Specitcaion 425 and Index 425-00
Type P standard structure bottoms are 4'-0"diameter and smaller (Alt. A) and $3^{\prime \prime}-6^{\prime \prime}$ squar (Alt. B). Larger standard structure bottoms are designated Type J. Risers are permitted for all structures.
3. Walls of circular structures (Alt. A) constructed in place may be of brick or reinforced concrete. Construct precast and rectangular structures (Alt. B) with reinforced concrete only
4. Wall thickness and reinforcement are for either reinforced cast-in-place or precast concrete units except that precast circular units may be furnished with walls in accordance with ASTM C478 (See Table 1).
5. Top and bottom slab thickness and reinforcement are for precast and cast-in-place construction Use Class II concrete, except when Class IV concrete is shown in the Plans.
6. Alt. A or Alt. B structure bottoms may be used in conjunction with curb inlet tops Types 1, 2, 3, 4 $5,6,9$, and 10, and any manhole or junction box. Alt. B structure bottoms may be used in conjunction with curb inlet Types $7 \& 8$, or any ditch bottom inlet.
Rectangular structures may be rotated as directed by the Engineer in order to facilitate connections between the structure walls and pipes.
8. Use straight embedment reinforcement in top and bottom slabs, except when ACI hooks are specifically required
9. Construct corner fillets as shown for rectangular structures used with circular risers and inlet throat and when used on skew with rectangular risers, inlets, and inlet throats. Construct fillets in the top slab of the Alt. A structure bottoms when used with the T
10. Units larger than specified standards may be substituted at the contractor's option when these units will not cause or increase the severity of utility conflicts. Furnish such larger units at no additional cost to the Department. Larger Alt. A units cannot replace Alt. B units without approval of the Engineer. This Note applies to this Index only.

REINFORCEMENT NOTES

1. Locate wall reinforcement in rectangular structures as shown in the WALL REINFORCEMENT SPLICE DETAILS in Index 425-001.
2. Provide a minimum $2^{\prime \prime}$ clear cover for all reinforcement unless otherwise noted and except for 3 '"diameter ASTM C478 units.
3. Additional bars used to restrain hole formers for precast structures with grouted pipe connections may be left flush with the hole surface.
4. Cut or bend reinforcement at pipe openings to maintain cover
5. Remove exposed ends of reinforcing at precast pipe openings and grouted joints to $1^{\prime \prime}$ below the concrete surface and seal with a Type F Epoxy meeting the requirements of Specification 926 .
6. Equivalent area smooth or deformed welded wire reinforcement may be substituted in accordance with Index 425-001.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Dimensional and Reinforcing Details
3	Tables 1, 2, 3, and 4
4	Tables 5 and 6

alternate a

alternate B

table 1- alternate A - structures									
TYPE	STRUCTURE/RISER DIAMETER (ft)	CAST-IN-PLACE ITEMS CLASS II CONCRETE			PRECAST ITEMS				
					CLASS II CONCRETE			ASTM 4478	
		$\begin{gathered} t_{1} \\ R I S E R \\ (i n .) \end{gathered}$	$\begin{gathered} t_{2} \\ \text { BOTTOM } \\ \text { (in.) } \end{gathered}$	$\begin{array}{c\|} A_{S} \\ \left(i n^{2} / / f t .\right) \end{array}$	$\begin{gathered} t_{1} \\ \text { RISER } \\ (i n .) \end{gathered}$	$\begin{gathered} t_{2} \\ \text { BOTTOM } \\ \text { (in.) } \end{gathered}$	$4 \begin{gathered} A_{S} \\ \left(i n^{2} / f f t .\right) \end{gathered}$	$\begin{gathered} t_{1} \text { or } t_{2} \\ \text { (in.) } \end{gathered}$	$\begin{gathered} A_{2} 2^{* *} \\ \text { (in.2ft.) } \end{gathered}$
P	$3^{\prime \prime}-6^{\prime \prime}$	6	8	0.20	6	8	0.20	$4^{* *}$	0.105
P	$4^{\prime}-0^{\prime \prime}$	6	8	0.20	6	8	0.20	$5^{* *}$	0.120
J	$5^{\prime}-0^{\prime \prime}$	-	8	0.20	-	8	0.20	$6^{* *}$	0.150
J	$6^{\prime}-0^{\prime \prime}$	-	8	0.20	-	8	0.20	6	0.180
J	$7^{\prime \prime}-0^{\prime \prime}$	-	8	0.20	-	8	0.20	7	0.210
J	$8^{\prime}-0^{\prime \prime}$	-	8	0.20	-	8	0.20	8	0.240
J	$10^{\circ}-0^{\prime \prime}$	-	10	0.40\#\#	-	10	0.40\#\#	10	0.300
J	$122^{\prime}-0^{\prime \prime}$	-	10	0.40\#\#	-	12	0.40\#\#	12	0.360

t_{1} and t_{2} - Wall Thickness.
A_{s} - Vertical and horizontal areas of reinforcement.
\#\#Provide 0.20 eq. in.2/ft. at each face, $12^{\prime \prime}$ max. bar spacing.
**Modified minimum wall thickness.
***Min. total circumferential reinforcement for continuous steel hoops:
$A 2=0.40 \mathrm{sq}$. in. for riser section height equal or less than $2^{\prime}-0^{\prime \prime}(2$ hoop min. $)$
$A_{2}=0.60$ sq. in. for riser section height more than $2^{\prime}-0^{\prime \prime}$ up to $4^{\prime}-0^{\prime \prime}(3$ hoop min. $)$ Areas of reinforig for precast
Areas of reinforcing for precast Items are based on Grade 60 reinforcing.
No reduction in the area of reinforcement is allowed for welded wire fabric in Table 1 .
Area of vertical reinforcing may be reduced in accordance with ASTM C478.

| TABLE | 3 REINFORCING |
| :---: | :---: | :---: | :---: | :---: | SCHEDULE

See Table 4 for Reinforcing Schedule.

	Inside Outside		Inside Outside										
$\geq 1.17^{\prime}<12^{\prime}$	A12	A12	$\geq 1.1^{\prime}<8^{\prime}$	C6.5	C6.5	$8^{\prime \prime}$							
$12^{\prime}<8^{\prime \prime}$	C0.							$\geq 1.17^{\prime}<12^{\prime}$	$A 12$	$A 12$	$\geq 1.17^{\prime}<8^{\prime}$	$C 6.5$	$C 6.5$
:---:	:---:	:---:	:---:	:---:	:---:								
$12^{\prime}<28^{\prime}$	$C 6.5$	$C 6.5$	$8^{\prime}<15^{\prime}$	$D 7$	$8^{\prime \prime}$								
$28^{\prime}-40^{\prime}$	$D 7$	$D 7$	$15^{\prime}<23^{\prime}$	$E 5$	$8^{\prime \prime}$								
$8^{\prime}-55$	$8^{\prime \prime}$												

Rectangular structures

TABLE 4 NOTES

1. Wall depth is measured to the top of the bottom slab for boxes 2. Wall height is the distance between top of lower slab to bottom of upper sla, oMaximum wall height is 12 ' for wall
exceeding 5 ,' or 10^{\prime} for wall lengths exceeding 12 .'
2. Wall lengths exceeding $6^{\prime}-0^{\prime \prime}$ require two layers of reinforcing
(See abale 4) with 2^{2} of cover from the horizontal bars to the
inside and outside faces for each layer.
3. Wall lengths exceeding the dimensions or depths shown in
Table 4 or $122^{\prime}-0^{\prime \prime}$ diameter require a special design.
4. Wall thickness and reinforcing for rectangular structures is

based on the longer wall length. | | | $23^{\prime}-40^{\prime}$ | F5 | F5 |
| :--- | :--- | :--- | :--- | :--- |
| | $8^{\prime \prime}$ | | | |
| | SIZE: $10^{\prime}-0^{\prime \prime}$ | | | | SIZE: $10^{\prime}-0^{\prime \prime}$

$\geq 1.17^{\prime}<10^{\prime}$	$B 10$	$B 10$	$\geq 1.17^{\prime}<10^{\prime}$	$D 7$
$10^{\prime}<21^{\prime}$	$C 65$	$C 65$	$10^{\prime}<17^{\prime}$	C5
$0^{\prime \prime}$	$8^{\prime \prime}$			
$2^{\prime}<26^{\prime}$	$D 7$	$8^{\prime \prime}$	$17^{\prime}<20^{\prime}$	55

$21^{\prime}<26^{\prime}$	$D 7$	$D 7$	$17^{\prime}<26^{\prime}$	F5	F5
$26^{\prime}-40^{\prime}$	$C 6.5$	$C 6.5$	$26^{\prime}-40^{\prime}$	F5	F5

TABLES 1, 2, 3, AND 4
\square

GENERAL NOTES:

1. Work this Index with Index 425-001 and Index 425-010.
2. Conform finished grade and slope of the Inlet Tops to the finished cross slope and grade of the adjacent sidewalk andor border.
3. Provide $1^{1 / 4}$ " minimum cover for steel in the Inlet To
4. Construction of Inlet Tops are either precast or cast-in-place.
5. For precast units, the rear wall and apron may be precas as a separate piece from the top slab. Provide a minimu of 7 ~ \#4 dowels, otherwise install in accordance with Index 425-001 "OPTIONAL CONSTRUCTION JOINTS",
6. These inlets are designed for use with standard curb and gutter Type E and Type F.
7. Use only round concrete support posts.

Curb and Gutter

CURB INLET TOPS

| $\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$ | \|c|cher | $\begin{array}{cc} \text { FDY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$ | $\mathbb{C U R B} \mathbb{I N L E T} T O P$ TYPES 1, 2, 3, AND 4 | $\begin{gathered} \text { INDEX } \\ 425-020 \end{gathered}$ | $\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 3 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

TOP DIMENSIONAL DETAILS

PLAN
TYPE 1 AND 3

PLAN
TYPE 2 AND 4
-
\#6 Bars Top,
$\# 7$ Bars Bottom \#7 Bars Botto
(See Sheet 3
Sor Sper (See Sheet ${ }^{3}$)
for Spacing)

TOP REINFORCING DETAILS

TOP DIMENSIONAL AND TOP REINFORCING DETAILS

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$	DESCRIPTION:		FY 2023-24 STANDARD PLANS	CURB INLET TOP TYPES 1, 2, 3, AND 4	$\begin{gathered} \text { INDEX } \\ 425-020 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 3 \end{aligned}$

inlet section with type f curb and gutter

inlet section with type e curb and gutter

4'-O" DIA. STRUCTURE BOTTOM
INLET SECTION WITH TYPE F CURB AND GUTTER

3'-6" DIA. STRUCTURE BOTTOM

4'-0" DIA. Structure bottom
INLET SECTION WITH TYPE E CURB AND GUTTER

TRANSVERSE REINFORCING DETAILS
TRANSVERSE DIMENSIONAL AND REINFORCING DETAILS

LAST REVISION $11 / 01 / 20$	DESCRIPTION:	$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	$\mathbb{C U R B}$ INLET TOP TYPES 1, 2, 3, AND 4	$\begin{gathered} \text { INDEX } \\ 425-020 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 3 \end{aligned}$

GENERAL NOTES:

1. Work this Index with Index 425-001 and Index 425-010.
2. Conform the finished grade and slope of the inlet tops with the finished cross slope and grade of the proposed sidewalk and/or border
3. For inlets constructed on a curve, refer to the plans to determine the radius. Bend steel when necessary
4. Use Grade 60 reinforcing bars with $11 / 4$ minimum cover unless otherwise shown, see Sheet 6 for equivalent area Welded Wire Reinforcement details.
5. Inlet tops may be either cast-in-place or precast concrete. Conform precast units to the dimensions shown or in accordance with approved shop drawings.
6. Corner fillets are required at inlet opening for precast units or C-I-P units used in conjunction with circular inlet bottoms or skewed rectangular inlet boxes. Finish top of fillets flush with drain throat bottom and match slope.
7. For Type E curb and gutter, transition the shape of the curb over the gutter transition length to match he face of the inlet (Type Ft)
8. Meet the requirements of ASTM A36/A36M with steel used for frames and grates.
9. Use either cast iron grates or steel grates.

DETAIL " A " $\bar{\square}$

TYPE 5 DIMENSIONAL DETAILS

Top of Curb Control Line

NOTES:

1. For location of Sections D-D thru H-H see Sheet 2.
2. Match slope of ad jacent curb with $2^{\prime \prime}$ top radius
and $3 / 4^{\prime \prime}$ bottom chamfer of $1^{11 / 4}$ " radius.
3. See Plans for bottom and riser type.

SECTION ESE

SECTION FF

DIMENSIONAL DETAILS

SECTION G-G

CAST-IN-PLACE DIMENSIONAL AND REINFORCING DETAILS $\mathbb{C U R B} \mathbb{N} L E T$ TOP TYPES 5 AND 6
FY 2023-24
STANDARD PLANS
\qquad

GENERAL NOTES:

1. Work this Index win Index 425-001 and Index 425-010.
2. Use Grade 60 reinforcing bars with $2^{\prime \prime}$ minimum cover unless otherwise shown. See Index 425-001 for equivalent area of welded wire fabric. Cut or bend bars out of way of pipe when necessary. Bars to clear pipe by $11 / 2^{\prime \prime}$
3. Recommended maximum pipe sizes are $24^{\prime \prime}$ Iongitudinal and $30^{\prime \prime}$ transverse. For larger pipe, inlets with Alt. B bottoms, Index 425-010 is recommended.
4. All dimensions are for both precast and cast-in-place inlets unless otherwise shown.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Dimensional and Reinforcing Details

CURB INLET TYPE (Bottom Not Shown)

LAST	2 DESCRIPTION:
$\begin{array}{\|l} \text { REVISION } \\ 10 / 01 / 20 \end{array}$	$\stackrel{5}{5}$

GENERAL NOTES:

1. Work this Index with Index 425-001 and Index 425-010
2. Use Grade 60 reinforcing bars with $2^{\prime \prime}$ minimum cover unless otherwise shown. See Index 425-001 for equivalent area of welded wire fabric. Cut or bend bars out of way of pipe when necessary. Bars to clear pipe by $11 / /^{\prime \prime}$.
3. Recommended maximum pipe sizes are $24^{\prime \prime}$ Iongitudinal and $30^{\prime \prime}$ transverse. For larger pipe, inlets with Alt. B bottoms, Index 425-010 is recommended.
4. All dimensions are for both precast and cast-in-place inlets unless otherwise shown.

IRB INLET TYPE

GENERAL NOTES:

1. Work this Index with Index 425-001 and Index 425-010.
2. Orient grate with vanes directed toward predominant flow
3. Provide $111 / 4$ minimum cover for steel in slab tops unless otherwise shown. Tops may be either cast-in-place or precast concrete.
4. Place top slab openings such that 2 edges of inlet frame will be located directly above bottom wall or riser wall for Alternate B applications..
5. When used on a structure with dimensions larger than those detailed on Sheet 3 and risers are not applied, construct the top slab using Index 425-010 with the slab opening adjusted to 24 " $\times 36$ ". The "Special Top S/ab" on Index $425-010$ is not permitted.
6. Frame may be adjusted with one to six courses of brick.
7. Vaned grates with approximately equal openings that satisfy AASHTO HL-93 loading are permitted. Provide reversible (right or left) grates.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Frame and Grate Details
3	Top Slab Details

CURB INLET TOP TYPE 9

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 10 / 01 / 20 \end{gathered}$	DesCRIPTION:	$\begin{array}{cc} \text { FDOTY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	$\mathbb{C U R B}$ INLET TYPE 9	$\begin{gathered} \text { INDEX } \\ 425-024 \end{gathered}$	SHEET 1 of 3

gENERAL NOTES:
Work this Index with Index 425-001 and Index 425-010.
2. Orient grate with vanes directed toward predominant flow
3. Provide $1 \frac{1}{4}$ " minimum cover for steel in slab tops unless otherwise shown. Tops may be either cast-in-place or precast concrete
4. Place top slab openings such that 2 edges of inlet frame will be located directly above bottom or riser walls, for Alternate B applications.
5. When used on a structure with dimensions larger than those detailed on Sheet 3 and risers are not applied, Construct the top slab using Index 425-010 with the slab opening ad justed to 22" $\times 24$ "
6. Frame may be adjusted with one to six courses of brick.
7. Vaned grates with approximately equal openings that satisfy AASHTO Vaned grates with approximately equal openings that satisfy AASHTO
HL-93 loading are permitted. Provide reversible (right or left) grates.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Frame and Grate Details
3	Top Slab Details

CURB INLET TOP TYPE 10

PLAN

DETAIL "B"

G GRATE DETAILS

SECTION A-A

SECTION B-B

GENERAL NOTES:

Work this Index with Index 425-001 and Index 425-010.
2. Where called for in the Plans, use this intet in conjunction with Median Barrier per Index 521-001.
3. Inlet Descriptions:

Type 1: Inlet on one side of Median Barrier
Type 2: Inlet on both sides of Median Barrier
4. See Index $425-040$ for grate details. Use the parallel bar grate unless
reticuline grate is called for in the Plans.
5. Chamfer all edges to $3 / 4$ or tool to $1 / 4$ radius.
6. Use Grade 60 \#4 bars for inlet wall reinforcing. Position horizontal wall reinforcing $3^{\prime \prime}$ from the inside face unless otherwise shown. Equivalent areas
7. Use Grade 60 \#4 or \#5 bars for barrier reinforcing as required to match the stirrups and longitudinal steel of the adjacent Median Barrier per Index 521-001 rovide $2^{\prime \prime}$ or $21 / 2^{\prime \prime}$ reinforcing steel cover to match the adjacent barrier reinforcing cover unless otherwise shown. Match the stirrup spacing of the adjacent barrier. Run longitudinal steel bars over the full length of the Concrete Barrier Transitio splices as required.
. Dimensions are for both precast and cast-in-place inlets unless otherwise noted.
9. Install one layer of ASTM D6380 Class S, Type III organic felt bond breaker between inlet and barrier, including footings.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Type 1 and 2 Dimensional and Reinforcing Details
3	Type 1 Collar Dimensional and Reinforcing Details
4	Type 2 Collar Dimensional and Reinforceing Details

Median Barrier

TYPE 1 COLLAR DIMENSIONAL AND REINFORCING DETAILS

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 10 / 01 / 20 \end{gathered}$	D DESCRIPTION:	$\begin{array}{cc} \text { FDOTY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$		$\begin{gathered} \text { INDEX } \\ 425-030 \end{gathered}$	$\begin{gathered} \text { SHEET } \\ 3 \text { of } 4 \end{gathered}$

GENERAL NOTES

2. When called for in the Plans, use this inlet in conjunction with median or shoulder barrier per Index 521-001 or a barrier with junction slab and wall coping per Index 521-610
3. Reinforce the upper $2^{\prime}-3^{\prime \prime}$ of the inlet in accordance with sections $C C, D D$, and $E E$ regardless of construction method.
4. Chamfer exposed edges and corners to $3 / 4 /$ or tool to $1 /{ }^{1 / 2}$ radius.
5. Field installation of a roller bar will not be permitted. Adjust folerance during fabrication or casting, or, match grate to structure prior to galvanizing.
6. Use Grade 60, \#4 bars for reinforcing steel. See Index 425-001 for
equivalent area of welded wire fabric.
7. Dimensions are for both precast and cast-in-place inlets unless otherwise noted.
8. Anchor bolts: Use either ASTM A307 hex head bolts cast-in-place, or ASTM A36 or F1554 (Grade 36) galvanized fully threaded rod, adhesive bonded anchors installed in accordance with Specification 416. Rods must be a minimum
of $6^{\prime \prime}$ long with 4" minimum embedment with one ASTM 194 or A56 heavy hex of $6^{" 1}$ long with 4in minimum embedment with one ASTM 194 or A563 heavy hex $_{\text {head nut and one ASTM F436 flat washer each. Hot-dip galvanize anchor bolts, }}$ nuts, and washers.
9. Reduce Cross Slope: Use a flatter cross slope as required to match adjacent grading per the Plans. Reduce vertical dimensions and bar spacing as needed to maintain concrete cover as shown.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Dimensional, Reinforcing, and Steel Grate Details
3	Inlet Collar Dimensional, Reinforcing, and Backwall Plate Details
4	Shoulder Pavement Wrap, Barrier Type Examples, and Structure Bottoms

LAST	2 DESCRIPTION:
revision 10/01/20	

Edge of Pavement
LOW SIDE SUPERELEVATION

Junction slab and wall coping

STEM AND FOOTING

alternate b structure bottom

ALTERNATE B STRUCTURE BOTTOM NOTE: Alt. B Structure Bottom Only. See Index 425-010 = INLET WITH STRUCTURE BOTTOM $=$

SHOULDER PAVEMENT WRAP, BARRIER TYPE EXAMPLES, AND STRUCTURE BOTTOMS

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 10 / 01 / 20 \end{gathered}$	DESCRIPTION:	$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	ADJACENT B ARRIER INLET	$\begin{gathered} \text { INDEX } \\ 425-031 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 4 \text { of } 4 \end{aligned}$

GENERAL NOTES:

1. Work this Index with Index 425-001 and Index 425-010.
2. Where called for in the Plans, use this inlet in conjunction with Curb and Gutter Barrier per Index 521-001. Construct Barrier segments shown herein in accordance with requirements
3. Reinforcing shown is grade 60 steel bars. For the equivalent area of welded wire reinforcement for the inlet, see Index 425-001. Reinforcing shall have $2^{\prime \prime}$ minimum cover unless otherwise shown Trim or bend bars to provide $1 \frac{1}{2}$ " clearance around pipe openings.

For Bar Bending Details of Bars 5V2 \& 5U4, see Index 521-001. For all others, see Sheet 2 .
4. Apply a $34^{\prime \prime}$ chamfer or $1 / 4^{\prime \prime}$ radius to all exposed concrete edges.
5. Grates may be fabricated with reticuline bars or with either $1 / 20 \otimes$ welded or $3 / 8^{\prime \prime} \varnothing$ electroforged cross bars and bearing bars as detailed on Sheet 3 .
6. All dimensions are for both precast and cast in place ($(-I-P)$ inlets unless otherwise indicated.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Dimensional, Reinforcing, and Bar Bending
3	Transitional Dimensional, Reinforcing, and Grate Details
4	Inlet Top Dimensional and Reinforcing Details

LAST REVISION $10 / 01 / 20$		$\begin{array}{cc} F Y \text { 2023-24 } \\ \text { FDOT\} } \\ \text { STANDARD PLANS } \end{array}$	$\mathbb{C U R B}$ AND GUTTER BARRIER INLET	$\begin{gathered} \text { INDEX } \\ 425-032 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 4 \end{aligned}$

TRANSITION BARRIER BEGIN CROSS-SLOPE TRANSITION (Align with Curb And Gutter Barrier, See Index 521-001)

SECTION D-D
transition barrier end cross-slope transition (Align With Inlet Structure)

GENERAL NOTES:

1. Work this Index with Index 425-001 and Index 425-010.
2. Use Grade 60 reinforcing bars with $2^{\prime \prime}$ minimum cover unless otherwise noted. See Index 425-001 for equivalent area of welded wire fabric. Cut or bend bars to provide 1/2 minimum clearance around pipe.
3. Chamfer all exposed edges and corners $3 / 4 / 1$ or tool to $\frac{1 / 4 " ~ r a d i u s . ~}{\text {. }}$
4. Dimensions are for both precast and cast-in-place inlets unless otherwise noted

TABLE OF CONTENTS

Sheet	Description

1	General Notes and Contents
2	

Dimensional and Reinforcing Details
Transition and Apron Details
Steel Grate Details
Alternate A Structure Bottom - Top Slab Details

Std. Inlet (J Bottom Option Not Shown)

GUTTER INLET TYPE

LAST REVISION $10 / 01 / 20$			GUTTTER INLET TYPE S	$\begin{gathered} \text { index } \\ 425-040 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 5 \end{aligned}$

PLAN

NOTES:

1. Main Bars are $5^{\prime \prime} x^{1} / 4$ ", notched for

Cross Bars, and spaced equally apart.
2. Cross Bars are $11^{3 / 4} \|^{1 / 1 / 4}$ "and
continuously welded at Main Bar Notches.
3. Main Bars and Cross Bars are flush on top.
\qquad

SECTION I-I

				StEEL GRATE DETAILS	
	FDOT	FY 2023-24 STANDARD PLANS	GUTTER INLETT TYPE S	$\begin{gathered} \text { INDEX } \\ 425-040 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 4 \text { of } 5 \end{aligned}$

GENERAL NOTES:

Work this Index with Index 425-001 and Index 425-010.
2. All reinforcing is Grade 60 bars with $2^{\prime \prime}$ min. cover unless otherwise note See Index 425-001 for equivalent are welded wire fabric. Cut or bend bars out of way of pipe to clear pipe $111^{\prime \prime}$.
3. Chamfer all exposed edges and corners $3 / 4 / 1$ or tool to $^{1 / 4} /$ radius. $^{\text {. }}$.
4. Dimensions are for both precast and cast-in-place inlets unless otherwise noted

TABLE OF CONTENTS:

Sheet	Description

1 General Notes a
2 Dimensional and Reinforcing Details
Steel Grate Details
Alternate A Structure Bottom - Top Slab Details

GUTTER INLET TYPE
(Pipe Opening Not Shown)

LAST REVISION $10 / 01 / 20$		FDOT $\begin{gathered}\text { FY 2023-24 } \\ \text { STANDARD PLANS }\end{gathered}$	$G \mathrm{GUTTER}$ INLET TYPE V	$\begin{gathered} \text { INDEX } \\ 425-041 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 4 \end{aligned}$

optional bar spacing

PLAN

SECTION D-D
RETICULINE GRATE DETAIL
(Two Grates Required per Inlet)

GENERAL NOTES:

Work this Index with Index 425-001 and Index 425-010.
2. All reinforcing is Grade 60 bars with $2^{\prime \prime}$ minimum cover unless otherwise noted. Cut or bend bars out of way of pipe to clear pipe by $1^{1 / 2}$ See Index 425-001 for equivalent area of welded wire fabric:
2. Chamfer all exposed edges and corners $3 / 4$ " or tooled to $1 / 4$ " radius,

All dimensions are for both precast and cast-in-place inlets unles, otherwise noted.
5. Quantities are for informational and estimating purposes only.

Sheet	Description
1	General Notes and Contents
2	Dimensional, Reinforcing, and Steel Grate Details
3	Concrete Apron and Sodded Area Details
4	Alternate A Structure Bottom - Top Slab Details

A Structure Bottom - Top Slab Details

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 10 / 01 / 20 \end{gathered}$	DesCRIPTION:	$\begin{array}{cc} \text { FDOTY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	DITCH BOTTOM INLET TYPE A	$\begin{gathered} \text { INDEX } \\ 425-050 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 4 \end{aligned}$

GENERAL NOTES

Work this Index with Index 425-001 and Index 425-010.
2. All reinforcing is Grade 60 bars with $2^{\prime \prime}$ minimum cover unless otherwise noted See Index 425-001 for equivalent area of welded wire fabric. Bars to be cut or bent for min. $11 / 2$ " clearance around pipe.
3. Chamfer all exposed edges and corners $3 / /^{\prime \prime}$ or tooled to $1 / 4^{\prime \prime}$ radius.
4. Dimensions are for both precast and cast-in-place inlets unless otherwise noted.
5. Quantities are for informational and estimating purposes only.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Dimensional, Reinforcing, and Grate Details
3	Traversable Top Details
4	Concrete Apron and Sodded Area Details
5	Alternate A Structure Bottom - Top Slab Details

E

PLAN

$$
\overline{\Longrightarrow \quad}
$$

- SINGLE SLOT \qquad

NOTES:

1.These traversable tops are for new or existing Type B Inlets and for conversion of existing Type X Inlets,
2. Inlet box (line type indicates existing box to facilitate depiction of partial construction on existing inlets)
3. On new boxes the traversable top may be cast as a monolithic unit or cast in segments, and the location of this line may be lower to facilitate handling and placement; however, the slot depth is to remain at 9 inches. See Index 425-001 for top to wall connection. For converting to traversable tops on existing inlets remove concrete to this line and expose the existing reinforcement. Reshape or splice in reinforcement to penetrate the rim and
returns of the grate seat, and bend the reinforcement into the slot shelf to extend into the abutting throat pavement.
4. See Sheet 2 for Precast and C-I-P dimensions.

TRAVERSABLE TOP DETAILS

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 10 / 01 / 20 \end{gathered}$	DesCRIPTION:	$\begin{array}{cc} \text { FDOTY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	DITCH BOTTOM INLET TYPE B	INDEX 425-051	$\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 5 \end{aligned}$

PLAN

TABLE 2			
ESTIMATED QUANTITIES			
SLOT TYPE	Concrete Apron	SOD	
	SY	$C Y$	SY
Single	6.2	0.9	14
Double	8.1	1.1	19

SECTION I-I

SECTION H-H AND DITCH BLOCK

GENERAL NOTES:

Work this Index with Index 425-001 and Index 425-010
2. Chamfer all exposed edges and corners $3 / 4$ " chamfer or tooled to $1 / 4{ }^{1 /}$ radius.
3. All reinforcing is Grade 60 bars with $2^{\prime \prime}$ minimum. cover unless otherwise noted Cut or bend bars for $1 \frac{1}{2}$ " clearance around pipe opening. Provide one additional \#4 bar above and at each side of pipe opening.
. Use Concrete Apron on inlets without slots and inlets with non-traversable slots only when called for in the Plans.
5. Quantities are for informational and estimating purposes only.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Type C - Dimensional, Reinforcing, and Grate Details
3	Type D - Dimensional, Reinforcing, and Grate Details
4	Type E - Dimensional, Reinforcing, and Grate Details
5	Type H (2 \& 3 Grate) - Dimensional, Reinforcing, and Steel Grate Details
6	Type H (4 Grate) - Dimensional, Reinforcing, and Steel Grate Details
7	Cast Iron Grate Details
8	Non-Traversable Inlet Details
9	Traversable Inlet Without Slot Details
10	Traversable Inlet With Slot Details
11	Case 1 - Add Traversable Slots to Existing Inlets
12	Case 2 - Add Traversable Slots (Partial) to Existing Inlets
13	Case 3 - Add Traversable Slots (Partial) to Existing Inlets and Ditch Block
14	Alternate A Structure Bottom - Top Slab Details

$\bar{\square}$ DITCH BOTTOM INLET TYPE C TRAVERSABLE
$=$ DITCH BOTTOM INLET TYPE C NON-TRAVERSABLE
Slot > 7" Shown T NON-T and H Similar. Pipe Conection Not Shown
Slot $>$ Shown - Type D, E, and H Similar, Pipe Connection Not Shown

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 10 / 01 / 20 \end{gathered}$	근 DESCRIPTION:	$\begin{array}{cc} \text { FDOTY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	DITCH BOTTOM INLET TYPES $\mathbb{C}, \mathrm{D}, \mathrm{E}, \mathrm{AND} \mathbb{H}$	$\begin{gathered} \text { INDEX } \\ 425-052 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 14 \end{aligned}$

NOTES

1. Concrete Apron installed only where called for in the Plans.
2. Sod always required.
3. Slots are not permitted on sides with grate seats.

NON-TRAVERSABLE INLET DETAILS

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 10 / 01 / 20 \end{gathered}$	DESCRIPTION:	$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	DITCH BOTTOM $\mathbb{N L L E T} T$ TYPES $\mathbb{C}, \mathbb{D}, \mathbb{E}, ~ A \mathbb{N D} \mathbb{H}$	$\begin{gathered} \text { INDEX } \\ 425-052 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 8 \text { of } 14 \end{aligned}$

Sodded Area (See TABLE 8) \quad| $B B$ |
| :---: |

$B B$

SECTION AA-AA

\left.| TABLE 8 | | |
| :---: | :---: | :---: |
| CONCRETE APRON | | |
| AND SOD QUANTITIES | | |$\right]$

NOTES:

1. Concrete Apron to be installed only
where called for in the Plans.
2. Sod always required

TRAVERSABLE INLET WITHOUT SLOT DETAILS

LAST REVISION 0/01/20	2 DESCRIPTION:	$\begin{gathered} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{gathered}$	DITCH BOTTOM INLET TYPES $\mathbb{C}, \mathrm{D}, \mathbb{E}, \mathrm{AND} \mathbb{H}$	$\begin{gathered} \text { INDEX } \\ 425-052 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 9 \text { of } 14 \end{aligned}$

Sodded Area (See TABLE 9) $\sqrt{D D}$

= DOUBLE SLOT=

TRAVERSABLE INLET WITH SLOT DETAILS

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 10 / 01 / 20 \end{gathered}$	気DESCRIPTION:	$\begin{array}{cc} \text { FDO } \\ \text { FY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	DITCH BOTTOM INLET TYPES $\mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{AND} \mathbb{H}$	$\begin{gathered} \text { INDEX } \\ 425-052 \end{gathered}$	$\begin{gathered} \text { SHEET } \\ 10 \text { of } 14 \end{gathered}$

NOTES

1. Existing cast iron grate to be replaced with steel grate. Existing steel rellculine grate to be replaced when
2. Remove existing wall to this line (exposed rebar in pavement zone may be either removed or embedded
3. Install extra apron when existing slot exceeds $12^{\prime \prime}$ in depth.
4. Inlet details (With or Without Slots) similar to details on Sheet 11

CASE 3-ADD TRAVERSABLE SLOTS (PARTIAL) TO EXISTING INLETS AND DITCH BLOCK

10/01/20

DESCRIPTION:	

GENERAL NOTES

1. Work this Index with Index 425-001 and Index 425-010.
2. When inlet is placed in areas subject to bicycle traffic, install filler ba when clearance or gap is greater than $5 /{ }^{\prime \prime}$ as shown in Index 425-031.
3. These inlets may be used with Alternate B structure bottoms, Index 425-010.
4. Chamfer all exposed edges and corners $3 / 4$ " chamfer or tooled to $1 / 4$ " radius.
5. See Index for supplemental details.
6. Reinforcing bars are Grade 60 with $2^{\prime \prime}$ minimum cover unless otherwise noted. Cut or bend bars to provide $1^{1 / 2 /}$ clearance around pipe opening. Provide
7. Dimensions are for both precast and cast-in-place inlets unless otherwise noted
8. Quantities are for informational and estimating purposes only.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Type F - Dimensional, Reinforcing, and Grate Details
3	Type G - Dimensional, Reinforcing, and Grate Details
4	Concrete Apron and Sodded Area Details

Concrete Apron and Sodded Area Details

GENERAL NOTES:

Work this Index with Index 425-001 and Index 425-010
2. Reinforcing bars are Grade 60 bars with $2^{\prime \prime}$ minimum cover unless otherwise noted See Index 425-001 for equivalent area of welded wire fabric. Cut or
3. Chamfer all exposed edges and corners $3 / 4$ " or tooled to $1 / 4$ "radius.
4. Dimensions are for both precast and cast-in-place inlets unless otherwise noted
5. Quantities are for informational and estimating purposes only

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Dimensional and Reinforcing Details
3	Grate, Concrete Apron, and Sodded Area Details
4	Alternate A Structure Bottom - Top Slab Details

DITCH BOTTOM INLET TYPE (Pipe Connection Not Shown)

GENERAL NOTES:

Work this Index with Index 425-001 and Index 550-002
2. Chamfer all exposed edges and corners $3 / 4$ or tooled to $1 / /^{\prime \prime}$ radius.
3. Use Class II concrete for inlet and anti-vortex wall.
4. Use Grade 60 reinforcing bars with $2^{\prime \prime}$ minimum cover unless otherwise noted. See Index 425-001 for equivalent area of welded wire reinforcing (WWR). Cut or bend bars for $1 / 2^{\prime \prime}$ clearance around pipe opening. Bend top and corner bars to clear anchor holes.
5. Channel section C 3×6 at $14^{\prime \prime}$ max. bar spacing may be used as an alternate for the C 4×5.4 channel at $15^{\prime \prime}$ bar spacing.
6. Channels and bars for grate are ASTM A242/A242M, A572/A572M or Channels and bars for grate are ASTM A242/A242M, A572/A572M
A588/A588M, Grade 50 steel, and galvanized in accordance with Specification 975.
7. Use Fence Type B for fence enclosure (Index 550-002). Install all posts n concrete. A minimum of 10 posts required. Use $3^{\prime \prime}$ nominal diameter posts for corner and approach side posts.
8. Anchor Bolts are ASTM F 1554 Grade 36 fully threaded headless bolts, installed in accordance with Specifications 416 and 937 . Nuts are ASTM A563 or A194 and washers are ASTM F436
washers. Galvanize all nuts, bolts and washers.
9. Quantities are for informational and estimating purposes only.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Inlet Lengths (L) Less Than or Equal to 9
3	Inlet Lengths (L) Greater Than or Equal to 9^{\prime}
4	Steel Grate Details

INLET FENCE ENCLOSURE $\bar{\square}$

LAST		
REVISION		
$10 / 01 / 20$	DESCRIPTION:	
気		

general notes

1. Work this Index with Index 425-052.
2. Quantities are for informational and estimating purposes only.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Inlet Type C (Modified)
3	Special Concrete Endwall
4	Shallow Ditches and Yard Drains

TYPE C (MODIFIED) INLET

LAST	DESCRIPTION:	
REVISION		
$10 / 01 / 20$	気	

NOTES.

1. Construct at locations as directed by the Engineer
2. Use either cast iron pipe or PVC rigid conduit, U.L. listed for direct sunlight exposure, Schedule 40 .

PLAN

NOTES:

1. Tee will be either concrete or PVC, $15^{\prime \prime} \times 15^{\prime \prime} \times 12^{\prime \prime}$
2. Grate will have diameter of $14^{1 / 1 / ",} 2^{1 / 2}$ " thick, minimum 45 square inches flow area, and be light duty cast iron in accordance Specification 962.

SHALLOW DITCHES AND YARD DRAINS

| $\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 10 / 01 / 21 \end{gathered}$ | \|c|cens | $\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$ | BACK OF SIDE WALK $\operatorname{DRA} \mathbb{N} A \mathrm{AEE}$ | $\begin{gathered} \text { INDEX } \\ 425-060 \end{gathered}$ | $\begin{aligned} & \text { SHEET } \\ & 4 \text { of } 4 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

gENERAL NOTES:
.The finished grade and slope of the inlet top are to conform with the finished cross slope and grade of the proposed sidewalk and/or border.
2. When inlets are to be constructed on a curve, refer to the plans to determine the radius. Bend steel when necessary.
3. Inlets can be either cast-in-place or precast concrete. Chamfer all exposed edges $3 / 4$ ".
4. All reinforcement is ASTM A615/A615M Grade 60 steel, either smooth or deformed with a 2" minimum cover, unless otherwise shown. Equivalent area grade 40 steel or 65 ksi welded wire fabric may be substituted.

TYPE I CLOSED FLUME INLET WITH SIDEWALK Single Barrel Flume Shown

$=$ TYPE II CLOSED FLUME INLET WITHOUT SIDEWALK

NOTES:

1. Use sloped section with sidewalk applications only.
2. Use Toe Walls with Sidewalk application only. For

Endwall without Sidewalk see DETAILS on Sheet 4.
3. Slope to match ad jacent curb with $2^{\prime \prime}$ top radius and $1^{1 / 4}$ bottom radius.
4. See Sheet 5 for multiple barrel flumes span variation.
4. See Sheet 5 for matiple barrel flumes span variation.

SIDE ELEVATION

FRONT ELEVATION

PLAN

NOTE:

type I Closed Flume Inlet shown, Type II Closed Flume Inlet Similar

PLAN

DETAIL "A"

SECTION D-D

NOTE:
When called for in the Plans, install bricks to dissipate energy.
TYPE II DIMENSIONAL DETAILS

PLAN

FRONT ELEVATION

Intermediate Wall Reinforcing DETAIL "B"

NOTE:
riple barrel flume shown, double and quadruple similar.

| $\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 10 / 01 / 20 \end{gathered}$ | \|c|c | $\begin{gathered} \text { FYOT 2023-24 } \\ \text { STANDARD PLANS } \end{gathered}$ | CLOSED $\mathbb{F L U M E}$ INLET | $\begin{array}{\|c\|} \text { INDEX } \\ 425-061 \end{array}$ | $\begin{aligned} & \text { SHEET } \\ & 5 \text { of } 5 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

GENERAL NOTES:
The side panels are dimensionally symmetric, and may be used on either side of the structure.
2. Two (2) skimmers may be installed on a single structure provided they are constructed on opposite end
3. The width of the front panel (dimension w) is equal to the same as the outside dimension across the front of the structure.
4. Hot dip galvanize the front panel, side panels, and flat bars after fabrication
5. The location of the reinforcing steel in these structures must conform to the Index 425-052 to avoid conflict with the expansion anchors used to attach the skimmer.
6. Use grates on the inlets unless otherwise specified in the Plans.
7. A skimmer consists of two (2) side panels, one front panel, two (2) flat bars, and accessory hardware.

Installation Details

SKIMMER

DIMENSIONS				
Skimmer Height as Specified in the Plans				$\begin{gathered} \text { Bolt } \\ \text { Spacing } \end{gathered}$
H (in.)	D (in.)	E (in.)	L (in.)	s (in.)
12	33/6	3	28	3
14	$33 / 6$	3	28	4
16	$33 / 6$	3	28	5
18	$33 / 6$	3	28	6
20	4 3/16	4	31	6
22	4 3/6	4	31	7
24	4 3/6	4	31	8
26	4 3/16	4	31	9
28	$43 / 16$	4	31	10
30	$53 / 16$	5	31	10
32	$53 / 6$	5	31	11
34	$53 / 6$	5	31	12
36	$6^{3 / 16}$		31	12
38	$63 / 6$	6	31	13
40	$6^{3 / 16}$	6	31	14

TOP VIEW
front View

SIDE VIEW

top VIEW
$\overline{\bar{\sim}} F L A T B A R=$

SIDE VIEW

bоttom view
$\bar{\Longrightarrow}$ FRONT PANEL $\bar{\square}$
PANEL AND FLAT BAR DETAILS

| LAST REVISION $10 / 01 / 20$ | \|l|l | $\begin{array}{cc} \text { FDOT } & \text { FY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$ | SKIMMER FOR OUTLET CONTROL STRUCTURES |
| :---: | :---: | :---: | :---: |

NOTES:

1. Hex Bolt, Flat Washer, Fender Washer, And Lock Nut, all Stainless Steel. (6 Required Per Skimmer)
2. Install a stainless steel stud type expansion anchor with nut and washer. Embedment depth $=2^{1 / 2}$ ".
Anchors to be installed according to the manufacturer's recommendations (12 required per skimmer).
3. Install the skimmer so that the distance between the pond bottom at the structure and the skimmer

PLAN

SIDE ELEVATION is not less than 1 foot.

INSTALLATION DETAILS

GENERAL NOTES:

1. Work with Index 425-001 and Index 425-010
2. Use Class II Concrete.
3. Maximum opening for pipe shall be the pipe $O D$ plus $6^{\prime \prime}$. Mortar used to seal the pipe into the opening will be of such mix that shrinkage will not cause leakage into or out of the structure.
4. If a conflict with a potable water supply line is discovered during construction, submit the following to Florida Department of Environmental Protection (FDEP)
a. Plans Revision(s)
b. Justification describing inordinate cost and practical avoidance
c. Uor request, Utility Agency Owner (UAO) supporting documentation
an wistmen
otable water supply lines passing through a drainage structure must be in compliance provide accepted method for addressing conflicts when they cannot be reasonably avoided.

Website for District FDEP Drinking Water Contact
ttps://floridadep.gov/water/source-drinking-water/content/organization-drinking-water-program

Condition I Shown Condition II Similar)

| LAST REVIIION $10 / 01 / 20$ | \|c|cher | $\begin{array}{cc} & \text { FY 2023-24 } \\ \text { FDOT } \\ \text { STANDARD PLANS } \end{array}$ | UTILITY CONFLICT THRU DRAINAGE STRUCTURES | $\begin{gathered} \text { INDEX } \\ 425-080 \end{gathered}$ | $\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 2 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

NOTES:

1. Fill or excavate variable slopes during normal grading operations.
2. Minimum distance as required to comply with safety criteria.
3. Use Larger Value of Either
$=10 \times \mathrm{H}$ (No Maximum)
$L=10 \times$ Ditch offset (Maximum $L=100^{\circ}$)
4. Slope to normal slope if possible. Slope not to be steeper than 1:2. See side elevation (extended) below if 1:2 slope must go beyond toe of normal slope.
5.1 .2 slope if necessary to go beyond normal toe of slope and maintain 1:2 slope if necessary to go beyond nor
ditch width by moving out back slope.

PLAN

side elevation (extended)

END elevation

SIDE ELEVATION (TYPICAL)
front slopes at drainage structures \qquad

FDOT FY 2023-24 STANDARD PLANS	MIS CEILANEOUS DRAINAGE DETAILS	$\begin{gathered} \text { INDEX } \\ 430-001 \end{gathered}$	SHEET 1 of 7

| $\begin{array}{c}\text { TABLE } \\ \text { SCHEDULE } \\ \text { Classes }\end{array}$ OF II,III,IL REINFORCEMENT Wall A,B,C | | |
| :---: | :---: | :---: |$]$

NOTES:

1. Allowable Tolerance for the last full wrap of reinforcing when using single elliptical cage.
2. Extend the last full wrap of reinforcing to the shoulder point and meet ASTM C-76 requirements.
3. All circumferential steel located above this line and within the 1.75 L is defined as bell reinforcement.

PREFORMED PLASTIC JOINT

PROFILE RUBBER GASKET

NOTES:

1. Filter Fabric Jacket is required on both type of joints.
2. Details shown before pull-up.

ROUND AND ELLIPTICAL CONCRETE PIPE JOINT

LAST REVISION $10 / 01 / 20$		DESCRIPTION:		FY 2023-24 STANDARD PLANS	MIS CELILANEOUS DRAINAGE DETAILS	$\begin{gathered} \text { INDEX } \\ 430-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 7 \end{aligned}$

end elevation

SIDE ELEVATION

NOTES:

1. The collar may be formed by any method approved by the Engineer
2. Install $1 / 2^{\prime \prime} \times 16^{\prime \prime}$ dowels in adhesive bond material.

ISOMETRIC VIEW

side elevation

ISOMETRIC VIEW

END ELEVATION

SIDE ELEVATION

DOUBLE GUARD
(60" Pipe Shown)

NOTES:

1. Construct guards only at locations specifically called for in Plans.
2. Anchor Bolts (Galvanized): Use C-I-P Hex Head bolts or fully threaded adhesive anchors, installed in accordance with Specification 416.

TABLE 3 - Double GUARD										
$\begin{aligned} & \text { Pipe } \\ & \text { Diaj } \end{aligned}$	Top Steel Bracket Grate 1	Top Steel Bracket Grate	$\begin{aligned} & \text { Bottom } \\ & \text { Steel } \\ & \text { Plate } \end{aligned}$	Number Of Tolal Hol	Number of Vert. Bars Grate Grate 1	Number of Vertate 22	$\begin{aligned} & \text { Vertical } \\ & \text { Bars Size } \end{aligned}$	Number of Horiz. Bars (each grate)	Horizontal Bars Size	$\underset{\substack{\text { Weight } \\ \text { Ibs. }}}{\text { cight }}$
48	$2^{\prime}-4^{\prime \prime}$	$2^{\prime \prime}-4^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	8	4	4	$58^{\prime \prime}$	5	$5 / 8$	127
54	$2^{\prime \prime}-4^{\prime \prime}$	$2^{\prime \prime} 4^{\prime \prime}$	6^{\prime}-6"	8	4	4	$3 / 4 /$	6	$5 / 8$	157
60	$2^{\prime \prime}-4{ }^{\prime \prime}$	$2^{\prime \prime}-4^{\prime \prime}$	$7^{\prime}-0^{\prime \prime}$	8	4	4	$3 / 4$	7	5/8/	172

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVISION } \\ 10 / 01 / 20 \end{array}$	DESCRIPTION:	$\begin{array}{cc} F D O T\} & \text { 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	MIS CELLIANEOUS DRAINAGE DETAILS	$\begin{gathered} \text { INDEX } \\ 430-001 \end{gathered}$	sheet 6 of 7

PLAN

Note:

elevation

SECTION B-B

LAST REVISION $10 / 01 / 20$	DESCRIPTION:	$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	MIS CELILANEOUS DRAINAGE DETAILS	$\begin{gathered} \text { INDEX } \\ 430-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 7 \text { of } 7 \end{aligned}$

GENERAL NOTES:

1. Use Class II concrete
2. Reinforcing steel: All bars are size \#4. Spacings shown are center to center. Laps to be $1^{\prime}-55^{\prime \prime}$ minimum. Cover is $2^{\prime \prime}$ except as noted. Square welded wire fabric (two cages max.) having an equivalent cross sectional area (0.20 sq . in.) may be
substituted for bar reinforcement.
3. Endwall may be cast in place or precast concrete. Construct precast units to dimensions shown, or as shown in approved details.
4. Quantities shown are for estimating purposes only.

U-TYPE CONCRETE ENDWALLS 15" TO 30" PIPES WITH GRATES (24" Pipe Shown)

Pe TRANSITIONS			
$\left.\begin{gathered} \text { Slope } \\ 1: 4 \end{gathered} \right\rvert\,$	$\begin{aligned} & \text { Pipe } \\ & \text { Dia. } \end{aligned}$	offset (Ft.)	$\begin{gathered} L \\ (F t) \end{gathered}$
	$15^{\prime \prime}$	4.2	42
	$18^{\prime \prime}$	4.8	48
	$24^{\prime \prime}$	5.8	58
	$30^{\prime \prime}$	6.9	69

PLAN

PLAN

elevation

end view
$H=$ Horizontal Bars
$V=$ Vertical Bars
$B=$ Bent Bars
$D=$ Dowels or Diagonal Bars

END VIEW

DIMENSIONAL DETAIL \qquad $\bar{\square}$ REINFORCING DETAIL \qquad

			ABLE		
	DIM	SION	AND	QUANTITI	
	$\begin{aligned} & \text { Pipe } \\ & \text { Dia. } \end{aligned}$	$\begin{gathered} A \\ (F t .) \end{gathered}$	$\begin{gathered} B \\ (F t) \end{gathered}$	Class II Conc. (CY)	Reinf. Steel (Ibs.)
Slope	$15^{\prime \prime}$	5.67	2.38	0.85	56
1:4	$18^{\prime \prime}$	6.67	1.875	1.01	73
	$24^{\prime \prime}$	8.67	1.875	1.65	97
	$30^{\prime \prime}$	10.67	1.875	2.33	129

DIMENSIONAL AND REINFORCING DETAILS

ELEVATION

END VIEW

SIDE VIEW

top VIEW
TYPE 1

top VIEW
TYPE 2

SECTION A-A

NOTES:

1. Install grate bars evenly spaced across dimension D.
2. All bars and grate bars are $1 / 2^{\prime \prime} \times 2^{\prime \prime}$

TABLE 3

NUMBER OF GRATE BARS AND GRATES REQUIRED

${ }_{\text {Pipe }}^{\text {D }}$ Dia.	Grate Bars Reqd.		Grate$w t$.(lbs.)	Grate Reqd.		Trate Wt. (Ibs.)
	Type No. 1	Type No. 2		Type No. 1	Type No. 2	
$15^{\prime \prime}$	2	0	28.93	2	0	57.86
$18^{\prime \prime}$	0	3	33.69	0	3	101.08
$24^{\prime \prime}$	0	4	43.63	0	4	174.52
$30^{\prime \prime}$	0	5	53.55	0	5	267.75

\qquad

TYPE 1 AND TYPE 2 GRATE DETAILS

		$\begin{array}{cc} \text { FDOTY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	U-TYPE CONCRETE ENDWALLS 15" TO 30" PIIPES WITHH GRATES	$\begin{array}{\|c} \text { INDEX } \\ 430-010 \end{array}$	3 of 3

GENERAL NOTES:

1. Use Class II concrete.
2. Construct Baffles only when called for in Plans.
3. See Sheet 5 when steel grating is required on endwall.
4. All reinforcing \#4 bars with $2^{\prime \prime}$ clearance except as noted.
5. Channel section C 3×6 may be substituted for C 4×5.4 channel.
6. Endwall may be cast in place or precast concrete. Construct precast units to dimensions shown, or as shown in approved shop drawings. Submit requests for shop drawing approvals to the
details
7. Quantities shown are for estimating purposes only.
steel grate option

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Endwalls for 1:2 Slopes With Baffles
3	Endwalls for 1:2 Slopes Without Baffles and Bending Bar Diagram
4	Endwalls for 1:3, 1:4, and 1:6 Slopes
5	Steel Grate Option

PLAN

fRONT VIEW

PLAN

elevation

NOTE:
See Sheet 3 for Bar Bending Diagram
LEGEND:
= Horizontal Bars
= Vertical Bars
$B=$ Bent Bars
= Dowels or Diagonal Bars

BACK VIEW
$\overline{\bar{Z}}$ REINFORCING DETAILS $=$

TABLE-1														
	Pipe	L	Ht	w	s	B	c	\times Baffle			Y Baffle Reinf. Steel		Class II Cu. Yd.	$\begin{aligned} & \text { Reinf. } \\ & \text { Steel } \\ & \text { lbs. } \end{aligned}$
Dia.	$\begin{gathered} \text { Area } \\ \text { sq. Ft. } \end{gathered}$							P	Q	R	Bars V_{1}	Bars H_{5}		
15"	1.23	5'-9"	2'-31/2"	3'-7"	$2^{\prime}-3^{\prime \prime}$	1^{1}-3"	2'-3"	$4^{\prime \prime}$	$4^{\prime \prime}$	$4^{\prime \prime}$	2 \#4	1 \#4	1.61	72
$18^{\prime \prime}$	1.77	$6^{\prime}-6^{\prime \prime}$	$2^{\prime \prime}$-5"	$3^{\prime \prime}-10^{\prime \prime}$	$2^{\prime}-6^{\prime \prime}$	$1^{1}-6^{\prime \prime}$	$2^{\prime \prime}-6^{\prime \prime}$	$4^{\prime \prime}$	$4^{\prime \prime}$	$5^{\prime \prime}$	3 \#4	2 \#4	1.89	86
24"	3.14	$8^{\prime}-0^{\prime \prime}$	$2^{\prime \prime}-8^{\prime \prime}$	$4^{-1} 4^{\prime \prime}$	$3^{\prime}-0^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$3^{\prime \prime}-0^{\prime \prime}$	$5^{\prime \prime}$	5	$6^{\prime \prime}$	4 \#4	3 \#4	2.52	108
$30^{\prime \prime}$	4.91	$9^{9}-6^{\prime \prime}$	$2^{\prime}-11^{\prime \prime}$	$4^{\prime}-10^{\prime \prime}$	$3^{3}-6^{\prime \prime}$	$2^{\prime \prime}-6^{\prime \prime}$	$3^{\prime \prime}-6^{\prime \prime}$	$5^{\prime \prime}$	$5^{\prime \prime}$	$7{ }^{\prime \prime}$	4 \#4	4 \#	3.34	131

ENDWALLS FOR 1:2 SLOPES WITH BAFFLES

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$	包DESCRIPTION:	$\begin{array}{cc} \text { FDOTY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	U-TYPE CONCRETE ENDWALLS BAFFLES AND GRATE OPTIONAL 15" TO 30" PIPE	$\begin{gathered} \text { INDEX } \\ 430-011 \end{gathered}$	SHEET 2 of 5

Sta.IOff set Location

fRONT VIEW

SIDE VIEW

LEGEND:

H = Horizontal Bars
$v=$ Vertical Bars
$B=$ Bent Bars
$D=$ Dowels or Diagonal Bars

backwall section

TABLE-2

DIMENSIONS AND QUANTITIES FOR ONE U-ENDWALL

Pipe		L	Ht	w	$\begin{gathered} \text { Class II } \\ \text { Conc. } \\ \text { Cu. Yd. } \end{gathered}$	$\begin{aligned} & \text { Reinf. } \\ & \text { Steei } \\ & \text { lbs. } \end{aligned}$
Dia.	$\begin{aligned} & \text { Area } \\ & \text { Sq. Ft. } \end{aligned}$					
15"	1.23	$3^{\prime \prime}-3^{\prime \prime}$	$1^{1}-7 / /^{\prime \prime}$	$3^{\prime \prime}-7^{\prime \prime}$	0.89	39
$18^{\prime \prime}$	1.77	$3^{\prime \prime}-9^{\prime \prime}$	$1^{1}-10{ }^{1 / 2}{ }^{\prime \prime}$	$3^{\prime \prime}-10^{\prime \prime}$	1.05	43
$24^{\prime \prime}$	3.14	$4^{\prime \prime}-9^{\prime \prime}$	2'-4/2/"	$4^{4}-4^{\prime \prime}$	1.40	55
$30^{\prime \prime}$	4.91	5'-9"	$2^{\prime}-10{ }^{1 / 2}$	$4^{\prime \prime}-10^{\prime \prime}$	1.88	64

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$	包DESCRIPTION:	$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	U-TYPE CONCRETE ENDWALLS BAFFLES AND GRATE OPTIONAL $15 "$ TO $30 "$ PIPE	$\begin{gathered} \text { INDEX } \\ 430-011 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 5 \end{aligned}$

NOTE:

1. Reinforcing similar to Sheets 2 and 3
2. See Sheet 3 for Bar Bending Diagram

24" AND 30" PIPE

24" AND 30" PIPE
1:6 SLOPES

elevation
END VIEW

TABLE-4

TABLE-4DIMENSIONS AND QUANTITIES FOR ONE										
Rate of Slope	Pipe		\llcorner	Ht	w	Baffle Locations (When Required)			Class II Concrete Cu. Yd.	$\begin{aligned} & \text { Reinf. } \\ & \text { Steel } \\ & \text { lbs. } \end{aligned}$
	Dia.	$\begin{gathered} \hline \text { Area } \\ (S q . ~ F t .) \end{gathered}$				s	B	c		
1:3	$15^{\prime \prime}$	1.23	5'-3"	$1^{1}-9^{\prime \prime}$	$3^{\prime \prime}-7^{\prime \prime}$	$1^{1}-9{ }^{\prime \prime}$	1^{\prime}-9"	1'-9"	1.19	51
	$18^{\prime \prime}$	1.77	$6^{\prime}-0^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$3^{\prime \prime}-10^{\prime \prime}$	2'-0"	$2^{\prime}-0^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	1.42	56
	$24^{\prime \prime}$	3.14	$7^{\prime \prime}-6^{\prime \prime}$	2'-6"	$4^{\prime \prime}-4^{\prime \prime}$	$2^{\prime}-6^{\prime \prime}$	2'-6"	$2^{\prime \prime}-6^{\prime \prime}$	1.94	77
	$30^{\prime \prime}$	4.91	9'-0'	$3^{\prime \prime}-0^{\prime \prime}$	$4^{\prime \prime}-10^{\prime \prime}$	$3^{\prime \prime}-0^{\prime \prime}$	$3^{\prime}-0^{\prime \prime}$	$3^{\prime}-0^{\prime \prime}$	2.54	96
1:4	$15^{\prime \prime}$	1.23	$7^{\prime \prime}-4^{\prime \prime}$	$1^{\prime \prime}-10^{\prime \prime}$	$3^{\prime}-7^{\prime \prime}$	$2^{\prime \prime}$-6"	$2^{\prime \prime}-6^{\prime \prime}$	$2^{\prime \prime}-4^{\prime \prime}$	1.54	64
	$18^{\prime \prime}$	1.77	$8^{\prime \prime}-4^{\prime \prime}$	$2^{\prime \prime}-1^{\prime \prime}$	$3^{\prime \prime}-10^{\prime \prime}$	$2^{\prime}-10^{\prime \prime}$	$2^{\prime}-10^{\prime \prime}$	$2^{\prime}-8^{\prime \prime}$	1.84	71
	$24^{\prime \prime}$	3.14	$10^{\prime}-4^{\prime \prime}$	2^{\prime}-7"	$4^{\prime \prime}-4^{\prime \prime}$	$3^{\prime \prime}-6^{\prime \prime}$	$3^{\prime \prime}-6^{\prime \prime}$	$3^{\prime \prime} 4^{\prime \prime}$	2.53	92
	$30^{\prime \prime}$	4.91	$12^{\prime \prime}-4^{\prime \prime}$	$3^{\prime \prime}-1^{\prime \prime}$	$4^{\prime \prime}-10^{\prime \prime}$	$4^{\prime \prime}-2^{\prime \prime}$	$4^{\prime}-2^{\prime \prime}$	4-010	3.34	124
1:6	$15^{\prime \prime}$	1.23	$11^{\prime \prime} 6^{\prime \prime}$	$1^{\prime \prime}-11^{\prime \prime}$	$3^{\prime \prime}-7{ }^{\prime \prime}$	$3^{\prime}-10^{\prime \prime}$	$3^{\prime \prime}-10^{\prime \prime}$	$3^{\prime}-10^{\prime \prime}$	2.19	89
	$18^{\prime \prime}$	1.77	$13^{-}-0^{\prime \prime}$	$2^{\prime \prime}-2^{\prime \prime}$	$3^{\prime \prime}-10^{\prime \prime}$	4'-4"	$4^{\prime \prime} 4^{\prime \prime}$	$4^{\prime \prime} 4^{\prime \prime}$	2.63	103
	$24^{\prime \prime}$	3.14	$16^{\prime}-0^{\prime \prime}$	$2^{\prime}-8^{\prime \prime}$	$4^{\prime \prime}-4^{\prime \prime}$	5'-4"	$5^{\prime \prime}-4^{\prime \prime}$	5'-4"	3.59	143
	$30^{\prime \prime}$	4.91	$19^{\prime}-0^{\prime \prime}$	$3{ }^{\prime \prime}-2^{\prime \prime}$	$4^{\prime \prime}-10^{\prime \prime}$	$6^{\prime}-4^{\prime \prime}$	$6^{\prime}-4^{\prime \prime}$	$6^{\prime}-4^{\prime \prime}$	4.81	180

ENDW ALLS WITH AND WITHOUT BAFFLES FOR 1:3, 1:4, AND 1:6 SLOPES

| $\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$ | \|c|cher | $\begin{array}{cc} \text { FDOTY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$ | U-TYPE CONCRETE ENDWALLS BAFFLES AND GRATE OPTIONAL 15" TO 30" PIPE | $\begin{gathered} \text { INDEX } \\ 430-011 \end{gathered}$ | SHEET
 4 of 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |

Grate Seat
DETAIL "A"
$2^{\prime \prime} \times 1 / 2^{\prime \prime}$ Bar 进 ${ }^{+11 / 4^{\prime \prime}}$

Anchor Bolt Detail
DETAIL "B"

END VIEW

STEEL GRATE MOUNTING

STEEL GRATE OPTION

| $\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$ | \|l|l | $\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$ | U-TYPE CONCRETE ENDWALLS BAFFLES AND GRATE OPTIONAL 15" TO 30" PIPE |
| :---: | :---: | :---: | :---: |

GENERAL NOTES

1. Use Class II concrete
2. Chamfer all exposed edges $3 / 4$
3. See Index 550-002 for details of Type B fencing
4. Quantities shown are for estimating purposes only.

$\overline{\mathrm{U}} \mathrm{U}$ TYPE CONCRETE ENDWALLS \qquad

PLAN

Pipe		DIMENSION TABLE																Concrete$(C Y)$	$\begin{aligned} & \text { Reinf } \\ & \text { Stei } \\ & (1 b) \end{aligned}$	Sand-CementRiprap Riprap(Nom.) (CY)
		Feet - Inches											Inches							
		w	Ht	L	a	b	c	d	e	f	g	m	n	p	s	t	k			
$30^{\prime \prime}$	4.91	9-0	6-3	10-8	4-7	6-1	3-4	1-4	1-2	2-6	3-0	1-11	6	$61 / 2$	7	7	3	6.72	736	10.6
$36^{\prime \prime}$	7.07	10-5	7-3	12-4	5-3	7-1	3-10	1-7	1-3	3-0	3-6	2-3	7	71/2	8	8	3	10.34	1,072	13.6
$42^{\prime \prime}$	9.62	11-10	8-0	14-0	6-0	8-0	4-5	1-9	1-6	3-0	3-11	2-6	8	81/2	9	8	4	14.82	1,429	17.5
$48^{\prime \prime}$	12.57	13-3	9-0	15-8	6-9	8-11	4-11	2-0	1-7	3-0	4-5	2-10	9	91/2	10	8	4	20.36	2,000	22.1
$54^{\prime \prime}$	15.90	14-8	9-9	17-4	7-4	10-0	5-5	2-2	1-10	3-0	4-11	3-0	10	101/2	10	8	4	27.19	2,659	27.2
$60^{\prime \prime}$	13.63	16-1	10-9	19-0	8-0	11-0	5-11	2-5	1-11	3-0	5-4	3-4	11	111/2	11	8	6	34.49	3,552	32.5
$66^{\prime \prime}$	23.76	17-3	11-6	20-6	8-8	11-10	6-5	2-7	2-1	3-0	5-9	3-7	12	121/2	12	8	6	42.82	4,472	38.3
$72^{\prime \prime}$	28.27	18-6	12-3	22-0	9-3	12-9	6-11	2-9	2-3	3-0	6-2	3-9	12	121/2	12	8	6	50.68	5,426	44.5

ELEVATION

FRONT VIEW

- DIMENSIONAL DETAILS

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$	包DESCRIPTION:	$\begin{array}{cc} \text { FDOTY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	U-TYPE CONCRETE ENDWALLS ENERGY DISSIPATOR 30" TO 72" PIPE	index $430-012$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 3 \end{aligned}$

NOTES:

1. All bar dimensions are measured out to out.
2. All Bars are size \#4 unless otherwise noted
3. Install reinforcing steel with a minimum of $2^{\prime \prime}$ cover.
4. Bars B6 and B7 (N.S. and F.S.) equivalent in size to
5. Bars B6 and B7 (N.S. and F.S.)
6. Bars $V_{4}, V_{2}, V_{3}, V_{4}, V_{5}, H_{4}, H_{2}, H_{3}, H_{4}$, and H_{5} are straight bars.

BENT BARS TABLE												
Pipe	B_{1}		B_{2}		B_{3}		B_{4}		B_{5}		B_{10}	
	$\begin{aligned} & \text { Size } \\ & \text { (No.) } \end{aligned}$	$\begin{aligned} & \text { Spacing } \\ & \text { (Ft.-In.) } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { Size } \\ \text { (No. }) \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & \text { Spacing } \\ & (\text { Ft.In.) } \end{aligned}\right.$	$\begin{aligned} & \text { Sizize } \\ & \text { (No. } \end{aligned}$	Spacing	$\begin{aligned} & \text { size } \\ & \text { (No.) } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { Spacing } \\ & (\text { Ft.-In.) } \end{aligned}\right.$	$\begin{aligned} & \text { size } \\ & (N O .) \end{aligned}$	$\begin{aligned} & \text { Spacing } \\ & (\text { frt.In.) } \end{aligned}$	$\begin{array}{\|c\|c\|} \hline \text { Size } \\ \text { (No.) } \end{array}$	$\begin{aligned} & \text { Spacing } \\ & (F t .-I n .) \end{aligned}$
$30^{\prime \prime}$	4	0-91/2	4	1-6	5	0-11	4	0-91/2	5	0-51/2	4	0-91/2
$36^{\prime \prime}$	5	1-0	4	1-6	5	0-10	5	1-0	5	0-5	5	1-0
$42^{\prime \prime}$	5	0-11	4	1-6	6	1-1	5	0-11	6	0-61/2	5	0-11
$48^{\prime \prime}$	5	0-91/2	4	1-0	6	1-0	5	0-91/2	6	0-6	5	0-91/2
54"	5	0-81/2	4	0-10	7	1-1	5	0-81/2	7	0-61/2	5	0-81/2
$60^{\prime \prime}$	6	0-10	5	1-1	7	1-0	6	0-10	7	0-6	6	0-10
$66^{\prime \prime}$	6	0-81/2	5	0-11/2	7	0-11	6	0-81/2	7	0-51/2	6	0-81/2
72"	6	$0-71 / 2$	5	0-10	7	0-10	6	$0-7 / 1 / 2$	7	0-5	6	$0-71 / 2$

$\begin{array}{llllll}B A R S & B_{5} & B_{8} & B_{10} & B_{11} & B_{12}\end{array}$

$B A R B_{4}$

EGEND:

H = Horizontal Bars

$V=$ Vertical Bars
Dent Bars
$D=$ Dowels or Diagonal Bars

PLAN

Elevation

$H_{3} @ 11^{\prime}-6^{\prime \prime}$

SECTION A-A

- BENDING DIAGRAM

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$	号気DESCRIPTION:	$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	U-TYPE CONCRETE ENDWALLS ENERGY DISSIPATOR 30" TO 72" PIPE	$\begin{gathered} \text { INDEX } \\ 430-012 \end{gathered}$	SHEET 3 of 3

gENERAL NOTES:

1. Provide flared end sections meeting the requirements of ASTM C76 with the exception that dimensions and reinforcement meet the criteria in the table on sheet 2. Circumferential reinforcement may consist of either one cage or two cages of steel. Use concrete compressive strength of 4000 psi.
2. Connections between the flared end section and the pipe culvert may be any of the following types unless therwise shown on the plans.
a. Joints meeting the requirements of Section 449 of the Standard Specifications (0-Ring Gasket). Flared end section joint dimensions and tolerances shall be identical or compatible to those used in the pipe culvert joint. When pipe culvert and flared end section manufacturers are different, the manufacture of the flared end sections must certify the compatibility of joint designs.
b. Joints sealed with preformed plastic gaskets. Use gaskets that meet the requirements Specification 942-2 of the Standard Specifications and the minimum sizes for gaskets as specified for equivalent sizes of elliptical pipe. c. Reinforced concrete jackets, as detailed on sheet 2. When non-coated corrugated metal pipe is called
for in the Plans, use bituminous coated pipe in the jacketed area as specififed on Index 430-001. Construct concrete jacket as specified in Index 430-001.
3. Cast Toe Walls in place using Class II Concrete.
4. On skewed pipe culverts place the flared end sections in line with the pipe culvert. Warp the side slopes as required to fit the flared end sections.
5. Quantities shown are for estimating purposes only.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Straight Flare, optional Shape Details, and Reinforced Concrete Jacket Detail

$\bar{\longrightarrow}$ FLARED END SECTION $\bar{\square}$

LAST	3 DESCRIPTION:
REVISION	V

Syigo on the setion

SECTION A-A

SECTION B-B
$2^{\prime}-0^{\prime \prime}$ for $30^{\prime \prime}$ to $72^{\prime \prime}$ Pipes

Toe Wall

SECTION C-C
SECTION D-D

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$		$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	$\mathbb{F L A R E D} \mathbb{E} \mathbb{N} D$ S $\mathbb{C T I I O N}$	$\begin{gathered} \text { INDEX } \\ 430-020 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 2 \end{aligned}$

GENERAL NOTES:

 1. of cross drain pipe; corrugated steel pipe mitered end sections may be used with any type of cross drain pipe except aluminum pipe; and, corrugated aluminum mitered end sections may be used with any typeof cross drain pipe except steel pipe. When bituminous coated metal pipe is specified for cross drain piper of cross drain pipe except steel pipe. When bituminous coated metal pipe is specified for cross drain pipe, dissimilar to the cross drain pipe, construct a concrete jacket in accordance with Index 430-001,
2. Use either corrugated metal or concrete mitered end sections for corrugated polyethylene pipe (HDPE, polyvinyl-chloride pipe (PVC), steel reinforced polyethylene pipe (SRPE), and polypropylene pipe (PP). metal band specifically designated to join HDPE, PVC, SRPE, or PP pipe, with metal pipe. When used in conjunction with a concrete mitered end sections, construct concrete jacket in accordance with Index 430-001.
3. Class NS concrete cast-in-place reinforced slabs are required for all sizes of cross drain pipes. Class NS concrete cast-in-place reinforced slabs are required for all sizes
Construct slabs at $51 /{ }^{\prime \prime}$ thick, unless $3^{3 \prime}$ thickness is called for in the Plans.
4. Select lengths of concrete pipe that avoid excessive connections in the assembly of the mitered end section.
5. Repair corrugated metal pipe galvanizing that is damaged during beveling and perforating.
6. When existing multiple cross drain pipes are spaced other than the dimensions shown in this Index, have nonparallel axes, or non-uniform sections, either construct the mitered end sections separately as single pipe or collectively as multiple pipe end sections as directed by the Engineer
7. Saddle Slope:

1:4 Miter - Slope to \& of pipe for round pipes less than or equal to $18^{\prime \prime}$ diameter and 1:1 for round pipes. greater than or equal to $24^{\prime \prime}$ diamete $34^{\prime \prime} \times 8^{\prime \prime}$ or smaller and 1.2 for pipes $29^{\prime \prime} \times 5^{\prime \prime}$ or larger ($28^{\prime \prime} \times 20^{\prime \prime}$ or smaller and 1:2 for pipe arch $35^{\prime \prime} \times 24^{4 \prime}$ or larger
1.2 Miter - Slope to $\&$ of pipe for round pipes less than or equal to 18 diameter and 1:2 for round pipes greater than or equal to $24^{\prime \prime}$ diameter. Slope to the major axis for elliptical pipes $29^{\prime \prime} \times 45^{\prime \prime}$ or smaller and 1:1 for pipes $34^{\prime \prime} \times 53^{\prime \prime}$ or larger Slape $1: 1$ for all pipe arch sizes.
8. Quantities shown are for estimating purposes only.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Single and Multiple Concrete Pipe
3	Concrete Pipe Dimensions and Quantities
4	Single and Multiple Corrugated Metal Pipe
5	Corrugated Metal Pipe Dimensions and Quantities
6	Concrete Pipe Connections and Corrugated Metal Pipe (CMP) Anchor Detail

SLOPE AND DITCH TRANSITIONS

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$		$\begin{array}{cc} \text { FDOTY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	$\mathbb{C R O S S}$ DRAIN MITERED END SECTION	$\begin{gathered} \text { INDEX } \\ 430-021 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 6 \end{aligned}$

SINGLE AND MULTIPLE CONCRETE PIPE

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$		$\begin{array}{cc} \text { FDOT } & \text { FY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	$\mathbb{C R O S S}$ DRAIN MITERED $\mathbb{E N D}$ SECTION	$\begin{gathered} \text { INDEX } \\ 430-021 \end{gathered}$	$\begin{gathered} \text { SHEET } \\ 2 \text { of } 6 \end{gathered}$

TABLE 1

SINGLE AND MULTIPLE CONCRETE PIPE DIMENSIONS AND QUANTITIES

		Dia.											M				N	5/Z" CONC. SLAB (CY) (See General Note 3)				$\begin{aligned} & \text { 3" CONC. SLAB (CY) } \\ & \text { (See General Note 3) } \end{aligned}$				SODDING (SY)			
		-	R	s	x	A	B	c	E	F	G	H	Single	Double	Triple	Quad.		Single	Double	Triple	Quad.	Single	Double	Triple	Quad.	Single	Double	Triple	Quad.
$\begin{aligned} & 0 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0.0 \end{aligned}$	1:2	$15^{\prime \prime}$			$2^{\prime \prime} 7^{\prime \prime}$	1.92	2.18	4.10^{\prime}	2.06^{\prime}	5	1.22'	2.9	${ }_{\text {Pipe }} 4.63^{\prime}$	${ }^{\text {Pipe }} 7.2{ }^{\text {r }}$	${ }^{\text {Pipe }}$ 9.79'	${ }^{\text {Pipe }}$	1.19'	${ }^{\text {Pipe }}$	${ }^{\text {Pipe }} 0$	${ }_{\text {Pipe }}$	${ }_{\text {Pipe }} 0.96$	${ }^{\text {Pipe }}$	${ }^{\text {Pipe }}$	Pipe	$\frac{\text { Pipe }}{0.67}$	$\frac{\text { Pipe }}{21}$	$\frac{\text { Pipe }}{24}$	Pipe	
		$18^{\prime \prime}$			$2^{\prime \prime} 10^{\prime \prime}$	${ }^{1.97}$	$2.74{ }^{\prime}$	4.71^{\prime}	2.56^{\prime}	6^{\prime}	${ }^{1.411^{\prime}}$	$3.4{ }^{\prime}$	4.92^{\prime}	${ }^{7.75}$	10.58^{\prime}	${ }^{13.422^{\prime}}$	${ }^{1.21}$	0.44	0.65	0.87	${ }_{1} 1.09$	0.31	0.45	${ }_{0}^{0.60}$	${ }_{0}^{0.75}$	22	25	28	31
		$24^{\prime \prime}$			$3^{\prime \prime}-5^{\prime \prime}$	$2.06{ }^{\prime}$	$3.85{ }^{\prime}$	5.91^{\prime}	3.56^{\prime}	$7{ }^{7}$	1.73'	3.4 ${ }^{\prime}$	5.50^{\prime}	8.92'	12.33'	15.75'	1.25'	0.54	0.83	1.12	1.42	0.39	0.59	0.79	1.00	24	28	32	35
		$30^{\prime \prime}$			$4^{\prime}-3^{\prime \prime}$	2.15'	4.95'	7.10^{\prime}	4.56'	\%	2.00^{\prime}	3.4'	$6.08{ }^{\text {b }}$	${ }^{10.33^{\prime}}$	14.58'	$18.83{ }^{\prime}$	1.29^{\prime}	0.66	1.09	1.50	1.91	0.46	0.76	1.04	1.32	26	31	35	40
		$36^{\prime \prime}$			$5^{\prime}-1^{\prime \prime}$	$2.25{ }^{\prime}$	$6.08{ }^{\prime}$	$8.33{ }^{\text {r }}$	5.56^{\prime}	9^{\prime}	$2.24{ }^{4}$	3.4 ${ }^{\text {4 }}$	$6.67^{\text {r }}$	${ }^{11.75}$	${ }^{16.833^{\prime}}$	21.92'	1.33'	0.81	1.38	1.95	2.51	0.55	0.94	1.33	1.71	28	34	39	45
		$42^{\prime \prime}$			$6^{\prime}-0^{\prime \prime}$	$2.34{ }^{4}$	7.21^{\prime}	${ }^{9.55^{\prime}}$	6.56^{\prime}	10^{\prime}	2.45^{\prime}	3.4 ${ }^{\text {+ }}$	7.25^{\prime}	${ }^{13.25}$	19.25'	25.25'	1.38'	0.97	1.70	2.45	3.19	0.66	1.15	1.66	2.15	30	37	43	50
		${ }_{44^{\prime \prime}}$			${ }^{6^{\prime}-9^{\prime \prime}}$	2.43'	8.33'	${ }^{10.76^{\prime}}$	7.56'	${ }^{11^{\prime}}$	${ }^{2.655^{\prime}}$	3.4' ${ }^{\prime}$	7.83'	${ }^{14.55^{\prime}}$	${ }^{21.333^{\prime}}$	28.08^{\prime}	${ }^{1.42^{\prime}}$	1.13	2.04	2.93	3.84	0.76	1.37	1.96	2.57	32	39	47	54
		$54^{\prime \prime}$			$7^{7-8^{\prime \prime}}$	2.52'	9.44	11.96	${ }^{8.56}$	12^{1}	$2.83{ }^{\text {a }}$	3.4	8.42'	${ }^{16.088^{\prime}}$	23.75	31.42'	1.46	1.31	2.44	3.58	4.72	0.87	1.62	2.38	3.14 3	34	42	51 5 5	59
		60" $66^{\prime \prime}$			8-6" ${ }^{\text {9/2 }}$	${ }^{2.781}$	${ }_{1}^{10.568^{\prime}}$	${ }^{13.18}{ }^{14.39}$	${ }^{9.565}$	15^{\prime}	3.08^{\prime}	4.44	${ }^{9.00}{ }^{\text {9 }}$	${ }^{17.55^{\prime}}$	${ }^{27.922^{\prime}}$	${ }^{34.500^{\prime}}$	${ }^{1.540^{\prime}}$	${ }_{1}^{1.51}$	2.89 3.25	4.28	${ }^{5.68}$	1.11	1.90 2.15	2.81 3.21	3.73 4.27	36 38	45	55	64 68
		$72^{\prime \prime}$			$10^{\prime}-0^{\prime \prime}$	2.80^{\prime}	12.80°	15.60^{\prime}	${ }^{11.56}$	16^{\prime}	3.30^{\prime}	4.4'	10.16^{\prime}	20.16'	30.16'	40.16'	1.58'	1.89	3.74	5.59	7.45	1.24	2.46	3.68	4.90	40	51	62	73
	$\begin{array}{\|c\|c} 1: 4 \\ \text { Slope } \end{array}$	$15^{\prime \prime}$			$2^{\prime \prime}-7^{\prime \prime}$	2.27^{\prime}	${ }^{4.09^{\prime}}$	$6.36{ }^{\prime}$	4.03'	8^{\prime}	1.22^{\prime}	4.0^{\prime}	4.63^{\prime}	7.21^{\prime}	9.79^{\prime}	${ }^{12.37}$	1.191	0.57	0.87	1.15	1.44	0.40	0.61	0.80	1.00	23	26	29	32
		$18^{\prime \prime}$			$2^{\prime \prime}-10^{\prime \prime}$	$2.36{ }^{\prime}$	5.12^{\prime}	$7.48{ }^{\prime}$	5.03'	9^{\prime}	1.41^{\prime}	4.0^{\prime}	4.92^{\prime}	${ }^{7.75}{ }^{\prime}$	10.58'	13.42^{\prime}	1.21^{\prime}	0.66	0.99	1.31	1.65	0.47	0.69	0.91	1.14	25	28	31	35
		$24^{\prime \prime}$			$3^{\prime \prime} 5^{\prime \prime}$	2.53'	$7.18{ }^{\prime} \triangle$	$9.71{ }^{1}$	$7.03^{\prime} \Delta$	111	1.73'	4.0'	5.50^{\prime}	8.92'	${ }^{12.33}{ }^{\prime}$	${ }^{15.75 '}$	1.25'	0.85	1.30	1.75	2.20	0.60	0.90	1.21	1.52	28	32	36	40
		$30^{\prime \prime}$			${ }^{4} 4^{-3} 3^{\prime \prime}$	$2.70{ }^{\prime}$	${ }^{\text {9.25 }}$,	11.95^{\prime}	9.03'	13^{\prime}	2.00^{\prime}	4.0'	$6.08{ }^{\prime}$	10.33^{\prime}	${ }^{14.588^{\prime}}$	18.83'	1.29^{\prime}	1.10	1.74	2.39	3.05	0.76	1.19	1.63	2.07	31	36	41	46
		$36^{\prime \prime}$			$5^{\prime}-1^{\prime \prime}$	2.87^{\prime}	$11.31^{\prime} \diamond$	14.18'	$11.03^{\prime} \diamond$	${ }^{15}$	$2.24{ }^{\text {a }}$	4.0^{\prime}	$6.67^{\text { }}$	$11.75{ }^{\prime}$	16.83^{\prime}	21.92^{\prime}	1.33'	1.32	2.21	3.08	3.96	0.89	1.48	2.05	2.63	34	40	46	52
		42"			$6^{\prime}-0^{\prime \prime}$	3.05'	13.37'	16.42^{\prime}	13.03^{\prime}	${ }^{17}$	2.45^{\prime}	4.0'	7.25'	13.25'	19.25'	25.25'	1.38'	1.58	2.76	3.91	5.09	1.05	1.82	2.57	3.34	38	44	51	58
		$48^{\prime \prime}$			$6^{\prime}-9^{\prime \prime}$	3.22^{\prime}	15.43^{\prime}	18.65'	15.03'	19^{\prime}	$2.65{ }^{\prime}$	4.0'	7.83^{\prime}	14.58^{\prime}	21.33'	28.08'	1.42'	1.85	3.30	4.73	6.17	1.21	2.15	3.07	4.00	41	48	56	63
		$54^{\prime \prime}$			$7^{7}-8^{\prime \prime}$	3.39'	17.49^{\prime}	20.88'	17.03'	21'	$2.83{ }^{\prime}$	4.0'	8.42'	16.08'	23.75'	31.42'	1.46'	2.14	3.95	5.77	7.58	1.39	2.55	3.72	4.88	44	52	61	69
		60"			$8^{\prime \prime}-6^{\prime \prime}$	3.56'	19.55'	23.11'	19.03'	23^{\prime}	3.00^{\prime}	4.0'	9.00^{\prime}	17.50'	26.00^{\prime}	34.50'	1.50^{\prime}	2.45	4.66	6.87	9.07	1.59	3.02	4.44	5.86	47	56	66	75
		66"			$9^{\prime \prime}-2^{\prime \prime}$	3.73'	21.62'	25.35'	21.03'	25^{\prime}	$3.18{ }^{\prime}$	$4.0{ }^{\prime}$	$9.58{ }^{\prime}$	18.75'	27.92'	37.08'	1.54'	2.88	5.54	8.18	10.84	1.91	3.66	5.40	7.15	49	59	69	80
		$72^{\prime \prime}$			$10^{\prime \prime}-0^{\prime \prime}$	3.91^{\prime}	23.68 ${ }^{\text {b }}$	27.59^{\prime}	23.03'	27^{\prime}	3.30'	$4.0{ }^{\prime}$	10.16	20.16^{\prime}	30.16^{\prime}	40.16'	1.58'	3.54	6.61	9.87	13.13	2.12	4.18	6.24	8.30	52	63	74	85
O			$12^{\prime \prime}$	$18^{\prime \prime}$	$2^{\prime}-10^{\prime \prime}$	1.97'	${ }^{1.62^{\prime}}$	${ }^{3.59}{ }^{\prime}$	${ }^{1.566^{\prime}}$	4^{4}	1.50^{\prime}	2.4'	4.92'	${ }^{7.75}$	${ }^{10.588^{\prime}}$	13.42'	$1.21{ }^{1}$	0.30	0.49	0.67	0.85	0.19	0.33	0.45	0.57	${ }^{21}$	24	27	30
			$14^{\prime \prime}$	23"	$3^{\prime \prime} 4^{\prime \prime}$	2.01	${ }^{1.99}$	4.00^{\prime}	${ }^{1.89}{ }^{\prime}$	5^{\prime}	1.90^{\prime}	$3.1{ }^{1}$	$5.38{ }^{\text {b }}$	8.71'	12.04'	15.38'	1.23'	0.37	0.59	0.81	1.02	0.25	0.40	0.55	0.69	22	26	29	33
			19"10	${ }^{30^{\prime \prime}}$	$4^{4-0}{ }^{\prime \prime}$	$2.111^{\prime \prime}$	${ }^{2.92}$	5.03^{\prime}	${ }^{2.733^{\prime}}$	6^{\prime}	${ }^{2.377^{\prime}}$	3.3'	${ }^{6.044^{\prime}}$	10.04'	14.04'	18.04'	1.27'	0.50	0.80	1.09	1.39	0.34	0.55	0.75	0.95	24	28	33	37
			$24^{\prime \prime}$	38"	$5^{\prime}-0^{\prime \prime}$	2.20^{\prime}	$3.85{ }^{\prime}$	6.05^{\prime}	3.56'	7	$2.85{ }^{\prime}$	3.4 ${ }^{\text {+ }}$	$6.79{ }^{\prime}$	${ }^{11.79}{ }^{\prime}$	16.79^{\prime}	21.79'	1.31	0.62	1.03	1.45	1.86	0.43	0.71	1.00	1.28	26	31	37	42
			$29^{\prime \prime}$	$45^{\prime \prime}$	$5^{\prime}-11^{\prime \prime}$	$2.34{ }^{\prime}$	4.79 ${ }^{\prime}$	7.13'	4.39^{\prime}	8^{\prime}	3.19'	3.6'	7.50^{\prime}	13.42'	19.33'	25.25'	1.38'	0.75	1.30	1.84	2.39	0.52	0.90	1.27	1.65	28	34	41	47
			$34^{\prime \prime}$	53"	7'01"	2.43'	5.72	8.15	5.23'	9^{\prime}	3.57'	3.8'	8.25'	15.25'	22.25'	29.25'	1.42'	0.90	1.61	2.32	3.03	0.62	1.11	1.60	2.09	30	37	45	53
			${ }^{38^{\prime \prime}}$	${ }^{60^{\prime \prime}}$	$7^{\prime}-10^{\prime \prime}$	${ }^{2.522^{\prime}}$	${ }^{6.466^{\prime}}$	${ }^{8.988^{\prime}}$	${ }^{5.859^{\prime}}$	9^{1}	${ }^{3.955^{\prime}}$	${ }^{3.1}{ }^{1}$	${ }^{8.92^{\prime}}$	${ }^{16.755^{\prime}}$	24.55'	32.42'	${ }^{1.466^{\prime}}$	1.03	1.89	2.74	3.60	0.70	1.29	1.87	2.46	31	40	49	
			$43^{\prime \prime \prime}$	${ }^{688^{\prime \prime}}$	${ }^{\text {8 }}$ - $111^{\prime \prime}$	${ }^{2.621}$	7.39 ${ }^{\text { }}$	$10.01{ }^{1}$	6.73^{\prime}	10^{\prime}	4.28 ${ }^{\text { }}$	3.3'	${ }^{9.677^{\prime}}$	18.58 ${ }^{\text {8 }}$	27.50'	36.42'	1.50'	1.19	2.26	3.33	4.40	0.81	1.54	2.26	2.99	33	43	53	63
			$48^{\prime \prime}$	$76^{\prime \prime}$	$9^{\prime}-11^{\prime \prime}$	2.71^{1}	8.33'	$11.04{ }^{4}$	7.56^{\prime}	11^{1}	4.59	3.4'	10.42^{\prime}	20.33'	30.25'	40.17'	1.54'	1.38	2.65	3.93	5.21	0.93	1.79	2.66	3.53	35	46	57	68
			$5_{53 \prime \prime}$	83"	10' ${ }^{\prime \prime} 8^{\prime \prime}$	$2.80{ }^{\prime}$	${ }^{9.266^{\prime}}$	12.06^{\prime}	8.39'	12^{\prime}	4.77 ${ }^{\prime}$	3.6'	${ }^{11.088^{\prime}}$	${ }^{21.75{ }^{\prime}}$	32.42 ${ }^{\prime}$	43.08'	1.58'	1.55	3.03	4.50	5.96	1.04	2.04	3.03	4.02	37	49	61	73
			${ }^{58^{\prime \prime}}$	${ }^{911^{\prime \prime}}$	$\frac{11^{\prime}-8^{\prime \prime}}{}$	2.90'	${ }^{10.199^{\prime}}$	${ }^{13.09^{\prime}}$	9.23'	${ }^{13}{ }^{\prime}$	5.01 1.	3.8.8	${ }^{11.833^{\prime \prime}}$	${ }^{23.50^{\prime}}$	35.17 ${ }^{\prime \prime}$	${ }^{46.833^{\prime}}$	1.63'	1.75	3.47	5.20	6.93	1.17	2.33	3.49	4.66	39	52	65	78
	$\begin{array}{\|c} 1: 4 \\ \text { Slope } \end{array}$			$18^{\prime \prime}$	${ }^{\text {2 }}$-10 $0^{\prime \prime}$	2.36'	${ }^{3.066^{\prime}}$	5.42'	3.03^{\prime}		1.50^{\prime}	2.0	4.92^{\prime}	$7.75{ }^{\prime}$	10.58	${ }^{13.42^{\prime}}$	1.21	0.45	0.68	0.92	1.14	0.30	0.45	0.61	0.76	23	26	29	32
			$\begin{array}{\|l\|l\|} \hline 14^{\prime \prime} \end{array}$	$\frac{23^{\prime \prime}}{30^{\prime \prime}}$		${ }^{2.444^{\prime}}$	3.75 5.47^{\prime}	${ }^{6.19^{\prime}}{ }^{\text {8. }}$	3.70^{\prime} 5 5 1.36^{\prime}	6^{\prime}	${ }^{1.900^{\prime}}$	${ }_{2}^{2.33^{\prime}}$	${ }^{5.388^{\prime}}$	${ }^{8.77^{\prime}} 10$	${ }^{12.04}{ }^{14.04}$	${ }^{15.388^{\prime}}$	${ }^{1.233^{\prime}}$	0.53 0.74	${ }^{0.83}$	1.13 1.57	1.42	0.36 0.51	0.56	0.76	0.95	24	28	32	35
$\|\stackrel{y}{2}\|$			$24^{\prime \prime}$	38"	$5^{\prime}-0^{\prime \prime}$	${ }^{2.799^{\prime}}$	7.1.48	${ }^{8.097}$	7.363 7.03^{\prime}	11^{\prime}	${ }^{2.855^{\prime}}$	$\frac{2.6}{3.0}$	${ }^{6.04{ }^{4}}$	${ }^{10.04}$	${ }^{14.04}$	${ }^{18.049^{\prime}}$	${ }^{1.271}$	${ }_{0}^{0.74}$	${ }_{1}^{1.15}$	1.57 2.19	1.98 281	${ }_{0}^{0.61}$	1.10	${ }_{1}^{1.08}$	${ }_{1}^{1.36}$	27	32 36	36	40 47
$\left\lvert\, \begin{array}{\|c\|} \hline \hat{心} \\ \hline \end{array}\right.$			$29^{\prime \prime}$	$45^{\prime \prime}$	5'-11"	3.05^{\prime}	8.90^{\prime}	11.95'	8.70^{\prime}	12^{\prime}	3.19^{\prime}	3.3'	7.50^{\prime}	13.42'	19.33 ${ }^{\text { }}$	25.25'	1.38'	1.22	2.07	2.92	3.77	0.86	1.45	2.04	2.63	33	40	46	53
			$34^{\prime \prime}$	53"	$7{ }^{7}-0^{\prime \prime}$	3.22^{\prime}	10.62'	13.84'	10.36^{\prime}	13^{\prime}	3.57'	2.6^{\prime}	8.25'	15.25'	22.25^{\prime}	29.25	1.42'	1.48	2.62	3.77	4.92	1.02	1.81	2.60	3.39	36	44	52	59
			38"1	$60^{\prime \prime}$	$7^{\prime}-10^{\prime \prime}$	3.39'	${ }^{11.99}{ }^{\prime}$	15.38'	${ }^{11.70^{\prime}}$	15'	3.95'	3.3'	8.92^{\prime}	16.75'	24.58'	32.42'	1.46'	1.72	3.12	4.53	5.92	1.18	2.14	3.10	4.05	38	47	56	65
			$43^{\prime \prime}$	$68^{\prime \prime}$	$8^{\prime}-11^{\prime \prime}$	3.56'	13.71	17.27 ${ }^{1}$	13.36'	${ }^{17}$	4.28'	3.6 ${ }^{\text {' }}$	9.67^{\prime}	18.58^{\prime}	27.50'	36.42'	1.50^{\prime}	2.02	3.78	5.56	7.32	1.38	2.58	3.79	4.99	41	51	61	71
			$48^{\prime \prime}$	$76^{\prime \prime}$	9'-11"	3.73'	15.43'	19.16'	15.03'	19'	4.59	4.0^{\prime}	10.42^{\prime}	20.33^{\prime}	30.25^{\prime}	40.17^{\prime}	1.54'	2.34	4.49	6.64	8.79	1.59	3.05	4.51	5.97	44	55	66	77
			53"1	83"1	${ }^{100^{\prime \prime} 8^{\prime \prime}}$	${ }^{3.99^{\prime}}$	${ }^{17.155^{\prime}}$	${ }^{21.06^{\prime}}$	${ }^{16.70^{\prime}}$	20°	${ }^{4.777^{\prime}}$	3.3' ${ }^{\text {a }}$	${ }^{111.088^{\prime}}$	${ }^{21.755^{\prime}}$	32.42^{\prime} 3517	${ }^{43.088^{\prime}}$	${ }^{1.588^{\prime}}$	2.66	5.17 5	$\begin{array}{r}7.66 \\ \hline 8\end{array}$	10.16	1.80	3.50 4	5.19	${ }_{6}^{6.88}$	47	59	71	83
			$58^{\prime \prime}$	91"	${ }^{11^{\prime}-8^{\prime \prime}}$	$4.08{ }^{\prime}$	18.87 ${ }^{\prime}$	22.95^{\prime}	18.36'	22^{\prime}	$5.01{ }^{1}$	3.6	${ }^{11.83}$	23.50^{\prime}	35.17'	46.83^{\prime}	1.63^{\prime}	3.02	5.98	8.95	11.90	2.04	4.04	6.05	8.05	50	63	76	89

$B \quad E$
Dimensions permitted to allow
use of 8^{\prime} standard pipe lengths.
$\diamond 10.40^{\prime} \diamond 10.10^{\prime}$ Dimensions permitted to allow

$\begin{aligned} & \text { LAST } \\ & \text { REVISION } \\ & 11 / 01 / 19 \end{aligned}$		DESCRIPTION:	FDOTY	FY 2023-24 STANDARD PLANS	$\mathbb{C R O S S ~ D R A I N ~ M I T E R E D ~ E N D ~ S E C T I O N ~}$	$\begin{gathered} \text { INDEX } \\ 430-021 \end{gathered}$	SHEET 3 of 6

TABLE 2
SINGLE AND MULTIPLE CORRUGATED METAL PIPE DIMENSIONS AND QUANTITIES

														M	M				CONC. S	$\text { SLAB }(C)$		$\begin{aligned} & 3^{\prime \prime \prime} \\ & \text { (See } \end{aligned}$	CONC. S General	SLAB (C	$3)$		SODD	G (SY)				
		Dia.	span	Rise	x	A	B	c	E	F	G	H	Single	Double	Triple	Quad.	N	$\begin{aligned} & \text { Single } \\ & \hline \text { Stin } \end{aligned}$	\|oubla		oubl		$\begin{aligned} & \text { If Note } \\ & \text { Triple } \\ & \text { Pine } \end{aligned}$	Quad.	$\begin{array}{\|l\|l\|} \hline \text { Single } \\ \hline \end{array}$	Double	Triple	Quad.	Single	Double	Triple	Quad.
	$\left\lvert\, \begin{gathered} 1: 2 \\ \text { Slope } \end{gathered}\right.$	$15^{\prime \prime}$			${ }^{2}$ '-7"	2.5'	1.68^{\prime}	$4.18{ }^{\text {f }}$	$1.5{ }^{\text { }}$	5.0^{\prime}	$1.23{ }^{\prime}$	3.5'	4.33^{\prime}	6.92'	9.50'	${ }^{12.08}$	$1.04{ }^{\text {a }}$	0.35	0.54	0.74	0.94	0.24	0.37	0.51	0.64	21	24	27	29			
					$2^{\prime}-10^{\prime \prime}$	2.5'	$2.24{ }^{\prime}$	$4.74{ }^{\prime}$	$2.0{ }^{\prime}$	6.0^{\prime}	1.41	4.0'	$4.58{ }^{\prime}$	7.42^{\prime}	10.25'	$13.08{ }^{\prime}$	1.04'	0.38	0.62	0.87	1.12	0.26	0.43		0.78	22	25	28	31			
		$24^{\prime \prime}$			$3^{\prime \prime-5^{\prime \prime}}$	$2.5{ }^{\text {2 }}$	3.35'	$5.85{ }^{\prime}$	3.0^{\prime}	7.0^{\prime}	$1.73{ }^{\text {1 }}$	4.0^{\prime}	$5.08{ }^{\prime}$	${ }^{8.50^{\prime}}$	11.92^{\prime}	15.33^{\prime}	1.04'	0.47	0.76	1.05	1.34	0.32	0.52	0.72	0.91	23	27	31	35			
		$30^{\prime \prime}$			$4^{4}-3^{\prime \prime}$	$2.5{ }^{\prime}$	4.47^{\prime}	6.97'	4.0°	$8.0{ }^{\text {8 }}$	2.00^{\prime}	4.0^{\prime}	$5.58{ }^{\prime}$	9.83 ${ }^{\text {3 }}$	$14.08{ }^{\prime}$	18.33^{\prime}	1.04'	0.57	0.96	1.37	1.77	0.38	0.64	0.91	1.18	25	30	35	39			
					5'-1	2.5'	5.5	. 09	5.0°	9.0^{\prime}	24	4.0°	6.08	11.17	16.25	21.33	1.04	0.67	1.19	1.72	2.26	0.44	0.78	1.13	1.48	27	33	38	44			
		$4{ }^{4}$			6-9 ${ }^{\text {cos }}$	2.	6.7	9.21	6.0	11	2.45	$4{ }^{4}$	6.50	13.58	18.58	27.5	1.0	0.18	1.48	2.54	2.86 3.36	0.5	0.96	1.41	1.81	29	36 38	42	49			
		54"			${ }^{7^{\prime \prime}-8^{\prime \prime}}$	2.5'	${ }^{7.83}$	${ }^{10.344^{\prime}}$	${ }^{8.0}{ }^{\text {8 }}$	${ }^{12.0}{ }^{\prime}$	$2.83{ }^{\text {2 }}$	4.0^{\prime}	$7.58{ }^{\text {7 }}$	${ }^{135.255^{\prime}}$	${ }^{22.52}{ }^{\prime}$	${ }^{27.35}{ }^{\text {3 }}$	$1.04{ }^{1}$	0.89	1.71	2.10	${ }^{3.36}$	0.65	1.32	1.93	2.65	31	38 41	50	58			
		60			$8^{8}-6^{\prime \prime}$	2.5'	${ }^{10.06^{\prime}}$	12.56^{\prime}	9.0^{\prime}	13.0^{\prime}	3.00^{\prime}	4.0^{\prime}	${ }^{8.088^{\prime}}$	16.58'	$25.08{ }^{\prime}$	33.58'	1.04'	1.14	2.38	3.63	4.89	0.71	1.49	2.28	3.07	34	44	53	63			
	1:4	$15^{\prime \prime}$			${ }^{2}$ '-7"	$2.5{ }^{\prime}$	$3.09{ }^{\prime}$	5.59'	3.0^{\prime}	7.0^{\prime}	1.23'	4.0^{\prime}	4.33'	$6.92{ }^{\prime}$	9.50^{\prime}	12.08^{\prime}	$1.04{ }^{1}$	0.44	0.68	0.91	1.15	0.31	0.47	0.63	0.79	22	25	28	31			
		18			$2^{\prime}-10^{\prime \prime}$	$2.5{ }^{\prime}$	$4.12{ }^{\prime}$	6.62'	4.0^{\prime}	8.0^{\prime}	1.41 ${ }^{\prime}$	4.0^{\prime}	$4.58{ }^{\prime}$	7.42^{\prime}	10.25'	$13.08{ }^{\prime}$	1.04'	0.49	0.77	1.03	1.31	0.34	0.53	0.71	0.90	24	27	30				
		$24^{\prime \prime}$			${ }^{3 \prime-5 "}$	$2.5{ }^{\prime}$	$6.18{ }^{\prime}$	8.68'	6.0^{\prime}	10.0^{\prime}	$1.73{ }^{\prime}$	4.0'	$5.08{ }^{\text {b }}$	8.50 ${ }^{\prime}$	11.92^{\prime}	15.33'	1.04'	0.65	1.09	1.38	1.77	0.44	0.69	0.92	1.18	27	30	34	38			
		$30^{\prime \prime}$			$4^{\prime \prime}-3^{\prime \prime}$	$2.5{ }^{\prime}$	8.25'	10.75'	8.0°	12.0^{\prime}	2.00	4.0^{\prime}	5.58	9.83'	14.08	18.33	1.04'	0.81	1.34	1.90	2.44	0.53	0.88	1.25	1.60	29	34	39	44			
		$36^{\prime \prime}$			$5^{5^{\prime}-1^{\prime \prime}}$	2.5. ${ }^{\text {² }}$	${ }^{10.311^{\prime}}$	12.81^{\prime}	10.0	$14.0{ }^{\circ}$	$2.24{ }^{\prime}$	4.0 ${ }^{\prime}$	${ }^{6.088^{\prime}}$	11.157^{\prime}	$16.25{ }^{\prime}$	21.33^{\prime}	$1.04{ }^{\prime}$	0.97	1.68	2.41	3.14	0.62	1.07	1.53	2.00	32	38	44	49			
		$\frac{42^{\prime \prime}}{48^{\prime \prime}}$			$6^{\prime}-0^{\prime \prime}$	$2.5{ }^{\prime}$	${ }^{12.37^{\prime}}$	${ }^{14.87^{\prime}}$	12.0	16.0^{\prime}	2.45	4.0	6.58	12.58	18.58	24.58	1.04'	1.13	2.08	3.06	4.02	0.71	1.30	1.92	2.52	35	42	48	55			
		$54^{\prime \prime}$			${ }_{7}^{6-9}$	$\frac{2.51}{25}$	${ }^{164.43^{\prime}}$	${ }^{16.933^{\prime}}$	14.0	${ }^{18.0}{ }^{\circ}$	65	4.0	7.08	13.83	20.58	27.3			2.49			0.80	1.54			38	46	53	60			
		$60^{\prime \prime}$			$8^{8^{\prime}-6^{\prime \prime}}$	$2.5{ }^{\prime}$	18.55'	21.05^{\prime}	18.0	220^{\prime}	${ }^{2.00^{\prime}}$	40^{\prime}	$8.08{ }^{\prime}$	16.58^{\prime}	25.08^{\prime}	${ }^{33.588^{\prime}}$	$1.04{ }^{1}$	1.66	2.49	5.31	7.13	102	2.15	2.77	3.39	44	53	63	72			
			$17^{\prime \prime}$	$13^{\prime \prime}$	$2^{\prime \prime}-6^{\prime \prime}$	$2.5{ }^{\prime}$	1.30°	3.80^{\prime}	1.17	4^{\prime}	${ }^{1.39^{\prime}}$	$2.8{ }^{\prime}$	4.50^{\prime}	7.00^{\prime}	9.50^{\prime}	12.00^{\prime}	1.04'	0.41	0.61	0.81	1.02	0.33	0.49	0.65	0.81	21	23	26				
			$21^{\prime \prime}$	$15^{\prime \prime}$	$2^{\prime \prime}-10^{\prime \prime}$	$2.5{ }^{\prime}$	$1.68{ }^{\prime}$	4.17^{\prime}	1.50	5^{\prime}	1.76	3.5'	4.83'	7.67^{\prime}	10.50^{\prime}	13.33'	$1.04{ }^{\text {1 }}$	0.43	0.66	0.88	1.10	0.33	0.50	0.67	0.83	22	25	28	31			
			$28^{\prime \prime}$	$20^{\prime \prime}$	$3^{\prime \prime}-5^{\prime \prime}$	$2.5{ }^{\prime}$	2.61^{\prime}	5.11^{1}	2.33'	${ }^{\prime}$	2.22'	3.7	5.42'	8.83'	12.25'	15.67'	$1.04{ }^{1}$	0.51	0.78	1.06	1.33	0.37	0.56	0.76	0.95	23	27	30	34			
			$35^{\prime \prime}$	$24^{\prime \prime}$	$4^{4}-0^{\prime \prime}$	2.5	3.35'	5.85'	3.00^{\prime}	$7{ }^{\prime}$	$2.55{ }^{\prime}$	4.0'	6.00^{\prime}	10.00^{\prime}	14.00^{\prime}	18.00	1.04'	0.57	0.90	1.22	1.55	0.40	0.62	0.84	1.07	24	29	33				
			$42^{\prime \prime}$	$29^{\prime \prime}$	$4^{4}-9^{\prime \prime}$	$2.5{ }^{\prime}$	4.29^{\prime}	6.79'	3.83'	8^{\prime}	2.97^{\prime}	4.2'	$6.58{ }^{\text {b }}$	11.33'	16.08^{\prime}	20.83'	1.04'	0.64	1.04	1.46	1.87	0.43	0.70	0.98	1.25	26	31	37	42			
			$49^{\prime \prime}$	33"	5'-6"	2.5'	5.03'	7.53'	4.50^{\prime}	9^{\prime}	$3.34{ }^{\prime}$	4.5'	7.17^{\prime}	12.67^{\prime}	18.17^{\prime}	23.67^{\prime}	1.04'	0.73	1.23	1.72	2.22	0.49	0.82	1.15	1.48	28	34	40	46			
			$57^{\prime \prime}$	$38^{\prime \prime}$	6'-4"	2.5'	5.96'	8.46'	5.33'	10^{\prime}	3.65'	4.7 ${ }^{\prime}$	7.83^{\prime}	14.17^{\prime}	20.50^{\prime}	26.83'	1.04'	0.83	1.44	2.04	2.64	0.55	0.95	1.35	1.75	29	36	44	51			
			$64^{\prime \prime}$	$43^{\prime \prime}$	$7^{7}-1^{\prime \prime}$	2.5 '	$6.89{ }^{\prime}$	9.39'	$6.17{ }^{\prime}$	11^{\prime}	3.89'	4.8'	$8.42{ }^{\prime}$	15.50^{\prime}	22.58	29.67^{\prime}	1.04'	0.95	1.67	2.39	3.11	0.62	1.10	1.57	2.05	31	39	47	55			
			$71^{\prime \prime}$	$47^{\prime \prime}$	$7^{\prime \prime}-10^{\prime \prime}$	$2.5{ }^{\prime}$	$7.64{ }^{\prime}$	$10.14{ }^{\prime}$	6.83'	12^{\prime}	4.14'	5.2'	9.00^{\prime}	16.83'	24.67^{\prime}	32.50^{\prime}	1.04'	1.05	1.89	2.74	3.57	0.69	1.24	1.80	2.35	33	41	50	59			
	1:4		$17^{\prime \prime}$	$13^{\prime \prime}$	$2^{\prime \prime}-6^{\prime \prime}$	2.5'	$2.41{ }^{\prime}$	$4.91{ }^{1}$	2.33'	7^{\prime}	1.39^{\prime}	4.7 ${ }^{\text { }}$	4.50^{\prime}	7.00^{\prime}	9.50'	12.00^{\prime}	$1.04{ }^{1}$	0.48	0.71	0.95	1.18	0.38	0.56	0.74	0.92	22	25	27	30			
			$21^{\prime \prime}$	$15^{\prime \prime}$	$2^{\prime}-10^{\prime \prime}$	$2.5{ }^{\prime}$	$3.09{ }^{\prime}$	5.59'	3.00^{\prime}	8^{\prime}	1.76	5.0'	4.83'	7.67^{\prime}	10.50^{\prime}	13.33'	1.04'	0.52	0.80	1.09	1.31	0.39	0.59	0.80	0.95	23	26	29				
			$28^{\prime \prime}$	$20^{\prime \prime}$	$3^{\prime \prime} 5^{\prime \prime}$	$2.5{ }^{\prime}$	4.81^{\prime}	7.31^{1}	4.67^{\prime}	$9{ }^{\prime}$	2.22^{\prime}	4.3'	5.42'	8.83'	12.25^{\prime}	15.67^{\prime}	1.04'	0.61	0.92	1.27	1.59	0.43	0.64	0.88	1.10	25	29	33				
B			$35^{\prime \prime}$	$24^{\prime \prime}$	$4^{4}-0^{\prime \prime}$	2.5	$6.18{ }^{\prime}$	8.68'	6.00^{\prime}	11'	$2.55{ }^{\prime}$	5.0'	6.00^{\prime}	10.00^{\prime}	14.00^{\prime}	18.00^{\prime}	1.04'	0.73	1.14	1.55	1.97	0.49	0.77	1.05	1.33	28	32	37	41			
E			$42^{\prime \prime}$	${ }^{29}{ }^{\prime \prime}$	${ }^{4-1-9^{\prime \prime}}$	2.5'	7.90^{\prime}	${ }^{10.40^{\prime}}$	7.67^{\prime}	$12^{\prime \prime}$	${ }^{2.977^{\prime}}$	4.3' ${ }^{\prime}$	${ }^{6.588^{\prime}}$	${ }^{11.333^{\prime}}$	16.088^{\prime}	20.83'	${ }^{1.04}$	0.87	1.39	1.92	2.45	0.57	0.92	1.27	1.62	30	35	41				
			49"1	${ }^{33^{\prime \prime}}$	5'-6"	2.5'	${ }^{9.288^{\prime}}$	${ }^{11.78{ }^{\prime}}$	${ }^{9.00^{+}}$	14	3.34'	5.0'	$7.17{ }^{\text { }}$	${ }^{12.67{ }^{\prime}}$	18.17'	23.67'	1.04	1.00	1.66	2.30	2.96	0.65	1.08	1.50	1.93	32	38	45	51			
			$64^{\prime \prime}$	$43^{\prime \prime}$	$7^{\prime}-1^{\prime \prime}$	2.5'	12.71^{\prime}	$15.21{ }^{\prime}$	12.33'	17^{\prime}	3.89^{\prime}	4.7^{\prime}	${ }^{8.42^{\prime}}$	15.50'	$22.58{ }^{\prime}$	${ }^{29.67}{ }^{\prime}$	$1.04{ }^{1}$	1.36	2.39	3.38	${ }^{3.364}$	${ }_{0} 0.87$	1.55	1.18	${ }_{2}^{2.83}$	38	45	43	61			
		-	$71^{\prime \prime}$	$47^{\prime \prime}$	$7^{\prime \prime}-10^{\prime \prime}$	$2.5{ }^{\prime}$	14.09'	16.59^{\prime}	13.67	19^{\prime}	4.14^{4}	5.3	9.00°	16.83'	24.67^{\prime}	32.50^{\prime}	1.04	1.50	2.65	3.81	4.97	0.95	1.68	2.43	3.17	40	48	57	66			

tongue and groove connector detail

NOTES:

1. Use galvanized steel for all bars, bolts, nuts, and washers.
2. Two connectors required per joint, located 60° right and left

Bolt Dia.	Pipe Dia.
$3 / /^{\prime \prime}$	$15^{\prime \prime}$ to $36^{\prime \prime}$
$58^{\prime \prime}$	$42^{\prime \prime}$ to $72^{\prime \prime}$

3. Bolt holes in pipe shell are to be drilled.
concrete pipe connection detail

NOTES:

1. Anchors required for CMP only
2. Use galvanized steel for all anchors, nuts, and washers.
3. Bend anchor where required to center in concrete slab.
4. Repair damaged surfaces after bending
5. Space anchors a distance equal to four (4) corrugations.
6. Place the anchors in the outside crest of corrugation.
7. Place flat washers on inside wall of pipe.
8. Drill or punch holes in the mitered end pipe; burning not permitted.
9. $A 6^{\prime \prime} \times 1 /{ }^{\prime \prime}$ bolt substitution is permitted.

CORRUGATED METAL PIPE (CMP) ANCHOR DETAIL

CONCRETE PIPE CONNECTION AND CORRUGATED PIPE ANCHOR DETAILS

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$		$\begin{gathered} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{gathered}$	$\mathbb{C R O S S}$ DRAIN MITERED END SECTION	$\begin{gathered} \text { INDEX } \\ 430-021 \end{gathered}$	SHEET 6 of 6

GENERAL NOTES

1. Unless otherwise designated in the plans, concrete pipe mitered end sections may be used with any type of side drain pipe; corrugated steel pipe mitered end sections may be used with any type of side drain pipe except aluminum pipe; and, corrugated aluminum mitered end sections may be used with any yype
of side drain pipe except steel pipe. When bituminous coated metal pipe is specified for side drain pipe, construct the mitered end sections with like pipe or concrete pipe. When the mitered end section pipe is dissimilar to the side drain pipe, construct a concrete jacket in accordance with Index 430-001.
2. Use either corrugated metal or concrete mitered end sections for corrugated polyethylene pipe (HDPE), polyvinyl-chloride pipe (PVC), steel reinforced polyethylene pipe (SRPE), and polypropylene pipe (PP). When used in conjunction with corrugated mitered end sections, make connection using either a formed metal band specifically designated to join HDPE, PVC, SRPE, or PVC pipe. When used in conjunction
3. Use class NS concrete cast-in-place reinforced slabs for all cross drain pipes.
4. Select lengths of concrete pipe that avoid excessive connections in the assembly of the mitered end section.
5. Repair corrugated metal pipe galvanizing that is damaged during beveling and perforating.
6. When existing multiple side drain pipes are spaced other than the dimensions shown in this Index have nonparallel axes, or non-uniform sections, either construct the mitered end sections separately .
7. Saddle Slope:

1:4 Miter - Slope to \& of pipe for round pipes less than or equal to $18^{\prime \prime}$ diameter and 1:1 for round pipes greater than or equal to $24^{\prime \prime}$ diameter.
 Slope to the span line for pipe arch $28^{\prime \prime} \times 20^{\prime \prime}$ or smaller and $1: 2$ for pipe arch $35^{\prime \prime} \times 24^{\prime \prime}$ or larger.
1:2 Miter - Slope to \mathbb{Q} of pipe for round pipes less than or equal to $18^{\prime \prime}$ diameter and 1:2 for round pipes greater than or equal to 24" diameter. Slope to the major axis for elliptical pipes $29^{\prime \prime} \times 45^{\prime \prime}$ or smaller and 1:1 for pipes $34^{\prime \prime} \times 53^{\prime \prime}$ or larger. Slope 1:1 for all pipe arch sizes.
8. Quantities shown are for estimating purposes on
 — SIDEDRAIN MITERED END SECTION (Concrete Pipe Shown, Corrugated Metal Pipe Similar)

DITCH TRANSITION

elevation

DETAIL "A"

PLAN - SINGLE PIPE

elevation

Concrete Slab, $3^{\prime \prime}$ Thick Reinforced
With WWR $6 \times 6-W I .4 \times W I .4$

PLAN - MULTIPLE PIPE
che tipe

DETAIL "B"

SINGLE AND MULTIPLE CORRUGATED METAL PIPE

NGLE AND MULTIPLE CORRUGATED METAL PIPE DIMENSIONS AND QUANTITIES																										
											H	\xrightarrow{M}				N	GRATE SIZES		$3^{\prime \prime}$ CONC. SLAB (CY)							
을	${ }_{\text {Dia. }}$	${ }_{\text {Span }}^{\text {S }}$	Rise	x	A	${ }^{\text {B }}$	c	${ }^{E}$	${ }^{F}$	${ }^{G}$		$\begin{array}{\|c} \hline \text { Single } \\ \text { Pipe } \\ \hline \end{array}$	$\begin{gathered} \text { Double } \\ \text { Pipe } \end{gathered}$	$\begin{array}{\|c} \text { Triple } \\ \text { Pipe } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { Quad. } \\ \text { Pipe } \end{array}$		STANDARD WEIGHT PIPE	$\begin{aligned} & \text { SIZES } \\ & \begin{array}{c} \text { EXTRA } \\ \text { STRONG PIPE } \end{array} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Single } \\ \text { Pipe } \end{gathered}$	conc. S	$\begin{gathered} \text { Triple } \\ \text { Pipe } \end{gathered}$	$\begin{aligned} & \text { Quad. } \\ & \text { Pipe. } \end{aligned}$	$\begin{gathered} \text { Single } \\ \text { Pipe } \end{gathered}$	$\frac{\text { SODDING (SY) }}{\text { Double Triple }}$		
隹	$8^{\prime \prime}$			$2^{\prime \prime}-0^{\prime \prime}$	2.5'	0.72^{\prime}	3.22^{\prime}	$0.7{ }^{\prime}$	4.0^{\prime}	0.58'	3.3'	$3.75{ }^{\prime}$	5.75'	$7.75{ }^{\prime}$	9.75'	$1.04{ }^{\text { }}$										
	$10^{\prime \prime}$			$2^{\prime \prime}-2^{\prime \prime}$	2.5'	$1.34{ }^{\prime}$	$3.84{ }^{\prime}$	$1.3{ }^{\prime}$	5.0^{\prime}	0.81'	$3.7{ }^{\prime}$	3.92^{\prime}	$6.08{ }^{\prime}$	8.25'	10.41	$1.04{ }^{\prime}$			0.64	0.99	1.34	1.70	7	8	9	10
	$12^{\prime \prime}$			$2^{\prime}-4^{\prime \prime}$	2.5'	$2.06{ }^{\prime}$	4.56'	$2.0{ }^{\prime}$	$6.0{ }^{\circ}$	1.00^{\prime}	4.0'	$4.08{ }^{\prime}$	$6.42{ }^{\prime}$	$8.75{ }^{\prime}$	11.08^{\prime}	$1.04{ }^{\text { }}$			0.68	1.09	1.48	1.88	7	8	10	11
	$15^{\prime \prime}$			$2^{\prime \prime-7{ }^{\prime \prime}}$	2.5'	3.09^{\prime}	5.59	3.0^{\prime}	7.0'	1.23^{\prime}	4.0^{\prime}	4.33'	$6.92{ }^{\prime}$	9.50'	$12.08{ }^{\prime}$	$1.04{ }^{\text { }}$			0.64	1.00	1.35	1.71	8	9	10	11
	$18^{\prime \prime}$			$2^{\prime \prime}-10^{\prime \prime}$	2.5'	4.12'	6.62'	4.0^{\prime}	8.0°	1.41^{\prime}	4.0^{\prime}	$4.58{ }^{\prime}$	7.42'	10.25'	13.08'	$1.04{ }^{\text { }}$			0.69	1.09	1.49	1.89	9	10	11	12
	$24^{\prime \prime}$			$3^{\prime \prime}-5^{\prime \prime}$	$2.5{ }^{\prime}$	$6.18{ }^{\prime}$	$8.68{ }^{\prime}$	6.0^{\prime}	10.0^{\prime}	1.73^{\prime}	4.0'	$5.08{ }^{\prime}$	8.50'	11.92'	15.33'	$1.04{ }^{\prime}$			0.83	1.34	1.82	2.34	10	11	13	14
	$30^{\prime \prime}$			$4^{\prime}-3^{\prime \prime}$	2.5 '	8.25'	10.75'	$8.0{ }^{\text {a }}$	12.0'	2.00^{\prime}	4.0'	$5.58{ }^{\prime}$	9.83'	$14.08{ }^{\prime}$	18.33'	$1.04{ }^{\text { }}$	21/2"	$3^{\prime \prime}$	0.96	1.63	2.32	2.99	11	13	15	17
	$36^{\prime \prime}$			$5^{\prime \prime}-1^{\prime \prime}$	2.5'	10.31^{\prime}	$12.81{ }^{\prime}$	10.0^{\prime}	14.0^{\prime}	$2.24{ }^{4}$	4.0'	$6.08{ }^{\text {b }}$	11.17'	16.25'	21.33'	$1.04{ }^{\text { }}$	$2^{1 / 21}$	$3^{\prime \prime}$	1.08	1.92	2.77	3.62	12	14	17	19
	$42^{\prime \prime}$			$6^{\prime}-0^{\prime \prime}$	$2.5{ }^{\prime}$	12.37^{\prime}	14.87^{\prime}	12.0^{\prime}	16.0^{\prime}	$2.45{ }^{\prime}$	4.0^{\prime}	$6.58{ }^{\prime}$	12.58'	18.58^{\prime}	24.58^{\prime}	$1.04{ }^{\text { }}$	$2^{1 / 24}$	$3^{1 / 2 / 4}$	1.20	2.26	3.34	4.61	13	16	18	21
	$48^{\prime \prime}$			6'-9"	2.5 '	14.43'	16.93'	14.0^{\prime}	$18.0{ }^{\prime}$	$2.65{ }^{\prime}$	4.0^{\prime}	$7.08{ }^{\prime}$	13.83'	20.58^{\prime}	27.33'	$1.04{ }^{\prime}$	$2^{1 / 2}$	$3^{1 / 2 / 2}$	1.60	3.11	4.62	6.12	14	17	20	23
	$54^{\prime \prime}$			$7^{7}-8^{\prime \prime}$	$2.5{ }^{\prime}$	16.49^{\prime}	18.99'	16.0^{\prime}	20.0'	2.83'	4.0^{\prime}	$7.58{ }^{\prime}$	15.25^{\prime}	22.92'	30.58'	$1.04{ }^{\text { }}$	$3^{\prime \prime}$	$4{ }^{\prime \prime}$	1.76	3.56	5.34	7.14	15	19	22	26
	$60^{\prime \prime}$			$8^{8}-6^{\prime \prime}$	2.5'	18.55'	21.05'	18.0^{\prime}	22.0^{\prime}	3.00'	4.0^{\prime}	8.08'	16.58'	$25.08{ }^{\prime}$	33.58'	$1.04{ }^{+}$	$3^{\prime \prime}$	$4^{\prime \prime}$	1.94	4.03	6.12	8.20	17	20	24	
		$17^{\prime \prime}$	$13^{\prime \prime}$	$2^{\prime \prime}-6^{\prime \prime}$	2.5'	2.41^{\prime}	4.91^{\prime}	2.33'	$7{ }^{\prime}$	${ }^{1.39^{\prime}}$	$4.7{ }^{\text { }}$	4.50°	7.00'	9.50'	${ }^{12.00^{\circ}}$	$1.04{ }^{+}$			0.62	0.95	1.27	${ }^{1.60}$	8	易	10	11
		$21^{\prime \prime}$	$15^{\prime \prime}$	$2^{\prime \prime}-10^{\prime \prime}$	2.5'	3.09^{\prime}	5.59'	3.00^{\prime}	$8{ }^{\prime}$	1.76^{\prime}	5. 0^{\prime}	$4.83{ }^{\prime}$	$7.67{ }^{\prime}$	10.50^{\prime}	13.33'	$1.04{ }^{+}$			0.69	1.06	1.44	1.77	8	9	11	12
		$28^{\prime \prime}$	$20^{\prime \prime}$	$3^{\prime \prime}-5^{\prime \prime}$	2.5'	4.81^{1}	7.31'	4.67^{\prime}	9^{\prime}	2.22^{\prime}	4.3'	5.42'	8.83'	12.25'	15.67'	$1.04{ }^{+}$			0.81	1.26	1.73	2.19	9	11	12	14
		$35^{\prime \prime}$	$24^{\prime \prime}$	$4^{4}-0^{\prime \prime}$	$2.5{ }^{\prime}$	$6.18{ }^{\prime}$	${ }^{8.688^{\prime}}$	6.00^{\prime}	11^{1}	$2.55{ }^{\prime}$	5.0^{\prime}	${ }^{6.00^{\prime}}$	10.00^{\prime}	${ }^{14.00^{\prime}}$	18.00°	$1.04{ }^{+}$	$2^{1 / 2 / 1}$	$3^{\prime \prime}$	0.94	1.51	2.09	2.66	10	12	14	15
		$42^{\prime \prime}$	$29^{\prime \prime}$	$4^{\prime \prime}-9^{\prime \prime}$	2.5'	7.90^{\prime}	10.40^{\prime}	7.67'	12^{\prime}	$2.97{ }^{\prime}$	4.3'	6.58'	11.33^{\prime}	$16.08{ }^{\prime}$	20.83'	$1.04{ }^{\text { }}$	$2^{1 / 24}$	$3^{1 / 2 / 4}$	1.06	1.76	2.46	3.16	11	13	15	17
		$49^{\prime \prime}$	$33^{\prime \prime}$	5'-6"	$2.5{ }^{\prime}$	$9.28{ }^{\prime}$	11.78 ${ }^{\prime}$	9.00^{\prime}	14'	3.34'	5.0'	7.17^{\prime}	12.67^{\prime}	18.17^{\prime}	23.67^{\prime}	$1.04{ }^{\prime}$	$2^{1 / 2 / 4}$	$3^{1 / 2} 2^{\prime \prime}$	1.19	2.02	2.84	3.68	12	14	17	19
		57"	$38^{\prime \prime}$	$6^{\prime}-4^{\prime \prime}$	$2.5{ }^{\prime}$	11.00^{\prime}	13.50'	10.67'	16^{\prime}	3.65'	5.3'	$7.83{ }^{\prime}$	14.17^{\prime}	20.50^{\prime}	26.83'	$1.04{ }^{\prime}$	"	4"	1.35	2.35	3.35	4.36	13	16	19	22
		$64^{\prime \prime}$	$43^{\prime \prime}$	$7^{\prime \prime}-1^{\prime \prime}$	2.5'	12.71^{1}	15.21^{\prime}	12.33'	17^{1}	3.89^{\prime}	4.7 ${ }^{\text { }}$	8.42^{\prime}	15.50^{\prime}	22.58^{\prime}	29.67^{\prime}	$1.04{ }^{\text { }}$	${ }^{\prime \prime}$	$4^{\prime \prime}$	1.50	2.70	3.86	5.03	14	17	20	24
	-	$71^{\prime \prime}$	$47^{\prime \prime}$	$7^{\prime}-10^{\prime \prime}$	2.5	14.09'	16.59'	13.67	19'	4.14	5.3'	9.00^{\prime}	16.83'	24.67	32.50'	$1.04{ }^{+}$	3"	$4^{\prime \prime}$	1.62	2.94	4.27	5.59	15	18	22	25

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$		$\begin{array}{cc} \text { FDOT } & \text { FY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	SIDE DRAIN MITERED END SECTION	$\begin{gathered} \text { INDEX } \\ 430-022 \end{gathered}$	SHEET 5 of 7

tongue and groove connector detail

NOTES:

1. Use galvanized steel for all bars, bolts, nuts, and washers.
2. Two connectors required per joint, located 60° right and left of bottom center of pipe.

3. Bolt holes in pipe shell are to be drilled.
concrete pipe connection detail

$\text { FDOT\} }$	FY 2023-24 STANDARD PLANS	SIDE $D R A \mathbb{N} M$ MITERED $\mathbb{R} \mathbb{N} D$ SECTION	$\begin{gathered} \text { INDEX } \\ 430-022 \end{gathered}$	SHEET 6 of 7

Corrugated metal pipe (CMP) anchor detail
NOTES:

1. Anchors required for CMP only.
2. Use galvanized steel for all anchors, nuts, and washers.
3. Bend anchor where required to center in concrete slab.
4. Repair damaged surfaces after bending
5. Space anchors a distance equal to four (4) corrugations.
6. Place the anchors in the outside crest of corrugation.
7. Place flat washers on inside wall of pipe.
8. Drill or punch holes in the mitered end pipe; burning not permitted.
9. $A 6^{\prime \prime} \times 1 /{ }^{\prime \prime}$ bolt substitution is permitted.

CONCRETE PIPE CONNECTION AND CORRUGATED PIPE ANCHOR DETAILS $S I D E \mathbb{D} A \mathbb{N} \operatorname{MITE} R E \mathbb{E} \mathbb{N} D S E T I O N$

NOTES

$.5 / 8$ " $\times 3^{\prime \prime}$ bolts are standard for all grate fasteners, except when the contractor elects to use the slotted upper holes
he intermediate fasteners on multiple drain pipes, which will require bolt lengths in the Special Bolt Length Table.
3. Make the specified weld when the fabricated unit is subject to hazardous hauls and repeated handling. Tack welds are
permitted for local or job site fabrication. Galvanizing over welded surface not required.
. Omit on trailing downstream ends on divided roadways.
5. Use grates on all round pipes $30^{\prime \prime}$ or greater, Pipe arches $35^{\prime \prime} \times 24^{\prime \prime}$ or greater, and elliptical pipe $19^{\prime \prime} \times 30^{\prime \prime}$ or greater,
unless excluded in the Plans. Use grates on smaller pipes only when called for in the Plans.

CONCRETE PIPE									
ROUND PIPE					ELLIPTICAL PIPE				
$\begin{aligned} & \text { Pipe } \\ & \text { Dia. } \end{aligned}$	s	n	\llcorner	La	$\begin{aligned} & \text { Drain } \\ & \text { Size } \end{aligned}$	s	n	\llcorner	La
*15"	3	4	$4^{4}-0^{\prime \prime}$	$4^{\prime}-11^{\prime \prime}$	*12"x18"	2	3	$2^{\prime \prime}-10^{\prime \prime}$	${ }^{\prime}$
${ }^{* 188^{\prime \prime}}$	4	5	$5^{\prime \prime}-2^{\prime \prime}$	$6^{\prime}-1^{\prime \prime}$	*14" $\times 23^{\prime \prime}$	3	4	$4^{\prime}-0^{\prime}$	$4^{\prime \prime-11^{\prime \prime}}$
*24"	6	7	$7^{\prime \prime-6 "}$	$8^{\prime}-5^{\prime \prime}$	$19^{\prime \prime} \times 30^{\prime \prime}$	4	5	$5^{\prime}-2^{\prime \prime}$	$6^{\prime}-1^{\prime \prime}$
$30^{\prime \prime}$	7	8	$8^{\prime}-8^{\prime \prime}$	9'-7"	$24^{\prime \prime} \times 38^{\prime \prime}$	5	6	$6^{\prime}-4^{\prime \prime}$	$7^{\prime \prime}-3^{\prime \prime}$
$36^{\prime \prime}$	9	10	$11^{-1} 0^{\prime \prime}$	11'-11"	$29^{\prime \prime} \times 45^{\prime \prime}$	7	8	$8^{\prime}-8^{\prime \prime}$	9'-7"
$42^{\prime \prime}$	11	12	$13^{\prime \prime} 4^{\prime \prime}$	$14^{\prime \prime} 3^{\prime \prime}$	$34^{\prime \prime} \times 53^{\prime \prime}$	8	9	$9^{\prime \prime} 10^{\prime \prime}$	$0^{\prime}-9^{\prime \prime}$
$48^{\prime \prime}$	13	14	$15^{\prime}-8^{\prime \prime}$	$16^{\prime}-7^{\prime \prime}$	$38^{\prime \prime} \times 60^{\prime \prime}$	10	11	$12^{\prime}-2^{\prime \prime}$	$13^{\prime}-1^{\prime \prime}$
$54^{\prime \prime}$	14	15	$16^{\prime}-10^{\prime \prime}$	$17^{\prime \prime}-9^{\prime \prime}$	$43^{\prime \prime} \times 68^{\prime \prime}$	11	12	$13^{\prime \prime} 4^{\prime \prime}$	14-3"
$60^{\prime \prime}$	16	17	$19^{-2} 2^{\prime \prime}$	$20^{\prime}-1^{\prime \prime}$	$48^{\prime \prime} \times 76^{\prime \prime}$	13	14	15'-8"	$16^{\prime}-7^{\prime \prime}$
$53^{\prime \prime} \times 83^{\prime \prime}$ 14 15 $16^{\prime}-10^{\prime \prime}$ $17^{\prime}-99^{\prime \prime}$ $58^{\prime \prime} \times 91^{\prime \prime}$ 15 16 $18^{\prime}-0^{\prime \prime}$ $18^{\prime}-11^{\prime \prime}$									

CORRUGATED METAL PIPE									
Round PIPE					ARCHED PIPE				
$\begin{gathered} \text { Pipe } \\ \text { Dia. } \end{gathered}$	s	n	\llcorner	La	$\begin{aligned} & \text { Drain } \\ & \text { Size } \end{aligned}$	s	n	\llcorner	La
*15"	2	3	$2^{\prime}-10^{\prime \prime}$	3'-9"	*17"×13"	1	2	$1^{1}-8^{\prime \prime}$	$2^{\prime \prime}-7^{\prime \prime}$
*18"	3	4	$4^{\prime}-0^{\prime \prime}$	$4^{\prime}-11^{\prime \prime}$	*21"x15"	2	3	$2^{\prime}-10^{\prime \prime}$	$3^{3}-9^{\prime \prime}$
*24"	5	6	$6^{\prime}-4^{\prime \prime}$	7'-3"	*28 ${ }^{1 \times 20^{\prime \prime}}$	4	5	5'-2"	$6^{\prime}-1{ }^{\prime \prime}$
$30^{\prime \prime}$	7	8	$8^{\prime}-8^{\prime \prime}$	9'-7"	$35^{\prime \prime} \times 24^{\prime \prime}$	5	6	$6^{\prime \prime}-4^{\prime \prime}$	7'-3"
36"	8		$9^{\prime \prime} 10^{\prime \prime}$	$10^{\prime \prime} 9^{\prime \prime}$	$42^{\prime \prime} \times 29^{\prime \prime}$	6	7	$7^{\prime \prime}-6^{\prime \prime}$	$8^{8}-5^{\prime \prime}$
$42^{\prime \prime}$	10	11	$12^{\prime \prime}-2^{\prime \prime}$	$13^{\prime}-1^{\prime \prime}$	$49^{\prime \prime} \times 33^{\prime \prime}$	7	8	$8^{\prime \prime}-8^{\prime \prime}$	9'-7"
$48^{\prime \prime}$	12	13	$14^{-6} 6^{\prime \prime}$	$15^{\prime}-5^{\prime \prime}$	$57^{\prime \prime} \times 38^{\prime \prime}$	9	10	11'-0"	$11^{\prime}-11^{\prime \prime}$
$54^{\prime \prime}$	14	15	$16^{\prime}-10^{\prime \prime}$	${ }^{17}$-9 $9^{\prime \prime}$	$64^{\prime \prime} \times 43^{\prime \prime}$	10	11	$12^{1}-2^{\prime \prime}$	$13^{\prime \prime-11^{\prime \prime}}$
$60^{\prime \prime}$	15	16	$18^{\prime}-0^{\prime \prime}$	$18^{\prime}-11^{\prime \prime}$	$71^{\prime \prime \times 47}$	12	13	$14^{-66^{\prime \prime}}$	15'-5

* See Note 5

GENERAL NOTES

Use Class II concrete
2. Reinforcing steel is either Grade 40 or 60 .
3. Endwalls may be cast in place or precast concrete. (Additional reinforcement necessary for handing precast units will be determined by the Contractor necessary for
or the supplier)
4. Chamfer all exposed edges and corners to $3 / 4$.
5. Endwall dimensions, locations and positions are for round and elliptical concrete pipe and for round and pipe-arch corrugated metal pipe. Round concrete pipe shown
6. On outfall ditches with side slopes flatter than 1:1.5 provide 20 transitions from the endwall to the flatter side slopes, right or way permitting.
7. Construct front slope and ditch transitions in accordance with Index 430-001
8. Quantities shown are for estimating purposes only

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Concrete Endwall Details
3	Concrete and Metal Pipe Tables
4	Spacing For Multiple Pipes

straight concrete endwall \qquad

PLAN

FRONT ELEVATION

NOTE: Keyway and Dowels are required for optional construction joint. DETAIL "A"

SIDE ELEVATION
\square

elliptical concrete and corrugated metal pipe arch																																	
:	$\begin{gathered} \text { Rise } \\ R \end{gathered}$	$\begin{gathered} \text { span } \\ s \end{gathered}$	Opening Area (SF)				Dimensions											Class II Concrete (CY) Number of Pipe And Skew Angle of Pipe (α)													$\begin{gathered} \text { Rise } \\ R \end{gathered}$	$\begin{gathered} \text { span } \\ 5 \\ \hline \end{gathered}$	Approx.Equiv.Round
			Number Of Pipes				A				F			${ }^{\circ}{ }^{\circ}$				$\frac{\operatorname{single}}{0^{\circ}}$	Double				$\begin{aligned} \text { Kew Ang } \\ \text { Triple } \end{aligned}$				0° Quadruple						
	12"		1.3	$\frac{2}{2.6}$	3	4.2	${ }^{1+-8^{\prime \prime}}$	$1^{1}-2^{\prime \prime}$	${ }^{\text {3/-9x }}$	$1^{1}-10^{\prime \prime}$	$1^{1}-2^{\prime \prime}$	$0^{\prime}-3^{\prime \prime}$	${ }^{2}-10^{4}$	$\frac{0^{\circ}}{2^{\prime}-10^{\prime \prime}}$	$\frac{15^{\circ}}{2^{\prime}-11^{\prime \prime}}$	${ }^{30^{\circ}}{ }^{\prime}$	$44^{4}{ }^{\text {co }}$		${ }^{\circ}{ }^{\text {® }}$	15°	30°	45°	0°	$\frac{15^{\circ}}{1.82}$	$\frac{30^{\circ}}{1.91}$	$\frac{45^{\circ}}{2.09}$	$\frac{0^{\circ}}{2.16}$	$\frac{15}{25^{\circ}}$	30° 45°				
-	${ }^{124}$	${ }^{23}{ }^{\prime \prime}$	1.8	${ }^{2.6}$	3.4 5.4	7.2	${ }^{1}{ }^{1-10^{\prime \prime}}$	$1^{1}-3^{\prime \prime}$	$4^{4}-2^{1 / 2 / /^{\prime \prime}}$	${ }^{1}-11^{\prime \prime}$	$1^{1}-3^{\prime \prime}$	${ }^{1 / 2}{ }^{1 / 2}$	$3^{\prime \prime}-5^{\prime \prime}$	$3^{1}-5{ }^{\prime \prime}$	${ }^{-1-66^{\prime \prime}}$	$3^{\prime \prime-11^{\prime \prime}}$	$4^{4-10^{\prime \prime}}$	1.36	${ }_{1}^{1.82}$	1.84	1.89	1.01	2.29	${ }^{1.82}$	2.43	2.68	2.75	2.80	2.97	2.33	$14^{\prime \prime}$	${ }^{123}{ }^{\prime \prime}$	$18^{\prime \prime}$
	$19^{\prime \prime}$	$30^{\prime \prime}$	3.3	6.6	9.9	13.2	$2^{\prime}-3^{\prime \prime}$	$1^{1}-4^{\prime \prime}$	$5^{1}-1 \frac{1}{2 / 2^{\prime \prime}}$	$2^{\prime}-0^{\prime \prime}$	1'-4"	$1^{1}-7 / 2^{\prime \prime}$	$4^{\prime}-2^{\prime \prime}$	$4^{4}-2^{\prime \prime}$	$4^{\prime \prime}-4^{\prime \prime}$	$4^{\prime}-10^{\prime \prime}$	$5^{\prime \prime}-11^{\prime \prime}$	1.89	2.55	2.57	2.65	2.82	3.22	3.27	3.43	3.77	3.88	3.95	4.19	4.70	$19^{\prime \prime}$	$30^{\prime \prime}$	$24^{\prime \prime}$
	$24^{\prime \prime}$	$38^{\prime \prime}$	5.1	10.2	15.3	20.4	$2^{\prime}-8^{\prime \prime}$	$1^{1}-5^{\prime \prime}$	$6^{\prime}-3^{\prime \prime}$	$2^{\prime \prime}-1^{\prime \prime}$	1'-5"	$2^{\prime}-9^{\prime \prime}$	$5^{\prime}-2^{\prime \prime}$	$5^{\prime \prime}-2^{\prime \prime}$	$5^{\prime \prime}-4^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$7^{\prime \prime}-4^{\prime \prime}$	2.64	3.55	3.58	3.69	3.93	4.48	4.54	4.77	5.24	5.39	5.49	5.82	6.53	$24^{\prime \prime}$	$38^{\prime \prime}$	$30^{\prime \prime}$
	$29^{\prime \prime}$	$45^{\prime \prime}$	7.4	14.8	22.2	29.6	$3^{\prime \prime}-1^{\prime \prime}$	$1^{1-66^{\prime \prime}}$	$7^{\prime}-0^{\prime \prime}$	$2^{\prime \prime}-2^{\prime \prime}$	$1^{1} 1^{\prime \prime} 6^{\prime \prime}$	${ }^{3}{ }^{\text {3 }}$ - $6^{\prime \prime}$	${ }^{6^{\prime}-0^{\prime \prime}}$	$6^{6}-0^{\prime \prime}$	6'-3" ${ }^{\prime \prime}$	$6^{\prime}-11^{\prime \prime}$	$8^{8}-6^{\prime \prime}$	3.32	4.48	4.52	4.66	4.96	5.64	5.72	6.00	6.60 8.55	6.80	6.92	7.34	8.24	$229^{\prime \prime}$	${ }^{45^{\prime \prime}}$	$36^{\prime \prime}$ $42^{\prime \prime}$
	$\frac{34 " 1}{38^{\prime \prime}}$	${ }^{53^{\prime \prime}}$	10.2	20.4	30.6	40.8 51.6	${ }^{\frac{3}{1}-6^{\prime \prime}}{ }^{\text {3/-10 }}$	${ }^{1} 1^{\prime}-7^{\prime \prime}$	$\frac{7^{\prime}-11^{1 / 1 / \prime^{\prime \prime}}}{8^{\prime}-9^{\prime \prime}}$	${ }^{2 \prime}{ }^{\prime \prime} 3^{\prime \prime}$	${ }^{1} 1-7^{\prime \prime}$	${ }^{4 \prime-5)^{\prime \prime \prime}}$	$7^{\prime}-11^{\prime \prime}$		7'-4'1	${ }^{8 \prime-2^{\prime \prime}}{ }^{\prime \prime}$	10'-0"	4.24 5.22	5.76 7.16	5.81 7	6.00 7.46	6.39 7.96	$\frac{7.29}{9.10}$	7.40 9.24		8.55	8.81	8.97	9.52	$\frac{10.70}{13.46}$	$33^{\prime \prime}$	$\frac{53{ }^{\prime \prime}}{601}$	$44^{\prime \prime}$
	38810	${ }^{60^{\prime \prime}}$	12.9	${ }^{25.8}$	38.7	51.6 66.4	${ }^{3^{\prime \prime}-10^{\prime \prime}}{ }^{\prime \prime}$	${ }^{1}{ }^{1}$ 1-810 ${ }^{\prime \prime}$		${ }^{2 \prime}{ }^{\text {2 }}$ - $4^{\prime \prime}$	${ }^{1} \frac{1}{1}-8^{\prime \prime}$		$7^{\prime \prime-111^{\prime \prime}}$	$\frac{7^{\prime}-11^{\prime \prime}}{8^{\prime}-10^{\prime \prime}}$		$\frac{9^{\prime}-2^{\prime \prime}}{10^{\prime \prime}-2^{\prime \prime}}$	${ }^{11^{\prime}-2^{\prime \prime}} 12^{\prime \prime}$	5.22 6.63	7.16 9.01	7.23	7.46 9.38	${ }^{7} 7.96$	${ }_{11.10}^{11.39}$	9.24	12.70	10.71	111.05	11.25	111.95	13.46	381"	60"1	$48^{\prime \prime}$ 54
	$48^{\prime \prime}$	$76^{\prime \prime}$	20.5	43.0	61.5	82.0	$4^{\prime}-8^{\prime \prime}$	$2^{\prime}-1^{\prime \prime}$	10'-8'1	${ }^{\text {2 }}$-9 ${ }^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$7^{\prime}-2^{\prime \prime}$	9'-9"	${ }^{\text {9'-9" }}$	$10^{\prime}-1^{\prime \prime}$	11'-3"	13'-9 ${ }^{\prime \prime}$	${ }^{6.66}$	11.74	11.85	12.22	13.02	14.82	15.04	15.77	17.37	17.91	18.23	19.34	21.74	$48^{\prime \prime}$	$76^{\prime \prime}$	$60^{\prime \prime}$
	53"	83"	24.8	49.6	74.4	99.2	$5^{\prime}-1^{\prime \prime}$	$2^{\prime \prime}-6^{\prime \prime}$	$11^{1}-7^{\prime \prime}$	$3^{\prime \prime}-2^{\prime \prime}$	$2^{\prime \prime}-6^{\prime \prime}$	$8^{\prime \prime-11^{\prime \prime}}$	$10^{\prime}-7{ }^{\prime \prime}$	$10^{\prime}-7{ }^{\prime \prime}$	$10^{\prime}-11^{\prime \prime}$	$12^{\prime \prime}-3^{\prime \prime}$	$15^{\prime}-0^{\prime \prime}$	12.50	16.98	16.98	17.67	18.83	21.47	21.78	22.86	25.18	25.97	26.44	28.06	31.55	$53^{\prime \prime}$	$83^{\prime \prime}$	$66^{\prime \prime}$
	58"	91"	29.5	59.0	88.5	118.0	5'-6"	$2^{\prime \prime} 10^{\prime \prime}$	$12^{1}-6{ }^{1 / 2}{ }^{\prime \prime}$	$3^{\prime \prime}-6^{\prime \prime}$	$2^{\prime \prime} 10^{\prime \prime}$	$9^{1}-0^{1} / 2^{\prime \prime}$	11'-4"	$11^{\prime \prime} 4^{\prime \prime}$	$11^{\prime}-9^{\prime \prime}$	$13^{\prime \prime}-1^{\prime \prime}$	$16^{\prime}-0^{\prime \prime}$	16.46	22.26	22.46	23.16	24.66	28.05	28.46	29.85	32.85	33.85	34.46	36.55	41.05	$58^{\prime \prime}$	91^{11}	72"
\%	$13^{\prime \prime}$	$17^{\prime \prime}$	1.1	2.2	3.3	4.4	$1^{1}-9^{\prime \prime}$	$1^{\prime}-2^{\prime \prime}$	$3^{\prime \prime}-10^{4}$	$1^{\prime}-10^{\prime \prime}$	$1^{1}-2^{\prime \prime}$	$0^{\prime}-4^{\prime \prime}$	$2^{\prime}-6^{\prime \prime}$	$2^{\prime \prime}-6^{\prime \prime}$	$2^{\prime}-7^{\prime \prime}$	$2^{\prime \prime}-11^{\prime \prime}$	$3^{\prime \prime}-6^{\prime \prime}$	1.16	1.47	1.48	1.52	1.60	1.78	1.80	1.88	2.04	2.09	2.12	2.23	2.48	$13^{\prime \prime}$	${ }^{17{ }^{\prime \prime}}$	$15^{\prime \prime}$
	$15^{\prime \prime}$	$21^{\prime \prime}$	1.6	3.2	4.8	6.4	$1^{\prime}-11^{\prime \prime}$	$1^{\prime}-2^{\prime \prime}$	$4^{\prime}-3^{\prime \prime}$	$1^{\prime}-10^{\prime \prime}$	$1^{\prime}-2^{\prime \prime}$	$0^{\prime}-9^{\prime \prime}$	$2^{\prime \prime} 10^{\prime \prime}$	$2^{\prime \prime} 10^{\prime \prime}$	$2^{\prime \prime}-11^{\prime \prime}$	$3^{\prime \prime}-3^{\prime \prime}$	$4^{\prime}-0^{\prime \prime}$	1.33	1.69	1.70	1.75	1.84	2.04	2.06	2.15	2.33	2.40	2.44	2.57	2.84	$15^{\prime \prime}$	$21^{\prime \prime}$	$18^{\prime \prime}$
	$20^{\prime \prime}$	$28^{\prime \prime}$	2.8	5.6	8.4	11.2	$2^{\prime}-4^{\prime \prime}$	$1^{1}-3^{\prime \prime}$	$5^{\prime \prime} 2^{\prime \prime}$	$1^{\prime}-11^{\prime \prime}$	$1^{1}-3^{\prime \prime}$	$1^{1}-8^{\prime \prime}$	$3^{\prime \prime}-5^{\prime \prime}$	$3^{\prime \prime}-5^{\prime \prime}$	$3^{\prime \prime}-6^{\prime \prime}$	$3^{\prime \prime}-11^{\prime \prime}$	$4^{\prime \prime}-10^{\prime \prime}$	1.78	2.31	2.33	2.39	2.53	2.83	2.87	2.99	3.26	3.36	3.42	3.60	4.01	$20^{\prime \prime}$	$28^{\prime \prime}$	$24^{\prime \prime}$
	$24^{\prime \prime}$	35"	4.3	8.6	12.9	17.2	$2^{\prime}-8^{\prime \prime}$	1'-4"	$5^{\prime}-11^{1 / 2}{ }^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	1'-4"	$2^{\prime}-5 \frac{1}{2 \prime \prime}$	$4^{\prime}-0^{\prime \prime}$	$4^{4}-0^{\prime \prime}$	$4^{\prime \prime}-2^{\prime \prime}$	$4^{4}-7^{\prime \prime}$	$5^{\prime}-8^{\prime \prime}$	2.34	3.03	3.05	3.14	3.32	3.72	3.77	3.93	4.29	4.40	4.47	4.72	5.25	$24^{\prime \prime}$	35"	$30^{\prime \prime}$
	$29^{\prime \prime}$	42"	5.9	11.8	17.7	23.6	$3^{\prime \prime} 1^{\prime \prime}$	1'-5"	$6^{-1} 10{ }^{1 / 2}{ }^{\prime \prime}$	$2^{\prime \prime}-1^{\prime \prime}$	1'-5"	$3^{-1} 4{ }^{4} /{ }^{\prime \prime}$	4'-9"	$4^{4}-9^{\prime \prime}$	$4^{\prime}-11^{\prime \prime}$	$5^{\prime}-6^{\prime \prime}$	6'-9 ${ }^{\prime \prime}$	3.13	4.06	4.09	4.20	4.45	4.99	5.06	5.28	5.76	5.93	6.03	6.36	7.09	$29^{\prime \prime}$	$42^{\prime \prime}$	$36^{\prime \prime}$
	$33^{\prime \prime}$	49"	8.4	16.8	25.2	33.6	$3^{\prime}-5^{\prime \prime}$	$1^{1}-6^{\prime \prime}$	$7^{1}-8^{\prime \prime}$	$2^{\prime}-2^{\prime \prime}$	$1^{1}-6^{\prime \prime}$	$4^{\prime}-2^{\prime \prime}$	5'-6"	5'-6"	$5^{\prime}-8^{\prime \prime}$	$6^{\prime}-4^{\prime \prime}$	$7^{\prime \prime}-9^{\prime \prime}$	3.83	5.00	5.04	5.18	5.48	6.16	6.24	6.52	7.12	7.32	7.44	7.86	8.76	$33^{\prime \prime}$	$49^{\prime \prime}$	$42^{\prime \prime}$
	$38^{\prime \prime}$	57"	10.6	21.2	31.8	42.4	$3^{\prime \prime}-10^{\prime \prime}$	$1^{1}-7^{\prime \prime}$	$8^{1}-7 / 2^{\prime \prime}$	$2^{\prime}-3^{\prime \prime}$	$1^{1}-7^{\prime \prime}$	$5^{\prime}-1 / 2^{1 / 1}$	$6^{\prime}-4^{\prime \prime}$	$6^{\prime}-4^{\prime \prime}$	$6^{\prime}-7^{\prime \prime}$	$7^{\prime \prime}-4^{\prime \prime}$	$8^{\prime \prime-11^{\prime \prime}}$	4.87	6.31	6.36	6.53	6.91	7.74	7.84	8.18	8.93	9.18	9.33	9.85	10.96	38'	57"	$48^{\prime \prime}$
	$43^{\prime \prime}$	64"	13.2	26.4	39.6	52.8	$4^{\prime}-3^{\prime \prime}$	$1^{1}-8^{\prime \prime}$	$9^{1}-6^{6 / 24}$	$2^{\prime \prime} 4^{\prime \prime}$	${ }^{1}-8^{\prime \prime}$	$6^{\prime}-0^{1} / 2^{\prime \prime}$	$7^{\prime}-1^{\prime \prime}$	$7^{\prime \prime-11^{\prime \prime}}$	$7^{\prime \prime}-4^{\prime \prime}$	$8^{\prime}-2^{\prime \prime}$	$10^{\prime}-0^{\prime \prime}$	5.88	7.64	7.70	7.91	8.37	9.40	9.52	9.94	10.86	11.15	11.33	11.97	13.33	$43^{\prime \prime}$	$64^{\prime \prime}$	$54^{\prime \prime}$
	$47^{\prime \prime}$	$71^{\prime \prime}$	16.9	33.8	50.7	67.6	$4^{4}-7^{\prime \prime}$	$1{ }^{1}-10^{\prime \prime}$	$10^{\prime \prime} 4^{\prime \prime}$	$2^{\prime \prime} 6^{\prime \prime}$	$2{ }^{\prime}-0^{\prime \prime}$	$6^{\prime}-10^{\prime \prime}$	$7^{\prime \prime}-10^{\prime \prime}$	$7^{\prime \prime}-10^{\prime \prime}$	$8^{\prime}-1^{\prime \prime}$	$9^{\prime}-1^{\prime \prime}$	$11^{\prime \prime}-1^{\prime \prime}$	7.80	10.15	10.23	10.51	11.12	12.49	12.65	13.22	14.43	14.85	15.10	15.94	17.77	$47^{\prime \prime}$	$71^{\prime \prime}$	$60^{\prime \prime}$

NOTES:
Dimension x is calculated as: $X=S * S E C \alpha$
2. Select tabular quantities using skew values as follows

End Skew to Pipe Use Tabulated Value
0° to 5°
6° to 15°
16° to 30°
31° or over
0°
15°
30°
45°

CONCRETE AND METAL PIPE TABLES

front elevation

NORMAL PIPE \qquad

\qquad
(Multiple Pipe Shown, Single Pipe Similar)

LEGEND:
α Pipe Skew Angle
s Center to Center between pipes
Center to Center along front of Headwall
SPACING FOR MULTIPLE PIPES

| $\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$ | \|c|cher | $\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$ | STRAIGHT CONCRETE ENDWALLS SINGLE AND MULTIPLE PIPE | $\begin{gathered} \text { INDEX } \\ 430-030 \end{gathered}$ | $\begin{aligned} & \text { SHEET } \\ & 4 \text { of } 4 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

1. Use Class II concrete.
2. Reinforcing steel is either Grade 40 or 60 .
3. Endwalls may be cast in place or precast concrete. The Contractor or he Supplier will determine the additional reinforcement necessary for handling precast units.
4. Chamfer all exposed edges and corners $3 / 4$ unless otherwise shown.
5. Quantities shown are for estimating purposes onl

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Single 60" Pipe Endwall Details
3	Double 60" Pipe Endwall Details

\qquad

NOTES:

1. unless otte on all reinforcement

Cut
3. All bar dimensions are out to out

LEGEND:
H = Horizontal Bars
$V=$ Vertical Bars
B $=$ Bent Bars
$D=$ Dowels or Diagonal Bars

DOUBLE 60" PIPE ESTIMATED QUANTITIES \begin{tabular}{|c|c|c|c|}
\multicolumn{4}{|c|}{ ITEM }

\hline ITASS \& UNIT \& RCP

\hline Clancrete \& Cu. Yd. \& 137 \& 138

\hline

\hline Class II Concrete \& Cu. Yd. \& 13.7 \& 13.8

\hline Reinforcing Steel \& Lb. \& 824 \& 824

\hline BIL OF \&

\hline

 BILL OF REINFORCING STEEL

\hline \multicolumn{4}{|c|}{ BARK }

\hline OF R \& SIIE \& NO. REQD. \& LENGTH

\hline H \& \& \&

\hline

\hlineH_{2} \& 4 \& 41 \& $4^{\prime}-2^{\prime \prime}$

\hlineH_{3} \& 4 \& 4 \& $13^{\prime \prime}-9^{\prime \prime}$

\hlineH_{5} \& 4 \& 9 \& $40^{\prime}-2^{\prime \prime}$

\hline

H_{5}

\hlineH_{6}

\hlineH_{7}
\end{tabular} H_{6}

H_{6}
H_{7}

V | H_{7} |
| :---: |
| $\mathrm{~V}_{1}$ |
| $\mathrm{~B}_{1}$ | | B_{1} |
| :--- |
| B_{3} |
| B_{1} |
| D_{1} | | B_{3} |
| :---: |
| B_{4} |
| D_{1} |

8	$15^{\prime}-0^{\prime \prime}$	
	4	$6^{\prime}-0^{\prime \prime}$

Sta./Off set Location
$\underset{\text { (Showing Bars In Footing) }}{\text { PLAN }}$

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$	号気DESCRIPTION:	$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	STRAIGHT CONCRETE ENDWALLS $S I N G L E$ AND DOUBLE 60" PIIPE	$\begin{array}{\|c\|} \text { INDEX } \\ 430-031 \end{array}$	SHEET 3 of 3

GENERAL NOTES

1. Use Class II concrete
2. Reinforcing steel is either Grade 40 or 60 .
3. Endwalls may be cast in place or precast concrete. The Contractor or the Supplier will determine the additional reinforcement necessary for handling precast units.
4. Chamfer all exposed edges and corners $3 / 4$ " unless otherwise shown.
5. Quantities shown are for estimating purposes onl

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Single 66" Pipe Endwall Details
3	Double 66" ${ }^{\prime \prime}$ Pipe Endwall Details

LAST	DESCRIPTION:	
REVISION $11 / 01 / 19$	気	

NOTES

2" clearance on all reinforcement
DOUBLE 66" PIPE ENDWALL
unless otherwise shown
2. Cut and bend B_{3} Bars as shown.
3. All bar dimensions are out to out.

EGEND:

H = Horizontal Bars
V Vertical Bars
$B=$ Bent Bars
= Dowels or Diagonal Bar

Sta./Off set Location
PLAN
Showing Bars In Footing)

DOUBLE 66" PIPE ENDWALL DETAILS

$\begin{array}{c\|} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \\ \hline \end{array}$		$\begin{array}{cc} \text { FDOT } & \text { FY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	STRAIGHT CONCRETE ENDWALLS SINGLE AND DOUBLE 66" PIPE	$\begin{gathered} \text { INDEX } \\ 430-032 \end{gathered}$	SHEET 3 of 3

GENERAL NOTES:

1. Use Class II concrete.
2. Reinforcing steel is either Grade 40 or 60 .
3. Endwalls may be cast in place or precast concrete. The Contractor or the Supplier will determine the additional reinforcement necessary for handing precast units.
4. Chamfer all exposed edges and corners $3 / 4$ " unless otherwise shown
5. Quantities shown are for estimating purposes only

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Single $72^{\prime \prime}$ Pipe Endwall Details
3	Double $72^{\prime \prime}$ Pipe Endwall Details

LEGEND:
H = Horizontal Bars
$V=$ Vertical Bars
$B=$ Bent Bars
$D=$ Dowels or Diagonal Bars

Sta./offset Location
$\underset{\text { (Showing Bars In Footing) }}{\text { PLAN }}$
$46^{\prime}-0^{\prime \prime}$ \qquad
\qquad
$5^{\prime}-0^{\prime \prime} \quad-1 \quad 18^{\prime}-0^{\prime \prime}$

DOUBLE 72" PIPE ENDWALL DETAILS

GENERAL NOTES

1. Use Class II concrete
2. Reinforcing steel is either Grade 40 or 60 .
3. Endwalls may be cast in place or precast concrete. The Contractor or the Supplier will determine the additional reinforcement necessary for handling precast units.
4. Chamfer all exposed edges and corners $3 / 4$ " unless otherwise shown.
5. Quantities shown are for estimating purposes onl

TABLE OF CONTENTS:

 Sheet DescriptionGeneral Notes and Contents
Single 84" Pipe Endwall Details

STRAIGHT CONCRETE ENDWALL SINGLE 84" PIPE=

1. Use Class II concrete.
2. Chamfer all exposed edges and corners $3 / 4$ " unless otherwise shown.
3. Quantities shown are for estimating purposes only.
45° WING

U-TYPE

LAST	DESCRIPTION:	
REVISION		
$11 / 01 / 21$	気	

PLAN

PLAN

FRONT ELEVATION

SIDE ELEVATION

dimensions and estimated quantities pipe culvert endwalls with u-type wings													
DImensions							QuANTITIES IN ONE ENDWALL						
Pipe		Wall			Footing		Concrete, Class II, Total (CY)						$\begin{aligned} & \text { Steel } \\ & \text { Tie Bars } \end{aligned}$
Dia.	Area							CP		MP		IP	
D	(ft)	\checkmark	Ht	к	F	J	Inlet	Outlet	Inlet	Outlet	Inlet	Outlet	
15"	1.2	$3^{\prime \prime}-11^{\prime \prime}$	$2^{\prime}-3^{\prime \prime}$	1'-5"	1'-3"	2'-7"	0.59	0.67	0.62	0.70	0.61	0.70	none
$18^{\prime \prime}$	1.8	$4^{\prime \prime}-2^{\prime \prime}$	$2^{\prime \prime} 6^{\prime \prime}$	1'-9"	$1^{\prime}-3^{\prime \prime}$	$2^{\prime}-11^{\prime \prime}$	0.70	0.79	0.74	0.82	0.74	0.82	none
$24^{\prime \prime}$	3.1	$4^{4}-8^{\prime \prime}$	$3^{\prime}-0^{\prime \prime}$	$2^{\prime \prime} 6^{\prime \prime}$	$1^{\prime}-6^{\prime \prime}$	$3^{\prime \prime}-8^{\prime \prime}$. 01	1.11	. 06	1.16	1.06	1.16	2-\#6 Bars $\times 2^{\prime}-0^{\prime \prime}$
$30^{\prime \prime}$	4.9	5'-2"	$3^{\prime \prime}-6^{\prime \prime}$	$3^{\prime \prime}-3^{\prime \prime}$	$1^{\prime}-6{ }^{\prime \prime}$	$4^{\prime \prime}-5^{\prime \prime}$	1.33	1.44	1.41	1.51	1.40	1.51	2 -\#6 Bars $\times 2^{\prime}-0^{\prime \prime}$
$36^{\prime \prime}$	7.1	5'-8"	$4^{\prime}-0^{\prime \prime}$	$4^{\prime}-0^{\prime \prime}$	$1^{\prime}-9^{\prime \prime}$	5'-2"	1.73	1.85	1.84	1.96	1.82	1.94	2 -\#6 Bars $\times 22^{\prime \prime} 6^{\prime \prime}$
$42^{\prime \prime}$	9.6	$6^{\prime}-2^{\prime \prime}$	4'-6"	4'-9"	$2^{\prime}-0^{\prime \prime}$	5'-11"	2.19	2.32	2.32	2.45			2 -\#6 Bars $\times 22^{\prime}-6^{\prime \prime}$
$48^{\prime \prime}$	12.6	$6^{\prime}-8^{\prime \prime}$	5'-0'1	$5^{\prime}-6^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$6^{\prime}-8^{\prime \prime}$	2.64	2.78	2.81	2.95			2-\#6 Bars $\times 3^{\prime}-0^{\prime \prime}$

dimensions and estimated quantities pipe culvert endwalls With 45° Wings										
DIMENSIONS							QUANTITIES IN ONE ENDWALL			
Pipe		Wall				Footing	Concrete, Class II			Steel Tie Bars
Dia.	Area	Ht	G	\llcorner	M			(CY)		
D							RCP	CMP	CIP	
$15^{\prime \prime}$	1.2	$2^{\prime \prime}-3^{\prime \prime}$	3'-7"	1'-0'1	$1^{1-33^{\prime \prime}}$	$1^{\prime}-3^{\prime \prime}$	0.56	0.59	0.59	none
$18^{\prime \prime}$	1.8	$2^{\prime \prime}-6^{\prime \prime}$	$3^{\prime \prime}-10^{\prime \prime}$	$1^{\prime}-2^{\prime \prime}$	$1^{1}-7{ }^{\prime \prime}$	$1^{\prime}-3^{\prime \prime}$	0.74	0.77	0.77	none
$24^{\prime \prime}$	3.1	$3^{\prime}-0^{\prime \prime}$	$4^{\prime \prime}-4^{\prime \prime}$	$1^{\prime}-5^{\prime \prime}$	$2^{\prime \prime-11^{\prime \prime}}$	$1^{\prime \prime}-4^{\prime \prime}$	1.01	1.06	1.06	$2-\# 6$ Bars $\times 22^{\prime \prime} 0^{\prime \prime}$
$30^{\prime \prime}$	4.9	$3^{\prime \prime}-6^{\prime \prime}$	$4^{\prime \prime}-10^{\prime \prime}$	1^{1} '-9"	$2^{\prime \prime}-5^{\prime \prime}$	$1^{1}-6{ }^{\prime \prime}$	1.32	1.40	1.3	$2-\# 6$ Bars $\times 2^{\prime \prime}-0^{\prime \prime}$
$36^{\prime \prime}$	7.1	$4^{4}-0^{\prime \prime}$	5'-4"	$2^{2}-0^{\prime \prime}$	$2^{\prime}-11^{\prime \prime}$	$1^{1}-8^{\prime \prime}$	1.72	1.83	1.82	$2-\# 6$ Bars $\times 2^{\prime}-6^{\prime \prime}$
$42^{\prime \prime}$	9.6	$4^{4}-6^{\prime \prime}$	$5^{\prime}-10^{\prime \prime}$	$2^{2}-3^{\prime \prime}$	$3^{\prime \prime}-6^{\prime \prime}$	$2^{\prime \prime}-0^{\prime \prime}$	2.34	2.47		$2-\# 6$ Bars $\times 22^{-6 "}$
$48^{\prime \prime}$	12.6	$5^{\prime}-0^{\prime \prime}$	$6^{\prime}-4^{\prime \prime}$	$2^{\prime \prime}-6^{\prime \prime}$	$4^{-}-0^{\prime \prime}$	$2^{\prime \prime}-0^{\prime \prime}$	2.74	2.90		$2-\# 6$ Bars $\times 2^{\prime}-6^{\prime \prime}$

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$	D DESCRIPTION:	$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	WINGED CONCRETE ENDW ALLS	$\begin{array}{\|c\|} \hline \text { INDEX } \\ 430-040 \end{array}$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 2 \end{aligned}$

GENERAL NOTES:

1. Use Class II Concrete.
2. Channel section C3 $\times 6.0$ may be substituted for the $C 4 \times 5.4$ channel.
3. All steel reinforcing bars are \#4 with $2^{\prime \prime}$ cover except as noted Spacing shown are center to center. Lap bars $1{ }^{1}-5^{\prime \prime}$ minimum. Welded wire fabric (two cages max.) with an equivalent cross section

Drill $11 / 4$ " holes $8^{\prime \prime}$ deep with a rotary drill in existing endwall for dowel bars. Thoroughly clean holes prior to installing Adhesive-Bonded Dowels.
5. Quantities shown are for estimating purposes only.
6. For supplemental details, see Index 425-001.

SAFETY MODIFICATIONS

gENERAL NOTES:

Install outlet pipes and preformed channel inverts with a slope of 0.6% or steeper toward the outlet regardless of the surface slope unvess shown different in the plans.

Stub trench drain directly into drainage structures or install outlet pipes to connect trench drain to drainage structures.
3. Provide a cleanout port compatible with the manufactured system for Type I drains at the upstream end and at intervals of 50 feet maximum. Provide a cleanout port with an opening separators around the cleanout when cleanouts are placed ad jacent to raised curb or separator. Install the cleanout with a removable load resistant cover or grate.
4. Excavate trench to allow for a minimum of $6^{\prime \prime}$ of concrete to be placed under and alongside the trench drain channel system. Install concrete backfill in accordance with Specification 347. Install concrete backfill extending a minimum of $6^{\prime \prime}$ past the end of the drain opening at the end of all Type I or II units.
. Install transverse bars spaced $4^{4 \prime}$ to an center for Type I Trench Drain

Concrete Backfill

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$	5	DESCRIPTION:		FY 2023-24 STANDARD PLANS	$T R E \mathbb{N C H} \mathbb{D R A I N}$	$\begin{aligned} & \text { INDEX } \\ & 436-001 \end{aligned}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 3 \end{aligned}$

= PREFORMED POLYETHYLENE CHANNEL $=$

\qquad

adjacent to traffic separator

WITHIN TYPE E CURB

WITHIN DROP CURB

WITHIN TYPE F CURB

(Round Channel Shown, Preformed Polyethylene Similar)

NOTES:

2. The Round Pipe Channel is $15^{\prime \prime}$ in diameter, unless otherwise shown in the Plans.
3. Provide a minimum $6^{\prime \prime}$ concrete on this side of the drain.
4. Install grates on preformed polyethylene channel at driveways.
¿D DESCRIPTION:
\qquad

NOTES:

1. Provide minimum $6^{\prime \prime}$ of concrete on this side of the drain.
2. 4" Minimum unless otherwise shown in Plans.

TYPE II - REMOVABLE GRATE
N:

GENERAL NOTES

1. Install underdrain pipe that is either $4^{4 \prime}$ smooth or $5^{\prime \prime}$ corrugated tubing unless otherwise hown in the Plans. The size to be furnished will be based on the nominal internal special provisions or this standard, pipe with a corrugated interior wall may be provided based on the following size equivalency.
$4^{\prime \prime}$ smooth interior equivalent to $5^{\prime \prime}$ corrugated interior
$5^{\prime \prime}$ smooth interior equivalent to $6^{\prime \prime}$ corrugated interior
${ }_{8 "}^{6 "}$ smooth interior equivalent to $8^{\prime \prime}$ corrugated interior
2. Fine aggregate is quartz sand meeting the requirements of Specifications 902-4.
3. Coarse aggregate is gravel or stone meeting the requirements of Specification 901-2 or 901-3. The gradation is in accordance with Specifications 901, Grades 4, 467, 5, 56 or stone unless otherwise shown restricted in the Plans.
4. Install Underdrain Type I, II, III and V in accordance with Specification 440
5. Install filter fabric Type D-3 in accordance with Specifications 985. The internal filter fabric of Type V underdrain has a permittivity of $0.7 / \mathrm{sec}$. and an AOS of \#40 sieve.

6. When Type I is used, use a filter fabric sock in accordance with Specification 948.
7. See Index 120-002 for the standard location of Type I, II, and III underdrain. The location of Type V underdrain and nonstandard locations of Type I, II, and III underdrain will be as detailed in the plans.
8. Install filter fabric joints with a overlap a minimum of 1^{\prime}. Install the internal filter fabric of Type V underdrain with an overlap into the coarse aggregate or the a minimum of $1^{\prime \prime}$.
9. Use nonperforated pipes for underdrain outlet and make all bends using $1 / 1$ (45 deg.) elbows. Construct 90 deg. bends with two $1 / 8$ elbows separated by at least 1' of straight pipe. Outlet pipes stubbed into inlets or other drainage structures must be a minimum $6^{\prime \prime}$ above the structure flow line. Install concrete aprons, hardware cloth, and sod for outlet pipes discharging to grassed areas as shown in Index 446-001 for Edgedrain Outlets.

TABLE OF CONTENTS:		
Sheet	Description	
1	General Notes and Contents	
2	Type I, II, and III Underdrains	
3	Type Va, Vb, and Cleanout	

TYPE \qquad [

\qquad

TYPE III \qquad

TYPE I, II, AND III

GENERAL NOTES:

1. Install light duty cast iron cover and frame in accordance with Specification 962.
2. Use Class II concrete. Use No. 3 bars (Grade 60) on $8^{\prime \prime}$ centers both ways, sides and bottom
3. Furnish covers with pick holes. Do not use fitted lifts or handles.
4. Manhole Type P Alternate A Index 425-010, Type I Frame and Cover, Index 425-001, may be used in lieu of the box detailed in this Index.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Typical Inspection Box Installation
3	Typical Uran, Slope , and Top Ad justment Installations

UNDERDRAIN INSPECTION BOX ASSEMBLY

GENERAL NOTES

1. Place concrete pipe with the slots positioned on sides.
2. Alignment joints are standard (gaskets not required). Recorrugation of metal pipe ends not required.
3. Install Type D-3 filter fabric in accordance with Specification 985 3. Install Type D-3 filter fabric in accordance with Spee
Lap all filter fabric joints a minimum of one (1) foot.
4. Construct the standard cross section unless other section(s) described or detailed in the plans.
5. See Index 430-001 for supplemental details,
6. Take the necessary precautions to prevent contamination of the trench with sand, silt and foreign materials.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	French Drain System
3	Concrete Slotted Pipe Options

Nonperforated Pipe

SIDE VIEW

SECTION A-A

SECTION B-B

SECTION C-C

SIDE VIEW

ELLIPTICAL PIPE

NOTES:

1. $2^{\prime}-0^{\prime \prime}$ for $8^{\prime}-0^{\prime \prime}$ joints of pipe; $2^{\prime}-6^{\prime \prime}$ for $12^{\prime}-0^{\prime \prime}$ joints of pipe
2. A curved cut is acceptable provided the control dimension is maintained.

ROUND PIPE		
$\begin{aligned} & \text { pipe } \\ & \text { Size } \end{aligned}$	Slot Cut	
	$\begin{aligned} & \hline \text { Opening } \\ & \text { (c) } \end{aligned}$	
	Min.	Max.
15"	$12^{\prime \prime}$	$14^{\prime \prime}$
$18^{\prime \prime}$	$12^{\prime \prime}$	$14^{\prime \prime}$
24"	$16^{\prime \prime}$	18"
$30^{\prime \prime}$	$16^{\prime \prime}$	$18^{\prime \prime}$
$36^{\prime \prime}$	$22^{\prime \prime}$	$24^{\prime \prime}$
$42^{\prime \prime}$	22"	$24^{\prime \prime}$
$48^{\prime \prime}$	22"	$24{ }^{\prime \prime}$
$54^{\prime \prime}$	$24^{\prime \prime}$	$26^{\prime \prime}$
$60^{\prime \prime}$	$24^{\prime \prime}$	$26^{\prime \prime}$
66"	$24^{\prime \prime}$	$26^{\prime \prime}$
72"	$24 "$	$26^{\prime \prime}$

ELLIPTICAL PIPE

Pipe Size	Slot Cut	
	Opening (c)	
	Min.	Max.
$14^{\prime \prime} \times 23^{\prime \prime}$	$10^{\prime \prime}$	$12^{\prime \prime}$
$19^{\prime \prime} \times 30^{\prime \prime}$	$14^{\prime \prime}$	$16^{\prime \prime}$
$24^{\prime \prime} \times 38^{\prime \prime}$	$14^{\prime \prime}$	$16^{\prime \prime}$
$29^{\prime \prime} \times 45^{\prime \prime}$	$20^{\prime \prime}$	$22^{\prime \prime}$
$34^{\prime \prime} \times 53^{\prime \prime}$	$20^{\prime \prime}$	$22^{\prime \prime}$
$38^{\prime \prime} \times 60^{\prime \prime}$	$20^{\prime \prime}$	$22^{\prime \prime}$

option B - ROUND or elliptical pipe

SECTION D-D

isometric view
(Round Pipe Shown)

GENERAL NOTES:

1. The French Drain Skimmer is a hooded cover, mounted over an outlet in a catchbasin, that prevents oil and floating debris from exiting the basin
2. Place neoprene gasket material between the skimmer and the catchbasin the gasket to extend $1 / 2$ inch beyond the joint on all sides.
3. Provide skimmer baffle, cleanout pipe and angles constructed fither galvanized steel, aluminum, polyving Chroride, polyethylene tiberglass or acrylonitrite butadiene styrene Provide hot-dip galvanized steel components, unless stainless.
4. Use Mounting hardware, hinges and latches made of stainless steel. Less prevention device can use either stainless steel chain or riveted有
5. Provide skimmer bodies (baffles) and cleanout pipe meeting Specification 943 for steel, 945 for aluminum or 948 for plastics.
6. Work this Index in accordance with Specification 425

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Type I Skimmers
3	Type II Skimmers

Basin Floor

PLAN

Side elevation

NOTE:
Install a gasket for the cleanout with either a threaded screw-in lid or a lid secured by
four stainless steel quick-release latches.

front elevation

				PE II	MMER
$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$	\|cher	$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	SKIMMERS F OR FRENCH DRA (IN OUTLETS	$\begin{gathered} \text { INDEX } \\ 443-002 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 3 \end{aligned}$

24" STEEL WELL GRATE

Heavy duty "bee hive" grate
Openings: 1-1/2" maximum
Total Opening: 1.7 sq ft minimum
For $24^{\prime \prime}$ well, outer diameter $=29^{\circ}$
Steel well grate to be installed over $24^{\prime \prime}$ deep well.
Steel grate to be hot dipped galvanized after
fabrication, see Specification Section 962.

TOP SLAB PLAN

structure with no outflow

$\begin{aligned} & \hline \text { LAST } \\ & \text { REVISION } \\ & 11 / 01 / 17 \end{aligned}$	2	DESCRIPTION:	FDOTY	FY 2023-24 STANDARD PLANS	$\mathbb{D E E P W E L L} \mathbb{N}$ WECTION BOX	$\begin{gathered} \text { INDEX } \\ 444-T 01 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 1 \end{aligned}$

GENERAL NOTES

1. Do not leave trench greater than 2^{\prime} in depth overnight. Barricade trenches at all times.
2. Construct concrete pavement subdrainage adjacent to the low edge of the roadway pavement and under travel lanes, auxiliary pavement and shoulders, as called for in the plans.
Extend the concrete pavement subdrainage 50^{\prime} beyond and begin 50^{\prime} before the flat (100' overlap) when the low edge shifts between outside and inside edges of pavement Place concrete pavement subdrainage on the low side of ramps for crossroad terminals.
3. Install concrete pavement subdrainage on a grade parallel with the edge of pavement profile, except on profiles flatter than one-tenth percent (0.10%) install the concrete pavement subdrainage on a minimum grade of one-tenth percent (0.10%).
4. Remove achering base material and soil from the vertical face of the concrete immediately rior to placing the filter fabric.
5. Submit a procedure for holding the filter fabric in position on the vertical face of the trench for approval by the Engineer prior to placing draincrete.
6. Cap the upper end of each separate run of the concrete pavement subdrainage pipe.
7. Install outlet pipes at 500 maximum intervals. Use elbows or $1 / 8$ bends to connect the outlet pipe to the concrete pavement subdrain pipe. Use elbows or bends of the same material as the outlet pipe.

Stub outlet pipes into existing inlets or into existing ditch pavements at an elevation 6 bove the inlet flowline or ditch bottom when directed by the Engineer. Concrete apron and bordering sod are not required for stubbed outlets, but replacement sodding will be required at trenches for pipes stubbed into paved ditches.
frall a single outlet apron for separate outtet pipes of concrete pavement subdrainage from opposite directions in sag vertical curves.
Install backfill consisting of cohesive soils around outlet pipes.
8. Replace existing paved shoulder removed for the construction of outlet pipes with Type SP asphaltic concrete at the rate of 500 LB per SY.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Edgedrain and Outlet
3	New Construction
4	Rehabilitation

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$		DESCRIPTION:	FDOTY	FY 2023-24 STANDARD PLANS	$\mathbb{C O N C R E T E ~ P A V E M E N T ~ S U B D R A I N A G E ~}$	$\begin{gathered} \text { INDEX } \\ 446-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 4 \end{aligned}$

NOTES:

1. The edgedrain sections for DRAINCRETE SUBDRAINAGE are applicable to pavement construction identified as RIGID PAVEMENT on Index 120-001.
2. Confine the construction of draincrete edgedrain to an area in which the entire operation can be carried out in five (5) work days, unless another
construction period is called for in the plans, with sufficient time allowed for the draincrete to set before placement of pavement.
3. Install the filter fabric in accordance with Specification 514.
4. Install only noncorrugated or smooth lined corrugated pipe.
5. At the Contractor's option this area may be constructed of Optional Base material (Specification 285) or special stabilized subbase.

NEW CONSTRUCTION

EXISTING SHOULDERS
NOTES:

1. The edgedrain sections for DRAINCRETE SUBDRAINAGE are applicable to pavement construction identified as RIGID PAVEMENT on Index 120-001.
2. Confine the construction of draincrete edgedrain to an area in which the entire operation can be carried out in five (5) work days, unless anothe
3. Install the filter fabric in accordance with Specification 514.
4. Install only noncorrugated or smooth lined corrugated pipe.
5. Install Filter Fabric $2^{\prime \prime}$ below bottom of pavement for cement stabilized, soil cement and econocrete subbases and $2^{\prime \prime}$ above bottom of pavement for other subbases.

SECTION A-A

BAR BENDIN									
STIRRUP DIMENSIONS ($T=10$)									
\varnothing	BAR MARK	R1	R2	R3	R4	R5	R6	R7	R8
30°	51	111/4"	93/4"	${ }^{1}$ '61/2"	21/2"	$5^{\prime \prime}$	43/41	5/2"	4/4/
	S2	$1^{1}-1 /{ }^{1 / 2 \prime}$	$93 / 41$	$1^{1}-8 \frac{3}{4} /{ }^{\prime \prime}$	21/2"	41/2"	51/2"	53/4"	4/4/ ${ }^{\prime \prime}$
	53	11/7/1	$8^{\prime \prime}$	1^{\prime}-6"	11/4"	$5^{\prime \prime}$	41/2"	4/2"	$5^{\prime \prime}$
	S4	111/4"	4/4/10	$1^{1}-13 /{ }^{\prime \prime}$	13/4"	$5^{\prime \prime}$	$3{ }^{3 / 1 / 1}$	$21 / 2^{\prime \prime}$	6/4/4
45°	51	111/2"	$8^{\prime \prime}$	$1^{\prime}-4{ }^{\prime \prime}$	$4{ }^{\prime \prime}$	51/2"	$61 / 2$	$8^{\prime \prime}$	$4^{\prime \prime}$
	S2	$1^{1}-1 \frac{13}{} / 1{ }^{\prime \prime}$	$8^{\prime \prime}$	1'-53/4	$4^{\prime \prime}$	4/21"	71/21	$8^{\prime \prime}$	$4^{\prime \prime}$
	53	11/2/	$6^{3 / 4}{ }^{11}$	$1^{\prime}-4^{\prime \prime}$	21/4"	5/211	$63 / 41$	63/4"	5/211
	54	11/2/1	$31 / 2^{\prime \prime}$	$1^{\prime}-0^{\prime \prime}$	$3^{\prime \prime}$	5 $/ 211$	$5^{\prime \prime}$	31/2"	$7{ }^{\prime \prime}$
60°	S1	$1^{\prime \prime}-0^{\prime \prime}$	$6^{\prime \prime}$	1^{1} '03/4	51/4"	$6^{\prime \prime}$	71/4"	101/4"	$3^{\prime \prime}$
	S2	$1^{\prime}-2^{\prime \prime}$	$6^{\prime \prime}$	$1^{1}-2^{3 / 4}$	51/4"	43/41	$83 / 4$	101/2"	$3^{\prime \prime}$
	53	$1^{\prime \prime-0 "}$	43/41	$1^{\prime}-1 /{ }^{1 / \prime \prime}$	31/4"	$6^{\prime \prime}$	$8^{\prime \prime}$	83/4"	51/4 ${ }^{\prime \prime}$
	54	$1^{\prime}-0^{\prime \prime}$	$21 / 2^{\prime \prime}$	10"	41/2"	$6^{\prime \prime}$	53/4	$4^{\prime \prime}$	7/21

STIRRUP DIMENSIONS ($T=12^{\prime \prime}$)									
\varnothing	bar mark	R1	R2	R3	R4	R 5	R6	R7	R8
30°	S1	111/2"	10"	1'-6"	31/2"	$7{ }^{\prime \prime}$	43/4"	53/4'	$6^{\prime \prime}$
	S2	$1^{\prime}-1 \frac{13 / 4}{}$	10"	1'-81/4	$31 / 2{ }^{1 / 2}$	61/2"	51/4	53/41	$6^{\prime \prime}$
	53	11/1/2	$81 / 41$	$1^{1}-53 /{ }^{\prime \prime}$	$2^{\prime \prime}$	$7{ }^{\prime \prime}$	43/4"	41/2"	71/411
	S4	111/2"	$4^{\prime \prime}$	$1^{\prime}-1{ }^{1 / 1 / 4}$	21/4"	$7{ }^{\prime \prime}$	33/4"	21/2"	8/1/4
45°	51	$1^{1}-0^{\prime \prime}$	$81 / 2^{\prime \prime}$	$1^{1}-3 /{ }^{1 / 1}$	51/4"	71/2"	61/4"	81/2"	5/411
	S2	$1^{\prime}-2^{1 / 1 / 4}$	81/2"	${ }^{1}$ '-51/2"	51/4"	61/21	71/4	8/2"	51/411
	53	$1^{1}-0^{\prime \prime}$	$7{ }^{\prime \prime}$	$1^{\prime}-4^{\prime \prime}$	3"	71/21	63/4"	$7{ }^{\prime \prime}$	7/1/4
	54	$1^{1}-0^{\prime \prime}$	31/2"	113/4	33/4"	71/21	$5^{\prime \prime}$	3/2"	$9{ }^{\prime \prime}$
60°	51	$1^{1}-01 / 2^{\prime \prime}$	61/4"	113/4	$7{ }^{\prime \prime}$	$8^{\prime \prime}$	63/4"	103/4	$4{ }^{\prime \prime}$
	S2	$1^{1}-23 / 4^{\prime \prime}$	61/1"	$1^{\prime}-2^{\prime \prime}$	$7{ }^{\prime \prime}$	63/4"	$8^{\prime \prime}$	103/4	4"
	53	$1^{\prime}-0 / 2{ }^{1 \prime \prime}$	$5{ }^{\prime \prime}$	$1^{1}-1 /{ }^{1 / 1}$	$4{ }^{\prime \prime}$	$8^{\prime \prime}$	$8^{\prime \prime}$	$9{ }^{\prime \prime}$	$7{ }^{7 \prime}$
	S4	$1^{\prime}-01 / 2^{\prime \prime}$	21/2"	91/2"	51/211	$8^{\prime \prime}$	55/2"	41/4"	91/4"

> DETAIL "D" (TYPE "B1" PILE SHOWN, TYPE "B2" PILE OPPOSITE HAND)

NOTES:

1. This drawing includes details for precast concrete corner piles for $10^{\prime \prime}$
2. and 12" thick sheet pile systems. The details apply equally to both thicknesses.

The bar configurations shown in Sections A-A and B-B shall be used for
\varnothing angles between 15° and 75°. For \varnothing angles not shown, the reinforcing bar
dimensions may be interpolated or extrapolated from the stirrup dimensions shown.
3. All bar dimensions are out-to-out.
5. Values for Stirrup Dimensions are shown for \varnothing equal to $30^{\circ}, 45^{\circ} \& 60^{\circ}$ only
6. At the Contractor's option Bars S may be fabricated as a 2 piece bar with
a minimum lap ength of 1 1'-4", as shown in Bar Bending Diagrams.
If Type "B1" or "B2" pile is used as a Starter Pile show tongue on both sides of pil from Dim. X down. Show dimensions for Bars S2, S3 \& S4 in shop drawings.
8. If tongue must be on the opposite side from that shown all dimensions and Bars A,
$S 2, S 3$ and $S 4$ will be the same but opposite hand.
9. For Dimensions L, X and Angle \varnothing, see Sheet Pile Data Table in Structures Plans.

TYPE "B1" AND "B2" - VARIABLE ANGLE CORNER PILE

| $\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 16 \end{gathered}$ | \|c|cos | |
| :---: | :---: | :---: |

FDOTY $\begin{gathered}\text { FY 2023-24 } \\ \text { STANDARD PLANS }\end{gathered}$
PRECAST CONCRETE SHEET PILE WALL
(CONVE $\mathbb{N T I O N A L) ~}$
INDEX
$455-400$
sheet

BLACK OPAQUE LEGEND AND BORDER ON REFLECTORIZED YELLOW BACKGROUND

$\begin{array}{c\|} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \\ \hline \end{array}$		$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	TRAFFIC CONTROL DEVICES FOR MOVABLE SPAN BRIDGE SIGNALS	$\begin{gathered} \text { INDEX } \\ \text { 508-T01 } \end{gathered}$	SHEET 3 of 3

Railroad Gate Or
Signal And Gate

Railroad Gate or
Signal And Gate \qquad
acute angle (and right angle)
SIGNAL PLACEMENT AT RAILROAD CROSSING

SIGNAL PLACEMENT AT RAILROAD CROSSING
(2 LANES, CURB \& GUTTER)
(2 LANES, CURB \& GUTTER)

NOTES:

1. The location of flashing warning devices and stop lines shall be
established based on future (or present) installation of gate with established based on future
appropriate track clearances.
2. Where plans call for railroad traffic control devices to be $12^{-6} 6^{\prime \prime}$.
3. Location of railroad traffic control device is based on the Listance avalable between face of curb \& sidewalk. 0^{\prime} to $6^{\prime}-$
Locate device outside sidewalk. Over 6^{\prime} - Locate device between face of curb and sidewalk.
4. Stop line to be perpendicular to edge of roadway, approx. ${ }^{15}$
from nearest rail; or 8 ' from and parallel to gate when present.
5. When a cantilevered-arm flashing warning device is used, the of Roadway to the Lowest Point of the Overhead Signal Unit.

TYPE I
TYPE II

TYPE V

TRAFFIC CONTROL DEVICES FOR CURBED ROADWAY

3D VIEW OF Railing With type 1 - PICKET INFILL PANEL (42" Height shown, 48" Height Similar)

table 1-RAILING members			
MEMBER	designation	OUTSIDE DIMENSION	W ALL THICKNESS
Post "A"	HSS $21 / 2 \times 1 \frac{1}{2} \times 1 / 8$	$2.50^{\prime \prime} \times 1.50^{\prime \prime}$	$0.125^{\prime \prime}$
Post "B"	HSS $21 / 2 \times 1 \frac{1}{2} \times 3 / 16$	$2.50^{\prime \prime} \times 1.50^{\prime \prime}$	$0.188^{\prime \prime}$
Top Rail	21/2" NPS (Sch. 10)	$2.875^{\prime \prime}$	$0.120^{\prime \prime}$
End Hoops	21/2" NPS (Sch. 10)	$2.875^{\prime \prime}$	$0.120^{\prime \prime}$
End Hoops	HSS 3.000×0.120	$3.000^{\prime \prime}$	$0.120^{\prime \prime}$
Top Rail Joint/Splice Sleeves	HSS 2.500×0.125	$2.500^{\prime \prime}$	$0.125^{\prime \prime}$
Intermediate \& Bottom Rail	HSS $2 \times 2 \times 3 / 16$	$2.00^{\prime \prime} \times 2.00^{\prime \prime}$	$0.188^{\prime \prime}(1)$
Int. \& Bottom Rail Post Connection Sleeve	HSS 1.500×0.125	$1.500^{\prime \prime}$	$0.125^{\prime \prime}$ (1)
Handrail Joint/Splice Sleeves	$1^{\prime \prime}$ NPS (Sch. 40)	1.315"	$0.133^{\prime \prime}$
Handrail Joint/Splice Sleeves	HSS 1.500×0.125	$1.500^{\prime \prime}$	$0.125^{\prime \prime}$
Handrails	11/2/ NPS (Sch. 40)	1.900"	$0.145^{\prime \prime}$
Handrail Support Bar	3/4" \varnothing Round Bar	$0.750^{\prime \prime}$	N/A
Pickets (Type 11 Infill Panel)	$3 / 41$ ¢ Round Bar	$0.750^{\prime \prime}$	N/A
Infill Panel Members (Types 2-5)	Varies (See Details)	Varies	Varies

TABLE 1 NOTES:
(1) $0.125^{\prime \prime}$ wall thickness permitted for rails with post spacings less than $5^{\prime}-8^{\prime \prime}$, except that Post Connection Sleeve must be $1 \frac{1 / 4}{4}$ NPS (SCh. 40).

Notes:

1. Shop Drawings are required: see Specification Section 515
2. For bridge mounted railings work this Index with Index 515-051 Bridge Bicycle/Pedestrian Railing
A. Pipe Rails and Pickets: ASTM A500 Grade B, C or D, or ASTM A53 Grade B for standard weight pipe (Schedule 40)
and ASTM A36 for bars
B. Structural Tube: ASTM A500 Grade A, B, C, or D or ASTM A501
C. Steel Plate: ASTM A36 or ASTM A709 Grade 36
D. U-Channels and filler plates: ASTM A36 or ASTM
E. Stainless steel (SS) screws: T. 316 or $18-8$ AlO 11 (Grade 36).
F. Galvanized Steel Fasteners: Coated in or 18-8 Alloy
a. Hex Head Bolts: ASTM A 307
3. SI AIameter single bolt option,
b. Adhesive Anchors: ASTM F1554 fully threaded rods, Grade 55
c. Hex Nuts: ASTM A563
c. Hex Nuts: ASTM A563
d. Flat Washers: ASTM F436
d. Plate Washers: ASTM A36 or ASTM A706 Grade 36 .
G. Shims: ASTM B209 Alloy 6061
G. Bearing Pads: $1 / / \prime \prime$
requirements of Pain, Fabric Reinforced or Fabric Laminated pads that meet the
requirements of Specification Section 932 for Ancillary Structures.
4. Fabricate pickets and vertical panel elements parallel tor che posts, except Type 2,3 and 5 panel infills may be fabricated parallel to the longitudinal grade. Maintain a maximum
$4 "$ sphere requirement is indicated in the Data Tables.
5. Maximum spacing between expansion
6. Maxpansion Joint.
7. Field splices are similar to the Expansion Joint Detail and may be approved by the Engineer to facilitate handling; but the
top rail must be continuous across a minimum of two posts.
8. For intermediate and bottom horizontal rails, the screwed joints shown may be substituted with alternate joints shown in detail "K".
9. Make corners and changes in tangential longitudinal alignment with a $9^{\prime \prime}$ bend radius or terminate adjoining sections with
mitered end sections when handrails are not required.
. For changes but not at the corner apex.
cornal
10. For curved longitudinal alignments, shop bend the top and bottom rails and handrails to match the alignment radius.
11. Handrails are required and must be continuous at landings for:
A. Grades Steeper than 5%,
B. Three or more steps
12. Installation: Cutting of reinforcing steel is permitted for post installed anchors

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 18 \end{gathered}$	\|res	DESCRIPTION:		$\begin{gathered} \text { FY 2023-24 } \\ \text { STANDARD PLANS } \end{gathered}$	$\mathbb{P E} \mathbb{D E S T R I A N} / \mathbb{I C Y C L E} \mathbb{R A M L I N G}(S T E \mathbb{L}$)	INDEX 515-052	SHEET 1 of 8

NOTES:
Keyed construction joints in Index 400-011 Gravity

Wall are not considered to be expansion joints.
*ontraction joints (Tooled or Saw Cut) in sidewalks do
not require a $6^{\prime \prime}$ minimum off set.

$30^{\prime}-0^{\prime \prime}$ Max. for Slopes $>6.25 \%$ $40^{\prime}-0^{\prime \prime}$ Max. for Slopes $\leq 6.25 \%$ Ramp
Bottom Landing

ELEVATION
ce of Railing with Type "A" Posts)
Showing Inside Face of Railing with Type "A" Posts)

RAMP REQUIREMENTS
For slopes greater than 5\%: Max. ramp cross-slope $=2.0 \%$

See Plans for continuation or
termination limits of railing

Top of
Sidewalk

$$
\begin{aligned}
& \text { andrail required for ramps (Handrail } \\
& \text { ntinuous at landings between runs) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { continuous at landings between runs) } \\
& \text { Handrail } 1_{1 / 2} \text { NPS Sch. } 40
\end{aligned}
$$

$30^{\prime}-0^{\prime \prime}$ Max. for Slopes $>6.25 \%$ $40^{\prime}-0^{\prime \prime}$ Max. for Slopes $\leq 6.25 \%$ Ramp

Intermediate Rail

13/ " ${ }^{\prime \prime}$ Q Max. Hole for Ramps,
$15 / h^{\prime \prime}$ Q Max. Hole for Stairs.
(Optional weld at end picket)

DETAIL "1A"
(Top of Picket Connection)

PICKET NOTES:
When shown in the Contract Plans a $4 / 2^{\prime \prime}$ picket spacing may be required. See Note 4 (Sheet 1).

TYPE 2 - CHAIN-LINK (Continuous Infill Panel)
SECTION A-A

table 2 - Chain-Link panel component materials		
COMPONENT	ASTM	COMPONENT INFORMATION
Chain-Link Fence Fabric (2" mesh with knuckled top and bottom selvage)	A 392	Zinc-Coated Steel - No. 9 gage (coated wire diameter), Class 2 Coating
	A 491	Aluminum-Coated Steel - No. 9 gage (coated wire diameter)
	F 668	Polyvinyl Chloride (PVC) Coated Steel - No 9 gage Zinc-Coated Wire (metallic-coated core wire diameter) ~ See Plans for specified color of PVC.
Tie Wires	F 626	Zinc-Coated Steel Wire - No. 9 gage with coating to match Chain-Link Fence Fabric.
Tension Bars	F 626	3/16" (Min. thickness) x 3/4" (Min. width) $\times 2^{\prime}-3^{\prime}$ (Min. height) Steel Bars
Miscellaneous Fence Components	F 626	Zinc-Coated Steel

Chain-LINK PANEL NOTE:
Chain-Link Fence Fabric shall be continuous along limits of railing. Splicing of Chain-Link panels using Tension Bars at $20^{\prime}-0^{\prime \prime}$ minimu increments is permitted

1. See Plans for Infill Panel option required.

TYPE 5-PERFORATED INFILL PANEL

SECTION A-A
Seal welding mitered
corners is permitted

See Detail " 5 A" $^{\prime}$
Perforated
($0.04^{\prime \prime}$ Min.)
DETAIL "5A"
(Top Shown Bottom Similar)

REPEATING PATTERN DETAIL FOR PERFORATED PANEL

Perforated
(0.04" Min.) DETAIL "5B"

PANEL END CONNECTION (Expansion Joint Shown, Sides Similar)

SECTION C-C PANELISPLICE CONNECTION

NOTES:

1. See Plans for Infill Panel Type required.

TYPICAL SECTION ON CONCRETE SIDEWALK (Case I)

(Cast-In-Place Anchor Bolts shown Adhesive Anchors similar)

DETAIL "D" (OPTIONAL SHIMMING DETAIL FOR CROSS SLOPE CORRECTION) (Used in lieu of Beveled Shim Plates)

ANCHOR BOLT TABLE							
CASE	$\underset{\substack{\text { TYPE }}}{\text { structure }}$	dimensions			ANCHOR LENGTH		$\begin{gathered} \text { ANCHOR } \\ \text { SIZE } \end{gathered}$
		$\begin{gathered} A \\ \text { Edge Dist. } \end{gathered}$	$\begin{gathered} B \\ \text { Edge Dist. } \end{gathered}$	C Embedment	C-I-P Hex Head Bolt	Adhesive Anchor	
I	Unreinforced Concrete	$6^{\prime \prime}$	$1^{\prime}-2^{\prime \prime}$	$6^{\prime \prime}$	$71 /{ }^{\prime \prime}$	$8^{\prime \prime}$	7/" 0
IIa	Reinforced Concrete	$4^{\prime \prime}$	$4^{\prime \prime}$	$9^{\prime \prime}$	101/2"	$117^{\prime \prime}$	7/3" \varnothing
IIb	Gravity Wall Index 400-011	$4^{1 / 2}{ }^{\prime \prime}$	$\begin{gathered} 3^{31 / 2 "} \\ @ \text { top } \\ \hline \end{gathered}$	$9{ }^{\prime \prime}$	101/2"	$11^{\prime \prime}$	7/3" \varnothing
III	Step Cheekwall	$4^{1 / 21}$	$4^{1 / 21}$	$9^{\prime \prime}$	$10^{1 / 2}{ }^{\prime \prime}$	$11^{\prime \prime}$	7/8" \varnothing
IV	Varies	$5^{\prime \prime}$	$5^{\prime \prime}$	$5^{\prime \prime}$	61/21	$7{ }^{\prime \prime}$	$7 / 16^{\prime \prime} \varnothing$

** When required; measured from top of sidewalk.

LAST	DESCRIPTION:
$\begin{aligned} & \text { REVISION } \\ & 11 / 01 / 20 \end{aligned}$	

FDDTY | FY 2023-24 |
| :---: |
| STANDARD PLANS |

\qquad

3D VIEW OF RAILING WITH TYPE 1 - PICKET INFILL PANEL
(42" Height shown, 48" Height Similar)

table 1-RAILING MEMBERS				
MEMBER	alloy ${ }^{(1)}$	designation	OUTSIDE	WALL THICKNESS
Posts (Type "A" \& "B")	6061-T6	RT $2 \times 2 \times 0.250$	$2.00^{\prime \prime} \times 2.00^{\prime \prime}$	$0.250^{\prime \prime}$
Posts (Type "C")	6061-T6	Extrusion $1 \frac{1}{2} \times 2 \frac{1}{2} \times 0.125$	$1.50^{\prime \prime} \times 2.50^{\prime \prime}$	$0.125^{\prime \prime}$
Top Plate (Type "C")	6061-T6	Extrusion (See Details)	$23 / 4 \times{ }^{\prime \prime}$	Varies
Top Rail	6061-T6	21/2" NPS (Sch. 10)	$2.875^{\prime \prime}$	$0.120^{\prime \prime}$
		3" Round Top Cap Rail	$3.000^{\prime \prime}$	$0.125^{\prime \prime}$
End Hoops	6063-T5	$\begin{aligned} & 2^{1 / 2 / 2 \prime} \text { NPS (SCh. 10) } \\ & 3.00 \text { OD } \times 0.125 \text { Wall } \end{aligned}$	$\begin{aligned} & \hline 2.875^{\prime \prime \prime} \\ & 3.000^{\prime \prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.120^{\prime \prime} \\ & 0.125^{\prime \prime} \end{aligned}$
Top Rail	6063-T5	2.50 OD $\times 0.125$ Wall	$2.500^{\prime \prime}$	$0.125^{\prime \prime}$
Top Rail Jointsplice Sleeves	6063-\%	Top Cap Rail Inner Sleeve	$2.800^{\prime \prime}$	$0.090^{\prime \prime}$
Intermediate \& Bottom Rail	6061-T6	RT $2 \times 2 \times 0.250$	$2.00^{\prime \prime} \times 2.00^{\prime \prime}$	$0.250^{\prime \prime}$ (2)
Int. \& Bottom Rail Post Connection Sleeve	6063-T5	1.50 OD $\times 0.125 \mathrm{Wall}^{(3)}$	$1.500^{\prime \prime}$	$0.125^{\prime \prime}$
	6063-T5	1" NPS (Sch. 40)	$1.315^{\prime \prime}$	$0.133^{\prime \prime}$
Handrail Joint/Splice Sleeves	6063-T5	1.50 OD $\times 0.125$ Wall	$1.500^{\prime \prime}$	$0.125^{\prime \prime}$
Handrails	6061-T6	11/2" NPS (Sch. 40)	1.900"	$0.145^{\prime \prime}$
Handrail Support Bar	6061-T6	3/4" \varnothing Round Bar	$0.750^{\prime \prime}$	N/A
Pickets (Type 1 Infill Panel)	6061-T6	3/4" \varnothing Round Bar	$0.750^{\prime \prime}$	N/A
Infill Panel Members (Types 2-5)	6063-T5	Varies (See Details)	Varies	Varies

1. Shop Drawings are required, see Specification Section 515
2. For bridge mounted railings, work this Index with Index 515-061 Bridge Bicycle/Pedestrian Railing (Aluminum)
3. Materials:
A. Structural Extrusions, Tube, Pipe and Bars: Table 1 and ASTM B221 or ASTM B429
a. Top, bottom and intermediate rail corner bends with maximum 4'-0" post spacing may be Alloy $6063-T 6$
C. Perforated panels (Type 5) Alloy 3003-H14
C.
Stainess steel (SSy
D. Stainless steel (SS) screws: Type 316 or $18-8$ Alloy
E. Aluminum screws: Alloy 2024-T4 or $7075-$ T73
a. Hex Head Bolts: ASTM A 307
4. $7 /$ " diameter single bolt option, Grade 36
5. $7_{16 \prime}$ diameter four bolt option, Grade 55
b. Adhesive Anchors: ASTM F1554 fully threaded rods, Grade 55
c. Hex Nuts: ASTM A563
d. Flat Washers: ASTM F436
6. Shims. A. Ply B209 All 6061 A36 or ASTM A706 Grade 36.
H. Bearing Pads: Provide $1 / 3^{\prime \prime}$ thick Plain, Fabric Reinforced or Fabric Laminated Bearing Pads meeting the requirements of Specification Section 932 for Ancillary Structures. parallel to the 4" Sphere requirement is indicated in the Data Tables
7. Locate raling expansion Joints between the posts on either side of
the deck expansion joint. Maximum spacing between expansion joints is $35^{\prime \prime}-0^{\prime \prime}$.
8. Field splices are similar to the Expansion Joint Detail and may be approved by the Engineer to facilitate handling; but the top rail must be continuous across a minimum of two posts.
. For intermediate and bottom horizontal rails, the screwed joints shown may be substituted with alternate joints shown Make cor "K" for post Type "A" \& "B. longitudinal alignment with a 9 " bend radius or terminate adjoining sections with mitered end sections when handrails are not required.
9. For changes in tangential longitudinal alignment greater than 45°, position posts a maximum of $2^{\prime}-0^{\prime \prime}$ each side of the
10. For curved longitudinal alignments, shop bend the top and bottom rails and handrails to match the alignment radius,
11. Handrails are required and must be continuous at landings for:
A. Grades Steeper than 5
B. Three or more steps
12. Installation: Cutting of reinforcing steel is permitted for post installed anchors.

TABLE 1 NOTES:
(1) Alloy 6061-T6 or 6063-T52 \& T6 may be substituted for Alloy 6063-T5.
(2) $0.188^{\prime \prime}$ wall thickness permitted for rails with post spacings less than
(3) 1^{11} NPS (Sch. 40) non-slit rail sleeves may be substituted when welded
connection Detail "K" is utilized.

ALTERNATIVE BOTTOM \& INTERMEDIATE RAIL SECTION INTERMEDIATE RAIL SECTION
FOR TYPE 3, $4 \& 5$ RAILINGS

OP CAP RAIL INNER SPLICE SLEEVE See Screw
Slot Detail

CROSS REFERENCES
Detail " A ", Sheet 4
Detail " K ", Sheet 3

3" ROUND TOP CAP RAIL TOPLICE SLEEVE alternate top
ALTERNATE D DESCRIPTION:
LAST
REVISION

REVISION
1/01/18
FDOT\} $\begin{gathered}\text { FY 2023-24 } \\ \text { STANDARD PLANS }\end{gathered}$

POST TYPE "C"

SCREW SLOT DETAIL

OPTIONAL TOP PLATE EXTRUSION SECTION (POST TYPE "C")

Notes:
See Sheet 4 for Notes.
tt Lee Sheet 4 for Notes. drilled plumb to align with screw slot.

TYPE 1-PICKET INFILL PANEL

PICKET NOTES
Picket Spacing of $61 / 2$ centers is based on a $3 / 4 / 0$ Bar for standard applications.
When shown in the Contract Plans a $4^{1 / 2}$ picket spacing may be required. See Note 4 (Sheet 1 .

A

Intermediate Rail 3/1" Ø Max. Hole for Ramps, $5 / 16^{10} \varnothing$ Max. Hole for Stairs.

DETAIL "1A"
(Top of Picket Connection)

TABLE 2-CHAIN-LINK PANEL COMPONENT MATERIALS		
COMPONENT	ASTM	COMPONENT INFORMATION
$\begin{aligned} & \text { Chain-Link Fence } \\ & \text { Fabric (2" mesh with } \\ & \text { knuckled top and } \\ & \text { bottom selvage) } \end{aligned}$	A392	Zinc-Coated Steel - No. 9 gage (coated wire diameter), Class 2 Coating
	A491	$\begin{aligned} & \text { Aluminum-Coated Steel - No. } 9 \text { gage } \\ & \text { (coated wire diameter) } \end{aligned}$
	F668	Polyvinyl Chloride (PVC) Coated Steel - No 9 gage Zinc-Coated Wire (metallic-coated core wire diameter) ~ See Plans for specified color of PVC.
Tie Wires	F626	Zinc-Coated Steel Wire - No. 9 gage with coating to match Chain-Link Fence Fabric.
Tension Bars	F626	3/16" (min. thickness) \times 3/4" (min. width) $\times 2^{\prime}-3^{\prime}$ (min. height) Steel Bars
Miscellaneous Fence Components	F626	Zinc-Coated Steel

CHAIN-LINK PANEL NOTE:
Chain-Link Fence Fabric shall be continuous along limits of railing. Splicing of Chain-Link panels using Tension Bars at $20^{\prime}-0^{\prime \prime}$ minimum increments is permitted.

NOTE:
TYPE 2 - CHAIN-LINK (Continuous Infill Panel)
See Plans for Infill Panel option required

TYPE 3-SUNSHINE INFILL PANEL
Arc, Rays and Sun Segment may be formed in a single panel from 1/2" plate (ASTM B209 Alloy 6061-T6 or T651) pattern cut with laser or plasma CNC, welded to a $1 \times 1 \times 1 / 8$ Angle Border or the $3 / 4 x^{3} / 4 x^{1 / 3}$ Channel Border shown.

Channel $1 \times 1 \times 1$
(Arc)*
DETAIL "3C"
RAYIARC CONNECTION

NOTE:
See P
See Plans for Infill Panel Option required.

SECTION A-A

PANELISPLICE CONNECTION

PANEL ADJUSTMENT FOR RAILINGS
ON GRADES

1/2" Square
Bar (Rays)

DETAIL "3B"
BOTTOM RAIL/RAY CONNECTION
 Rays
Similar Expansion Joint
Opening

$$
\begin{aligned}
& \text { 3~\#10x?" } \\
& \text { Head Screws } \\
& \text { @ 1'-0" sp. }
\end{aligned}
$$

DETAIL "3E"

PANEL END CONNECTION at post with Expansion joint
ARCIPOST CONNECTION
(Continuous Top Rail)
 PANEL/RAIL CONNECTION (Top Shown, Bottom Similar)

SECTION B-B
PANEL END CAP

| $\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 16 \end{gathered}$ | \|c|cos | $\begin{array}{cc} \text { FDOTY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$ | PEDES TRIAN/BICYCLE RAILING (ALUMINUM) |
| :---: | :---: | :---: | :---: |

NOTES:

1. Shop Drawings are required.
2. Work with Specification 515
3. Materials:
A. Pan Head Set Screws: Aluminum Alloy 2024-74 or 7075-T73 or Stainless Steel (SS) Type 316 or 18-8 Alloy.
B. Base Plates and Cap Plates: ASTM B209, Alloy 6061-T6
C. Structural Pipe Tube and Bars: ASTM B221 or ASTM B429, Alloy 6061-T
D. End Rails 90° bends and corner bends with a maximum 4 foot spacing: Alloy 6063-T5 is permitted

railing member dimensions table			
MEMBER	designation	OUTSIDE DIMENSION	WALL THICKNESS
Posts	2" NPS (Sch. 40)	$2.375^{\prime \prime}$	$0.154^{\prime \prime}$
Rails	$2^{\prime \prime}$ NPS (Sch. 40)	$2.375^{\prime \prime}$	$0.154^{\prime \prime}$
Rail Joint/Splice Sleeves	11/2" NPS (Sch. 40)	$1.900^{\prime \prime}$	$0.145^{\prime \prime}$
Handrails Joint/Splice Sleeves	1" NPS (Sch. 40) 1.50 ODx0.125 Wall	$\begin{aligned} & 1.315^{\prime \prime} \\ & 1.500^{\prime \prime} \end{aligned}$	$\begin{aligned} & 0.133^{\prime \prime} \\ & 0.125^{\prime \prime} \end{aligned}$
Handrails	11/2" NPS (Sch. 40)	$1.900^{\prime \prime}$	$0.145^{\prime \prime}$
Handrail Support Bar	$1^{\prime \prime} \varnothing$ Round Bar	$1.000^{\prime \prime}$	N/A

E. Galvanized Steel Fasteners:
a. Hex Head Bolts: ASTM A 307 Type 1 or ASTM F1554 Grade 36
b. Adhesive Anchors: ASTM F1554 Grade 36 fully threaded rods

Hex Nuts: ASTM A563
Flat Washers: ASTM
F. Aluminum Shims: ASTM B209, Alloy 6061
G. Bearing Pads: Plain, Fabric Reinforced, or Fabric Laminated meeting requirements of Specifications $515 \& 932$.
4. Fabrication:
A. Place expansion joints at a maximum of $30^{\circ}-0^{\prime \prime}$ spacing
B. Field splices are simila to the expansion joint detail and may be approved by the Engineer to facilitate

C. Continuity field splice (Detail "E") only use to make the railing continuous for unforesen field ad justments
D. Corners and chanes in tangential long itudinal alignment may be made continuous with a g" bend radius or
terminated at ad joining sections with a standard end hoop when handrails are not reauired

 he corner, not at the corner ap
5. Handrails are required and must be continuous at landings for:
A. Grades Steeper than 5%
6. Cutting of reinforcing steel is permitted for post installed anchor bolts.

TYPICAL RAILING DETAILS \& RAILINGS ON GRADES 0\% TO 5\%

RAILINGS ON GRADES STEEPER THAN 5\% TO 8.33\%

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		DESCRIPTION:	$\text { FDOT\} }$	FY 2023-24 STANDARD PLANS	PIPE GUIDERAIL (ALUMINUM)	$\begin{gathered} \text { INDEX } \\ 515-070 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 5 \end{aligned}$

typical section on concrete sidewalk

TYPICAL SECTION ON STEPS \& STAIRS

DETAIL "F" (OPTIONAL SHIMMING DETAIL FOR CROSS SLOPE CORRECTION) (Used in lieu of Beveled Shim Plates)

SIDEWALK ANCHORAGE DETAIL OPTION 1

SIDEWALK ANCHORAGE DETAIL OPTION $2 \& 3$
NOTES:
 Permitted (C-I-P); Galvanized Adhesive Anchors Permitted
$* * *$ The minimum embedment for Adhesive Anchors is $6^{\prime \prime}$ for
$2 \sim B$ Bolt Anchorage or 4^{4} for $4 \sim$ Bolt Anchorage.

LAST REVISION $11 / 01 / 20$	2	DESCRIPTION:	$\text { FDOT\} }$	FY 2023-24 STANDARD PLANS	PIPE GUIDERAIL (ALUMIINUM)	$\begin{gathered} \text { INDEX } \\ 515-070 \end{gathered}$	SHEET 5 of 5

NOTES:

1. Shop Drawings are required, refer to Specification 515
2. Materials:

Pipe Rails and Posts: ASTM A53 Grade B for standard weight pipe and ASTM A500 Grade B, C or
D or ASTM A501 for Structural Tube.
Handrail Support Bars: ASTM A36

Railing member dimensions table			
MEMBER	designation	$\begin{gathered} \text { OUTSIDE } \\ \text { DIMENSION } \end{gathered}$	$\begin{aligned} & \text { WALL } \\ & \text { THICKNESS } \end{aligned}$
Posts	$2^{\prime \prime}$ NPS (Sch. 40)	$2.375^{\prime \prime}$	$0.154^{\prime \prime}$
Rails	$2^{\prime \prime}$ NPS (Sch. 40)	$2.375^{\prime \prime}$	$0.154^{\prime \prime}$
Rail Joint/Splice Sleeves	1/2"1 NPS (Sch. 40)	1.900"	$0.145^{\prime \prime}$
Handrails Joint/Splice Sleeves	1" $^{\prime \prime}$ NPS (Sch. 40) HSS1.500×0.125	$\begin{aligned} & 1.315^{\prime \prime \prime} \\ & 1.500^{\prime \prime} \end{aligned}$	$\begin{aligned} & 0.133^{\prime \prime \prime} \\ & 0.1255^{\prime 2} \end{aligned}$
Handrails	11/2" NPS (Sch. 40)	$1.900^{\prime \prime}$	$0.145^{\prime \prime}$
Handrail Support Bar	$1^{\prime \prime}$ ¢ Round Bar	$1.000^{\prime \prime}$	N/A

D. Galvanized Steel Fasteners 1 H307 Type 1 or ASTM F1554 Grade 36

Adhesive Anchors: ASTM F1554 Grade 36 fully threaded rods
c. Hex Nuts: ASTM A563
E. Aluminum Shims: ASTM B2009, Alloy 6061 . Fabric Laminated meeting requirements of Specifications 515 and 932.
3. Fabrication:
A. Place expansion joints at a maximum of $30^{\circ} 0$ spait
ent splices are similar to the expansion joint detaii and may
but top rail must be continuous across a minimum of two posts
Cot Conity field splice (Detail "E"" only use to make the railing continuous for unforeseen field adjustments
at ad joining sections with a standard end hoop when handrails are not required with a 9"bend radius or terminated
E. For curved longitudinal alignments, shop bend the top and bottom rails and handrails to match
F. For changes in tangential longitudinal alignment greater than 45°, positioned posts a maximum
of $2^{\prime}-0^{\prime \prime}$ each side of the corner, not at the corner apex.
4.Handrails are required and must be continuous at landings for
A. Grades Steeper than 5%
5. Cutting of reinforcing steel is permitted for adhesive anchor bolt installations.

LAST REVISION $11 / 01 / 17$	Din	DESCRIPTION:
気		

TYPICAL SECTION ON CONCRETE SIDEWALK

TYPICAL SECTION ON GRAVITY WALL (Other Retaining Walls Similar)

TYPICAL SECTION ON STEPS \& STAIRS

4~BOLT ANCHORAGE DETAIL

DETAIL "F" (OPTIONAL SHIMMING DETAIL FOR CROSS SLOPE CORRECTION) (Used in lieu of Beveled Shim Plates)

optional sidewalk anchorage detail

SIDEW ALK ANCHORAGE DETAIL OPTION $2 \& 3$

NOTES: Galvanized Steel Bolts (As shown (C-I-P); Galvanized U-Bolts Permitted (C-I-P); Galvanized Adhesive Anchors Permitted
chors Not Permitted.
*** The minimum embedment for adhesive anchors is $6^{\prime \prime}$ for
$2 \sim$ Bolt Anchorage or $4^{\prime \prime}$ for $4 \sim$ Bolt Anchorage.

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$	\|r	DESCRIPTION:		FY 2023-24 STANDARD PLANS	PIPE GUIDERAIL (STEEL)	$\begin{gathered} \text { INDEX } \\ 515-080 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 5 \text { of } 5 \end{aligned}$

GENERAL NOTES:

1. For curb, gutter and curb \& gutter provide $1 / 8^{\prime \prime}-1 / 4^{\prime \prime}$ contraction joints at 10^{\prime} centers (max.). Contraction joints adjacent to concrete pavement on tangents and flat curves are to match the pavement joints, with intermediate joints not to exceed 10^{\prime} centers.
2. Locate expansion joints for curb, gutter and curb \& gutter in accordance with Specification 520.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Concrete Curb and Gutter
3	Curb and Gutter Joints and Endings, Concrete Bumper Guard, and Asphaltic Concrete Curb

TYPE A

TYPE E

TYPE F

SHOULDER GUTTER

| LAST REVISION $11 / 01 / 21$ | \|c|c | DESCRIPTION: | FDOTY | FY 2023-24
 STANDARD PLANS | $\mathbb{C U R B}$ AND GUTTER | INDEX 520-001 | SHEET
 1 of 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

longitudinal section (nose)

OPTION I

OPTION II
type I - Concrete traffic separator

 Const. Joint with 1/n" Tool Edge
Permitted (Typ.)

TYPE E
Edge of Pavt.

TYPE F

CURB AND GUTTER

MEDIAN CURB AND TRAFFIC SEPARATOR JUNCTURE DETAILS (0ption I Separator Shown, For Curb Details see Index 520-001)

NOTES:

1. Separators Type I and IV are to be used with
flexible pavement. Separators Types I and V flexible pavement. Separators Types II and V are to be used with rigid pavement.
2. Either Option I or Option II may be used for Types I and IV separators except when a specific option is called for in the Plans.
3. For all separators provide $1 / 8^{\prime \prime}-1 / 4$ " contraction joints at 10^{\prime} centers (max.). Contraction joints adjacent to concrete pavement on tangents
curves to match the pavement joints, with intermediate joints not to exceed 10^{\prime} center

option II
TYPE IV - CONCRETE TRAFFIC SEPARATOR

11/01/17
FDOTY $\begin{gathered}\text { FY 2023-24 } \\ \text { STANDARD PLANS }\end{gathered}$
520-020 1 of 5

LONGITUDINAL SECTION (NOSE)

transverse section
= TYPE II - Concrete traffic separator=

LONGITUDINAL SECTION (NOSE)

TYPE V - CONCRETE TRAFFIC SEPARATOR


```
pitch:
```


Pitch:
1/4

longitudinal section (nose)

NOTES:

1. Traffic Separator transverse reinforcement ad jacent to deck expansion joints shall be field ad justed to maintal learance and spacing. Bars shall be field cut as shown, bars may be rotated to maintain clearance.
2. Traffic Separator ends at deck expansion joints shal follow the deck joint limits. Drainage joints and b"
V-Grooves shall be placed perpendicular or radial to -Grooves shall be placed perpendicular or radial to
the q of the Traffic Separator. See Structures Plans. Superstructure and Seproatach Slab Sheets for for Plans,
3. See Structures Plans, Superstructure Sheets for actual dimensions and joint orientation
4. Option II is not permitted on bridge decks with prestressing steel.
5. Bar Spacing:
$4^{4}-0^{\prime \prime} @ 3$ equal spaces (continuous) $8^{\prime}-6^{\prime \prime} @ 7$ equal spaces (continuous)
6. At the Contractor's option, a one piece bar my be
substituted for Bars $4 B$ and $4 E$.
7. Field bend and cut rebar as required to maintain cover.

OPTION II

REINFORCING STEEL

(Bridge Deck SHown, Approach Slab Similar)

- SKEWED BRIDGE DECK AND APPROACH SLAB WITH TRAFFIC SEPARATOR (Deck Expansion Joint at Begin or End Bridge Shown, Expansion Joint at \& Pier or Intermediate Bents Similar)

— DETAIL AT EXPANSION JOINTS $\bar{\square}$ (Strip Seal Shown, Other Armored Joint Types Similar)

BRIDGE INSTALLATIONS - TYPE "E" CURB

longitudinal section (NOSE)

Pitch:

OPTION I

Pitch:
$1 / 4^{4}$ For 4' Separator
$1 / 4^{\prime \prime}$ For $4^{\prime \prime}$ Separator
$1 /{ }^{\prime \prime \prime}$ "or 6^{\prime} Separator
$3 / 4^{\prime \prime}$ For $8^{\prime}-6^{\prime \prime}$ Separato

transverse section

- OPTION II
\qquad
(Bridge Deck Shown, Approach Slab Similar)

NOTES:

1. Treatment of separators on straight bridges shown. For additional notes and treatment of separators on skewed bridges, see Sheet 2 .
2. Option II is not permitted on bridge decks with prestressing steel.
3. Bar Spacing:
$4^{\prime}-0^{\prime \prime} @ 3$ equal spaces (continuous)
$6^{\prime}-0^{\prime \prime} @ 5$ equal spaces (continuous)
$8^{\prime}-\sigma^{\prime \prime} @ 7$ equal spaces (continuous)
4. At the Contractor's option, a one piece bar my be substituted for Bars $4 B$ and $4 E$.
5. Field bend and cut rebar as required to maintain cover
 BACKER ROD EXPANSION JOINTS

$\overline{=}$ DETAIL AT EXPANSION JOINTS $\bar{\square}$ (Strip Seal Shown, Other Armored Joint Types Similar)

Bars 4A \& 4E

Bar $4 B$

NOTE:

Length of Bars $4 E$ is $2^{\prime \prime}-5^{\prime \prime}$ for $4^{4}-0^{\prime \prime}$ Separator,
Length of Bars $4 E$ is $4^{4}-5^{\prime \prime}$ for $6^{\prime}-0^{\prime \prime}$ Separator.
Length of Bars $4 E$ is $6^{\prime}-11^{\prime \prime}$ for $8^{\prime \prime}-6^{\prime \prime}$ Separator.

Bars $4 A \& 4 C$
NOTE:
Length of Bars $4 C$ is $2^{\prime}-41^{\prime \prime \prime}$ for $4^{\prime}-0^{\prime \prime}$ Separator.
Length of Bars 4C is $44^{\prime}-4 / 1 / /^{\prime \prime}$ for $6^{\prime}-0^{\prime \prime}$ Separator.
Length of Bars $4 C$ is $6^{\prime \prime}-10^{\prime \prime}$ for $8^{\prime}-6^{\prime \prime}$ Separator.

- option II
reinforcing steel notes:

1. All dimensions are out to out.
2. The $8^{\prime \prime}$ vertical dimension shown for Bars 4B and 4D are based on a slab $81 /{ }^{\prime \prime}$ thick
or greater without a wearing surface. If slab thickness is less than $81 / \mathrm{I}^{\prime \prime}$ decrease or greater without a wearing surface. It slab thickness is less than 8 2, decreack this dimension by an amount equal to the difference in thickness. If a wearing
surface is to be provided, increase this dimension by an amount equal to the
wearing surface thickness.

CONVENTIONAL REINFORCING STEEL BENDING DIAGRAMS $=$

See Structures Plans, Superstructure Sheets for location(s) of drainage joints. Locations for drainage joints shall be limited to the constant width section of separator.

DRAINAGE JOINT DETAIL
DRAINAGE JOINT DETAIL

w5.0 4" (Typ.)

SPLICE DETAIL

OPTION A: Use Welded Wire Reinforcement $3 \times 4-$ W5.0 \times W6. 7 as
 the Welded Wire Reinforcement to the dimensions of Bar
$4 B$ shown in the Bending Diagram for Reinforcing Steel option I.
OPTION B: Use Welded Wire Reinforcement $3 \times 4-$ W5.0 \times W6. 7 as required by plans in place of
Reinforcing Steel Option II.

NOTE: Welded Wire Reinforcement to consist of smooth wire meeting the requirements of Specification 931.

$\overline{=}$ ALTERNATE REINFORCING STEEL DETAILS $=$

 (Welded Wire Reinforcement)
dowel notes

1. Shift Dowel Holes to clear if existing reinforcement is encountered.
2. Provide and install an adhesive bonding material system in accordance with Specifications 416 and 937.
3. The dowel hole diameter is to meet adhesive bonding material system manufacturer's requirements.
\qquad

ESTIMATED TRAFFIC SEPARATOR QUANTITIES CONCRETE:

 0.112 CY per Ft.
-0.164 CY per Ft.

NOSE:

$$
\begin{array}{ccc}
\text { TYPE "E" } & \text { TYPE "F" } \\
4^{4}-0 " \text { Width }=0.080 \mathrm{CY} & -0.109 \mathrm{CY} \\
6^{\prime}-0^{" \prime} & \text { Width }=0.193 \mathrm{CY} & -0.257 \mathrm{CY} \\
8^{\prime}-6 " & \text { Width }=0.403 \mathrm{cY} & -0.536 \mathrm{cY}
\end{array}
$$

Reinforcing stele
(All quantities are based on an $81 / 2$ slab.)
PTION I:
4'-0" Width - 6.37 Lbs. per Ft.
$6^{6}-0^{\prime \prime}$ Width -8.60 Lbs. per Ft.
$8^{\prime}-6^{\prime \prime}$ Width - 11.05 Lbs. per Ft.
option II:
4'-0" Width - 4.77 Lbs. per Ft
$6^{\prime}-0^{\prime \prime}$ Width - 7.00 Lbs. per F
$8^{\prime}-6^{\prime \prime}$ Width - 9.45 Lbs. per Ft.

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	年苞	DESCRIPTION:	FDOT	FY 2023-24 STANDARD PLANS	TRAFFIC SEPARATORS	$\begin{gathered} \text { INDEX } \\ 520-020 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 5 \text { of } 5 \end{aligned}$

SHEET	CONTENTS
1	Index Contents; General Notes
2	Median Barrier
3	Median Barrier - Reinforcing Details
4	Median Barrier - Sloped End Treatment
5	Median Barrier - Grade Separated
6	Median Barrier - 56" Height Section for Barrier-Mounted Sign Support Shielding - Symmetrical
7	Median Barrier - 56" Height Section for Barrier-Mounted Sign Support Shielding - Asymmetrical
8	Median Barrier - 56" Height Section for Barrier-Mounted Dual Sign Support Shielding - Min. Width
9	Median Barrier - 38" Height Split Section for Stand-Alone Sign Support Shielding
10	Median Barrier - 44" Height Split Section for Pier Shielding
11	Median Barrier - 44" Height Split Section for Pier Shielding - Details
12	Median Barrier - Connection to F-Shape
13	Shoulder Barrier
14	Shoulder Barrier - Reinforcing Details
15	Shoulder Barrier - Section Options
16	Shoulder Barrier - Section Options (Continued), Drainage Slot Option
17	Shoulder Barrier - 38" Height Rear-Flush Section for Reduced Setback Pier Shielding (Low-Speed)
18	Shoulder Barrier - 44" Height Rear-Flush Section for Reduced Setback Pier Shielding
19	Shoulder Barrier - Connection to F-Shape
20	Curb and Gutter Barrier
21	Curb and Gutter Barrier - Reinforcing Details
22	Curb and Gutter Barrier - Sloped End Treatment
23	Wall Shielding Barrier - 38" Height Section - Approach and Trailing Transition
24	Wall Shielding Barrier - 38" Height Section - Guardrail Connection
25	Wall Shielding Barrier - 56" Height Section for Barrier-Mounted Sign Support Shielding
26	Reinforcing Bar Bending Diagrams

GENERAL NOTES:

1. BARRIER CONCRETE: Use Class II concrete for all barriers constructed in slightly aggressive environments, and use Class IV Concrete for all barriers constructed in moderately or extremely aggressive environments. On all exposed surfaces, apply a General Surface Finish in accordance with Specification 400.
2. STEEL BAR REINFORCEMENT: Where required to maintain continuity, provide lap splices of at least 18 inches for No. 4 bars and 20 inches for No. 5 bars, unless otherwise shown herein (including shorter splices as provided by the default bar bending diagrams).
The default reinforcing details shown herein, including bar shapes and lap splice positions, are intended to show required steel locations and provide for a constructible design. However, with the approval of the Engineer, alternate steel configurations may be used in the same locations shown herein, given that the equivalent strength reinforcing is provided and the cover, maximum spacing, and continuity requirements are maintained.
3. OPTIONAL WELDED WIRE REINFORCEMENT: With the approval of the Engineer, steel welded wire reinforcement in accordance With Specification 415 may be substituted for the steel bars shown herein. Place the welded wire in the same locations
specified for the steel bars, and maintain the equivalent strength, cover. maximum spacing, and continuity requirements.

GENERAL NOTES (CONTINUED):

4. TOP FACE LONGITUDINAL RESFORCEMENT: Unless otherwise specified, the longituanal reinforcement shown closest to the top face of the barrier has a maximum cover of $4^{1 / 2} \mathbf{2}^{\prime \prime}$, measured from the top face of the barrier
5. MINIMUM BARRIER LENGTH: Unless otherwise shown in the Plans, the minimum Concrete Barrier length is 40 feet
6. CONSTRUCTION JOINTS: Install Construction Joints only as needed for discontinuous concrete casting or cold joints. Maintain continuity of steel reinforcement across Construction Joints. Construction Joints are classified herein as Transverse Joints or Longitudinal Joints.
Transverse Joints are permitted at 20 -foot or greater intervals along the barrier. For Tall Grade-Separated Sections, see Sheet 5 for additional Transverse Joint requirements.
ongitudinal Joints are only permitted where indicated in the following details and notes, with a vertical position tolerance of $\pm 1^{1 / 2}$ from the locations shown
7. DOWELED JOINTS: As shown in the Dowel Details on Sheets $2 \& 13$, install $3 / 4$ " Doweled Joints for Concrete Barrier connections to Wall Coping Barriers, Pier Protection Barriers, and Traffic Railings. Doweled Joints are also required for expansion mitigation in Median Barrier as defined per Sheets $2 \& 5$. Doweled Joints are not permitted within GradeSeparated Median Barrier
8. CRACK CONTROL V-GROOVES: At 20-foot intervals, place ${ }^{3}{ }_{8}$ depth V-grooves that run vertically and/or transversely in the ront, top, and back faces of barriers. The V-grooves can be either molded or scored while the concrete is still plastic.
9. SUBGRADE: Compact the top layer of subgrade with Type B Stabilization, LBR 40 (12 in.).
10. FOOTING BOTTOM CONCRETE COVER: At the bottom of barrier footings shown throughout this Index, up to 2 inches of additional concrete cover is permitted beyond what is shown herein to accommodate soil grade irregularities.
11. FINISH GRADE ELEVATION: At the barrier face location, the finish grade pavement has a vertical position tolerance of $\pm 1 / 2$ " from the nominal locations shown herein, relative to the barrier elevation. Maintain visually smooth and even pavement at the barrier face, per the approval of the Engineer.
12. DRAINAGE INLETS: Where called for in the Plans, install corresponding inlets per Indexes 425-030 thru 425-032.
13. LIGHT POLE MOUNTING: Where called for in the Plans, install aluminum light poles per Index 715-002
14. OPAQUE VISUAL bARRIER: Where called for in the Plans, install Opaque Visual Barrier per Index 521-010
15. BARRIER END MARKERS: For all free ends of concrete barriers that are not shielded with an end treatment or connectio to another barrier or traffic railing type, install a Type 3 object Marker on the end face per Specification 705.
16. BARRIER DELINEATORS: Install Barrier Delineators in accordance with Specification 705. For median barriers, mount the delineator on the top of the barrier, at the centerline of barrier, with reflective sheeting facing traffic on both approaches. For shoulder barriers and split sections, mount the delineators on the top of the barrier, with the roadway side of the delineator located $2^{\prime \prime}$ from the front face of the barrier and the reflective sheeting facing traffic of the nearest approach.
17. TOLL SITES: Where called for in the Plans, substitute the steel reinforcing bars shown herein with GFRP reinforcing bars of the same size. Construct GFRP reinforcing bars in accordance with Specification 932, and use a maximum 41/2" inner diameter for bar bends. Alternative bar bending details and shapes may be used so long as the final location of the einforcing is unchanged and the bars are either continuous or fully spliced at the side and bottom barrier locations.
Where required to fit pull boxes while maintaining bar spacing and concrete cover, trim GFRP bars as defined in the Plans.

At toll site locations, the use of Median Barriers on outside shoulders is permitted where called for in the Plans. Shoulder Pavement shown herein may be substituted with material for an alternate usage where defined in the Plans.

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 22 \end{gathered}$	号DESCRIPTION:	FY 2023-24 STANDARD PLANS	CONCRETE B ARRIER	$\begin{gathered} \text { INDEX } \\ 521-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 26 \end{aligned}$

PLAN VIEW - 38" HEIGHT MEDIAN BARRIER FREE END REINFORCING (See Note 3)

PLAN VIEW - END SEGMENT FOR GUARDRAIL CONNECTION (See Note 3)

NOTES:

GENERAL: Work with the Plan and
Elevation Views on Sheet 2.
2. BAR BENDING DIAGRAMS: For additional information on Bars $4 V 1$ and 441 , see the details
on Sheet on Sheet 26.
3. PLAN VIEWS: Only top and bottom longitudinal reinforcing is shown for clarity. For al
longitudinal steel locations, see the section views.

SECTION A-A SECTION A-A
38" HEIGHT MEDIAN BARRIER Concrete aty. $=0.20$ Cy/FT
Steel aty. $=11.8 \mathrm{LB} / \mathrm{FT}$

VIEW B-B
REDUCED SECTION
OF END TRANSITION
FOR GUARDRAIL
(End of Barrier)

MEDIAN BARRIER - REINFORCING DETAILS

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$	\|	FY 2023-24 STANDARD PLANS	CONCRETE BARRIER	INDEX 521-001	$\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 26 \end{aligned}$

SECTION C-C GIN TRANSITION REINFORCING
(Height Varies Linearly per Elevation View)

SECTION D-D
INTERMEDIATE TRANSITION REINFORCING
Height Varies Linearly per Elevation View)

NOTES:

. GENERAL: Install Sloped End Treatment
only where called for in the plans.
2. JoInts: Construction or Doweled Joints are not permitted within the Sloped End Treatment segment.

 ap splice with the adjacent section's longitudinal steel. Connect Short Grade-Separated sections
sing a $3 / 4$ " Doweled Joint.
3. SHORT GRADE-SEPARATED SECTIONS: Bars $4 C 1$ and the two uppermost longitudinal bars may be
4. TALL GRADE-SEPARATED SECTIONS: For the vertical and transverse steel reinforcement shown in the Tall Grade-Separated Sections, bar bending diagrams are not trovided due to varying section dimensions and Longitudinal Joint locations. Use any combination of spliced reinforcing steel to
position the reinforcement with the same cover, spacing, continuity, and equivalent strength shown position the reinforcement with the s.
herein, as approved by the Engineer.
Longitudinal Joints are permitted between the vertical limits shown, and must remain level and at
a consistent height per each continuous casting of concrete lonitudinal elevations at Transverse Joint locations. Field bending of bars is permitted at Longitudinal Joint elevations
ocations.
Transverse Joints between Tall Grade-Separated Sections do not require continuous steel across
the joint if the following conditions are met:

1. The barrier length on both sides is at least 40 feet, where each segment has continuous
ii. The barrier's vertical steel spacing is reduced to 4" 0.c. for a total of 12 spaces on both The barrier's vertica.
sides of the joint.
Grade separation Heights of $Y \leq 9^{\prime \prime}$ are permitted on a limited basis using the Tall Grade-
Separated section; this is to accommodate cases where maintaining the spread footing throug,
lower height segments is more practical than changing to the Short Grade-Separated section.
MEDIAN BARRIER - GRADE-SEPARATED

2. PLAN VIIEW: Only outermost longitudinal reinforcing is shown for clarity. For all
Iongitudinal reinforcing locations, see the Section Views.
\square

NOTES:

1. GENERAL: Work with the Plan and Elevation views on Sheet 10 .
2. LONGITUDINAL REINFORCING CONTINUITY: Maintain all Iongitudinal steel reinforcing shown in Section C-C continuously into Section D-D (spliced where required). The additional longitudinal reinforcing shown in Section D-D does not
require continuity into Section $C-C$, and it starts $3^{\prime \prime}$ from the construction joint or edge of concrete per the details
on Sheet 10 .
on Sheet 10 .
3. STIRRUP BARS: For the vertical and transverse reinforcement requirement shown, bar bending diagrams are not provided due to varying section dimensions. Use any combination of spliced reinforcing steel to position the reinf
the same cover, spacing, continuity, and equivalent strength shown herein, as approved by the Engineer

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 18 \end{gathered}$		FDOT) $\begin{gathered}\text { FY 2023-24 } \\ \text { STANDARD PLANS }\end{gathered}$	CONCRETE BARRIER	INDEX 521-001	SHEET 11 of 26

ELEVATION
(Reverse Direction Similar
by Opposite Hand)

MEDIAN BARRIER - CONNECTION TO F-SHAPE

PLAN - ROUND PIER EXAMPLE REAR-FLUSH SECTION
WITH 3" WIDTH REDUCTION
(See Section View for All
Longitudinal Steel Locations)
 REAR-FLUSH SECTION
WITH 3" WIDTH REDUCTION (See Section View for All
Longitudinal Steel Locations)

38" HEIGHT
REAR-FLUSH SECTION WITH 3" WIDTH REDUCTION

SECTION B-B
ABOVE-GROUND HAZARD
EMBEDDED IN FOOTING
\& BARRIER

NOTE:

1. PIERS: The piers shown herein are example shapes only; see
the Plans for the project-specific dimensions. The detaiis
shown herein are only for use when piers do not require
protection per the AASHTO LRFD requirements. For piers
SHOULDER BARRIER - 38" HEIGHT REAR-FLUSH SECTION FOR REDUCED SETBACK PIER SHIELDING (DESIGN SPEED $\leq 45 \mathrm{MPH}$)

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 18 \end{gathered}$		DESCRIPTION:		FY 2023-24 STANDARD PLANS	CONCRETE BARRIER	$\begin{gathered} \text { INDEX } \\ 521-001 \end{gathered}$	$\begin{gathered} \text { SHEET } \\ 17 \text { of } 26 \end{gathered}$

begin transition - Option 'A'
MATCH SINGLE-SLOPE 38" HEIGHT SHOULDER BARRIER

SECTION A-A
BEGIN TRANSITION - OPTION 'B' MATCH SINGLE-SLOPE 36" HEIGHT TRAFFIC RAILING (Bridge Applications)

SECTION B-B INTERMEDIATE SECTION

SECTION C-C END TRANSITION F-SHAPE SECTION

SECTION - F-SHAPE DOWEL PLACEMENT (See Note 2)

NOTES:

1. GENERAL: Construct the Connection Segment as required per the Plans to connect existing F--
Shape sections to Single-Slope Shoulder Barrier or Traffic Railing sections. Construct Option Shape sections to Single-SIope Shoulder Barrier or Traffic Railing se.t
2. DOWELED JoINT: Install Dowel Bars per the Dowel Details on Sheet 13,
3. TRAFFIC RAILING CONNECTION: For the Option 'B' connection, use a Doweled Joint per Sheet
13 and the additional Free End Reinforcing with reduced bar spacing per Sheet 14.
4. STIRRUP BARS: For the vertical and transverse reinforcement requirements shown, bar
bending diagrams are not provided due to varying section dimensions. Use any combination of bending diagrams are not provided due to varying section dimensions. Use any combination
spliced reinforcing steel to position the reinforcement with the same cover, spacing, spliced reinforcing steel to position the reinforcement with the same cover, spacin
continuity, and equivalent strength shown herein, as approved by the Engineer.

SHOULDER BARRIER - CONNECTION TO F-SHAPE

$\bar{C} \quad \bar{D}$

SECTION A-A
$38^{\prime \prime}$ HEIGHT
SINGLE-FACED SECTION
Reverse Side Similar
by Opposite Hand)

NOTES:

1. TAPER SEGMENTS AND OFFSET SEGMENT: The plan view shown is an example only, showing general geometry for the taper segments and off set segment. For the actual
segment lengths and ocresponding taper rates required, see the barrier placement
information in the Plans.
2. OVERHEAD SIGN SUPPORT: The overhead sign support shown is an example only; see
the Plans for the project-specific dic dimensions and requirements if applicable.
3. CONNECTION TO SHOULDER BARRIER SECTIONS: Connect to Shoulder Barrier sections using a continuous pour or Transverse Joint, where longitudinal steel that aligns
within the adjacent section is maintained continuoussy between sections or has a full
lap solice with the ad jacent section's longitudinal steel.
4. FREE ENDS: Where shown in the Plans, terminate the Single-Faced Section with a transverse end face. Place a stirrup bar with a $3^{\prime \prime}$
Iongitudinal bars with a $3^{\prime \prime}$ cover from the end face
5. CONCRETE OR FLOWABLE FILL: Use Class NS Concrete in accordance with
Specification 347 or Non-Excavatable Flowable Fill in accordance with Specification

WALL SHIELDING BARRIER -

LAST REVISION 11/01/18	年	DESCRIPTION:	FDOTY	FY 2023-24 STANDARD PLANS	CONCRETE BARRIER	$\begin{gathered} \text { INDEX } \\ 521-001 \end{gathered}$	$\begin{gathered} \text { SHEET } \\ 23 \text { of } 26 \end{gathered}$

NOTES:

1. TAPER SEGMENTS AND OFFSET SEGMENT: The plan view shown is an example only,
showing general geometry for the taper segments and offset segment. For the actual showing general geometry for the taper segments and off set segment. For the actual
segment lengths and corresponding taper rates required, see the barrier placement

2. OVERHEAD SIISN SUPPORT: The overhead sign support shown is an example only; see
the Plans for the project-specific dimensions and requirements if applicable.
3. CONNECTIONS TO DIFFERENT CONCRETE BARRIER SECTIONS: COnnect to aligning barre ligections using a cont inu suspour or ransverse Joint, where tongituainal steel
that aligns within the ad jacent section is maintained continuously between sections or
has a full lap splice with the adjacent section's Iongitudinal stee.
4. FREE ENDS: Where shown in the Plans, terminate the Single-Faced Section with a
transverse end face. Place a stirrup bar with a $3^{\prime \prime}$ cover from the end face. Place transverse end face Place a stirrup oar with a $3^{\prime \prime}$ co
longitudinal bars with a $3^{\prime \prime}$ cover from the end face.
Z DESCRIPTION:
AST
1/01/18
1/01/
5. GUARDRALL CONNECTIONS: Within the Shoulder Barrier Segment for Guardrail Install Shoulder Barrier as shown per Sheet 3, including the eorresponding End
Transition for Guardrail. Connect Guardrail using the Transition Connections to Rigid
Barsier por
6. CONCRETE OR FLOWABLE FILL: Use Class NS Concrete in accordance with
Specification 347 or Non-ExCavatable Flowable Fill in accordance with Specification Specif
7.

Use only concrete fill behind the Shoulder Barrier Segment; do not use flowable fill
at this location.

WALL SHIELDING BARRIER
38" HEIGHT SECTION -
GUARDRAIL CONNECTION

BILL OF REINFORCING STEEL		
MARK	SIZE	LENGTH
$C 1$	4	$3^{\prime}-8^{\prime \prime}$
$C 2$	5	$3^{\prime}-0^{\prime \prime}$
$U 1$	4	$5^{\prime}-1^{\prime \prime}$
$U 2$	4	$7^{\prime}-8^{\prime \prime}$
$U 3$	5	$9^{\prime}-7^{\prime \prime}$
$U 4$	5	$5^{\prime}-9^{\prime \prime}$
$V 1$	4	$6^{\prime}-4^{\prime \prime}$
$V 2$	5	$6^{\prime}-3^{\prime \prime}$
$V 3$	4	$5^{\prime}-10^{\prime \prime}$

BARS 4 U1

BAR 4U2

BAR 4V1

BAR 4C1

BAR 4V3

NOTES:

1. Work with the Standard Bar Bending Details
per Index 415-001.
2. All bar dimensions in the bending diagrams
3. Use standard inner diameters for bar bending
4. Use standard inner diame
unless otherwise shown.

BAR $5 U 4$

BAR $5 V 2$

BAR 5U3

REINFORCING BAR BENDING DIAGRAMS

SHEET NO.	CONTENTS
1	Index Contents; General Notes
2	Example Layouts - Footing Placement and Connections
3	Barrier Plan and Elevation - Connection to Concrete Barrier - Connection to Guardrail
4	Barrier Details - Connection to Concrete Barrier
5	Barrier Details - Connection to Guardrail
6	Barrier Footing Options
7	Crash Wall Details
8	Reinforcing Bar Bending Diagrams

GENERAL NOTES

1. CONCRETE: Use Class III or IV concrete unless otherwise called for in the Plans.
2. CONSTRUCTION JOINTS: Maintain continuity of reinforcement steel across Construction Joints; reinforcement lap splices are permitted immediately adjacent to joints. Construct all Pier Protection Barrier continuously, with no expansion or contraction joints. Construction Joints are classified herein as Transverse Joints or Longitudinal Joints.
Transverse Joints are permitted at 40 foot or greater intervals along the barrier:
Longitudinal Joints may only be installed where indicated in the following details and notes, with a location tolerance of $\pm 1^{\prime \prime}$ from the locations shown.
3. FOUNDATION: Compact the top 12 inches of the subgrade to at least 98% of the maximum density determined by FM 1-T 180, Method D.
4. DRAINAGE INLETS: See Index 425-031 for Adjacent Barrier Inlets, and isolate these structures from Pier Protection Barriers and Footings with 1" Preformed Joint Filler.
5. BARRIER END MARKERS: For all free ends of barriers that are not connected to guardrail or concrete barrier, install a Type 3 Object Warker on the end face per Specification 705 .
6. BARRIER DELINEATORS: Install Barrier Delineators in accordance with Specification 705. Mount the delineators on the top face of the barrier, with the roadway side of the delineator located $2^{\prime \prime}$ from the front face of the barrier and the reflective sheeting facing traffic of the nearest approach
7. CRACK CONTROL: Provide $1 / 2$ " depth crack control V-Grooves at 15^{\prime} to 30^{\prime} spacing. Locate V-Grooves above any joint or discontinuity in th barrier footing. Align V-Grooves perpendicular to the longitudinal axis of the Pier Protection Barrier and make continuous across the to score $1 / 2, V$-Grooves while the concrete is still Dastic, otherwise pre-form the joints when stationary forms are utilized.

LAST	¿ DESCRIPTION:
REVISION	
11/01/18	㘼

Long. Joint (Typ.)
SECTION A-A 56" PPB
Concrete Qty $=0.10$ CY/FT (Above Gutter Line)
Steel Qty. $=47.7$ LBIFT (Excluding Bars $54 \& 8$)

Long. Joint (Typ.) Stem (Typ.) SECTION BB ISee Sheet 44" PPB
Concrete Qty $=0.16$ CY/FT (Above Gutter Line)
Steel Qty. $=35.7$ LBIFT (Excluding Bars $54 \& 8$)

END VIEW C-C Connects to Ad jacent Concret Barrier, Aligned at Gutter Line)

GENERAL: Construct either the 56" PPB or the $44^{\prime \prime}$ PPB height as called for in the Plans.

1. GENERAL: Construct either the 56" PPB or the 44" PPB heig
See Sheets $2 \& 3$ for additional plan and elevation details.
2. FOOTING OPTIONS: See Sheet 6 for the supporting stem and footing details.

BARRIER DETAILS - CONNECTION TO CONCRETE BARRIER
\square

(Schematic View - See Note 3)

SECTION H-H

 CRASH WALLConcrete Qty. $=0.82$ CY/FT (44" Crash Wall) or 0.93 CY/FT (56" Crash Wall)
Steel Qty, $=71.8$ LBIFT (44" Crash Wall) or 76.0 (B/FT (56" Crash Wall)

NOTES:

1. GENERAL: Only where called for in the Plans, install the Crash wall as a
supplement for PPB. If applicable, see the Plans for the corresponding supplement for PPB. If app
Station and off set required.

For additional layout details, see Sheets $2 \& 3$
2. CRASH WALL HEIGHT: Install the Crash Wall at a height which matches
the adjacent PPB (either 44" or 56").
3. SCHEMATIC VIEWS: Only partial reinforcing is shown in the Schematic siews to establ sh a trend while keeping clarity. For al reinforcing
4. GUARDRAIL CONNECTIONS: To facilitate guardrail connections, shift the
Crash Wall 3 feet from the end of the PPB as shown on Sheets $2 \& 3$.
5. OPTIONAL SLIP FORMING SUPPORT: The $1^{\prime}-0^{\prime \prime}$ depth spread footing may OPTIONAL SLIP FRMING SUPPORT: The 1^{\prime} '-0" depth spread footing may
be extended by ${ }^{3}$ laterally beyond the face of the wall to to provide support for a subsequent slip ofrming operation above. Do not adjust
the steel reinforcement location for the additional concrete.

VIEW J-J CRASH WALL ELEVATION
(Schematic View - See Note 3)

$\begin{array}{\|c\|} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{array}$		$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	PIER PROTECTION BARRIER	INDEX 521-002	$\begin{aligned} & \text { SHEET } \\ & 7 \text { of } 8 \end{aligned}$

BILL OF REINFORCING STEEL		
MARK	SIZE	LENGTH
v	5	7'-5"
u	5	$8^{\prime}-11^{\prime \prime}$
R	5	$6^{\prime}-0^{\prime \prime}$
${ }^{\text {F1 }}$	5	13'-9"
F2	5	Varies (Straight)
L	5	$6^{\prime}-5^{\prime \prime} / 7^{\prime}-5^{\prime \prime}$
E	5	$4^{\prime}-6^{\prime \prime}$
51	8	Varies (Straight)
s2, s3	5	Varies (Straight)

NOTES:

1. Work with the Standard Bar Bending Details
per Index $415-001$.
2. All bar dimensio

All bar dimens
are out to out

BARS 5F1

\rightarrow
BARS $5 U$

BARS 5L

GENERAL NOTES:

1. GENERAL: Construct Opaque Visual Barrier (OVB) in accordance with Specification 521. Use either cast-in-
place or precast panels with Class II Concrete and Class 3 Surface Finish. Do not cast OVB concrete place or precast panels with Class II Concrete and Class 3 Surface Finish. Do not cast ovB concrete
monolithically with the Concrete Barrier or Traffic Railing; use an ASTM D6380, Class S, Type III Organic monolithically y itt the Concre
Felt bond breaker as needed.
2. DOWEL BAR CONNECTION: For the embedment in Concrete Barrier or Traffic Railing concrete, dowel bars must
be either cast in place for new concrete or grouted in place for existing concrete. Embed the dowel bars to be either cast in place for new concrete or grouted in place for existing concrete. Embed the dow
the corresponding depths shown, and use the bar lengths provided in the Dowel Bar Length Table.
At cast in place embedment locations, longitudinally shift the dowel bars only as required to avoid
reinforcing steel in the Concrete Barrier or Traffic Railing.

3. TRANSVERSE JOINTS: Place ${ }^{1 / 2}{ }^{\prime \prime}$ Transverse Joints with a maximum spacing of $50^{\prime}-0^{\prime \prime}$ and a minimum spacing of
20'0 Without violating the above spacing requirements, place Transverse Joints matching the location and width of
open joints in the supporting Concrete Barrier or Traffic Railing.
4. SLOPED END TREATMENTS: Regardless of the traffic direction, place Sloped End Treatments on all exposed
ends of OVB, excluding leave-outs for barrier-mounted signs and light poles. See Note 7 below.
5. BARRIER-MOUNTED SIGNS AND LIGHT POLES: Where signs and barrier-mounted light pole structures conflict
with placement of oV, end and restart the oVB with a transverse vertical face located a longitudinal distance of $2^{\prime \prime}\left(\pm{ }^{1 / \prime \prime}\right)$ from the base of the structure. Follow the same reinforcing scheme and concrete cover
requirement for the Transverse Joint shown herein. See Note 7 below.
6. LARGE BARRIER-MOUNTED SIGN SUPPORTS: See Sheet 2 for details. See Note 7 below.
7. LEAVE-OUTS: OVB leave-outs are longitudinal gaps in oVB segments required to accommodate barrier-mounted
signs and light pole placement. Leave-outs up to 15 feet in length are included in OVB length measurement.
8. ASYMMETRICAL CONCRETE BARRIER SECTIONS: When mounting on top of an asymmetrical Concrete Barrier
section (not shown), align the centerline of the OVB with the centerline of the top face of the concrete section (not show
Barrier section.
9. SPLIT CONCRETE BARRIER SECTIONS: For split Concrete Barrier sections that run separately (for vertical structures, bridges, etc.), OVB is only required on top of one of the Concrete Barrier sections. Place oVB on
top of the Concrete Barrier section with the highest elevation. For these segments, mount barrier delineators on onl the ove face nearest the roadway (barrier mount other side) Longitudinally ouvrlapping OVB runs are
opermitted where called for in the Plans. as desianated with overlapping Begin and End Station OVB callouts.
10. VERTICAL REINFORCING: Place vertical No. 3 bars with the spacing shown, except that No. 3 bars at the
dowel bar locations may be shifted longitudinally to fit or they may be omitted at the contractor's option.
11. OPTIONAL WELDED WIRE REINFORCEMENT: With the approval of the Engineer, the No. 3 bars shown herein reinforcement of equal or greater strength than the bars being replaced; maintain the same cover reinforcement of equal or greater strength than
requirements with equivalent or smaller spacing.
12. VARIABLE HEIGHT CONCRETE BARRIERS: See Sheet 2 for details.
13. CONCRETE BARRIER AND TRAFFIC RAILING TRANSITIONS BETWEEN DIFFERING SECTIONS:

Transition the OVB section using a method similar to the OVB LLinear Bottom Transition sion
ELEVATION VIEW - opAQUE VISUAL bARRIER

OPAQUE VISUAL BARRIER
FOR MEDIAN F-SHAPE
CONCRETE BARRIER OR TRAFFIC RAILING

LAST
REVISION
11/

DESCRIPTION:
FDOTT
FY 2023-24

ELEVATION VIEW 'A' - OVB END SEGMENT AT CONCRETE bARRIER HEIGHT TRANSITION FROM 38" HEIGHT TO 56" HEIGHT SECTION
(REVERSE DIRECTION SIMILAR BY OPPOSITE HAND)

ELEVATION VIEW 'B' - OVB SEGMENT FOR CONCRETE
BARRIER WITH 44" HEIGHT SECTION
(OVB LINEAR BOTTOM TRANSITION SHOWN,
REVERSE DIRECTION SIMILAR BY OPPOSITE HAND)

| $\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 18 \end{gathered}$ | \|c|cher | $\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$ | OPAQUE VIIS UAL BARRIER | $\begin{gathered} \text { INDEX } \\ 521-010 \end{gathered}$ | SHEET 2 of 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |

elevation of barrier/noise wall reinforcing steel at open joint (Bars 551 in Barrier not shown for clarity) (Footing or Junction Slab Details not shown)

ELEVATION OF BARRIER/NOISE WALL END TAPER (ADJACENT TO CONCRETE BARRIER SHOWN, GUARDRAIL ATTACHMENT SIMILAR SEE DETAIL "A", SHEET 5) (Bars 551 in Railing not shown for clarity) (Footing or Junction Slab Details not shown)
NOTES
TES:
Field Cut Bars $5 R$ \& $5 S 1$ to maintain clearance
** Terminate $3 / 4 / 4$ V-groove at construction joint \& cast top of
railing with End Taper
*** Bar spacing shown for Bars 5 V only applies when Single-Slope Concrete Barrier continues. For transition to guardrail see Sheet 5 . S/ab) or Index 521-513 through 521-515 (T, L or Trench Footings)

REINFORCING STEEL BENDING DIAGRAMS

ESTIMATED TRAFFIC

RAILING/NOISE WALL QUANTITIES
(The above quantities are based on the Concrete Barrier/ Noise wall typical section, (excluding junction slab or footing)

PLAN - RAILING END TRANSITION
(Showing Bars 5R, and Bars 5S1)
(Bars 5V not shown for Clarity)

PLAN - RAILING END TRANSITION
(Showing Bars 5V and Bars 5S1)
(Bars 5R not shown for Clarity)
DETAIL " A " \qquad
dETAIL "A" NOTES:

1. Begin placing Railing Bars 5 V at the railing end and proceed toward the guardrail (thrie beam) terminal Begin placing Ralling Bars 5 V at the ralling end and proceed toward the guardrail (thrie beam) terminal
connector to ensure placement of guardrail bolt holes. Pair Bars $5 R$ with Bars 5 V as shown. Clearance of Bars $5 R \& 5 \mathrm{~V}$ to guardrail bolt holes shall be checked to prevent cutting of bars if bolt holes are to be drilled. Shift bars locally where conflicts occur.
For Guardrail connection details see Index $536-001$
2. Omit Railing End Transition if a Single-Slope Concrete Barrier/ Barrier continues beyond the End Taper. See the

Plan Sheets.
Field cut Bars $5 R 2$ to maintain cover. Field cut Bars 5 V and lap as necessary to maintain cover; field cut $\&$ bend Bars 5R1 front leg (more plumb) to maintain cover and tie to S1 Bars. (See Sheet 1 Notes 1 and 2)

CROSS REFERENCE:
For location of Detail "A" see Sheet 1. For location of Section C-C see Sheet 1 . For View B-B see Sheet 3.

$$
\begin{aligned}
& \begin{array}{l}
\text { NOTES: } \\
\text { 1. Field Cut Bars } 5 R \& 551 \text { in Noise Wall End Taper as required to maintain minimum cover }
\end{array} \\
& \text { 2. See Index 521-513, 521-514 and 521-515 for footing reinforcement. } \\
& \text { 3. } 3 / /^{\prime \prime} \text { Open Joint may be omitted when } 8^{\prime}-0^{\prime \prime} \text { Railing/Noise Wall End Taper is adjacent to a } \\
& \text { reinforcement details and spacing. Bars } 552 \text { are not required when } 34^{\prime \prime} \text { Open Joint is omitte }
\end{aligned}
$$

LAST
REVISION
I1/

11/01/18

$$
\begin{array}{|cc|}
\hline \text { FDOT } & \text { FY 2023-24 } \\
\text { STANDARD PLANS }
\end{array}
$$

Index	sheet
521-511	2 of 3

EXPANSION JOINT DETAIL**

(Junction Slab expansion joints are required at
//4 open joints in Concrete Barrier/Noise Wall)
iunction slab adjacent to skewed approach slab and with barrier wall inlet

NOTES

1. Work this Index with Index 521-510 - Concrete Barrier/Noise Wall (8'-0"). Concrete will be in accordance with Specification Section 346. A. Use Class II concrete for slightly aggressive environments.
B. Class IV concrete for moderately or extremely aggressive environments.
2. Construct $3 / /^{\prime \prime}$ Expansion Joints and face of coping plumb, and either perpendicular
3. or radial to Gutter Line. Provide at 90'-0" maximum intervals as shown.

Dowel Load Transfer Devices will be hot-dip galvanized ASTM A36 smooth
round bars or GFRP smooth round bars with a minimum shear strength of 22 ksi round bars or GFRP smooth round bars with a minimum shear strength of 22 ksi
in accordance with ASTM D7617. Install Dowel Load Transfer Devices in accordance with Specification Section 350 .
Shear Keys in Junction Slab are required when GFRP bars are used for Dowel Transfer Devices and are optional with steel dowel bars. Tongue Slope on Shear
Key must be constant and between 5° to 45° from horizontal
intervals as shown. Space V-Grooves equally between $3 / 4 / 4$ Expansion Joints and/or Begin or End Junction Slab. V-Groove locations are to coincide with V-Groove locations in the Barrier/Noise Wall.
7. Provide Organic Felt bond breaker on top and Expanded Polystyrene ($1 / 2$, thick) on
8. Shoulder or Roadway its entire length on the traffic side of the Barrier/Noise Wall. See Section B-B for details.
9. Actual location \& width vary depending on type of Retaining Wall used. Fiela cut Bars 5 A and
skewed Approach Slab.

1. Spacing shown is along the Gutter Line.
See Index $521-510$ for Bars 5 V and $2 \sim$ Bars $5 \mathrm{S1}$. See Plans for Junction See Index $521-510$
Slab width (TYPE).

CROSS REFERENCE:
For Section $B-B$ and Detail " A ", see Sheet

SECTION THRU JUNCTION SLAB, bARRIER WALL INLET AND RETAINING WALL
(TYPE 1 Junction Slab Shown, TYPE 2 Similar)

REINFORCING STEEL BENDING DIAGRAMS (8'-0" Concrete Barrier/Noise Wall) (TYPE 1 and 2)

BILL OF REINFORCING STEEL			
MARK	SIZE	LENGGH	
		TYPE 1	TYPE 2
A	5	$7^{\prime}-10^{\prime \prime}$	$8^{\prime}-10^{\prime \prime}$
B1	5	AS REQD.	AS REQD.
B2	5	AS REQD.	AS REQD.
B3	5	$10^{\prime}-0^{\prime \prime}$	$N^{\prime \prime} A$
F	5	$4^{\prime}-8^{\prime \prime}$	$5^{\prime}-8^{\prime \prime}$
L	5	$4^{\prime}-5^{\prime \prime}$	$4^{\prime}-5^{\prime \prime}$
S3	4	$3^{\prime}-11^{\prime \prime}$	$4^{\prime}-0^{\prime \prime}$
U1	5	$4^{\prime}-9^{\prime \prime}$	$4^{\prime}-9^{\prime \prime}$
U2	5	$12^{\prime}-10^{\prime \prime}$	$12^{\prime}-10^{\prime \prime}$
DOWEL	$1^{\prime \prime} \varnothing$ Smooth Bar	$2^{\prime}-0^{\prime \prime}$	$2^{\prime \prime}-0^{\prime \prime}$

REINFORCING STEEL NOTES: 1. All bar dimensions in the bending diagrams are out to out

2. All reinforcing steel at the open joints will have a $2^{\prime \prime}$ minimum cover.
3. Lap splices for Bars $5 B$ will be a minimum of $2^{\prime}-2^{\prime \prime}$.
4. The Contractor may use Deformed WWR when

The Contractor may use Deformed WWR when approved
by the Engineer. Deformed WWR must meet
requirements of Specification Section 931 .
\qquad
BARS $5 B \& 5 F$

BAR $5 B 3$ (TYPE 1 only)

BAR $5 U 1$

BAR 453

BAR $5 U 2$

DETAIL "A"

(Showing Locations of $1 / 2$ " V-Grooves and $3 / 4$ Preformed Expansion Joint Filler)

PARTIAL END VIEW OF RAILING END TRANSITION FOR GUARDRAIL ATTACHMENT (Showing Bars 5V and Bars 5B1)
nOTE: See Index 521-510, Detail "A" for details.

ESTIMATED JUNCTION SLAB QUANTITIES			
ITEM		UNIT	QUANTITY
			TYPE 2
Concrete (Junction Slab)	CY/FT	0.268	0.305
Reinforcing Steel (Typical)	LB/FT	31.72	34.85
Additional Reinf. @ Expansion Joint	LB	21.36	21.36

NOTES:

1. Match Cross Slope of Travel Lane or Shoulder
2. Vary Junction Slab slope based on roadway cross slope to maintain a minimum $6^{\prime \prime}$ asphalt depth at the edge of the slab as shown.
3. Actual width varies depending on type of Retain
4. See Index $521-510$ for Bars 5 V and Bars 5 SI

For Rigid Pavement (Concrete), Junction Slab may be thickened to
match finished grade. Vary the Junction Slab slope to maintain a match finished grade. Vary the Junction Slab slope to
6. See Roadway Plans for asphalt shoulder, roadway pavement and overbuild. Slip forming is used, submit shop drawings for approval
showing Expansion Joint support details and 2l/a side adjusted Typical Section dimensions.
8. Bars 5 L and 5 C are grouped together and placed with every other Bar 5 A .

Spacing Bars 5B2 $3^{\prime \prime}-\leadsto \begin{aligned} & 4 \text { sp. @ } 1^{1}-0^{\prime \prime}=4^{\prime}-0^{\prime \prime}(\text { TYPE 1) } \\ & 5 \text { sp. @ } 1^{\prime}-0^{\prime \prime}=5^{\prime}-0^{\prime \prime} \text { (TYPE 2) }\end{aligned}$ \qquad
SECTION B-B
typical section thru junction slab and retaining wall
(8'-O" Concrete Barrier/Noise Wall)
CROSS REFERENCE:
For location of Section B-B, see Sheet 1 .

LAST REVISION 11/01/22	\|		CONCRETE BARRIER/NOISE WALL JUNCTION SLAB	INDEX $521-512$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 2 \end{aligned}$

REINFORCING STEEL BENDING DIAGRAMS

REINFORCING STEEL		
BILL OF REINFORCING STEEL		
MARK	SIZE	LENGTH
A	5	$6^{\prime}-8^{\prime \prime}$
B	5	AS REQD.
U	5	$11^{\prime}-0^{\prime \prime}$
DOWEL	$1^{\prime \prime} \varnothing$ Smooth Bar	$2^{\prime}-0^{\prime \prime}$

BARS $5 A \& 5 B$

1" \varnothing DOWEL

BAR $5 U$
Reinforcing steel notes:

1. All bar dimensions in the bending diagrams are out to out.
2. All reinforcing steel at the open joints will have a to $2^{\prime \prime}$ minimum cover.
3. Lap splices for Bars 58 will be minim of $2^{\prime \prime}$
4. Lap splices for Bars $5 B$ will be a minimum of $2^{\prime}-2^{\prime \prime}$.
5. The Contractor may use Welded Wire Reinforcement (WWR) when approved by the Engineer.

PARTIAL END VIEW OF RAILING
TRANSITION FOR GUARDRAILITACHMENT
(Showing Bars 5V2, and Bars 5B inside
of Stirrup Bars 5V2)
NOTE: See Index 521-510, Detail "A" for details.

SECTION B-B
TYPICAL SECTION THRU SPREAD FOOTING
(Bars $5 R$ and $5 S 1$ in Concrete Barrier/Noise Wall not shown for clarity)
NOTES:

1. Match Cross Slope of Travel Lane or Shoulder.
2. See Sheet 1, Notes $8 \& 9$.

DETAIL " A "
(Showing Locations of $1 / 2$ " V-Grooves
(Showing Locations of $1 / 2$ " V-Grooves
and $3 / 4$ Preformed Expansion Joint Filler)
estimated t-shaped spread footing quantities

ITEM	UNIT	QUANTITY
Concrete (Footing)	CY/FT	0.312
Reinforcing Steel (Typical)	LB/FT	25.90
Additional Reinf. @ Expansion Joint	LB	37.38

Note: The reinforcing steel quantity includes the difference between Index 521-510 or 521-511 and Bars 5V shown. quantities.
CROSS REFERENCE
FROSS REFERENCE:
For location of Section B-B, see Sheet 1

LAST REVISION 11/01/17	首気\| DESCRIPTION:

1. Construct the Spread Footing level transversely; do not construct the spread footing perpendicular to the roadway surface.
2. Construct the Sprea
3. Concrete will be in accordance with Specification Section 346 .
A. Class II concrete for slightly aggressive environments.
A. Class II concrete for slightly aggressive environments.
B. Class IV concrete for moderately or extremely aggressive environments.
4. Dowel Load Transfer Devices will be ASTM A 36 smooth round bar and hot-dip galvanized in
accordance with Specification Section 962. Install Dowel Load Transfer Devices in accordance with Specification
5. Construct $3 /^{\prime \prime}$ Expansion Joints plumb and perpendicular or radial to Gutter Line. Provide at $90^{\prime}-0^{\prime \prime}$ maximum
intervals as shown.
Construct $1 / /^{\prime \prime} V$-Grooves plumb and provide at $30^{\prime}-0^{\prime \prime}$ maximum intervals as shown. Space V-Grooves equally
etween $3 / 4$ Expansion Joints and/or Begin or End Spread Footing. V-Groove locations are to coinc
V-Groove locations in the Concrete Barrier/Noise Wall.
6. Provide and install Preformed Expansion Joint Filler in accordance with Specification
7. Shoulder or Roadway Pavement and Fill is required on the traffic side of the spread
footing for a distance of $4^{\prime}-0^{\prime \prime}$ and the full length of the spread footing ($3^{\prime}-0^{\prime \prime}$ minimum depth) on the backside of the spread footing for Option A. Fill is required for a distance of $4^{\prime}-0^{\prime \prime}$ on the backside of the spread footing and the full length of the spread footing ($3^{\prime}-0^{\prime \prime}$ minimum depth) on the traffic side of the spread
footing for Option B. See Typical Sections on Sheets 2 and 3 for details.
8. Spacing shown is along the Gutter Line.
following:
ROSS REFERENCE:
a. Index 521-510 - Concrete Barrier/Noise Wall $\left(8^{\prime}-0^{\prime \prime}\right)$.).
b. Index $521-511$ - Concrete Barrier/Noise Wall ($\left.14^{\prime}-0^{\prime \prime}\right)$.

TYPICAL SECTION THRU SPREAD FOOTING - OPTION A

reinforcing steel bending diagrams - precast and C-I-P copings

REINFORCING ST			
BILL OF REINFORCING STEEL			
MARK	SIZE	LENGTH (L) \#\# S or M	LENGTH (L) \#\# E
A	4	AS REQD.	AS REQD.
B	4	AS REQD.	AS REQD.
D	4	$2^{\prime}-0^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$
$U 1$	4	Panel width $+4^{\prime \prime}$	Panel width $+4^{\prime \prime}$
$U 2$	4	Dim. $B-4^{\prime \prime}$	Dim. $B-4^{\prime \prime}$
$U 3$	4	Dim. $C-4^{\prime \prime}$	Dim. $C-6^{\prime \prime}$

BARS $4 A \& 4 B$
all

1. All bar dimensions in the bending diagrams are out to out
2. All reinforcing steel at the open joints will have a $2^{\prime \prime}$ minimum cover.
3. Bars 4 may me continuous or spliced at the construction joints. Lap splices for Bars 4 A will
4. The Contractor may use Welded Wire Reinforcement (WWR) when approved by the Engineer

WWR must consist of Deformed wire meeting the requirements of Specification Section 931.
\#\# S = Slightly Aggressive $M=$ Moderately Aggressive
$E=$ Extremely Agressive

DOWEL BAR 4D

BAR $4 U 1$

BAR $4 U 2$

CIP COPING USED WITH Drawings for Details)

Note: When precast coping units do not fit the entire length of the retaining wall, use this similar C-I-P coping for short portions between precast coping units. This C-I-P coping may also be used for vertical copings.

SECTION C-C

C-I-P COPING ENCLOSURE DETAIL

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$		$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	MSE WALL COPING (PRECAS T OR C-IT-P)	$\begin{aligned} & \text { INDEX } \\ & 521-600 \end{aligned}$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 2 \end{aligned}$

1" Ø FRP Dowel Load Transfer Devices STee Typical Sections for dilal

 Devices (see Typicalfor details)

Bars 5 B2

Expansion Joint \rightarrow
EXPANSION JOINT DETAIL
(Junction Slab expansion joints are to coincide
with $3 / 4 / 1$ open joints in Concrete Barrier) with 3/4" open joints in Concrete Barrier) * Stay-In-Place Plastic Preformed Bond Breakers
are permitted to form joints. \qquad 30'-0" Max. (See Note 7)

$2^{\prime \prime}$ Cover
Sides (Typ.

Bars 6C @
6" sp. (Typ.
1" \varnothing Dowel Load
Transfer Devices 3/4" Expansion Joint \qquad

3/4 Open Joint

PARTIAL PLAN VIEW FOR 36" SINGLE-SLOPE CONCRETE BARRIER
Begin or End Retaining Wall
and Precast or C-I-P Coping
CROSS REFERENCE: For Detail "A", see Sheet 2.
(Skewed Approach Slab Shown, Perpendicular Approach Slab Similar)
fiction slab notes: For Detail "B", see Sheet 3. (Precast Coping Shown, C-I-P Coping Similar) (Concrete Barrier not Shown for Clarity)

$$
\begin{aligned}
& \text { Construct the expansion joints, V-Grooves and face of coping plumb } \\
& \text { Provide Class II concrete. }
\end{aligned}
$$

Dowel Load Transfer Devices will be GFRP smooth round bars with a minimum shear strength of 22 ks in accordance with ASTM D7617. Install Dowel Load Transfer Devices in accordance with Specification Section 350.
the Gutter Line. Provide at $90^{\prime}-0^{\prime \prime}$ maximum intervals as shown. Provide $3^{\prime \prime} \times 3^{\prime \prime}$ Mortar plugs in open joints at the base of Concrete Barriers to contain runoff
Shear Keys in Junction Slab are required. Tonque Slope on Shear Key must be constant and between 5° to 45° from horizontal.
Provide and install Preformed Expansion Joint Filler in accordance with Specification Section 932. Construct $1 /$ " $^{\prime \prime} V$-Grooves in junction slabs and $C-I-P$ copings at $30^{\prime}-0^{\prime \prime}$ maximum intervals as shown. Space V-Grooves equally between $3 / 4$ " Expansion Joints and/or Begin or End Junction Slab. V-Groove locations are to coincide with V-Groove locations in the Concrete Barrier
traffic side of the Concrete Barrier. See Typical Sections on Sheets 2 or its entire length on the 9. Spacing shown is along the Gutter Line.

For Precast Coping only, provide Dowel Bars 4D embedded $1^{\prime}-0^{\prime \prime}$ and extended $9^{\prime \prime}$ above the top of MSE wall panels. Field cut as necessary to maintain $2^{\prime \prime}$ minimum cover to the top of the buildup concrete. The following Indexes contain details of the intersection of the retaining wall at approach slabs: Index 400-090 - Approach Slabs (Flexible Pavement Approaches)
Index 400-091 - Approach Slabs (Rigid Pavement Approaches)
2. Junction slabs with rigid pavement: the two inch increase in concrete barrier height is not required There are two options to accommodate the $2^{\prime \prime}$ height transitions: A. Raise the top of coping elevation $2^{\prime \prime}$ and mount either a $36^{\prime \prime}$ or $42^{\prime \prime}$ standard barrier on top
B. Transition the height of the concrete barrier by gradually extending the toe and back of the B. Transition the height of the concrete barrier by gran even with the gutterline elevation.
barrier $2^{\prime \prime}$ while keeping the top of coping elevation ent The barrier construction joint must be at the interface of the coping and the barrier base. Embed the V bars a minimum of $9^{\prime \prime}$ below the construction joint.
For embedded conduit and junction boxes, see Index 630-010

Retaining Wall (MSE Shown,
PARTIAL ELEVATION VIEW
(Precast Coping and Junction Slab Reinforcing not Shown for Clarity) * $\begin{gathered}\text { C-I-P End Section must } \\ \text { be } \geq 12^{\prime}-0^{\prime \prime}\end{gathered}$ (Precast Coping Shown, C-I-P Coping Similar)

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \\ \hline \end{gathered}$		DESCRIPTION:		$\begin{gathered} \text { FY 2023-24 } \\ \text { STANDARD PLANS } \end{gathered}$	CONCRETE BARRIER/JUNCTION SLAB - WALL COPING (FRP)	INDEX 521-611	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 4 \end{aligned}$

TYPICAL SECTION THRU C-I-P CONCRETE BARRIER WITH C-I-P JUNCTION SLAB AND C-I-P COPING (PRECAST COPING SIMILAR WITH C-I-P BUILDUP)

Notes:

1. Match Cross Slope of Travel Lane or Shoulder
2. Vary the Junction Slab slope based on the roadway
$6^{\prime \prime}$ asphalt depth at the inside edge of the slab.

Vary ge lunctiont (Concrete), Junction Slab may be thickened to match finish grade.
4. Minimum length of Junction Slab between expansion joints is $30^{\prime}-0^{\prime \prime}$ for $36^{\prime \prime}$ Single-Slope
or $60^{\prime}-0^{\prime \prime}$ for $42^{\prime \prime}$ Single-Slope. 5. Contractor to maintain stability of precast coping prior to junction slab completion. In the
and handling. Maintain $1.5^{\prime \prime}$ minimum concrete cover.
$2^{\prime \prime}$ cover allows for $12^{\prime \prime}$ variance due to slip forming.

ESTIMATED QUANTITIES FOR C-I-P			
ITEM	UNIT	QUANTITY $\left(36^{\prime \prime}\right)$	QUANTITY $\left(42^{\prime \prime}\right)$
Concrete	CY/LF	0.376	0.420
GFRP (excludes Bars 6C \& 6F)	LF/LF	69.42	72.41
Additional Reinf. @ Expansion Joint (Dowels)	LF	8.00	8.00

(The above concrete quantities are based on a max. superelevation of 6.25%)

FRP BENDING DIAGRAMS					
FRP REINFORCING					
MARK	SIZE	LENGTH			
		$\begin{array}{\|l\|} \hline \text { PRECAST COPING } \\ \text { FOR SINGLE-SLOPE } \\ \hline \end{array}$		$\begin{aligned} & \text { C-I-P COPING } \\ & \text { FOR SINGLE-SLOPE } \\ & \hline \end{aligned}$	
		(36")	(42")	(36")	(42")
A	6	$5^{\prime}-3^{\prime \prime}$	5'-5"	$7^{\prime \prime}-10^{\prime \prime}$	$8^{\prime}-0^{\prime \prime}$
B1	5	11'-6"	$9{ }^{\prime}-6{ }^{\prime \prime}$	AS REQD.	AS REQD.
B2	5	AS REQD.	AS REQD.	AS REQD.	AS REQD.
c	6	$4^{\prime}-10^{\prime \prime}$	$4^{\prime}-10^{\prime \prime}$	N/A	N/A
F	6	$4^{\prime}-10^{\prime \prime}$	$4^{\prime}-10^{\prime \prime}$	$4^{\prime}-10^{\prime \prime}$	$4^{\prime}-10^{\prime \prime}$
L	5	$4^{\prime}-5^{\prime \prime}$	$4^{\prime}-5{ }^{\prime \prime}$	$4^{\prime}-5{ }^{\prime \prime}$	4'-5"
P	4	2'-7"	$2^{\prime \prime} 7^{\prime \prime}$	$2^{\prime \prime} 7^{\prime \prime}$	$2^{\prime \prime} 7^{\prime \prime}$
5	5	11'-6"	N/A	AS REQD.	N/A
5	6	N/A	$9^{\prime}-6{ }^{\prime \prime}$	N/A	AS REQD.
T1	5	$6^{\prime}-1^{\prime \prime}$	N/A	$6^{\prime}-1^{\prime \prime}$	N/A
T1	6	N/A	$9^{\prime}-6{ }^{\prime \prime}$	N/A	$9^{\prime}-6^{\prime \prime}$
T2	5	$6^{\prime}-1^{\prime \prime}$	N/A	$6^{\prime}-1^{\prime \prime}$	N/A
T2	6	N/A	$6^{\prime}-1{ }^{\prime \prime}$	N/A	$6^{\prime}-1^{\prime \prime}$
u	7	$4^{\prime}-4^{\prime \prime}$	$4^{\prime}-6{ }^{\prime \prime}$	$4^{\prime}-4{ }^{\prime \prime}$	$4^{\prime}-6{ }^{\prime \prime}$
v1	5	$4^{\prime}-6{ }^{\prime \prime}$	$5^{\prime}-2^{\prime \prime}$	$4^{\prime}-6{ }^{\prime \prime}$	$5^{\prime}-2^{\prime \prime}$
v2	5	$4^{\prime \prime}-3{ }^{\prime \prime}$	$4^{\prime}-8{ }^{\prime \prime}$	$4^{\prime \prime}-3{ }^{\prime \prime}$	$4^{\prime}-8{ }^{\prime \prime}$
v3	5	$4^{\prime}-2^{\prime \prime}$	$4^{\prime}-2^{\prime \prime}$	$4^{\prime \prime}-2{ }^{\prime \prime}$	$4^{\prime}-2^{\prime \prime}$
v4	5	$3^{\prime}-11^{\prime \prime}$	$3^{\prime}-11^{\prime \prime}$	$3^{\prime \prime} 11^{\prime \prime}$	$3^{\prime}-11^{\prime \prime}$
$\begin{gathered} \hline \text { 1" } \varnothing \\ \text { Dowel } \end{gathered}$	Smooth Bar	$2^{\prime}-0^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$

		Field Cut, Lap (2'-2" Min.) Approach S/ab	
Transition Bars 5X Field Cut \& Lap Splice (2'-2" Min.) -	Raised Sidewalk		
	$3^{\prime}-0^{\prime \prime}$ Taper	B	
ELEVATION			
(Guardrail Not Shown For Clarity)			

ESTIMATED QUANTITIES FOR C-I-P COPING			
ITEM	UNIT	QUANTITY	
Concrete	CY/LF	0.326	
Reinforcing Steel (Typical) excluding Bars 5T, 5x and 5S (Typ.)	LB/LF	35.38	
Additional Reinf. @ Expansion Joints (Steel Dowels)	LB	32.04	

The above concrete quantities are based on a Type D
\square
LAST
REVISION
R1/

11/01/18
NOTES:

1. Match roadway curb Shape (Type) and height. See Roadway Plans and Index 520-001. 6-6" dimension is based on a 42" Vertical Shape
with a Type D curb adjacent to a $6^{\prime}-0^{\prime \prime}$ wide sidewalk. Adjust this dimension as required for other curb types or transitions at Begin or End Retaining Wall. 2. If slip forming is used, submit shop drawings for approval showing $3^{\prime \prime}$ side cover with the Typical Section dimensions ad justed. Begin placing Railing Bars 5T and 5X at the railing end and proceed toward Retaining Wall to avoid conflict with guardrail bolt holes. If required, $5 \times$ as required to bar spacing for Bars $5 T$ and $5 \times$ shall be made immediately adjacent to Begin or End Retaining Wall. Cut, shift and rotate Bars $5 T$ and 42" VERTICAL SHAPE

STANDARD PLANS
521-620 3 of 4

CONVENT			
BILL OF REINFORCING STEEL			
MARK	SIZE	LENGTH	
		PRECAST COPING/ RAILING	$\begin{array}{\|c\|} \hline \text { C-I-P } \\ \text { COPING } \end{array}$
A	5	5'-1 1"	$9^{\prime}-1^{\prime \prime}$
B1	5	$9^{\prime}-6^{\prime \prime} / 11^{\prime}-6{ }^{\prime \prime}$	N/A
B2	5	AS REQD.	AS REQD.
c	4	5'-5"	N/A
F	5	$5^{\prime}-0^{\prime \prime}$	$5^{\prime \prime}-0^{\prime \prime}$
L	5	$4^{\prime}-5^{\prime \prime}$	$4^{\prime \prime}$-5"
1" \varnothing Dowel	Smooth Bar	$2^{\prime}-0^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$
		$32^{\prime \prime}$	42"
T	5	$7{ }^{\prime}-4^{\prime \prime}$	$9^{\prime}-2^{\prime \prime}$
x	5	$5^{\prime}-1{ }^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$

BAR 5L

BARS 5B1, 5B2, 4C, 5F \& 5S

$1^{\prime \prime} \varnothing$ DOWEL

STIRRUP BAR 5X

END TRANSITION STIRRUP BARS 5X

$$
\begin{aligned}
& \text { FOR 42" } \\
& \text { To Be Field Cut (7 of each required }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - Be Field Cut (} 7 \text { of each requir } \\
& \text { per Railing End Transition) }
\end{aligned}
$$

REINFORCING STEEL NOTES

$$
\begin{aligned}
& \text { FOR 42" } \\
& \text { To Be Field Cut (7 of each required } \\
& \text { per Railing End Transition) }
\end{aligned}
$$

All bar dimensions in the bending diagrams are out to out.
All reinforcing steel at expansion joints will have a $2^{\prime \prime}$ min
4. Lap splices for Bars $5 B$ and 55 will be a minimum of $2^{\prime \prime}-2^{\prime \prime}$.'
.
.
5. Dimension shown is for lap splice option. For mechanical coupler option,
this dimension is $1^{1}-8^{\prime \prime}$.
6. Dimension shown is for lap splice option. For mechanical coupler option
this dimension
bars (Bars 5 C)
The Contractor may use deformed WWR when approved by the Engineer.
WWR must meet the requirements of Specification Section 931 .

$\underset{\text { LAST }}{\text { REVISION }}$

1/01/18
FDOT\} $\begin{gathered}\text { FY 2023-24 } \\ \text { STANDARD PLANS }\end{gathered}$
$\operatorname{CONCRE} T E \mathbb{B A R R I E R} / \mathbb{R} I S E D S I D E W A L \mathbb{K}$
VERTICAL SHAPE
END TRANSITION ELEVATION FOR 32" VERTICAL SHAPE (Guardrail Not Shown For Clarity)

DETAIL "B" (Showing Locations of $1 / 2 / 2$-Grooves and $3 / 4$ " Preformed Expansion Joint Filler)
\& Thrie-Beam Terminal Connector Bolts
(Typ.)
Bars $5 \times$
Bars 5 T
Raised
idewalk

See Sheet 3 Note 3.

ESTIMATED CONCRETE BARRIERQUANTITIES			
		QUANTITY	
ITEM	UNIT	32"	42"
Concrete	CY/LF	0.095	0.145
Reinforcing Steel	LB/LF	23.38	28.3

1/18
521-620 4 of 4

NOTES:

1. Spacing shown is along the Gutter Line. Spacing shown is for C-I-P spacing and size C-I-P Raised Sidewalks or Sidewalks, match bar spacing and size shown in typical Sections (i.e., 11
$15 \sim$ Bars 452 @ $6^{\prime \prime}$ spacing for Raised Sidewalks).
2. Dimensions shown are for junction slab. Increase width as required

C-I-P Raised Sidewalk and Sidewalks.
3. Actual location \& width vary depending on type of
See Index $521-610$ for Bars 4 V 1 or 5 V 1 and 5B1.
5. Organic Felt bond breaker (Top) \& Expanded Polystyrene shown hatched
6. Locate \& Barrier Wall Inlet a minimum of $10^{\prime}-0^{\prime \prime}$ away from \& Expansion Joints in Junctions Slab, Raised Sidewalk or Sidewalk Concrete Parapet.
Locate open joints in Barrier Wall and Coping a minimum of $5^{\prime}-0^{\prime \prime}$ from
8. Work this Index with the following as appropriate

Index $521-610$
Index $521-620$
Index 521-630
SECTION THRU JUNCTION SLAB BARRIER WALI INLET AND RETAINING WALL $\overline{\text { Note }} \overline{3}$ (Junction Slab Shown, Raised Sidewalk Similar)

| $\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$ | \|c|c|c | $\begin{array}{cc} \text { FDOT } & \text { FY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$ | DRAINAGE INLET OPENINGS $\mathbb{I N}$ JUNCTION SLAB |
| :---: | :---: | :---: | :---: |

light pole pedestal notes:

1. ANCHOR BOLTS:

Anchor Bolt design is based on the standard Roadway Aluminum Light Pole configurations shown above ground or MLW.
2. Anchor Bolt Diameter: See Table
2. MATERIALS:
Anchor Bolts:

Anchor Bolts: ASTM F1554 Grade 55.
Washers: ASTM F436 Type 1
Anchor Plate: ASTM A709 (Grade 36) or ASTM A36.
3. The Contractor is responsible for ensuring the anchor bolt design is compatible with the light pole base plate. Modifications to the anchor bolt design shown must be signed and sealed by the Contractor's Specialty Engineer and submitted to the Engineer for approval prior to construction
4. Install Anchor Bolts plumb.
5. For conduit, EJB and expansion/deflection fitting details, see Utility Conduit
Detail Drawings and Index $630-010$.
6. The cost of anchor bolts, nuts, washers and anchor plates will be included in the Bid Price for Light Poles. Include the cost of all labor, concrete and reinforcing steel required for construction of the pedestals, and miscellaneous hardware required for the completion of the electrical behind.
7. Field Cut Bars $4 M 2$ as required to maintain clearance.
8. Slip Forming Method of construction requires the Engineer's approval within the limits shown.
9. Reinforcing shown for light pole pedestals is in addition to typical reinforcing for Junction
10. Work this Index with the following as appropriate

Index $521-512$
Index $521-610$
Idex 521620
Index $521-620$
Index $521-630$
11. Pedestal may be precast in one section with Coping. Minimum Precast Coping section length is

10 ft . or 12 ft for combination Precast Concrete Barrier and Coping section
13. Unless otherwise noted, Concrete Barrier (36" Single-Slope) is shown in all Views and Sections. The Pedestal details for other Concrete Barriers or pedestrian/bicycle railings are similar.

table 1 DESIGn limitation FOR ANCHOR BOLTS (1" Dia.)				
Wind Speed (MPH)	Arm Length (FT)	base of pole height*		
		40 ft .	45 ft .	50 ft .
120	ALL	75	75	75
140	ALL	75	75	75
160	$8 \& 10$	75	75	45**
160	$12 \& 15$	75	75	25

* Above Natural Ground
** Use $1 \frac{11 / 2 "}{} \varnothing$ Anchor bolts for wall heights greater than the height shown and less than 75

PLAN VIEW

(Junction Slab reinforcing not shown for clarity) (Junction Slab Shown, Raised Sidewalk or Sidewalk Similar

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$		DESCRIPTION:	FDOTY	FY 2023-24 STANDARD PLANS	LIGHTT POLE PEDESTAL - WALL COPING

(Junction Slab Shown, Raised Sidewalk or Sidewalk Similar) (36" Single-Slope Concrete Barrier shown, other railings similar)

REINFORCING STEEL BENDING DIAGRAMS - LIGHT POLE PEDESTAL

BILL OF REINFORCING STEEL			
MARK	SIZE	NO. REQD.	LENGTH
B3	5	7	$7^{\prime}-2^{\prime \prime}$
61	4	16	$5^{\prime}-8^{\prime \prime}$
62	4	4	$4^{\prime}-8^{\prime \prime}$
63	4	4	$4^{\prime}-2^{\prime \prime}$
64	4	6	$8^{\prime}-10^{\prime \prime}$
65	4	4	$7^{\prime}-4^{\prime \prime}$
$H 1$	4	3	$9^{\prime}-8^{\prime \prime}$
$H 2$	4	2	$13^{\prime}-8^{\prime \prime}$
J	5	8	$6^{\prime}-0^{\prime \prime}$
$M 1$	5	8	$5^{\prime}-10^{\prime \prime}$
$M 2$	4	10	$3^{\prime}-8^{\prime \prime}$

BARS 5B3 \& 5J

BAR $4 \mathrm{H}_{2}$

		$\cdots{ }_{1}^{1}$
$2^{\prime}-6^{\prime \prime}$	461	
$2^{\prime}-0^{\prime \prime}$	462	\%
$1^{\prime}-9{ }^{\prime \prime}$	463	
$3^{\prime}-8^{\prime \prime}$	464	-id
$2^{\prime}-11^{\prime \prime}$	465	

BARS 4G1, 4G2, 4G3

$$
\begin{gathered}
54 G 1,4 G 2,4 \\
4 G 4 \& 4 G 5
\end{gathered}
$$

Reinforcing steel notes:
BAR $5 M 1 \& 4 M 2$

1. All bar dimensions in the bending diagrams are out to out.
2. Lap splices for Bars $4 G 1,4 G 2,463,464 \& 465$ will be a minimum of $1^{\prime}-44^{\prime \prime}$. The Contractor may use Welded Wire Reinforcement (WWR) when approved by the Engineer. WWR must consist of deformed wire meeting
the requirements of Specification Section 931.

ESTIMATED QUANTITIES		
ITEM	UNIT	QUANTITY
Concrete (Pedestal)	CY	0.926
Concrete (Thickened Junction Slab)	CY	1.222
Reinforcing Steel	LB	334.09

The quantities above are for one C-I-P Light Pole Pedestal. The concrete quantity for the thickened junction slab is based on a $5^{\prime}-0$ length, $9^{\prime \prime}$ increase in thickness and a $5^{\prime \prime}$ wide retaining wall panel.
Ad just thickened concrete quantity as required.

1. Field Cut Bars $4 M 2$ as required to maintain minimum cover. will not exceed anchor bolt diameter.

GENERAL NOTES:

 1. Construct sidewalks in accordance with Specification 522. Use $6^{\prime \prime}$ concrete for Sidewalks andCurb Ramps Located within Curb Returns (See Plan View). Install all other concrete with thickness as shown, unless otherwise detailed in the Plans.

SAWED JOINTS
LONGITUDINAL SECTION

LEGEND:

A- $1 / 2$ "Expansion Joints (Preformed Joint Filler) between the sidewalk and; driveways, sidewalk-inter sections, and all other fixed objects
(e.g. drainage inlets and utility poles).

B- $1 / 8^{\prime \prime}$ Dummy Joints, Tooled
C- $1 / 8^{\prime \prime}$ Formed Open Joints
D- $3 / 16^{\prime \prime}$ Saw Cut Joints, $1^{11 / 2 "}$ Deep (within 96 hours) Max. 5' Centers

F- $1 / 2$ Expansion Joint When Run of Sidewalk Exceeds 120. Intermediate
Iocations when called for in the plans or at locations as directed by locations whe
the Engineer.
G- Cold Joint With Bond Breaker, Tooled

Varies Based on Railing Used
$=$ RAILING DETAIL $=$

SIDEWALK JOINTS
GENERAL NOTES AND CONCRETE SIDEWALK ON CURBED ROADWAYS
LAST
REVISION

REVISION
11/01/18

GENERAL NOTES:

1. Cross Slopes and Grades:
A. Sidewalk, ramp, and landing slopes (i.e. 0.02, 0.05, and 1:12) shown in this Index where the requirements cannot be met.
B. Landings must have cross-slopes less than or equal to 0.02 in any direction
C. Maintain a single longitudinal slope along each side of the curb ramp.

Ramp slopes are not required to exceed 15 feet in length.
D. Joints permitted at the location of Slope Breaks. Otherwise locate joints in accordance
with Index $522-001$. No joints are permitted within the ramp portion of the Curb Ramp.
2. Curb, Curb and Gutter and/or Sidewalk:
A. Refer to Index 522-001 for concrete thickness and sidewalk details.
B. Remove any existing curb, curb and gutter, or sidewalk to the nearest joint beyond the curb transition or to the extent that no remaining section is less than 5 feet long.
C. Width of Curb Ramp is $4^{\prime}-0^{\prime \prime}$ minimum. Match sidewalk or Shared Use Path width as shown in the Plans.
3. Curb Ramp Alpha-Identification:
A. Sidewalk curb ramp alpha-identifications (e.g. CR-A) are provided for reference
purposes in the Plans.
B. Alpha-identifications CR-I and CR-J are intentionally omitted
4. Detectable Warnings:
A. Install detectable warnings in accordance with Specification 527.
B. Place detectable warnings across the full width of the ramp or landing, to minimum depth of 2 feet measured perpendicular to the curb line and no greater than

If detectable warnings are shown in the Plans on slopes greater than 5\%, align the
truncated domes with the centerline of the ramp; otherwise, the truncated domes are not required to be aligned.

construction of sidewalk curb in cut sections

NOTE: For additional information on sidewalk curb construction, see SIDEWALK CURB OPTIONS details.

MONOLITHIC CAST CURB

SEPARATELY CAST CURB
\qquad

SIDEW ALK CURB RAMPS CR-C AND SIDEWALK CURB

$=$ LSee $C R-F$. $C R-G$ \& ${ }^{(S R-K}$ Respectively For Detectable Warning Details/Options)

NOTE: Remove Elevated Pavement By Spading And Rolling, Smooth Milling, or Grinding.
SECTION E-E
PAVEMENT RELIEF DETAILS $=$ \qquad $\bar{\Longrightarrow}$ DETECTABLE WARNING ON FLUSH SHOULDER SIDEWALKS $\overline{=}$

CURB RAMPS WITHOUT SIDEWALKS AND FLUSH SHOULDER SIDEWALKS

1. Where crosswalk markings are used, ramps must fall within the crosswalk limits.
A clear space of $48^{\prime \prime}$ minimum is reauired at the bottom of the ramp within a A clear space of 4 . marked crosswalk. If crosswalk markings are not present, a clear space of 48 .
minimum is required at the bottom of the ramp outside of active travel lanes.
2. Crosswalk widths and configurations vary; must conform to Index 711-001.
3. Flangeway Gap may be up to $3^{\prime \prime}$ for Freight-only Railways.

CURB RAMPS OUTSIDE RADIAL RETURN

LINEAR SIDEWALK RAMPS
\qquad
\qquad PLACEMENT OF SIDEWALK CURB RAMPS AT CURBED RETURNS (TYP.)

RAILROAD CROSSING AND CURB RAMPS AT CURBED RETURNS

LAST REVISION $11 / 01 / 20$	包 DESCRIPTION:	FDOT $\begin{gathered}\text { FY 2023-24 } \\ \text { STANDARD PLANS }\end{gathered}$	$\mathbb{D E T E C T A B L E ~ W A R N I N G S ~ A N D ~ S I D E W ~ A L K ~ C U R B ~ R A M P S ~}$	$\begin{gathered} \text { INDEX } \\ 522-002 \end{gathered}$	$7 \text { of } 7$

GENERAL NOTES

Work this Index with Specification 522

LEGEND:

2. Refer to Index 520-001 for drop curb details and Index 522-001 for joints between driveway, sidewalks, and curb.
3. Existing Curb and Gutter:
is levs existing curb and gutter to either the nearest joint beyond the flared point or to where no remaining section
. Grades and cross slopes shown are maximums.
4. Longitudinal Joints:

Construct $1 / 8^{\prime \prime}$ open joints placed at equal (20'max.) intervals for driveways over 20^{\prime} wide. Match joints in curb and gutter to match joints in driveways.
6. Transverse Joints:

Construct $1 / 8^{\prime \prime}$ open joints @ 10^{\prime} Centers and $1 / 2^{\prime \prime}$ expansion joints with preformed joint filler every 5th joint.
7. Construct driveways ($6^{\prime \prime}$ thick concrete) to a uniform width (W) to the R/W line or the extent shown in the Plans.
. Width of Sidewalk Thru Driveway is $4^{4}-0^{\prime \prime}$ minimum. Match sidewalk width when shown in Plans or when utility strip width is equal to or greater than the depth of the Driveway Apron
. Alpha-Numeric Identification:
Toncrete Flared Driveway Alpha-Numeric Identifications (e.g. G4) are provided for reference purposes in the Plans.

PLAN

CONCRETE FLARED DRIVEWAY NOMENCLATURE

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 18 \end{gathered}$		$\begin{array}{cc} \text { FDOT } & \text { FY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	CONCRETE FLARED DRIVEWAYS	$\begin{gathered} \text { INDEX } \\ 522-003 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 4 \end{aligned}$

SIDEWALK WITHOUT UTILITY STRIP

$=$ UTILITY STRIP < 10' WIDE $=$

WITHOUT SIDEWALK OR UTILITY STRIP $\geq 10^{\prime}$ WIDE

LEGEND:

5:4. SidewalkFlared Driveway ($6^{\prime \prime}$ Thick Concrete)Sidewalk Thru Driveway ($6^{\prime \prime}$ Thick Concrete)
27.7 utility strip

LAST	2 DESCRIPTION:
REVISION	

M 2

M 1

SIDEWALK WITHOUT UTILITY STRIP \Longrightarrow

M 12

M 11

M 23

M 22

工 SIDEWALK WITH UTILITY STRIP ON 0．04 SLOPE $\overline{ }$

NOTE
5＇sidewalks shown．

FDOT $\begin{array}{cc}\text { FY 2023－24 } \\ \text { STANDARD PLANS }\end{array}$
DRIVEWAY SECTIONS ON CURBED FACILITIES WITH SIDEWALKS 11／01／18 CONCRETE FLARED DRIVEWAYS

SWALED MEDIAN (No Weep Holes)
$1{ }^{A}$

SECTION A-A

$\bar{\Longrightarrow}$ PAVED DITCH END TREATMENT

GENERAL NOTES:

1. Install type of ditch pavement shown on Plans
2. Construct lip at the end of ditch pavement downstream of DPI or on Construct lip at the end of ditch pavement downstream of
3. Use toewalls with all ditch paving, except adjacent to drainage structures.
4. Construct sides of paving with 1' minimum height for junction of R/W ditch spillway and lateral ditch
5. Install filter fabric under all ditch pavement except for miscellaneous asphalt.
6. Install ditch pavement requiring reinforcement as detailed in Plans.

LAST REVISION 11/01/22		$\begin{array}{cc} F D O T\} & \text { FY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	DITCH PAVEMENT AND SODDING	INDEX 524-001	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 3 \end{aligned}$

note:
Miscellaneous asphalt will not be permitted for this type of construction.
$\overline{\bar{Z}}$ JUNCTION OF ROADWAY DITCH AND LATERAL DITCH \qquad
Miscellaneous asphalt will not be permitted for this type of construction.

NOTE:
Do not construct weep holes in this area or 5' upstream
(As Shown)
(Locations Other Than Junction with Lateral Ditch)
\qquad
TYPICAL SECTION

TABLE 1: DITCH PAVEMENT					
Pavement Type	Dim	mensio	ons	Filter Fabric	References \& Remarks
Concrete	$24^{\prime \prime}$	$6^{\prime \prime}$	Varies	D-4	Specification 524
Miscellaneous Asphalt	$24^{\prime \prime}$	$12^{\prime \prime}$	$4^{\prime \prime}$	None	Specification 339
Riprap (Sand-Cement)	$24^{\prime \prime}$	$12^{\prime \prime}$	$4^{\prime \prime}$	D-4	Specification 530, Grouting of joints required
Riprap (Ditch Lining)	--	--	--	D-2	Specification 530

One Row of Staples
Each Edde of Overlaps,
Each Side of Stops, and
on outer Edges at not
Each side of Stops, and
on Outer Edgose at not
More Than 18" Centers
More Than
(Typical)
c

SECTION C-C

SECTION D-D
\qquad

REVISION
$11 / 01 / 22$

TABLE 2: ALTERNATE DITCH PAVEMENT					
TO REPLACE:	w	d	R	Rows Of Weep Holes	Arc Length
6' Median Swale	6^{\prime}	0.24^{\prime}	19^{\prime}	0	6.0^{\prime}
1:6 Front Slopes; 1:4 Back Slope					
5' Ditch Bottom Wiath	10^{\prime}	0.67^{\prime}	19^{\prime}	2	10.1^{\prime}
4' Ditch Bottom Width	9^{\prime}	0.54^{\prime}	19^{\prime}	2	9.1^{\prime}
1:4 Front Slopes \& Back Slope					
5' Ditch Bottom Width	9^{\prime}	0.74^{\prime}	14^{\prime}	2	9.2^{\prime}
4' Ditch Bottom Width	8^{\prime}	0.58^{\prime}	14^{\prime}	1	
(in center)	8.1^{\prime}				

NOTE:

For use only where side slopes are 1:4 or flatter. Point "A" and "B" are at the same elevation and should be used to locate the paved section.
SCRIPTION
alternate ditch pavement \qquad

BONDED OPTION
" x " $=$ 1' To 4' Const. 1 Row (Centered)
" $x^{\prime \prime}=5^{\prime}$ 'To 7' Const. 2 Rows
" x " $=13^{\prime}$ To 17 ' Const. 4 Rows
$" x "=18^{\prime}$ To 22' Const. 5 Rows

NOTES:

Construct all weep holes $3^{\prime \prime} \times 4^{\prime \prime}$ rectangle or $4^{\prime \prime}$ or $5^{\prime \prime}$ diameter circle hole. Place $1 / 2 \mathrm{cu} . \mathrm{ft} .\left(12^{\prime \prime} \times 12^{\prime \prime} \times 6^{\prime \prime}\right.$) of No. 57 aggregate under each hole with 1 sq. ft .
of galvanized wire mesh ($1 /{ }^{\prime \prime \prime}$ openings) placed between the agaregate and the of galvanized wire mesh ($1 / 4 / 1$ openings) placed between the aggregate and the ditch pavement.
2. Rectangle weep holes shown, round weep holes similar
3. Weep hole spacing may be reduced to 5^{\prime} minimum when directed by the Engineer
\qquad
NOTE
Either option may be used, unless called for in the plans.

| FY 2023-24 | DITCH PAVEMENT AND SODDING | INDEX | sheet |
| :---: | :---: | :---: | :---: | :---: |
| STANDARD PLANS | | $524-001$ | 3 of 3 |

NOTES

1. Work this Index with the Noise Wall Data Tables, and Wall Control Drawings in the Plans A. Prestressed concrete posts with equivalent strength resistance may be substituted for
conventionally reinforced precast posts shown in this index when approved as part of a Producer's Quality Control Plan.
B. Producer shop drawings for prestressed concrete post designs must be approved by the State Structures Design office prior to inclusion in the Quality Control Plan.
2. Construct Noise Walls in accordance with the requirements of Specification Section 534, and Augers Cast Piles in accordance with Specification Section 455.
3. Field verify the location of all overhead and underground services shown in the wall Control Drawings.
4. Wall Height is the nominal height of the walls above finished grade. The Wall Embedment Depth for design is 1 1'0.". The actual embedment depth may vary plus or minus $6^{\prime \prime}$ along the length of the wall.
5. Post Spacing in this Index are nominal, and are measured from centerline to centerline of the auger cast piles. Actual post spacing may vary as shown in the Wall Control Drawings.
6. Panels:
A. The sum of the individual stacked panel heights is the Wall Height plus $1^{\prime}-0$ (embedment depth).
B. Where special graphics are required, locate the horizontal panel joints
outside of the graphics. Where possible, hold horizontal panel joints at

Constant elevation
C. Side Installed Pan
between posts prohibits installing panels from the top.
For Flush Face panels, install panel into posts. from the
face of the wall. Recessed panels may be installed from the back or front
2. After panels are installed and centered between posts, grout between
both panel ends and the adjoining posts (see Sheets 4 and 5 for details).
D. Individual panel heights should be between $6^{\prime}-0^{\prime \prime}$ and $12^{\prime}-0^{\prime \prime}$ tall. The minimum panal D. Individual panel heights should be between $6^{\prime}-0^{\prime \prime}$ and $12^{\prime}-0^{\prime \prime}$ tall. The minimum pane graphic panels are required on shorter walls.
7. Concrete And Grout:

Concrete Class and Compressive Strenth

1. Precast Panels, Posts, and Post
B. Minimum Compressive Strength for form removal and handling of posts and pane/s:
2. 2,500 psi for horizontally cast post and panels
2.000 psi for vertically cast panels or when tilt-up tables are used for
C. Grout for Auger Cast Piles:
3. Maximum Working Compressive Strength $=2,000$ ps
4. Minimum 28 day strength $=5,000$ ps
5. Reinforcing Stee):
A. In addition to the requirements of Specification Section 415, tie post and pile stirrups at the following locations as a minimum.
6. Post Stirrups Tie at all four corner bars and at every third interior bar
7. Pile Stirrups Tie to the main vertical reinforcing at alternate intersection for circular configurations and at the four corners and at every third interior bar intersection for rectangular configurations.
B. Provide 2" concrete cover unless noted otherwise.
8. Casting Tolerances for precast panels and posts:
A. Overall Height and Width: $+/-1 / 4$
B. Thickness: $+1-1 / 4$
B. Thickness: $+/-1 / 4$
C. Plane of side mold: +/- 1/16
D. Openings: $+/-1 / / 2 "_{\prime \prime}{ }^{\prime \prime}$ per 6 ft ., but not more than $3 / 8^{\prime \prime t}$ otal along any side
E. Out of Square: $1 / 8^{\prime \prime}$.
F. Warping: $1 / 16^{\prime \prime}$ per foot distance to nearest corner
G. Bowing: $1 / 240$ panel dimension "
H. Surface Smoothness for Type "A" Smooth Surface Texture Option: +/- 1/16"
9. Provide Plain or Fiber Reinforced Bearing Pads meeting the requirements of specification Section 932 for Ancillary Structures.
A. For Collar Bearing Points provide:
10. 4"X $4^{4 " x} 1 / 1 /$ Fiber Reinforced Pads;

Plain Pads may be substituted for Fiber Reinforced Pads when area is available on the concrete collar for the a. 10^{\prime}
b. 20^{\prime} Post Spacing: $4^{\prime \prime} \times 4^{\prime \prime} \times 1 / 2^{\prime \prime}$

20' Post Spacing and Wall Height < 17 feet: $4^{\prime \prime} \times 4^{\prime \prime} \times 1 / 2$
20^{\prime} Post Spacing and Wall Height ≥ 17 feet: $4^{\prime \prime} \times 5^{\prime \prime} \times 1 / 2$
B. At panel bearing points between stacked panels, use Plain or Fiber Reinforced Bearing Pads.

	$\begin{aligned} & \text { Type "A" } \\ & \text { SMOOTH } \end{aligned}$		Type "F" PEA GRAVEL
	Type "B" ASHLAR STONE		Type "G" VERTICAL FRACTURED FIN
	Type "C" SPLIT FACE RUNNING BOND BLOCK		Type "H" TRAPEZOID VERTICAL FINS W/ FRACTURED FACE (COLORADO DRAG AGGREGATE)
	Type "D" FRACTURED GRANITE		Type "I" CUT CORAL BLOCK (RUNNING BOND)
	Type "E" WIRE-CUT BRICK		NOTES: 1. Surfaces shall be formed, rolled, or pressed using form liners in accordance with the Plans and Specifications for Class 3 Surface Finish. 2. See Noise Wall Data Tables for project aesthetic requirements.

half ELEVATION
(Front Face Post and Panel Texture Type " H " shown) (Graphic Type SE-2 shown)
(Two stacked panels shown, three stacked panels similar)

Back Face Panel Texture
(Formed, Rolled or Pressed
into Plastic Concrete)

(Front Face Panel Texture Type " H " shown) (Back Face Panel Texture Type "D" shown) (Post Forming Details Similar)

NOTES

1. Submit specific form liner samples for approval by the Engineer
2. Textures and graphics shown are for demonstration purposes only. See Noise Wall Data Tables in the plans for project specific texture and graphic requirements.

| $\begin{aligned} & \text { LAST } \\ & \text { REVISION } \\ & 11 / 01 / 14 \end{aligned}$ | \|c|c | DESCRIPTION: | FDOTT | FY 2023-24
 STANDARD PLANS | NOISE WALLS - (PRECAST) | $\begin{gathered} \text { INDEX } \\ 534-200 \end{gathered}$ | $\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 16 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

See Detail "C" for
$\frac{\text { See Detail "C" for }}{\text { panel dimensions }}$

DETAIL "C"

Typical post
CASE 2
(Exterior Angle)

DETAIL "D"

CASE 1
(Interior Angle)

CASE 2 (Exterior Angle)

DETAIL "E"
(Back Face Chamfer Shown Front Face Chamfer Similar

NOTE:
The shop drawings shall include specific pivoting details of panel ends at locations where the deflection angle $\left(2 \Delta^{\circ}\right)$ between panels exceeds 20°.

NOTE:
The shop drawings shall include specific pivoting details of
panel ends at locations where the deflection angle ($2 \Delta^{\circ}$) between panels exceeds 7°.
(Recessed Type Panel)

GRATING NOTES:

1. Grating shall be ASTM A36 steel welded in accordance with the current edition of ANSI/AWS D1.1 Steel Welding Code. Hot-dip galvanize grate after fabrication in accordance with Specification Section 962.
2. Expansion Anchors: Use $1 / 4 / 10 \times 2^{\prime \prime}$ min. corrosion resistant (zinc/aluminum alloy or stainless steel) expansion anchors to connect grates to panels.
expansion anchors to connect grates to panels.
3. Blockout textured concrete surface for a strip $2^{\prime \prime}$ wide around drainage hole to enable secure
attachment of the drainage grate.
drainage hole details

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		DESCRIPTION:		FY 2023-24 STANDARD PLANS	NOISE WALLS - (PRECAST)	$\begin{gathered} \text { INDEX } \\ 534-200 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 7 \text { of } 16 \end{aligned}$

VIEW A-A SHOWN, VIEW B-B SIMILAR
(Type "A" Cap Shown, Type " B " \& "C" Caps Similar)

(Type "B" Cap Shown, Type "A" \& "C" Caps Similar)

SECTION C-C

PICTORIAL VIEW
TYPE "A" CAP DETAILS

SECTION C-C

PICTORIAL VIEW

SECTION C-C

PICTORIAL VIEW

table 1A - table of post reinforcing steel															TABLE 1B - PILE LENGTHS (Feet) - Wind Speed = 130 MPH																
$\begin{gathered} \text { NOMINAL } \\ \text { WALL } \\ \text { HEIGHT } \\ \text { (Feet) } \end{gathered}$	POST LENGTHS		WIND SPEED $=130 \mathrm{MPH}$													10'0" POST SPACING								20'-0" POST SPACING							
	without CAP	$\underset{\text { CAP }}{\text { WITH }}$	$\begin{gathered} 10^{\prime}-0^{\prime \prime} \\ \text { POST SPACING } \end{gathered}$						$\begin{gathered} 20^{\prime}-0^{\prime \prime} \\ \text { POST SPACING } \end{gathered}$							H-POSTS				CORNER POSTS				H-POSTS				CORNER POSTS			
			$\begin{array}{\|c} \text { BARS } \\ A \end{array}$		${ }_{B}^{\text {ARS }}$	$\underset{D}{\text { BARS }}$		$\overline{A R S}$	$\begin{array}{\|c} \text { BARS } \\ A \end{array}$	A	${ }_{3}{ }^{\text {RS }}$	$\underset{D}{\text { BARS }}$	$3 A$	$\overline{\mathrm{ARS}}$		SOIL 1		SOIL 2													
			SIZE	SIzE	$\begin{aligned} & \hline \text { DIM } \\ & { }^{\prime} A^{\prime} \end{aligned}$	SIZE	SIZE	$\begin{gathered} \hline \text { DIM } \\ { }^{\prime} A^{\prime} \end{gathered}$	SIZE	SIZE	$\begin{gathered} \hline D^{\prime} A^{\prime} \end{gathered}$	SIzE	SIZE	$\begin{aligned} & \hline \text { DIM } \\ & { }^{\prime} A^{\prime} \end{aligned}$		$\begin{gathered} 30^{\prime \prime} \\ 0 \end{gathered}$	$\begin{gathered} 36^{11} \\ 0 \end{gathered}$	$\begin{gathered} 30^{\prime \prime} \\ 0 \end{gathered}$	$\begin{gathered} 36^{\prime \prime} \\ 0 \end{gathered}$	$\begin{gathered} 30^{\prime \prime} \\ 0 \end{gathered}$	$\begin{gathered} 36^{\prime \prime} \\ \varnothing \end{gathered}$	$\begin{gathered} 30^{\prime \prime} \\ 0 \end{gathered}$	$\begin{gathered} 36^{\prime \prime} \\ 0 \end{gathered}$	$\begin{gathered} 30^{\prime \prime} \\ 0 \end{gathered}$	$\begin{gathered} 36^{\prime \prime} \\ 8 \end{gathered}$	$\begin{gathered} 30^{\prime \prime} \\ \varnothing \end{gathered}$	$\begin{gathered} 36^{\prime \prime} \\ \varnothing \end{gathered}$	$\begin{gathered} 30^{\prime \prime} \\ 0 \end{gathered}$	$\begin{gathered} 36^{\prime \prime} \\ 0 \end{gathered}$	$\begin{gathered} 30^{\prime \prime} \\ 0 \end{gathered}$	$\begin{gathered} 36^{\prime \prime} \\ 0 \end{gathered}$
12	$13^{1}-0^{1 / 2 / 1}$	$13^{\prime \prime}-2^{1 / 2^{\prime \prime}}$	\#4	\#4	$7^{\prime}-11^{\prime \prime}$	\#4	\#4	$9^{\prime}-11^{\prime \prime}$	\#5	\#5	$9^{\prime}-8^{\prime \prime}$	\#6	\#6	$9^{\prime}-4^{\prime \prime}$	12	11	10	10	10	11	10	10	10	15	14	13	12	14	13	13	12
13	$14^{\prime}-0^{1 / 2 / 1}$	$14^{\prime}-2^{1 / 2} 2^{\prime \prime}$	\#4	\#4	10'-11"	\#4	\#4	10'-11"	\#5	\#5	$9^{\prime}-8^{\prime \prime}$	\#6	\#6	$9^{\prime}-4^{\prime \prime}$	13	12	11	10	10	11	10	10	10	15	14	13	13	15	14	13	12
14	$15^{\prime}-0^{1 / 2 / 1}$	$15^{\prime}-2^{1 / 2}{ }^{\prime \prime}$	\#4	\#4	10'-11"	\#5	\#5	11'-8"	\#6	\#6	11'-4"	\#7	\#7	$10^{\prime}-8^{\prime \prime}$	14	12	11	11	10	12	11	10	10	16	15	14	13	15	14	14	13
15	$16^{-1}-0^{1 / 2}{ }^{\prime \prime}$	$16^{\prime}-2^{1 / 2}{ }^{\prime \prime}$	\#4	\#4	10'-11"	\#5	\#5	$12^{\prime}-8^{\prime \prime}$	\#6	\#6	11'-4"	\#7	\#7	$10^{\prime}-8^{\prime \prime}$	15	12	12	11	10	12	11	11	10	16	15	15	13	16	15	14	13
16	$17^{\prime}-0^{1 / 2 / 1}$	$17^{\prime}-2^{1 / 2^{\prime \prime}}$	\#5	\#5	$13^{\prime \prime}-8^{\prime \prime}$	\#5	\#5	$12^{\prime \prime}-8^{\prime \prime}$	\#6	\#6	11'-4"	\#7	\#7	$10^{\prime}-8^{\prime \prime}$	16	13	12	11	11	12	12	11	10	17	16	15	14	16	15	15	14
17	$18^{-}-0^{1 / 2 / 1}$	$18^{\prime}-2^{1 / 2}{ }^{\prime \prime}$	\#5	\#5	14'-8"	\#5	\#5	$12^{\prime}-8^{\prime \prime}$	\#7	\#7	12'-8"	\#7	\#8	$10^{\prime}-0^{\prime \prime}$	17	13	12	12	11	13	12	11	11	18	16	16	14	17	16	15	14
18	$19^{-1} 0^{1 / 2 / 1}$	$19^{\prime}-2^{1 / 2^{\prime \prime}}$	\#5	\#5	$14^{\prime}-8^{\prime \prime}$	\#6	\#6	14'-4"	\#7	\#7	12'-8"	\#8	\#8	12'-0"	18	14	13	12	11	13	12	12	11	18	17	16	15	18	16	15	14
19	20'-01/2"	20'-21/2"	\#5	\#5	$14^{\prime}-8^{\prime \prime}$	\#6	\#6	$14^{\prime \prime}-4^{\prime \prime}$	\#7	\#8	$12^{-1} 0^{\prime \prime}$	\#8	\#9	$11^{\prime}-3^{\prime \prime}$	19	14	13	12	12	14	13	12	11	19	17	16	15	18	17	16	15
20	$21^{\prime}-0^{1} / 2^{\prime \prime}$	$21^{\prime}-2^{1 / 2}{ }^{\prime \prime}$	\#6	\#6	$16^{\prime}-4{ }^{\prime \prime}$	\#6	\#6	$14^{\prime \prime}-4^{\prime \prime}$	\#8	\#7	14-8"	\#9	\#8	14-01"	20	14	13	13	12	14	13	12	12	19	18	17	16	19	17	16	15
21	$22^{1}-0^{1 / 2} 2^{\prime \prime}$	$22^{\prime}-2^{1 / 2}{ }^{\prime \prime}$	\#6	\#6	$16^{\prime}-4{ }^{\prime \prime}$	\#6	\#6	14'-4"	\#8	\#8	14'-0"	\#9	\#10	12'-4"	21	15	14	13	12	14	13	13	12	20	18	17	16	19	18	17	16
22	$23^{-1} 0^{1} / 2^{\prime \prime}$	$23^{\prime}-22^{1 / 2}{ }^{\prime \prime}$	\#6	\#6	$16^{\prime}-4^{\prime \prime}$	\#7	\#7	$16^{\prime}-8^{\prime \prime}$	\#8	\#9	$13^{\prime}-3^{\prime \prime}$	\#10	\#9	15'-3"	22	15	14	14	13	15	14	13	12	20	19	18	17	20	18	17	16

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 16 \end{gathered}$		$\begin{array}{cc} \text { FDOT } & \text { FY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	NOISE WALLS - (PRECAST)	$\begin{gathered} \text { INDEX } \\ 534-200 \end{gathered}$	$\begin{gathered} \text { SHEET } \\ 15 \text { of } 16 \end{gathered}$

	table 2A - table of post reinforcing steel														TABLE 2B - PILE LENGTHS (Feet) - Wind speed = 150 MPH																
$\begin{gathered} \text { NOMINAL } \\ \text { WALL } \\ \text { HEIGHT } \\ \text { (Feet) } \end{gathered}$	POSt LENGTHS		WIND SPEED $=150 \mathrm{MPH}$												$\begin{gathered} \text { NOMINAL } \\ \text { WALL } \\ \text { HEIGHT } \\ \text { (Feet) } \end{gathered}$	10'-0" POST SPACING								20'0" POST SPACING							
	$\underset{\text { CAP }}{\text { WITHOUT }}$	$\underset{\text { CAP }}{ }$	$\begin{gathered} 10^{\prime}-0^{\prime \prime} \\ \text { POST SPACING } \end{gathered}$						$\begin{gathered} 20^{\prime}-0^{\prime \prime} \\ \text { POST SPACING } \end{gathered}$							H-POSTS				CORNER POSTS				H-POSTS				CORNER POSTS			
			$\begin{gathered} \text { BARS } \\ A \end{gathered}$	$\begin{gathered} \text { BARS } \\ B \end{gathered}$		$\begin{gathered} \text { BARS } \\ D \end{gathered}$	$\underset{E}{\text { BARS }}$		$\begin{gathered} \text { BARS } \\ A \end{gathered}$	$\begin{gathered} \text { BARS } \\ B \end{gathered}$		$\begin{gathered} \text { BARS } \\ D \end{gathered}$	$\begin{gathered} \text { BARS } \\ E \end{gathered}$			SOIL 1		SOIL 2													
			SIze	SIze	$\begin{gathered} \hline \text { DIM } \\ { }^{\prime} A^{\prime} \end{gathered}$	SIZE	SIzE	$\begin{aligned} & \hline \text { DIM } \\ & \hline A^{\prime}{ }^{2} \end{aligned}$	SIze	SIZE	$\begin{aligned} & \hline \text { DIM } \\ & \hline A^{\prime}{ }^{2} \end{aligned}$	SIZE	SIZE	$\begin{gathered} \hline \text { DIM } \\ { }^{\prime} A^{\prime} \end{gathered}$		$\begin{gathered} 30^{\prime \prime} \\ \varnothing \end{gathered}$	$\begin{gathered} 36^{\prime \prime} \\ \hline \end{gathered}$	$\begin{gathered} 30^{\prime \prime} \\ \varnothing \end{gathered}$	$\begin{gathered} 36^{\prime \prime} \\ \hline \end{gathered}$	$\begin{gathered} 30^{\prime \prime} \\ 0 \end{gathered}$	$36^{\prime \prime}$ \varnothing	$\begin{gathered} 30^{\prime \prime} \\ 0 \end{gathered}$	$\begin{gathered} 36^{\prime \prime} \\ 8 \end{gathered}$	$\begin{gathered} 30^{\prime \prime} \\ 0 \end{gathered}$	$36{ }^{\prime \prime}$ \varnothing	301 \varnothing	$36^{\prime \prime}$ \varnothing 1	$\stackrel{3010}{8}$	$36^{\prime \prime}$ \varnothing	$\begin{gathered} 30^{\prime \prime} \\ \varnothing \end{gathered}$	361 \varnothing
12	$13^{1}-0^{1 / 2 / 1}$	$13^{1}-2^{1 / 2}{ }^{\prime \prime}$	\#4	\#4	9'-11"	\#5	\#5	$9^{1}-8^{\prime \prime}$	\#6	\#6	$9^{\prime}-4^{\prime \prime}$	\#6	\#6	$8^{\prime}-4^{\prime \prime}$	12	12	12	11	10	12	11	11	10	17	15	15	14	16	15	14	13
13	$14^{\prime}-0^{1 / 2} 2^{\prime \prime}$	$14^{\prime}-2^{1 / 2^{\prime \prime}}$	\#4	\#4	$9^{\prime}-11^{\prime \prime}$	\#5	\#5	$10^{\prime}-8^{\prime \prime}$	\#6	\#6	$9^{\prime}-4^{\prime \prime}$	\#7	\#7	$8^{\prime}-8^{\prime \prime}$	13	13	12	11	11	13	12	11	10	17	16	15	14	17	15	15	14
14	$15^{-1} 0^{1 / 2} 2^{\prime \prime}$	$15^{\prime}-2^{1 / 2}{ }^{\prime \prime}$	\#5	\#5	11'-8"	\#5	\#5	$10^{\prime}-8^{\prime \prime}$	\#7	\#7	$10^{\prime}-8^{\prime \prime}$	\#7	\#7	$8^{8}-8^{\prime \prime}$	14	13	12	12	11	13	12	12	11	18	17	16	15	17	16	15	14
15	$16^{\prime}-0^{1} / 2^{\prime \prime}$	$16^{\prime}-2^{1 / 2}{ }^{\prime \prime}$	\#5	\#5	11'-8"	\#6	\#6	$12^{1}-4^{\prime \prime}$	\#7	\#7	$10^{\prime}-8^{\prime \prime}$	\#8	\#7	$10^{\prime}-8^{\prime \prime}$	15	14	13	12	11	13	13	12	11	19	17	16	15	18	17	16	15
16	$17^{\prime}-0^{1 / 2} 2^{\prime \prime}$	$17^{\prime}-22^{1 / 2}{ }^{\prime \prime}$	\#5	\#5	11'-8"	\#6	\#6	$12^{\prime}-4^{\prime \prime}$	\#7	\#7	$10^{\prime}-8^{\prime \prime}$	\#8	\#8	10'-0'01	16	14	13	13	12	14	13	12	12	19	18	17	16	19	17	16	15
17	$18^{\prime}-0^{1 / 2} 2^{\prime \prime}$	$18^{\prime}-2^{1 / 2}{ }^{\prime \prime}$	\#6	\#6	$14^{-1} 4^{\prime \prime}$	\#6	\#6	$12^{\prime \prime} 4^{\prime \prime}$	\#7	\#8	$10^{\prime}-0^{\prime \prime}$	\#9	\#8	11'-0"	17	15	14	13	12	14	13	13	12	20	18	17	16	19	18	17	16
18	$19^{-0} 0^{1 / 2 \prime}$	19'-21/2"	\#6	\#6	$14^{\prime}-4^{\prime \prime}$	\#7	\#7	$13^{\prime}-8^{\prime \prime}$	\#8	\#8	$12^{\prime \prime}-0^{\prime \prime}$	\#9	\#10	9'-4"	18	15	14	14	13	15	14	13	12	20	19	18	17	20	18	17	16
19	$20^{\prime}-0^{1 / 2} 2^{\prime \prime}$	20' 2 $^{1 / 2}{ }^{\prime \prime}$	\#6	\#6	$14^{\prime}-4^{\prime \prime}$	\#7	\#7	$13^{\prime}-8^{\prime \prime}$	\#8	\#9	11'-3"	\#10	\#9	12'-3"	19	16	15	14	13	15	14	14	13	21	19	19	17	20	19	18	17
20	$21^{1}-0^{1 / 2} 2^{\prime \prime}$	$21^{\prime}-2^{1 / 2}{ }^{\prime \prime}$	\#6	\#6	14-4"	\#7	\#8	$13^{\prime \prime}-0^{\prime \prime}$	\#9	\#9	13'-3"	\#10	\#10	11'-4"	20	16	15	14	13	16	15	14	13	22	20	19	18	21	19	18	17
21	$22^{\prime}-0^{1} / 2^{\prime \prime}$	22'-21/2"	\#7	\#7	$16^{\prime}-8^{\prime \prime}$	\#7	\#7	$13^{\prime}-8^{\prime \prime}$	\#9	\#10	$12^{\prime \prime}-4^{\prime \prime}$	\#11	\#10	$13^{\prime \prime}-4^{\prime \prime}$	21	17	15	15	14	16	15	14	13	22	21	20	18	21	20	19	18
22	$23^{1}-0^{1 / 2} 2^{\prime \prime}$	$23^{\prime}-2^{1 / 2}{ }^{\prime \prime}$	\#7	\#7	$16^{\prime}-8^{\prime \prime}$	\#8	\#8	$16^{\prime}-0^{\prime \prime}$	\#10	\#9	$14^{\prime}-3^{\prime \prime}$	\#11	\#11	12'-5"	22	17	16	15	14	17	15	15	14	23	21	20	19	22	20	19	18

table 3A - table of post reinforcing steel															TABLE 3B-PILE LENGTHS (Feet) - Wind SPEED $=170 \mathrm{MPH}$																
$\begin{aligned} & \text { NOMINAL } \\ & \text { WALLL } \\ & \text { HEIGHT } \\ & \text { (Feet) } \end{aligned}$	POSt LENGTHS		WIND SPEED $=170 \mathrm{MPH}$												$\begin{gathered} \text { NOMINAL } \\ \text { WALL } \\ \text { HEIGHT } \\ \text { (Feet) } \end{gathered}$	10'0" POST SPACING								20'-0" POST SPACING							
	$\underset{\text { CAP }}{\text { WITHOUT }}$	$\begin{gathered} \text { WITH } \\ \text { CAP } \end{gathered}$	$\begin{gathered} 10^{\prime}-0^{\prime \prime} \\ \text { POST SPACING } \end{gathered}$						$\begin{gathered} 20^{\prime}-0^{\prime \prime} \\ \text { POST SPACING } \end{gathered}$							H-POSTS				CORNER POSTS				H-POSTS				CORNER POSTS			
			$\begin{gathered} \text { BARS } \\ A \end{gathered}$		RS	$\begin{gathered} \text { BARS } \\ D \end{gathered}$		ARS	$\begin{gathered} \hline \text { BARS } \\ A \end{gathered}$		${ }^{\text {RS }}$	$\begin{gathered} \text { BARS } \\ D \end{gathered}$				$\text { SOIL } 1$		SOIL 2		SOIL 1		SOIL 2		SOIL 1		SOIL 2		SOIL 1		SOIL 2	
			SİE	SIZE	$\begin{gathered} \hline \text { DIM } \\ '^{\prime} '^{\prime} \\ \hline \end{gathered}$	SIZE	SIZE	$\begin{aligned} & \text { DIM } \\ & '^{\prime} '^{\prime} \\ & \hline \end{aligned}$	SIZE	SIZE	$\begin{gathered} \text { DIM } \\ '^{\prime} '^{\prime} \\ \hline \end{gathered}$	SIZE	SIZE	$\begin{gathered} \text { DIM } \\ '^{\prime} '^{\prime} \\ \hline \end{gathered}$		$\begin{gathered} \hline 30^{\prime \prime} \\ \varnothing \\ \hline \end{gathered}$	$\begin{gathered} \hline 36^{\prime \prime} \\ \varnothing \\ \hline \end{gathered}$	$\begin{gathered} \hline 30^{\prime \prime} \\ \varnothing \\ \hline \end{gathered}$	$\begin{aligned} & \hline 36^{\prime \prime} \\ & \varnothing \\ & \hline \end{aligned}$	$\begin{gathered} \hline 30^{\prime \prime} \\ \varnothing \\ \hline \end{gathered}$	$\begin{gathered} \hline 36^{\prime \prime} \\ \varnothing \\ \hline \end{gathered}$	$\begin{gathered} 30^{\prime \prime} \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \hline 36^{\prime \prime} \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 30^{\prime \prime} \\ 0 \end{gathered}$	$\begin{gathered} \hline 36^{\prime \prime} \\ \varnothing \\ \hline \end{gathered}$	$\begin{gathered} \hline 30^{\prime \prime} \\ \varnothing \\ \hline \end{gathered}$	$\begin{aligned} & \hline 36^{\prime \prime} \\ & \varnothing \\ & \hline \end{aligned}$	$\begin{gathered} \hline 30^{\prime \prime} \\ \varnothing \\ \hline \end{gathered}$	$\begin{aligned} & \hline 36^{\prime \prime} \\ & \varnothing \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 30^{\prime \prime} \\ & \hline \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 36^{\prime \prime} \\ & \varnothing \\ & \hline \end{aligned}$
12	$13^{1}-0^{1 / 2}$	$13^{\prime \prime}-2^{1 / 21}$	\#5	\#5	$9^{9}-8{ }^{\prime \prime}$	\#5	\#5	$8^{\prime}-8^{\prime \prime}$	\#6	\#6	$8^{\prime}-4^{\prime \prime}$	\#7	\#7	$7^{\prime}-8^{\prime \prime}$	12	14	13	12	11	13	12	12	11	18	17	16	15	18	16	16	15
13	$14^{\prime}-0^{11} 2^{\prime \prime}$	$14^{\prime}-2^{1 / 2} 2^{\prime \prime}$	\#5	\#5	10'-8"	\#6	\#6	$10^{\prime}-4^{\prime \prime}$	\#7	\#7	$8^{\prime}-8^{\prime \prime}$	\#8	\#7	8'-8'	13	14	13	13	12	14	13	12	11	19	18	17	16	19	17	16	15
14	$15^{\prime}-0^{1} / 2^{\prime \prime}$	$15^{\prime}-2^{1 / 2} 2^{\prime \prime}$	\#5	\#5	$10^{\prime}-8^{\prime \prime}$	\#6	\#6	10'-4"	\#7	\#7	$8^{\prime}-8^{\prime \prime}$	\#8	\#8	$8^{\prime}-0^{\prime \prime}$	14	15	14	13	12	14	13	13	12	20	18	18	16	19	18	17	16
15	$16^{\prime}-0^{1} / 2^{\prime \prime}$	$16^{\prime}-2^{1 / 2} 2^{\prime \prime}$	\#6	\#6	$12^{-1} 4^{\prime \prime}$	\#6	\#6	$10^{\prime}-4^{\prime \prime}$	\#8	\#7	$10^{\prime}-8^{\prime \prime}$	\#9	\#8	$10^{\prime}-0^{\prime \prime}$	15	15	14	14	13	15	14	13	12	21	19	18	17	20	18	18	16
16	$17^{1}-0^{1} / 2^{\prime \prime}$	$17^{\prime}-2^{1 / 2}{ }^{\prime \prime}$	\#6	\#6	$12^{\prime}-4^{\prime \prime}$	\#7	\#7	$11^{1}-8^{\prime \prime}$	\#8	\#8	$10^{-}-0^{\prime \prime}$	\#9	\#10	$8^{\prime}-4^{\prime \prime}$	16	16	15	14	13	15	14	14	13	21	20	19	17	21	19	18	17
17	$18^{-1} 0^{1} / 2^{\prime \prime}$	$18^{\prime}-2^{1 / 2} 2^{\prime \prime}$	\#6	\#6	12'-4"	\#7	\#7	11'-8"	\#9	\#8	12'-0"	\#10	\#9	10'-3"	17	16	15	15	14	16	15	14	13	22	20	19	18	21	20	19	17
18	$19^{\prime}-0^{1 / 2 / \prime}$	$19^{\prime}-2^{1 / 2}{ }^{\prime \prime}$	\#7	\#7	$13^{\prime}-8^{\prime \prime}$	\#7	\#8	11'-0"	\#9	\#10	$10^{\prime}-4^{\prime \prime}$	\#10	\#11	$8^{\prime}-5^{\prime \prime}$	18	17	16	15	14	16	15	15	14	23	21	20	19	22	20	19	18
19	20'0 $0^{1} / 2^{\prime \prime}$	$20^{\prime}-2^{1 / 2}{ }^{\prime \prime}$	\#7	\#7	$13^{-1} 8^{\prime \prime}$	\#8	\#7	$13^{\prime \prime}-8^{\prime \prime}$	\#10	\#10	11'-4"	\#11	\#11	$10^{\prime} 5^{\prime \prime}$	19	17	16	15	14	17	16	15	14	23	22	21	19	23	21	20	18
20	$21^{\prime}-0^{1} / 2^{\prime \prime}$	$21^{\prime}-2^{1 / 2}{ }^{\prime \prime}$	\#7	\#7	$13^{\prime}-8^{\prime \prime}$	\#8	\#8	$13^{\prime}-0^{\prime \prime}$	\#10	\#11	10'-5"	\#11	\#14	$7^{\prime}-0^{\prime \prime}$	20	18	17	16	15	17	16	15	14	24	22	21	20	23	21	20	19
21	$22^{1}-0^{1} / 2^{\prime \prime}$	$22^{\prime}-2^{1 / 2}{ }^{\prime \prime}$	\#7	\#8	$13^{-1} 0^{\prime \prime}$	\#9	\#8	15'-0"	\#11	\#10	$13^{-1} 4^{\prime \prime}$	\#14	\#11	12'-5"	21	18	17	16	15	18	17	16	15	25	23	22	20	24	22	21	19
22	$23^{\prime}-0^{11} 2^{\prime \prime}$	$23^{\prime}-2^{1 / 2}{ }^{\prime \prime}$	\#8	\#7	$16^{\prime}-8^{\prime \prime}$	\#9	\#9	$14^{\prime}-3^{\prime \prime}$	\#11	\#11	$12^{\prime \prime}-5^{\prime \prime}$	\#14	\#14	$9^{\prime}-0^{\prime \prime}$	22	19	18	17	16	18	17	16	15	25	23	22	21	24	23	22	20

TABLE NOTE:

1. Bars D and Bars E are for 45° Corner Posts only
2. See Contract Plans for project wind speed.
3. Soil $1=$ Loose Granular Soil, $N=4$ to 9 .

Soil $2=$ Medium Dense Granular Soil, $N=10$ to 40 .

PILE DEPTH \& REINFORCING SUMMARY

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 16 \end{gathered}$		DESCRIPTION:		$\begin{gathered} \text { FY 2023-24 } \\ \text { STANDARD PLANS } \end{gathered}$	NOISE WALLS - (PRECAST)	$\begin{gathered} \text { INDEX } \\ 534-200 \end{gathered}$	$\begin{gathered} \text { SHEET } \\ 16 \text { of } 16 \end{gathered}$

GENERAL NOTES:

1. Construct Perimeter Walls in accordance with Specification Section 534.

Choice of either Precast Option or Masonry Option is at the discretion of the Contractor Contractor must also select the desired foundation type. Modifications to this Index is restrict
3. to those required for geometric needs only. posts and foundation elements have been designed for 20 .. spacings. Use post spacings steep grades.
4. See "Perimeter Wall Data Tables" in the plans for project requirements,
5. Field verify the locations of all overhead and underground utilities shown in the wall control Drawings.

PRECAST OPTION NOTES

6. WALL NOTES: A. Walls may consist of either a single height panel or two stacked panels. Minimum panel height is 4^{\prime} - $3^{\prime \prime}$.
B. Only when reduced overhead clearance between posts prohibits installation of panels from the top, side-installed panels are allowed. After panel is centered between posts, grout
7. CONCRETE AND GROUT:
A. Cast-in-Place and Precast Concrete: Class Iv
. Grout for Auger Cast Piling: Minimum 28 Day Strength $=5000$ psi Precast Spread Footings:
ii. 2,000 psi for horizontally cast post, panels and precast spread footings. horizontally cast panels.
8. REINFORCING STEEL:
A. Concrete Cover: $11 / 2$ " unless otherwise noted

In addition to the requirements of Specification Section 415, tie post and pile stirrups at
i. Post Stirrups - Tie at all four corner bars and at every third interior bar intersection. ii. Pile Stirrups - Tie to the main vertical reinforcing at alternate intersections.
9. BEARING PADS:
may be either Plain or Fiber Reinforced Neoprene Pads, in accordance with Specification Section 932 for ancillary structures.
10. CASTING TOLERANCES:
A. Overall Height \& Width: +/- $1 / 4$
B. Thickness: $+/-1 / 1 /$
C. Plane of side mold: $+/-1 / 16^{\prime \prime}$
E. Out of Square: $1 / /^{\prime \prime}$ per 6 ft ., but not more than $3 / \mathrm{s}^{\prime \prime}$ total along any side
F. Warping: $1 / 1 /{ }^{\prime \prime}$ per foot distance to nearest corner
Bowing: $1 / 240$ panel dimension

Bowing: 1/240 panel dimension

1. PILING:

Construct Auger Cast Piling in accordance with the Plans and Specification Section 455.

MASONRY OPTION NOTES:

12. WALL NOTES:
accordance with the International Building Code
(IBC) Section 1
B. Construct masonry walls with $8 \times 8 \times 16$ block using a running bond pattern and concave C. Make all elevation changes (steps) in footing and top of wall using full height block Make top of wall steps at pilasters exclusively. Footing steps may be made between pilasters as necessary to maintain minimum soil cover.

MASONRY OPTION NOTES (CONT):

D. Fully Grout all cells with horizontal or vertical reinforcing bars
E. Use reinforcing bar positioners to maintain vertical and horizontal bar placement.
G. Joint Reinforcement: Use W 1.7 (9 mm) galvanized ladder reinforcing spaced at 16 vertically. Provide special accessories for corners, intersections, etc. Joint reinforcing shall be continuous except it shall not pass through vertical masonry control joints. Lap joint reinforcing a minimum of $6^{\prime \prime}$
I. Dowel Load Transfer Devices will be ASTM A 36 smooth round bars hot-dip galvanized in accordance with Specification Section 962. Install Dowel Load Transfer Devices in accordance with Specification Section 350 .
J. For spread footings, use a walk-behind compactor of at least 600 lbs . in weight. Obtain a minimum density of 95% of the

Protect walls during construction from soil, grout or mortar stains. Clean wall as work progresses by
remove mortar fins and smears before tooling joints.
L. Use soap and potalale water to clean walls. If stain removal is necessary, use a cleaning method indicated in NCMA
TEK $8-2 A$ applicable to the type of stain on the exposed surface.

TEK 8-2A applicable to the type of stain on the exposed surface.

N. Comply with Hot Weather Requirements in ACI 530.1
13. MATERIALS:
A. Concrete Masonry Units (CMU): Provide normal weight blocks.
B. Cast-In-Place Concrete: Class II for slightly to moderate aggressive environments or Class IV for extremely aggressive environments.
C. Mortar: Type S meeting requirements of ASTM C1329
D. Grout: Type S; coarse grout.
E. Aggregate for Grout: Meet the
14. Storage of materials:
4. Store CMU's on elevated platforms in a dry location or under cover.

If units become wet, do not install until they are dry.
B. Store cementitious materials on elevated platforms, under cover, and in a dry location. Do not use cementitious materials
that have become damp or exceeded the manufacturers shelf life.
C. Store masonry accessories and reinforcing to prevent corrosion and accumulation of dirt and oil

GENERAL WALL ELEVATION
(Precast Option with SIngle Height Panel Shown, Others Similar)
GENERAL NOTES

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		$\begin{array}{cc} \text { FDOTY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	PERIMETER WALIS	$\begin{gathered} \text { INDEX } \\ 534-250 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 10 \end{aligned}$

(Type "A" Cap Shown, Type "B" \& "C" Caps Similar)

VIEW A-A
(Type "A" Cap Shown, Type " B " \& "C" Caps Similar)

SECTION B-B

PICTORIAL VIEW
*Precast Option only

PICTORIAL VIEW
SECTION B-B

SECTION B-B

PICTORIAL VIEW

Type A: $8^{\prime \prime}$
Type B: $1^{1}-0$
$\frac{\text { Type C: } 1^{\prime}-4^{\prime \prime}}{\text { Type D: } 1^{\prime}-8^{\prime \prime}}$

DRAINAGE HOLES TYPES A, B, C \& D

* Hole Types A, B, C, \& D refer to distance from

Hole oypes $A, B, C, \& D$ refer to distance
bottom of panel/wall to center of the pipe.

SECTION C-C
(Precast Option Shown, Masonry Option Similar)

TYPICAL PLAN

* Nominal embedment (not including tolerances)
elevation step at bottom of wall

At the Contractors Option, Smooth or
Deformed Welded Wire Reinforcement
may be used (equal area).

Horizontal Steel ~ \#4 Bars @ 71/2" (As=0.32 in.2/ft.) (Typ.)

$\downharpoonright F$

typical panel elevation

* In lieu of utilizing the standard pick up points below, panels may be cast vertically or cast horizontally then tilted upright using tilt-tables prior to lifting from form. In this case, pick points must be placed
in the top of panels only and transported maintaining the vertical orientation. If these criteria are met, the vertical steel may be reduced to \#4 Bars @ $1^{\prime}-3^{\prime \prime}(A s=0.16$ in.//ft.).

STANDARD PICK UP POINTS FOR PANELS (Panels shall be rotated about long axis only)

DETAIL "B" - TOP-INSTALLED
(Typ. Both Ends)

\& Reinforcing Mat

DETAIL "B" - SIDE-INSTALLED
(Typ. Both Ends)

PRECAST OPTION - TYPICAL PANEL DETAILS

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 14 \end{gathered}$	DESCRIPTION:	$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	PERIMETER WALLS	$\begin{gathered} \text { INDEX } \\ 534-250 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 5 \text { of } 10 \end{aligned}$

SECTION H-H

SECTION I-I

PRECAST OPTION - SPECIAL CORNER POSTS

| $\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$ | \|c|chers | STANDARD PLANS | PERIMETER WALLS | $\begin{gathered} \text { INDEX } \\ 534-250 \end{gathered}$ | $\begin{aligned} & \text { SHEET } \\ & 8 \text { of } 10 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

Table 2					
$\left\lvert\, \begin{gathered} \text { Wind } \\ \text { Speed } \\ \text { Category } \end{gathered}\right.$	Masonry Walls ($8 \times 8 \times 16$)		Foundations		
				T-Footing	Trench
	Bars V1	$\begin{gathered} \text { SV } \\ \text { spacing } \end{gathered}$	$F 1 \& F 2$	(w)	Footing Depth (
130	\#5			$\frac{4^{\prime \prime}-4^{\prime \prime}}{5^{\prime \prime}}$	$\frac{5^{\prime}-6^{\prime \prime}}{6^{\prime \prime}-4^{\prime \prime}}$
$\begin{array}{r}150 \\ \hline 170 \\ \hline\end{array}$	\#5	$\frac{2^{\prime}-0^{\prime \prime}}{1^{\prime \prime}-4^{\prime \prime}}$	\#5	$\frac{5^{\prime}-0^{\prime \prime}}{6^{\prime}-0^{\prime \prime}}$	$\frac{6^{\prime}-4{ }^{\prime \prime}}{7^{\prime \prime}-0^{\prime \prime}}$

Notes:
. End vertical reinforcing bars $1 \frac{1}{2}$ " from top of bond beam blocks and horizontal bars 1/2 from edge of control joints.
2. Do not continue horizontal \#4 Bond beam reinforcing through control joint
3. Use stainless steel joint stabilizing anchors spaced at $16^{\prime \prime}$ vertically at all control
4. Seal Control Joints with backer rod and Type "A" silicone sealant (top and both sides).
5. See Sheet 10 for Bar placement details.
6. For Pilaster Cap Details, see Sheet 2.

PILASTER REINFORCING AND WALL CONTROL JOINT DETAIL

BAR BENDING DETAIL	
All bar dimensions diagram are out to All bars not shown bending diagrams	
MASONR	OPTION
$\begin{gathered} \text { INDEX } \\ 534-250 \end{gathered}$	SHEET 9 of 10

GENERAL NOTES:

SHEET	CONTENTS
1	General Notes; Index Contents
2	General, TL-3 Guardrail - Installed Plan and Elevation
3	Low-Speed, TL-2 Guardrail - Installed Plan and Elevation
4	W-Beam and Thrie-Beam Panel Details
5	Post and Off set Block Details
6	Guardrail Sections - Heights and Adjacent Slopes
7	End Treatment - Approach Terminal Geometry, Parallel
8	End Treatment - Approach Terminal Geometry, Curbed and Double Faced
9	End Treatment - Trailing Anchorage
10	End Treatment - Component Details
11	End Treatment - Controlled Release Terminal (CRT) System
12	Layout for CRT System - Side Roads and Driveways
13	Approach Transition Connection to Rigid Barrier - General, TL-3
14	Approach Transition Connection to Rigid Barrier - General, TL-3 - Curb Connections
15	Approach Transition Connection to Rigid Barrier - Low-Speed, TL-2
16	Approach Transition Connection to Rigid Barrier - Low-Speed, TL-2 - Curb Connections
17	Approach Transition Connection to Rigid Barrier - Details s Faced Guardrail
18	Approach Transition Connection to Rigid Barrier - Double Faced Guadral
19	Layout to Rigid Barrier - Approach Ends
20	Layout to Rigid Barrier - Approach Ends with Double Faced Guardrail Layout to Rigid Barrier - Trailing Ends Trailing End Transition Connection to Rigid Barrier
21	Rub Rail Details
22	Pedestrian Safety Treatment - Pipe Rail
23	Modified Mount - Special Steel Post for Concrete Structure Mount; Modified Mount - Encased Post for Shallow Mount; Modified Mount - Frangible Leave-Out for Concrete Surface Mount
24	Barrier Delineators - Post Mounted; Clear Space - Reduced Post Spacing for Hazards; 5/" Button-Head Bolt System

1. INSTALLATION: Construct guardrail in accordance with Specification 536.

This Index, along with the plans and the manufacturers' drawings on the Approved Products List (APL), is sufficiently detailed for installation of General Guardrail, Low-Speed Guardrail, End Treatment assemblies, and their connecting options shown herein. This precludes requirements for shop drawing submittals unless otherwise specified in the plans.
2. COMPATIBILITY: The General Guardrail in this Index is based on the Midwest Guardrail System (MGS) design, with an approximate height of $31^{\prime \prime}$ at the top of the Panel ($2^{\prime}-1$ " mounting height at vertical \& of Panel) and a midspan panel splice as shown on Sheet 2. Guardrail components included on the APL, which are compatible with this Index, may also be identified as 31 " or MGS Guardrail.
3. STANDARD COMPONENTS: Standard guardrail components, including posts, panels, and bolt systems, are based on the Task Force 13 Publication: Guide to Roadside Hardware Components (http://tt $13.0 r$ rg/Guides/componentGuide/).
4. BUTTON-HEAD BOLTS: Install Button-Head Bolts where indicated using bolts, nuts, and washers as defined on Sheet 24. Place washers under nuts. Do not place washers between bolt heads and panels, except where otherwise shown in this Index.
5. HEX-HEAD BOLTS: Install Hex-Head Bolts where indicated using bolts, nuts, and washers in accordance with material properties of Specification 967. Place washers under nuts.
6. MISCELLANEOUS ASPHALT PAVEMENT: Install Miscellaneous Asphalt Pavement where indicated with a tolerance of $\pm 1 / 2$ depth and in accordance with Specification 339,
7. ADJACENT SIDEWALKS \& SHARED USE PATHS: When guardrail posts are placed within $4^{\prime}-0^{\prime \prime}$ of a sidewalk or shared use path, use timber posts, or use steel posts only if treated with Pipe Rail as shown on Sheet 22.

When timber posts are used, one of the following safety treatments is required for the bolt(s) protruding from the back face of the posts:
. After tightening the nut, trim the protruding post bolt flush with the nut and galvanize per Specification 562.
b. Use post bolts $15^{\prime \prime}$ in length and countersink the washer and nut between $1^{\prime \prime}$ and $1^{1 / 2^{\prime \prime}}$ deep into the back face of the post. C. Use $15^{\prime \prime}$ post bolts with sleeve nuts and washers.

When End Treatment posts are within $4^{-}-0^{\prime \prime}$ of a sidewalk or shared use path, steel posts are not permitted within the End Treatment segment. Terminate the Pipe Rail outside of End Treatment segments, as noted per Sheet 22.
8. NESTED W-BEAM: Where called for in the plans, install two w-Beam Panels mounted flush per location, securing all panels with Button-Head Bolts threaded through aligned slots and holes. 2" Button-Head Bolts are permitted for panel splice locations.
9. CONNECTION TO RIGID BARRIER: The connections to Rigid Barrier in this Index only apply to newly constructed bridge Traffic Railing and Concrete Barrier or where the complete Approach Transition Connection to Rigid Barrier shown herein can be installed without conflicting with existing Traffic Railins, structures, or approach slabs.

For connecting guardrail to existing bridge Traffic Railings, see Indexes 536-002, 521-404, and 521-405.
10. CONNECTION TO EXISTING GUARDRALL: Where a transition to existing guardrail at 27 " height is required, linearly transition the new guardrail height over a distance ranging from $25^{\prime}-0^{\prime \prime}$ to $31^{\prime}-3^{\prime \prime}$. Height transitions must occur outside of End Treatment and Aproach Transition segments.

Provide an immediate transition to the required midspan panel splice using the available panel options on Sheet $4\left(9^{\prime}-4^{1 / z^{\prime \prime}}\right.$ or 15^{\prime} $11 / 2$ " panel). Alternatively, this transition to midspan panel splice may be achieved by installing a single reduced post spacing of $3^{\prime}-1 \frac{11 / 2}{}$ within the new guardrail, immediately ad jacent to the connection location.
11. PLANS CALLOUTS: Begin/End Station labels are shown throughout this Index as they correspond to the station and offset callout specified in the plans.
In the plans, Begin/End Guardrail Station refers to the General TL-3 Guardrail Pay Item, and it may be abbreviated as Begin/End 6R. Station. Where the Low-Speed TL-2 Guardrail Pay Item is specifically required, the callout in the plans will then specify Begin/End TL-2 GR. Station.
12. QUANTITY MEASUREMENT: Measure guardrail and corresponding components as defined in Specification 536. The Guardrail length s measured along the centerline of installed Panels, between the points labeled Begin/End Guardrail Station shown on th approach/trailing ends).

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$		DESCRIPTION:	$\text { FDOT\} }$	FY 2023-24 STANDARD PLANS	GUARDRAIL	$\begin{gathered} \text { INDEX } \\ 536-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 24 \end{aligned}$

GENERAL GUARDRAIL
INSTALLED ELEVATION

INSTALLED SECTION

NOTES

1. GENERAL: Install the General Guardrail configuration where indicated in the plans.

Use $12^{\prime}-6^{\prime \prime}$ or longer W-Beam Panels. A single $6^{\prime}-3^{\prime \prime}$ Panel may be used at the end of the run to meet the nominal Begin/End

Where a differing guardrall configuration is required for constructataility beyond the options shown in this Index or the
. MIDSPAN PANEL LAP SPLICE: For proper structural function, Lap the Panels with the Splice Ridge oriented downstream or the final Direction of Traffic in the nearest traffic lane. For
reverse lane conditions, orient the Solice Ridge downstream of reverse lane conditions, orient the Splice Ridge downstream of
the lane direction with the highest traffic volume. Orienting Lap Splices for Temporary Traffic Control phasing is not required.
3. CONNECTION DETAILS: Connections to End Treatments, Approach Transitions, or other segment types are defined in the
4. W-bEAM PANEL DETAILS: See Sheet 4.
5. POST \& OFFSET BLOCK DETAILS: See Sheet 5
6. GUARDRAIL SECTIONS: For Sections showing typical mounting heights, grading, and lateral off sets in relation to adjacent
roadway features, see Sheet 6 .
7. MODIFIED MOUNTS: Where concrete structures, concrete sidewalk, or shallow depth conditions are enc,
Sheet 23 for additional post mounting options.
8. DEFINED SEGMENTS: The General Guardrail shown provides the base configuration, including Post Spacing and splice locations. for Defined Segment modifications where indicated in the plans shown in this Index (eq. Double Faced W-Beam Doeep Posts Slope Breaks, Pipe Rail, Rub Rail, or Reduced Post Spacing for Hazards).

INSTALLED SECTION

NOTES:

1. GENERAL: Install the Low-Speed Guardrail configuration where indicated in the plans. Low-Speed Guardrail may include tapered Use 12'-6" or $25^{\prime}-0^{\prime \prime}$ W-Beam Panels for normal spans, and use 9^{\prime} $4^{1 / 2 / 1 "}$ Panels for end connections to adjoining segments as show
A single $6^{\prime}-3^{\prime \prime}$ Panel may be used at the end of the Low-Speed Guardrail run along with a single reduced $6^{\prime}-3^{\prime \prime}$ post spacing to meet the nominal Begin/End Guardrail Sta. required.

Where a differing guardrail configuration is required for constructability beyond the options shown in this Index or the
2. MIDSPAN PANEL LAP SPLICE: For proper structural function. Lap the Panels with the Splice Ridge oriented downstream of the lane conditions, orient the Splice Ridge downstream of the reverse direction with the highest traffic volume. Orienting Lap Splices for Temporary Traffic Control phasing is not required
3. CONNECTION DETAILS: Connections to End Treatments, Approach Transitions, or other segment types are def
Index Sheets. APL Drawings, or the plans.
4. W-beam panel details: See Sheet 4.
5. POST \& OFFSET BLOCK DETAILS: See Sheet 5.
6. GUARDRAIL SECTIONS: For Sections showing typical mounting eights, grading, and lateral off sets in
. MODIFIED MOUNTS: Where concrete structures, concrete sidewalk or shallow depth conditions are encountered, see Sheet 23 for additional post mounting options.
8. RESTRICTIONS: Low-Speed Guardrail segments are not permitted for use with items including, but not limited to, Double Faced W-
Beam, Deep Posts at Slope Breaks, Raised Curb, Pipe Rail, and/or Beam, Dee
Rub Rail

LOW-SPEED, TL-2 GUARDRAIL DETAILS

| LAST REVISION 11/01/19 | \|c|c | DESCRIPTION: | FDOTY | FY 2023-24
 STANDARD PLANS | GUARDRAIL | $\begin{gathered} \text { INDEX } \\ 536-001 \end{gathered}$ | SHEET
 3 of 24 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

SLOPE BREAK CONDITION TIMBER DEEP POST

SLOPE BREAK CONDITION STEEL DEEP POST

GUARDRAIL TYPES - MOUNTING HEIGHTS \& POST DEPTHS

TYPICAL GRADING Max.)
PAVT. PLACEMENT DETAIL (See Note 2)

TYPICAL SIDEWALK DETAIL (Work with Other Sections as Reqd.)

ADJACENT TO CURB
(Type F Curb Shown)

BEHIND CURB
(Type F Curb Shown)

ADIACENT TO SHOULDER GUTTER

UNPAVED OR PARTIALLY PAVED SHOULDER

FULLY PAVED SHOULDER

SHOULDER GUTTER

DOUBLE FACED GUARDRAIL (Shown In Median)

NOTES:

GUARDRAIL HEIGHT SUMMARY TABLE:			
Type:	Min. Depth 'D':	Mounting Height 'H':	Post Length 'L':
W-Beam (Single and Double Faced)	$3^{\prime \prime}-10^{\prime \prime}$	$2^{\prime \prime}-1^{\prime \prime}$	$6^{\prime}-6^{\prime \prime}$
Thrie-Beam (Single and Double Faced)	$3^{\prime \prime}-10^{\prime \prime}$	$1^{1}-9{ }^{\prime \prime}$	$6^{\prime}-6^{\prime \prime}$
Timber Deep Post	$4^{\prime}-10^{\prime \prime}$	See Above	$7^{\prime}-6^{\prime \prime}$
Steel Deep Post	$6^{\prime}-4^{\prime \prime}$	See Above	9 '0

1. GUARDRAIL SECTIONS: Construct Sections as indicated in the plans. The details Shown herein depict W-Beam Guardrail, but are applicable to the other define Guardrail Types placed at the corresponding height, 'H'. Use components per
Sheets 4 \& 5. Steel and timber post types are interchangeable unless Sheets $4 \& 5$. Steel and timber post types are interchangeable unless
otherwise def ined. The $1: 10$ Max. cross slope show is the maximum slop permitted for proper guard rail function, but project-specific cross slope
requirements are governed by additional design criteria, per the plans.
2. TYPICAL GRADING \& PAVEMENT PLACEMENT DETAIL: COnstruct features as depicted except where superceded by specific Guardrail Sections or the plans. depicted except where superceded by specific Guardrail Sections or the plans.
Place the Slope Break a Minimum of ${ }^{\text {2 }}$ benind the post For Deep Posts, the
Sta Place the Slope Break a Minimum of 2^{\prime} behind the post. For Deep Posts, the
slope break may be placed at the \mathbb{q} Post with the $2^{\prime \prime}$ Miscellaneous Asphalt Slope break may be
Pavement omitted.
3. SLOPE BREAK CONDITION: Install Deep Posts only where called for in the
4. LATERAL OFFSETS: The Lateral Offsets shown are governed by the station
and offset call outs for Face of Guardrail, as shown in the plans.
5. ADJACENT TO CURB: Place the Face of Guardrail consistently off set either the plans station and offset callout. For offset changes, transition the Fac he plans station and off set callout.

NOTES:

1. INSTALLATION: Locate Approach Terminals where called for in the plans,
with the Post (11 \& placed at the Begin/End Guardrail Station indicated in
the plans. the plans.
The Plan Views shown herein are schematic only, showing basic geometry
 Treatment, 'LE', 'includes the proprietary portion of various Approa
Terminals and provides for more consistent planning of assembly

- Direction of Traffic

APPROACH TERMINAL ASSEMBLY
'PARALLEL' TYPE - PLAN VIEW

SECTION AT POST (1) WITH UNPAVED SHOULDER

SECTION AT POST (1) WITH FULLY PAVED SHOULDER

SECTION AT POST (1)
WITH SHOULDER GUTTER

NOTES:

1. GENERAL: See Notes 1 through 3 on Sheet 7
2. CUREED SEGMENTS: TYpe E curb is required within the
limits shown. When a different curb type is called for outside of the Type E curb limits. transition the curb
shape linearly, over a nominal distance ranging $5^{\prime \prime}-0^{\prime \prime}$ to shape
$10^{\prime}-0^{\prime \prime}$
3. TAPER LENGTH: For Curbed Seqments taper the quardrail away from the roadway where shown to place the inside edge of the Impact Head at $5^{\prime \prime}$ behind the
face of the curb. Where additional lateral off set is

4. GUARDRAIL HEIGHT TAPER: For Curbed Segments, the Connecting General Guardrail Mounting Height,', H', is
typically measured from the Lio of Gutter (See Sheet 6 typically measured from the Lip of Gutter (See Sheet 6
Guardrail Sections, 'Adjacent to Curb'), while the End
Terminal Assembl ' H ' is measured tran the Mis Terninal Assembly 'H' is meassured trom the Misc.
Asphalt Pavt. (See Section A-A. Linearly taper the Asphalt Pavt. (See Section A-A). Linearly taper the
difference in Mounting Height over a minimum length of
lfe $12^{\prime}-6^{\prime \prime}$, starting where indicated herein.
5. DOUBLE FACED SEGMENT: Connect to Double Faced
General Guardrail. Use consistent Posts and Offset Block types as specified in the APL drawings over the entire Length of End Treatment, 'LE'. Posts and off seet Block
in the ad joining General Guardrail segment may be in the ad joining General
different from those inside of the 'LE.' An change in po type between timber and steel is permitted, immediately
outside of the $L E$ ' segment.

impact head end delinea
6. IMPACT HEAD END DELINEATOR: Apply Yellow Retroreflective Sheeting to the nose of the End Termina Retroreflective Sheeting to the nose
in accordance with Specification 536 ,
7. CLEAR AREA REQUIREMENT: DO not place any permanent aboveground installations within the areas shown with
$1: 10$ maximum grading. For the finished condition, keep t.is maximum grading. For the finished condition, , ceep
this area r oe of all aboveground obstructions, including dense vegetation and trees.
8. 2" MISCELLANEOUS ASPHALT PAVEMENT: The Z" Misc. Asphalt Pavement shown upstream of Post (1) may be
substituted with a different pavement type where calle
for for in the Plans.
9. single faced 'Parallel' segments: See Sheet
 (Height, 'H', Measured from Misc. Asphalt Pavt.)

END TREATMENT - APPROACH TERMINAL GEOMETRY CURBED AND DOUBLE FACED

end treatment - Controlled release terminal (CRT) System
LAST
REVISION

Z DESCRIPTION:
FY 2023-24
GUARDRAIII

Index	sheet
$536-001$	11 of 24

6. SHOP-BENT PANELS: Install Shop-Bent panel(s) where indicated using 12'-0" or $25^{\prime}-0^{\prime \prime}$ W-Beam Panels. Splice at post locations within
6. SHOP-BENT PANELS: Install Shop-Bent panel(s) where indicated using $12^{\prime \prime} 0^{\prime \prime}$ or $25^{\prime}-0^{\prime \prime}$ W-Beam
the CRT radius using the General configuration of $5 / 8^{\circ} \otimes$ Button-Head Bolts (8 reqd. per splice).
7. GENERAL GUARDRAIL: General Guardrail typically inc/udes Panels and Post Spacing as shown on Sheet 2, including parallel and tapered segments. Apporoach Transitions, Low-Speed Guard
Guardrail shown herein if indicated in the plans.

LAYOUT FOR CONTROLLED RELEASE TERMINAL (CRT) SYSTEMS - SIDE ROADS AND DRIVEWAYS

11/01/19
FDOT\} FY 2023-24

TL-3 APPROACH TRANSITION
INSTALLED ELEVATION

TL-3 APPROACH TRANSITION INSTALLED PLAN

Direction of Traffic

NOTES:

1. INSTALLATION: Construct the Approach Transition segment where indicated in the
plans. For example Layouts showing the Approach Transition's fit among other plans. For example Layouts showin
guardrail segments, see Sheet 19 .
For existing bridge connection options, see Indexes 536-002, 521-404, and 521-405. 2. SECTION VIEWS \& DETAILS: For cross sections and details, including the barrier
mounting hardware, curb transition, ad jacent grading, and installation dimensions, see Sheet 17 .
2. GUARDRALI TAPER: The connecting guardrail may require a different lateral offset if
shown in the plans. At the location shown herein t taper the gurdrail to the connecting guardrail offset. If the adjacent guardrail segment has the same offset connecting guardrail off set. If the ad jacent guardrail segment
as the Approach Transition segment, then no taper is required.
3. END TRANSITION OF CURB OPTIONS: The Plan and Elevation views depict an example
Curb Transition to Flush Shoulder from Section D-D to E-E, but this transition may require a different shape depending on the End Transition option shown in the plans

4. RIGID BARRIER END TRANSITION: Taper the Rigid Barrier toe as shown. See
Concrete Barrier, Index 521-001, and Traffic Railing, Indexes $521-422$ and $521-428$, Concrete Baf
for details.
5. OFFSET BLOCKS: For Thrie-Beam post locations within the Length of Approach For the midspan of the Thrie-Beam Transition Panel and for all other W-Beam
locations shown herein, use the W-Beam Offset Blocks with $1^{\prime}-2$ " height.
6. OFFSET: The required off set difference between the Face of Guardrail and Rigid offet callouts in the plans. A consistent guardrail off set deviation of up to 4 inches outside of the Rigid Barrier Shoulder Line is permitted over the length ' LA'
7. GENERAL GUARDRAIL: General Guardrail typically includes Panels and Post Spacing as
shown on Sheet 2, including parallel and tapered segments. Approach Terminals, LowShown on Sheet 2, including paralle and tapered segments. Approach Term inals. Low
Speed Guardrail, or Reduced Post Spacing Guard rail segments may be substituted for
the General Guardrail shown herein if indicated in the plans.

APPROACH TRANSITION CONNECTION TO RIGID BARRIER - GENERAL, TL-3
LAST
REVISION
\square =DOT

TL-3 Apprh.
Trans. \&
Segin/
\&
Guardrail
Sta.
'LA' Length of Approach Transition $=30^{\prime}-7^{3} / 4^{\prime \prime}(T L-3)$
$\left.\begin{array}{c}\text { Trans. \& } \\ \text { Beginl End } \\ \text { uardrail Sta. }\end{array}\right) \quad$ (See Note 3) \qquad

TL-3 APPROACH TRANSITION
Direction of Traffic
NOTES
GENERAL: See the applicable notes and details on Sheet 13 CONNECTION - PLAN VIEW 2. SECTION VIEWS \& DETALLS: For cross sections and details,
including the barrier mounting hardware, curb transition, including the barrier mounting hardware, curb transition,
ad jacent grading, and installation dimensions, see Sheet 17 .
3. ELEVATION VIEW: For post and panel installation details
within 'LA', see the elevation view on Sheet 13. The curb within LA, see the elevation view on Sheet 13. The culs
details will differ depending on curb option required.

APPROACH TRANSITION CONNECTION TO RIGID BARRIER - GENERAL, TL-3 CURB CONNECTIONS

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$		$\begin{array}{cc} \text { FDOT } & \text { FY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	GUARDRAIL	$\begin{gathered} \text { INDEX } \\ 536-001 \end{gathered}$	$\begin{gathered} \text { SHEET } \\ 14 \text { of } 24 \end{gathered}$

NOTES:

1. GENERAL: See the applicable notes and details on Sheet 15
2. SECTION VIEWS \& DETAILS: For cross sections and details, Sncluding the barrier mounting hardware, curbs transitition,
adjacent grading, and installation dimensions, see Sheet 17 .
3. ELEVATION VIEW: For post and panel installation details
within 'LA', see the elevation view on Sheet 15. The curd
within LA, see the elevation view on Sheet 15. The culs
details will differ depending on curb option required.

Z DESCRIPTION:
\square

TL-2 APPROACH TRANSITION
WITH 'TYPE F CURB' WITH 'TYPE F CURB' CONNECTION - PLAN VIEW
$_$Direction of Traffic

TYPE A APPROACH TO RIGID BARRIER - PLAN VIEW
MEDIAN OR OUTSIDE SHOULDERS
(Mirror Horiz. and/or Vert. for Opposite
Direction and/or Side of Road)

SECTION $\mathrm{H}-\mathrm{H}$

BRIDGE ABUTMENT (Between Bridges)

NOTES:

1. INSTALLATION: The Plan Views shown are schematic only, showing example geometry for connecting guardrail segments including taper locations and Double Faced Guardrail requirements as applicablee
Work this Sheet with the plans, where stationing and offsets for BeginlEnd Guardrail Begin/End Rigid Work this Sheet with the plans, where stationing and off sets for Begin/End Guardrail, Segin/ End Rigid
Barrier and Begin/End Taper are specified. For existing bridge layouts, see Index 536-002, 521-404, Barrier and
and $521-405$.
2. GENERAL (OR LOW-SPEED) GUARDRALL SEGMENT: COnstruct this segment if Shown in the plans. For the
case where this seqment's offset differs from the Aproach Transition off set. linearly taper the case where this segment's off set differs from the Approach Transition off set, linearly
guardrail between the Begin/End Taper Stations and offsets as specified in the plans.
For the shortest length case of a direct connection between the End Treatment and the Approach
Transition, this segment may be omitted as shown in the plans
3. LENGTH OF APPROACH TRANSITION 'LA': Install the applicable Approach Transition as shown per
4. LENGTH OF END TREATMENT 'LE': Install the Approach Terminal End Treatment as shown per Sheet
or 8 , where called for in the plans. Use the corresponding APL drawings for construction details.
5. CROSSOVER GUARDRAIL (FOR TYPE B APPROACH): Install the Crossover Segment tapering linearly from
the Begin Taper Sta. and offset to the End Taper Sta. and offset as specified in the plans.
6. LENGTH OF DOUBLE FACED GUARDRAIL PANELS, 'LD' (FOR TYPE B APPROACH): Terminate the Double Faced Guardrail panels as shown based upon the 30° line measured from the hazard on the opposit Side of the median). Extend the panel segment longer
Panel's end Bolt Slot to align with a post Bolt hole.
Install a Flared End Unit where shown, as defined on Sheet 9 ,
7. END TREATMENT OPTIONS (FOR TYPE B \& C APPROACH): For Double Faced applications, use either a Double Faced Approach Terminal Assembly per Sheet 8 or a Crash Cushion per Index 544 -ool. For
either Option, meet the $1: 10$ adjacent grading requirements for Approach Terminals as shown on Sheet
8.
9. SLOPE GUARD: Where indicated in the plans, install a Guardrail segment between bridge approaches
and off set from the bridge abutment's Slope Break as shown. Install posts at the end bolt slots of the
 panel sy
barriers.
Sheet 9.

LAYOUT TO RIGID BARRIER APPROACH ENDS WITH DOUBLE FACED GUARDRAIL

TYPE D TRAILING CONNECTION FROM RIGID BARRIER
PLAN VIEW - MEDIAN OR OUTSIDE SHOULDER
Mirror Horiz. and/or Vert. for Opposite
Direction and/or Side of Road)

NOTES:

1. See the applicable Notes on Sheet 19.
2. LENGTH OF TRAILING ANCHORAGE, 'LT': Install the Trailing Anchorage as shown on Sheet 9 , where called for in the plans.
3. ThRIE-BEAM TERMINAL CONNECTOR: Install connector and bolts as shown on Sheet 17
4. RIGID BARRIER SINGLE SLOPE END FACE: See Concrete Barrier Wall, Index 521-001, and Traffic
Railing, Indexes $521-422$ and $521-423$, for details.

TRAILING END TRANSITION CONNECTION TO RIGID BARRIER - INSTALLED ELEVATION

LAYOUT TO RIGID BARRIER - TRAILING ENDS
LAST
REVISION

11/01/19
\qquad

GENERAL PIPE RAIL SECTION

PIPE RAIL INSTALLED ELEVATION (End Segment Shown)

MOUNT SECTION DETAIL

Steel Post Flange
mount elevation detail (Back View - Mirrored)

MOUNT ISOMETRIC CUT-AWAY

NOTES:
. GENERAL: Install General Pipe Rail where indicated in the plans or when
existing sidewalks or shared use paths existing sidewalks or shared use path
are located less than $4^{\prime}-0^{\prime \prime}$ from the are located less than 4-0" from the
back of Steel Posts as shown on Sheet 6
2. PIPE RAIL END SEGMENTS: Place End Segments on both ends of General Pipe Rail runs, with End Fixtures mounted Terminal Posts located outside of
Approach Terminal Assembly ('LE'), Trailing Approacage Assembly ('LT'), and Approach
Anchorater Transition ('LA') segments.
3. MATERIALS: Use steel brackets, fixtures, and pipes in accordance with Specification
4. RAIL SPLICES: Install Rail Splices to join pieces of $2^{\prime \prime}$ NPS Pipe Rail into a continuous
system. Place splices as needed, at a spacing system. Place splices as needed, at a spacing
of $18^{-1} 0^{\prime \prime}$ or greater. Orient the head of bolt on the top of the pipe.

elevation

RAIL SPLICE DETAIL

PEDESTRIAN SAFETY TREATMENT - PIPE RAIL

special steel post for concrete structure mount

NOTES:

1. INSTALLATION: Install Barrier Delineators as shown in accordance with the plans, with Specifications 536 and
705 , and with the manufacturer's design as approved on
the APL
2. MATERIALS: Use materials of the size and type defined
for Barrier Delineators in Specificication 993.
3. COLOR: Use either white or yellow retror eflective sheeting
to match the color of the nearest lane's edgeline.
4. MOUNT LOCATIONS: Mount Barrier Delineators atop posts
MS shan starting with Post (3) of Approach Terminals and MOUNT LOCATTONS: Mount Barrier Deineacors Aer inats and
as Shown, statting with Post (3) of Aproach TTerminals
incrementally increasing spacing towards the downstream incrementally increasing spacing towards the downstream
direction. Install the Barrier Delineators at the following
spacing. spacing:

$51=25^{\prime} \times 1$ Space $52=50^{\prime} \times 1$ Space $53=75^{\prime} \times 1$ Spe

St $=100^{\circ} \times$ for the Remaining Ru
Additionally, place a Barrier Delineator on Post (2)
of the Trailing Anchorage or on the post nearest of the Trailing An
the Rigid Barrier.
5. MEDIAN GUARDRALL: Install retroreflective sheeting on
both sides of the barrier delineator for Guardrail on medians.

STEEL POSTS TIMBER POSTS =MOUNT LOCATION - ISOMETRIC VIEWS $=$

Direction of Traffic \square
MOUNT LOCATION - PLAN VIEW

BARRIER DELINEATORS

NOTES:

INSTALLATION:
Work these details with the
plans, where Stationing for plans, where Stationing for
Beein/ ned Hall Spacing and
Begin/ nnd Quarter Spacing are Begin/End Qaurter Spacind
indicated if required. Where the Begin/End Stations
indicated in the plans do not correspond exactly to post locations in construction, extend
the Reduced Post Spacing segment to the nearest post(s)
before the Begin Station and $/$ or bef ore the Begin Station and/or
after the End Station called for
2. PANEL SPLICES: Midspan Panel Splices are not required in
Transition and Reduced Post Transition and Reduced Post
Spacing segments, however they are required for General
segments. To place midspan segments. To place midspan
splices in General segments, use
one Non-General panel length one Non-General panel lengt
$\left(9^{-}-4 / 2^{\prime \prime}\right.$ or $\left.15^{\prime}-7 / 1^{\prime \prime}\right)$ or add an (94-4.4/2 or $15^{\prime \prime}-11^{\prime \prime \prime}$ "or add an
additional Transition spaced
post where required. post where required.
3. LOW-SPEED GUARDRAIL: For
Reduced Post Spacing with LowSpeed Guardrail $12^{\prime}-6^{\prime \prime}$ post
 pattern requires a $6^{\prime}-3^{\prime \prime}$ space
between the $12^{\prime}-6^{\prime \prime}$ and $3^{\prime}-1 / 1^{\prime \prime}$
spaces. spaces.
4. PANEL POST BOLT SLOTS:
For Quarter Spacing

 panels only where required for
mounting and in accordance with mounting and in act
Specification 536 .

DETAIL 'S' - HALF SPACING ELEVATION (AS REQD. PER THE PLANS)

DETAIL 'S' - QUARTER SPACING ELEVATION (AS REQD. PER THE PLANS)

Length 'L'

ELEVATION OPTION 1

ELEVATION
OPTION 2 OPTION 2

PROFILE Option 1 Shown)

ELEVATION PROFILE

ELEVATION PROFILE $\overline{=} \mathrm{HEX}-\mathrm{NUT}$

ELEVATION
(For CRT \& Termina
Connectors Where Shown
Install Over Panel Face)

BUTTON-HEAD BOLT LENGTHS:

Application(s):	Length 'L':	Min. Thread Length:
Panel Splice	$1^{1 / 1 / 4}$	Full Length
Steel Post Mount - Single Faced Guardrail	$10^{\prime \prime}$	$4^{\prime \prime}$
Timber Post Mount - Single Faced Guardrail	$18^{\prime \prime}$	$4^{\prime \prime}$
Steel or Timber Post Mount - Double Faced Guardrail	$25^{\prime \prime}$	$4^{\prime \prime}$

NOTES:

1. Use nuts, bolts, and washers in accordance with Specification 967
2. For Steel Posts with Double Faced Guardrail, the single 25" Length bolt
(one bolt thru both post flanges) may be repiaced with two 10" Length bolts (one bolt thru both post fla
(one boot per post flange).
3. Use bolts listed in Table 2 in corresponding locations shown in this Index

5/8" BUTTON-HEAD BOLT

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$	\|r	DESCRIPTION:	$\text { FDOT\} }$	FY 2023-24 STANDARD PLANS	GUARDRAIL	index 536-001	$\begin{gathered} \text { SHEET } \\ 24 \text { of } 24 \end{gathered}$

PICTORIAL

TOP VIEW

SIDE VIEW

SPECIAL STEEL POST FOR ROADWAY THRIE-BEAM
tRANSITIONS TO BRIDGE TRAFFIC RAILING RETROFITS

APPROACH SLAB WITH CURB
Longitudinal Location of Transition Blocks And Curb End Flares will Vary with Scheme Type
PARTIAL PLAN VIEWS

GENERAL NOTES

1. This index provides guardrail transition details for approach and trailing end guardrail connections to existing bridges, including details for connecting to traffic railing retrofits and safety shape barriers on existing bridges. Sheets 1 through 26 apply to bridges with retrofitted traffic railings (Sheet 26 shows the trailing end guardrail connections). Sheets 27
and 28 apply to bridges with safety shape traffic railing and they provide approach and and 28 apply to bridges with safety shape traffic railing, and they provide approach and
trailing end transition connection details for guardrail. Construct these guardrail transitions and connections where called for in the plans.
2. For miscellaneous guardrail components and construction details that are not provided in this Index, refer to Index 536-001

NOTES FOR GUARDRAIL TRANSITIONS CONNECTING TO TRAFFIC RAILING RETROFITS ON EXISTING BRIDGES

1. The transition detail shown on this sheet shows (a) the standard post spacings within the typical thrie-beam approach transitions connecting to existing bridges with retrofit traffic railings, and (b) depict the typical alignments of the approach transitions.
2. The curb and gutter flare shown on this sheet is typical of flares that are to be constructed when approach slab curbs extend to the beginning of the slab, and where other treatment to curb blunt ends are not in place.
3. The special steel post for roadway thrie-beam transitions detailed on this sheet is specific to all transition applications on this index that require one or more steel posts.

The special steel post and base plate assembly shall be fabricated in accordance with Specification 967.
Anchor studs shall be fully threaded rods in accordance with ASTM F1554 Grade 36 or ASTM A193 Grade B7. All nuts shall be heavy hex in accordance with ASTM A563 or ASTM A19
4. Anchor studs and nuts shall be hot-dip zinc coated in accordance with the Specifications. After the nuts have been snug tightened, the anchor stud threads shall be single punch distorted immediately above the top nuts to prevent loosening of the nuts. Distorted threads shall be coated with a galvanizing compound in accordance with the Specifications.
Adhesive bonding material systems for anchors shall comply with Specification 937 and be installed in accordance with Specification 416.4. Nested beam extensions and points for terminal connector attachments will vary for traffic railing barrier vertical face retrofits. The plan views for the vertical face retrofit barriers show the primary configurations for each particular scheme. The associated pictorial views show the variations.
5. For installing thrie-beam terminal connector to traffic railing vertical face retrofits, see notations on Sheets 15 through 18 and the flag notation on Sheet 26 .
guardrail transition alignments for bridge thrie-beam and vertical face traffic railing retrofit

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$	\| DESRIPTION:	$\begin{array}{cc} \text { FDOT } & \text { FY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	GUARDRAIL TRANSITIONS AND CONNECTIONS FOR EXISTING BRIDGES	$\begin{gathered} \text { INDEX } \\ 536-002 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 28 \end{aligned}$

GUARDRAIL APPLICATIONS FOR BRIDGES WITH FULL WIDTH SHOULDERS AND SAFETY Shape traffic railing barrier extending less than full approach slab length

187' R LAYOUT
STANDARD PANELS SET TO RADIALS ADJOINING BRIDGES DETAIL W

GUARDRAIL APPLICATIONS FOR BRIDGES WITH LESS THAN FULL WIDTH SHOULDERS AND CONCRETE TRAFFIC RAILING EXTENDING LESS THAN FULL APPROACH SLAB LENGTH

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$	\|	DESCRIPTION:		FY 2023-24 STANDARD PLANS	GUARDRAIL TRANSITIONS AND CONNECTIONS FOR EXISTING BRIDGES	$\begin{gathered} \text { INDEX } \\ 536-002 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 28 \end{aligned}$

MEDIANS WITH 10' BRIDGE SHOULDERS

MEDIANS WITH 6' BRIDGE SHOUIDERS
Note: The guardrail configurations shown apply only to parallel or near parallel bridges with open medians.

APPROACH GUARDRAIL TREATMENTS FOR BRIDGES WITH CONCRETE TRAFFIC RAILING extending less than full approach slab length in narrow medians with flush shoulders

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$	\mid	DESCRIPTION:	FDOT	FY 2023-24 STANDARD PLANS	GUARDRAIL TRANSITIONS AND CONNECTIONS FOR EXISTING BRIDGES

SEE INDEX 460-471 - SCHEME 1

SEE INDEX 460-471 - SCHEME 3

PARTIAL PLAN VIEWS OF GUARDRAIL APPROACH TRANSITIONS AND CONNECTIONS FOR BRIDGE TRAFFIC RAILING (THRIE-BEAM RETROFIT)

PARTIAL PLAN VIEWS OF GUARDRAIL APPROACH TRANSITIONS AND CONNECTIONS FOR BRIDGE TRAFFIC RAILING (THRIE-BEAM RETROFIT)

SEE INDEXES 460-473 \& 460-476 - SCHEME 1

SEE INDEXES 460-473 \& 460-476 - SCHEMES $3 \& 4$

SEE INDEXES 460-473 \& 460-476 - SCHEME 2

SEE INDEXES 460-473 \& 460-476-SCHEMES $3 \& 4$

PARTIAL PLAN VIEWS OF GUARDRAIL APPROACH TRANSITIONS AND CONNECTIONS FOR BRIDGE TRAFFIC RAILING (THRIE-BEAM RETROFIT)

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$	\| DESRIPTION:	$\begin{array}{cc} \text { FDOT } & \text { FY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	GUARDRAIL TRANSITIONS AND CONNECTIONS FOR EXISTING BRIDGES	$\begin{gathered} \text { INDEX } \\ 536-002 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 8 \text { of } 28 \end{aligned}$

SEE INDEXES 460-473\& 460-476-SCHEMES $5 \& 6$

SEE INDEXES 460-473 \& 460-476 - SCHEMES $5 \& 6$

PARTIAL PLAN VIEWS OF GUARDRAIL APPROACH TRANSITIONS AND CONNECTIONS

 FOR BRIDGE TRAFFIC RAILING (THRIE-BEAM RETROFIT)

SEE INDEX 460-474 - SCHEME 1

SEE INDEX 460-474-SCHEME 2

SEE INDEX 460-474-SCHEME 3

PICTORIAL VIEWS OF GUARDRAIL APPROACH TRANSITIONS AND CONNECTIONS FOR
BRIDGE TRAFFIC RAILING (THRIE-BEAM RETROFIT)

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$			GUARDRAIL TRANSITIONS AND CONNECTIONS FOR EXISTING BRIDGES	$\begin{gathered} \text { INDEX } \\ 536-002 \end{gathered}$	SHEET 11 of 28

PICTORIAL VIEWS OF GUARDRAIL APPROACH TRANSITIONS AND CONNECTIONS FOR BRIDGE TRAFFIC RAILING (THRIE-BEAM RETROFIT)

LAST REVISION 11/01/19		DESCRIPTION:		FY 2023-24 STANDARD PLANS	GUARDRAIL TRANSITIONS AND CONNECTIONS FOR EXISTING BRIDGES	$\begin{gathered} \text { INDEX } \\ 536-002 \end{gathered}$	SHEET $12 \text { of } 28$

 SEE INDEX 521-405 OR 521-482 - SCHEME 2

SEE INDEX 521-405 OR 521-482 - SCHEME 3

PARTIAL PLAN VIEWS OF TRAFFIC RAILING (VERTICAL FACE RETROFIT) (INDEX 521-482 SHOWN, INDEX 521-405 SIMILAR)

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$		DESCRIPTION:		FY 2023-24 STANDARD PLANS	GUARDRAIL TRANSITIONS AND CONNECTIONS FOR EXISTING BRIDGES	INDEX $536-002$	$\begin{aligned} & \text { SHEET } \\ & 16 \text { of } 28 \end{aligned}$

SEE INDEX 521-483 - SCHEME 2

Traffic Railing (Vertical Face Retrofit)

SEE INDEX 521-483-SCHEME 3

SEE INDEX 521-483 - SCHEME 3
Note:
$21^{\prime \prime} \times 12^{\prime \prime} \times 5 /$ " $^{\prime \prime}$ Thrie-Beam Terminal Connector Plate (Back-Up Plate), And $7 /^{\prime \prime} 0$ HS Hex Bolts And Nuts (12" Long For
Scheme 1 And Length To Fit For Schemes 2 And 3) (5 Reqd.) With 21/" OD Plain Round Washers Under Heads And Nuts
PARTIAL PLAN VIEWS OF TRAFFIC RAILING (VERTICAL FACE RETROFIT)

PICTORIAL VIEWS OF GUARDRAIL APPROACH TRANSITIONS AND CONNECTIONS FOR BRIDGE TRAFFIC RAILING (VERTICAL FACE RETROFIT) (INDEX 521-482 SHOWN, INDEX 521-405 SIMILAR)

SCHEME II

* Splice Locations: Thrie-Beam - 12 Guardrail Splice Bolts And Recessed Nuts

$$
\begin{aligned}
& \text { Thrie-Beam-12 Guardrail Splice Bolts And Recessed } \\
& \text { W-Beam - } 8 \text { Guardrail Splice Bolts And Recessed Nuts }
\end{aligned}
$$

Use Of Schemes II And III Shall Be Determined In Accordance with The Standard Plans Instructions (SPI 536-002). GUARDRAIL TRANSITIONS TO EXISTING PRESTRESSED BEAM OR GIRDER BRIDGES

Use Of Scheme I Shall Be Determined
In Accordance With The Standard Plans Instructions (SPI 536-002).
guardrail transition to existing flat slab bridges

Required
SCHEME III
Panels Ad justed Forward
SCheme III
 Length For Bridge Safety Shape Railing] HS Hex Bolts And Nuts (5 Reqd.) With $2^{11 / 4}$ OD Plain Round Washers Under Heads And Nuts. [When Attaching Guardrail To Existing wing Posts or Bridge Rails, Care Should Be Exercised To Avoid Damaging Conduits And Their Utilities That May Be Routed Through Wing Posts Or Bridge Rails. When Conduits And
Their Utilities Are Encountered, At Least Five $/ / \mathrm{s}^{\prime \prime}$ HS Hex Bolts Shall Be Installed In Any of The Seven Holes Provide In The Thrie-Beam Terminal Connector.]

NOTES FOR GUARDRAIL TRANSITIONS TO SAFETY SHAPE TRAFFIC RAILINGS ON EXISTING BRIDGES When the guardrail attachment overlays the Bridge Number, Bridge Name or Date on the traffic railing, provide an aluminum sign panel with the obscured information. Attach the sign panel to the face of the traffic railing adjacent to the Thrie-Beam Terminal Connector with $1 / /^{\prime \prime} \varnothing \times 1^{\prime \prime}$ long concrete screws or expansion anchors at each corner, as approved by the Engineer. The sign panel shall be a minimum $1 / 16^{\prime \prime}$ thick and meet the requirements of Specification 700 with a white background and $3^{\prime \prime}$ tall black letters and sized approy
The cost of the sign panel shall be included in the cost of the Guardrail Bridge Anchorage Assembly.

When retrofitting thrie-beam guardrail to existing wing posts or existing bridge safety shape traffic railing, attachment construction to be paid for under the contract unit price for Guardrail Bridge Anchorage Assembly, EA., and shall be full compensation for bolt hole construction, terminal
connector, terminal connector plate(s) and bolts, nuts and washers.

GUARDRAIL APPROACH TRANSITION CONNECTIONS FOR EXISTING FLAT SLAB, PRESTRESSED BEAM AND
girder bridges with safety shape traffic railing extending less than full approach slab length

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$		DESCRIPTION:	FDOT	FY 2023-24 STANDARD PLANS	GUARDRAIL TRANSITIONS AND CONNECTIONS FOR EXISTING BRIDGES	$\begin{gathered} \text { INDEX } \\ 536-002 \end{gathered}$	$\begin{gathered} \text { SHEET } \\ 27 \text { of } 28 \end{gathered}$

Use of Scheme I Shall Be Determined
In Accordance With The Standard Plans Instructions (SPI 536-002).
GUARDRAIL TRANSITION TO EXISTING FLAT SLAB BRIDGES

</ <

Varies (Add $6^{\prime}-3^{\prime \prime}$
Thrie-Beaan Panel
if Reqd. to Extend to
Traffic Railing)
SCHEME III
 Length For Bridge Safety Shape Railing] HS Hex Bolts And Nuts (5 Reqd.) With $2^{1 / 4 \prime \prime}$ OD Plain Round Washers Under Heads And Nuts. [When Attaching Guardrail To Existing Wing Posts Or Bridge Rails, Care Should Be Exercised To Avo
Damaging Conduits And Their Utilities That May Be Routed Through Wing Posts Or Bridge Rails. When Conduits And Their Utilities Are Encountered, At Least Five //s" HS Hex Bolts Shall Be Installed In Any of The Seven Holes Provided

PLAN

NOTES FOR GUARDRAIL TRANSITIONS TO SAFETY SHAPE TRAFFIC RAILINGS ON EXISTING BRIDGES
. When the guardrail attachment overlays the Bridge Number, Bridge Name or Date on the traffic railing, provide an aluminum sign panel with the obscured information. Attach the sign panel to the face of the traffic railing adjacent to the Thrie-Beam Terminal Connector with $1 / l^{\prime \prime} \varnothing \times 1^{\prime \prime}$ long concrete screws or expansion anchors at each corner, as approved by the Engineer. The sign panel shall be a minimum $1 / 1 / 6^{\prime \prime}$ thick and meet the
requirements of Specification 700 with a white background and $3^{\prime \prime}$ tall black letters and sized appropriately to contain the information required. The cost of the sign panel shall be included in the cost of the Guardrail Bridge Anchorage Assembly.
2. When retrofitting thrie-beam guardrail to existing wing posts or existing bridge safety shape traffic railing, attachment construction to be paid for under the contract unit price for Guardrail Bridge Anchorage Assembly, EA., and shall be full compensation for bolt hole construction, terminal connector, terminal connector plate(s) and bolts, nuts and washers.

GUARDRAIL TRAILING END TRANSITION CONNECTIONS FOR EXISTING FLAT SLAB, PRESTRESSED BEAM AND GIRDER BRIDGES WITH SAFETY SHAPE TRAFFIC RAILING EXTENDING LESS THAN FULL APPROACH SLAB LENGTH

| LAST REVISION 11/01/19 | \|c|cose | $\begin{array}{cc} \text { FDOT } & \text { FY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$ | GUARDRAIL TRANSITIONS AND $\mathbb{C O N N E C T I O N S ~ F O R ~ E X I S T I N G ~ B R I D G E S ~}$ |
| :---: | :---: | :---: | :---: |

general notes

1. GENERAL: Work this Index in accordance with Specification 544 and the "Summary of Permanent Crash Cushions" table in the Plans. Where applicable, use Guardrail components and panel lap splices in accordance with Index 536-001.
2. TRANSITION PANEL: Where crash cushions are placed between two-way traffic or adjacent to two-way two-lane traffic, place a Transition Panel from the Concrete Barrier to the Crash Cushion on the downstream side of the barrier end (as shown). Follow the requirements of the APL drawing
3. MANUFACTURER'S TRANSITION: Construct the proprietary guardrail transition only if shown in the applicable APL drawing. See Note 4 below.
4. STANDARD GUARDRAIL TRANSITION: If the APL drawing does not provide a guardrail transition to w-beam guardrail, construct the Standard Guardrail $21^{\prime}-10^{1 / 2 "}$ segment must remain parallel to the roadway.

If the APL drawing does provide a guardrail transition to w-beam guardrai eplace the Standard Guardrail Transition segment with a w-beam guardrail segment at 6^{\prime}-3" post spacing, except that Post (10) will remain where shown herein if it is located at a guardrail begin or end taper station callout per
5. LENGTH OF END TREATMENT: For Crash Cushions, the Length of End Treatment includes all proprietary elements of the design as shown in the PL drawing, including the manufacturer's transition of guardrail if applicable.

The actual Length of End Treatment varies per Crash Cushion type, but an estimated Length of End Treatment is generally shown in the Plans to provide sufficient space for the Contractor's option of differing Crash Cushion types.
6. LENGTH RESTRICTION: In the "Summary of Permanent Crash Cushions" table, If a value is provided in the Length Restriction column, then select a Crash Cushion from the APL which has a Length of End Treatment less than or equal to the value shown. If the table instead shows not applicable (N/A) then Crash Cushion selection is unrestricted regarding length.
7. CRASH CUSHION STATION: The Crash Cushion Station point shown herein corresponds to the station provided in the "Summary of Permanent Crash Cushions" table in the Plans.

Direction of Traffic
\qquad

Direction of Traffic

PLAN VIEW

elevation view

NOTE：
Work this Sheet with the details and General Notes on Sheet 1 ．

STANDARD GUARDRAIL TRANSITION

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$	｜ra	DESCRIPTION：		$\begin{gathered} \text { FY 2023-24 } \\ \text { STANDARD PLANS } \end{gathered}$	CRASH CUSHION DETAILS	index 544-001	SHEET 2 of 3

NOTES:

elevation - Connection to thrie-beam Retrofit (See Note 3)

1. GENERAL: Work this Sheet with the details and General Notes on Sheet 1.

Install short guardrail extension only where called for in the plans, using the project-specific length speciffied. Short guardrail extensions are typically used where adding le
Approach Transition Connection to Rigid Barrier will not fit.
2. CONNECTION TO CONCRETE TRAFFIC RAILING: See Index 536 -001 for connection details to rigid barrier,
ncluding the Thrie-Beam Terminal Connector and Alignment Curb details. Install the Alignment Curb section with no curb transition, and extend the curb to the crash cushion as shown. The crash cushion must laterally extend
beyond the above-ground portion of the alignment curb to shield its end face from approaching traffic.
3. CONNECTION TO THRIE-BEAM RETROFIT: Provide Thrie-Beam Retrofit guardrail connection splice, curb, and Transition Block per Index 536-002 and the applicable Index 460-470 series.

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ \text { 11/01/19 } \end{gathered}$		DESCRIPTION:	FDOTT	FY 2023-24 STANDARD PLANS	CRASH CUSHION DETAILS	$\begin{gathered} \text { INDEX } \\ 544-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 3 \end{aligned}$

PLAN

SPACING OF RAISED RUMBLE STRIP SETS AT INTERSECTIONS
(Preformed Thermoplastic Set Shown, Others Similar)

$\prime C^{\prime}=0$ ' For Roadways with Paved Shoulders
$C^{\prime}=1.5^{\prime}$ For Roadways without Paved Shoulders

DETAIL "A"

OPTION P1-ASPHALT SET

OPTION P2 - PREFORMED THERMOPLASTIC SET

OPTIONAL MATERIALS DETAILS

TABLE 1-BRAKING ZONE	
Posted Speed (mph)	'L' (Feet)
≤ 30	150
35	200
40	250
45	300
50	350
55	410
60	470
65	550

NOTES:

1. Construct permanent raised rumble strips where shown in the Plans and in accordance with Specification 546.
2. Preformed Thermoplastic Set:
a. Use multiple applications to achieve desired $1 / 2$ " thickness.
b. Use color white

PERMANENT RAISED RUMBLE STRIPS

| $\begin{array}{\|c\|} \hline \text { LAST } \\ \text { REVISION } \\ 04 / 23 / 18 \end{array}$ | \|c|cone | $\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$ | RAISED RUMBLE STRIPS | $\begin{gathered} \text { INDEX } \\ 546-001 \end{gathered}$ | $\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 2 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

OPTION ST1 - ASPHALT SET

option st2 - Preformed thermoplastic set

option st3-Removable polymer striping tape set

OPTIONAL MATERIALS DETAILS \qquad
NOTES:

1. Construct short-term raised rumble strips and in accordanc with Specification 546.
2. See Sheet 1 for placement and additional details.
3. Use color white for Preformed Thermoplastic and Removable Polymer Striping Tape Sets.

SHORT-TERM RAISED RUMBLE STRIPS

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 04 / 23 / 18 \end{gathered}$		$\begin{array}{cc} \text { FDOTY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	RAISED RUMBLE STRIPS	index 546-001	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 2 \end{aligned}$

RUMBLE STRIP	
DEPTH TABLE	
LOCATION	DEPTH FROM SURFACE (IN.)
A	0
B	$9 / 6(\pm 1 / 6)$

NOTES:

1. When friction course extends more than $8^{\prime \prime}$ beyond the edge of the traveled way, blade off the extended friction course to the $8^{\prime \prime}$ line prior to rumble strip grinding,
2. Use the continuous array on both inside and outside shoulders 1,000 feet in advance of bridge ends or back to the gore recover area for mainline interchange bridges. Use the skip array for all other locations.
3. Exclude rumble strips at the following locations:
A. At mainline tolling areas, terminate rumble strips at the end of the mainline normal section.
B. At All Electronic Tolling (AET) facilities, terminate rumble strips within 50 feet of the centerline of the overhead gantry
c. On outside shoulders of entrance ramp terminals, terminate rumble strips at the point of the physical gore and resume at the end of the acceleration lane taper
Dn outside shoulars of exit ramp terminals, terminate rumble strips at the start of the deceleration lane taper and resume at the point of the physical gore. slab joint.

Plan View

PLAN VIEW

Rumble Strip (Typ.)

Rumble Strip (Typ.)
SKIP ARRAY
(Plan View)

SKIP ARRAY(Plan View)	
Continuous Grinding	
${ }^{A} \quad A$	
Rumble Strip (Typ.)	
continuous array (Plan View)	
TABLE 1 SKIP AND CONTINUOUS ARRAY APPLICATIONS	
Rumble Strip Placement	Array
Outside Shoulder with Buffered Bike Lane	Skip
Outside Paved Shoulder Width Greater than or Equal to $5^{\prime}-0^{\prime \prime}$	Skip
Outside Paved Shoulder Width Greater than $0^{\prime}-0^{\prime \prime}$ and Less Than $5^{\prime \prime}-0^{\prime \prime}$	Skip
Outside Paved Shoulder Equal to $\mathrm{O}^{\prime}-\mathrm{O}^{\prime \prime}$	Skip
Inside Paved Shoulder width Greater Than or Equal to $1^{1}-0^{\prime \prime}$	Continuous
Inside Paved Shoulder width Greater Than $0^{\prime}-0^{\prime \prime}$ and Less Than $1^{\prime}-0^{\prime \prime}$	Skip
Inside Paved Shoulder Width Equal to $0^{\prime}-0^{\prime \prime}$	Skip
One - Direction Passing Centerline	Continuous (See Note 3)
Two - Direction Passing Centerline	Continuous (See Note 3)
Two - Direction No-Passing Centerlin	Continuous

RUMBLE STRIP ARRAY DETAILS
\qquad

PLAN VIEW

gENERAL NOTES

1. Straightness tolerance of ground-in rumble strips in the roadway

At intersetion a mor or
. At intersections and major driveways,
A. Terminate outside shoulder rumble strips at the radius return
rumble strips at the radial return
C. Terminate centerline rumble strips on undivided highways
at the termination of centerline striping.
D. Terminate rumble strips at auxiliary lane
3. For Centerlines in passing zones, provide 2 foot gaps in the continuous array spaced at 40 feet and centered on RPM

$$
\begin{aligned}
& \text { continuous } \\
& \text { locations. }
\end{aligned}
$$

NOTES

design criteria:

1. Design is based on the assumption that the material contained within the reinforced soil volume, methods of construction and quality of prefabricate of the FDOT Structures Design Guidelines.

OIL PARAMETERS

1. See Wall Control Drawings for soil characteristics of foundation material to be
used in the design of the wall system.
The Contractor will provide soil design parameters for backfill material based on the actual soil characteristics utilized at the site.

MATERIALS:

1. See Specification Section 548 for material requirements.
construction:
2. Walls will be constructed in accordance with Specification Section 548 and the Wall Company's instructions.
3. For location and alignment of retaining walls, see Wall Control Drawings.
4. Refer to Wall Control Drawings of individual walls for minimum reinforcement strip/mesh length, factored bearing resistance's, minimum wall embedment and anticipated long term and differential settlements.
5. The Contractor is responsible for controlling water during storm events as onstruction.
6. It is the Contractor's responsibility to determine the location of any guardrail posts behind retaining wall panels. Prior to placement of the top
layer of soil reinforcement individual reinforcing strips/mesh may be
 skewed the Engineer. No cutting of soil reinforcement is allowed unless shown on Shop Drawings and approved by the Engineer. Any damage done to the soil reinforcement due to installation of the guardrail will be repaired approved by the Engineer.
If existing or future structures, pipes, foundations or guardrail posts within the reinforced soil volume interfere with the normal placement of soil reinforcement and specific directions have hot been provided on the of action shall be taken.
7. The Contractor is responsible for gradually displacing upper tayer(s)
soil reinforcement downward (15° maximum from horizontal) to avoid cutting soil reinforcement and conflicts with paving and subgrade preparation The Contractor's attention is directed especially to situations where roadwa
8. For concrete facing panel surface treatment, see Wall Control Drawings.

Extend surface treatment a minimum of $6^{\prime \prime}$ below final ground line.
Drive piles located within the soil volume prior to construction of the
retaining wall, unless a method to protect the structure, acceptable to both the Engineer and Wall Company, is proposed and approved in writing. The portion of piles or drilled shafts extensions within the soil volume will be wrapped with polyethy sheeting in accordance with Specification
11. Section 459.

A structural extension of the connection of the retaining wall panel to soil reinforcement will be used whenever necessary to avoid cutting or excessive (i.e., piles pipes, manholes, drop silets etc.).
12. Steps in leveling pads will occur at MSE Wall panel interfaces. Panels will not
cantilever more than $2^{\prime \prime}$ past the end of the upper tier leveling pad.
. he top of the leveling pad or footing will be 2^{-0} minimum below final
14. Top of leveling pad elevations shown in the Wall Control Drawings are maximum elevations. The constructed leveling pad elevations may be deeper based on
15. The panel layout shown in the shop drawings. than half the height of a standard panel,
16. Work this Index with Index 521-600 thru 521-650.

SHOP DRAWINGS:
See Specification Section 548 for shop drawing requirements.

Applicable	Durability Requirements (Carbon-Steel Reinforcing)			Durability Requirements (FRP Reinforcing)			Soil Reinforcement Type	Other Allowable FDOT Wall Types					
FDOT Wall Type *	Concrete Cover (in.)	Concrete Class for Panels	Pozzolan Additions? **	Concrete Cover (in.)	Concrete Class for Panels	Pozzolan Additions? **		2 A	$2 B$	$2 C$	2D	$2 E$	$2 F$
Type 2A	2	II	No	1.5	II	No	Metal		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Type 2B	2	IV	No	1.5	IV	No	Metal			\checkmark	\checkmark	\checkmark	\checkmark
Type 2C	3	IV	No	1.5	IV	No	Metal				\checkmark	\checkmark	\checkmark
Type 2D	3	IV	Yes	2	IV	No	Metal						\checkmark
Type 2E	3	IV	No	2	IV	No	Plastic						\checkmark
Type 2F	3	IV	Yes	2	IV	No	Plastic						

* See Data Table in Contract Plans.
** Highly Reactive Pozzolans.

NOTES

DESIGN CRITERIA:

1. Design is based on the assumption that the material contained within the reinforced soil volume, methods of construction and quality of prefabricated aterials are in accordance with Specification Section 548 and FDOT
2. It is the responsibility of the Engineer to determine that the factored bearing pressure shown for the wall does not exceed the factored
bearing resistance of the foundation for that specific wall location
3. The Wall Company is responsible for internal stability of the wall. External stability design, including foundation and slope stability, is the responsibility of the Engineer
4. If present, consider in design and analysis and locate manholes and drop inlets as shown on wall elevations.

SOIL PARAMETERS

1. See wall control drawings for soil characteristics of foundation material to be used in the design of the wall system. The Contractor must provid
soil desian parameters for backfill material based on the actual soil soil design parameters for backfill material based on the actual soil
characteristics utilized at the site. Provide the values of unit weight, cohesion and internal friction angle in the Shop Drawings.
MATERIALS:
2. Provide soil reinforcement in accordance with Specification Section 548 . 2. For additional material notes, see Wall Company General Notes.
construction:
Walls must be constructed in accordance with Specification Section 548 and
3. For location and s instructions
4. Refer to Plan and Elevation sheets of individual walls for minimum reinforcement strip/mesh length, factored bearing resistance's, minimum
5. If existing or future structures, pipes, foundations or guardrail posts within the reinforced soil volume interfere with the normal placement of soil einforcement and specific directions have not been provided on the lans, the Contractor must notify the Engineer to determine what cours
6. The Contractor is respons
soll reinforcement downwar for gradually deflecting upper layer(s) of cutting soil reinforcement and conflicts with paving and subravoid preparation. The Contractor's attention is directed especially to anticipated. Where roadway superelevation and/or soil mixing are anticipated

TEMPORARY TRAFFIC RAILING PLACEMENT DETAIL

GENERAL NOTES AND DETAILS

GENERAL NOTES

2. Fabric shall be woven wire, either galvanized steel, meeting the requirements of ASTM A116, No. 9 Grade 60 ,
Design Number 1047-6-9, with Class 3 zinc coating; No. $121 / 2$ Grade 175, Design Number 1047-6-12 $1 / 2$, with a 10
10 , gage top and bottom wire and with Class 3 zinc coating; or aluminum coated steel, meeting the
requirements of ASTM A584, No. 9 Farm, Design Number 1047-6-9, with a minimum coating weight of 0.40 oz. $/ \mathrm{ft}^{2}{ }^{2}$ For additional information see payment note below.
3. Fence shall be installed with wire side to private property except on horizontal curves greater than 3°
the fence shall be installed so as to pull against all posts.
4. Posts may be either timber, steel, recycled plastic or concrete. Unless a specific post material is called for in the plans, the contractor may elect to use either a single mater ial or a combination of timber
steel, reccled plastic cor conrete materials but must comply with the electrical grounding requirements in
specificyic 5 and steel, recycled plastic or concrete materials, but must comply with the electrical grounding requirements in
Specification 550 Line posts of one material may be used with corner, pull and
end post assemblies of a different material Line posts of only one optional material and pull post end post assemblies of a different material Line posts of only one optional material and pull post
assemblies of only one optional material wiil be permitted betwen corner and end post assemblies. Within
individual corner and end post assemblies only one optional material will be permitted.
5. Timber posts shall meet the material requirements of Specification 954. Timber line posts are to be
minimum 4" diameter. Timber corner, pull, approach and end posts are to be a minimum $5^{\prime \prime}$ diameter. Timber braces are to be minimum 4" diameter:
(A) Staples for line posts to be $11 /{ }^{\prime \prime}$ minimum length; for approach, corner and pull posts $11 /{ }^{\prime \prime}$ minimum in top half and alternate line wires in bottom half. Staples shall be driven diagonally across the line wire
with the porstal
(B) With the points in separate grains. between timber pasts and braces to be provided by dowels as shown in fastener details,
(C) Wire to be wrapped and tied, as shown in the splice details, at the following locations. (a) All end posts, (b) Corner post, including the assemblies at vertical breaks of 5° or more and
(c) Pull posts where the wire is not spliced and pulled through the assembly; see General Note 18 .
6. Steel posts and braces shall be standard steel posts, galvanized at the rate of $2 \mathrm{oz} . / \mathrm{ft} .2$, together with
necessary hardware and wire clamps and meeting the following requirements: necessary hardwe line posts: 8' long; 1.33 lls./ft.; hot rolled studded; anchor plate attached, ASTM A702 (18 in. ${ }^{2}$).
 (C) Pull, end and corner posts: ${ }^{11 / 2} \times 2$ 2
necessary hardware, clamps, etc.

Recycled plastic posts shall meet the following material requirements: Line posts shall have a minimum section
of $4^{\prime \prime}$ round or $4^{\prime \prime}$ square. Plastic posts shall hot be used as corner, pull, end or apporoach posts unless such use of 4 round or 4 square. Plastic posts shal not be used as corner pulf, end or approach posts unless such use is
specifically detailed in the plans. The straightness of the post shall comply with Specification 954 for timber post.
 Standard Grading Rules for Southern Pine Lumber for No. 2SR Stress Rated Grade Timber. Plastic posts can be set by
either digging and tamped backfill or by driving into full depth preformed holes $1 / 4^{\prime \prime}$ to $1 / 2^{\prime \prime}$ smaller than cross section of post.
Staples for fabric and barbed wire connection to plastic line posts shall be the same size, count and location as
that for timber posts.
7. The Contractor, at his option, may use any suitable precast or prestressed concrete posts; however, approval by the Enginear, of posts not shown on this index, will be required prior to construction of the fence. Precast posts shall
be class II concrete. Prestressed posts shall be Class III concrete. Lengths of concrete post to be as indicated for
timber posts.

Aluminum post, braces and accessory framing hardware shall not be used unless the plans specifically detail their application or the Engineer specifically approves their incorpor
framed gates are permitted as described in General Note 19 .
10. The woven wire shall be attached to steel and concrete posts by a minimum of five tie wires. The single
wire ties shall be applied to the top, bottom and three intermittent line wires. The ends of each tie wire shall have a minimum of tho tiligt turns around the line wirtet Tie wires shall be steel wire not less than
s.120" diameter, zinc ooating Class 3 , soft temper, in accordance with ASTM A641.
11. Steel Barbed wire can be either of the following types:
$\begin{array}{ll}\text { Type I: } & \text { This type shall conform to the requirements of ASTM A121, with two strands of } 12 \frac{1}{2} \text { gage wire, } \\ \text { four-point barbs, wire size } 14 \text { gage, twisted around both line wires; and, Class } 3 \text { coating, }\end{array}$ Type IIA: This type same as Type I except the two strand wires are twisted in alternating directions between Type IIB: Th Design No. 12-4-5-14
stype same as Type I
consecutiv barbs.
stype shall bant. Type IIB: This type shall conform to the requirements of ASTM A121 with two strands of $15 \frac{1 / 2}{}$ gage high tensile
wire four-point barbs. wire size $161 / 2$ gage twisted around both line wires; and Class 3 coating, strands of 0.110 -inch wire with 0.08 -inch diameter four-point

12. The woven wire shall be stretched only until one-half the tension curl has been pulled out of the line wires.
13. Posts to be set by driving or digging. If by digging, the posts shall be set at the center of the hole and the
soil tamped securely on all sides.
14. Longer posts than those indicated above may be required by the plans or for deeper installations.
15. Concrete bases for angular steel posts (pull, corner, end and approach) shall be Class NS in accordance with
Specification 347. Materials for Class NS Concrete may be proportioned by volume and/or by weight.
16. Pull post assemblies shall be installed at approximately 330° centers except that this maximum interval may be
reduced by the Engineer on curves where the radius is less than 3°.
17. Corner post assemblies are to be installed at all horizontal and vertical breaks in fence of 15° or more
18. A maximum length of 1320' of wire may be installed as a unit. For pulls through a pull post assembly the fabric
shall be spliced by crimping sleeves only. Pulls through a corner post assembly will not be permitted.
19. Unless otherwise called for in the plans gates shall be commercially available metal swing gates assembled and
installed in accordance with the manufacturer's specifications as approved by the Engineer. Chain link swing Installed in accordance with the manuracturer's specifications as approved by the Engineer. Chat ink swing
gates in accordanc with Indx 550 .oor man se substituted for metal swing gates as aproved by the Engineer.
Gate size is full opening width whether sing le leaf or double leaves. Payment for gates shall include the gate gates in accordance with Index $550-002$ may be substituted for metal swing gates as approved by the Engineer.
Gate size is full opening with whether single leaf or doubl leaves. Payment for gates shall in inclue the oate,
single or double, all necessary hardware for installation and any additional length and/or size for posts at the single or double, all neeessary hartware for installation and any addititional length a
opening. Gates shall be paid for under the contract unit price for Fence Gates, EA.
20. For construction purposes, assemblies are defined as follows: End post assemblies shall consist of
one end posto one aporoach postt two braces, four diagonal tension wires and all necessary fittings One end post, one apoproach post, two braces, four diagonal tension wires and all necessary fittings and hardware.
Pull post assemblies shall consist of: one fll post, two braces, four diagonal tension wires,
 and hardware, Corner post assemblies shall cons ist of: one co
diagonal tension wires and all necessary fittings and hardware.
21. All posts, braces, tension wires, fabric, tie wires, Class NS concrete, and all miscellaneous fittings and hardware
to be included in the cost for Fencing, LF. Fencing shall be inclusive of the lengths of pull, end and corner post
assemblies, but exclusive of gate widths.

fASTENER FOR CONCRETE POST AND BRACES

FASTENER FOR TIMBER POST AND BRACE

PRESTRESSED POST ${ }_{\text {3/" }}$ Stressed Relieved Cable Centered

alternate concrete posts and braces

> Each horizontal wire to be wrapped around corner, end and pull posts and tived to same wire. See General Notes 5 and 17 Timber post illustaded These method also apoly to steel and concrete post illustrations.

SPLICES

GENERAL NOTES:

1. This fence to be used generally in urban areas.
2. For supplemental information refer to Specification 550 ,
3. Chain link fabric, post, truss rods, tension wires, tie wires, stretcher bars, gates and all miscellaneou
fittings and hardware shall meet the requirements of AASHTO and ASTM signify current reference.
4. Fence Component Options:
A. Line post options:

Line post options:
(1) Gallazized steel pipe, Schedule 40- $1^{1 / 2 \prime \prime}$ nominal dia. Zinc galvanized at the rate of 1.8 oz./ft².
ASTM A53 Table 2

(3) Aluminum alloy pipe- $2^{n \prime}$ nominal dia.: ASTM B241 or B221, Alloy 6063 , T6
(4) Steel H-Beam- $1 / \mathrm{s}^{\prime \prime} \times 15 \mathrm{~m}^{\prime \prime}:$ Zinc Galv. A.8 oz./ft.: AASHTO M111 and Detail.

(7) Mischmetal: ASTM Resistace Weld and Detail. (7) Resistance welded steel pipee. 50.000 psi min. yield strength ASTM A569/A569M, A653/A653
or undepleted stock of discontinued A446/A446M base materials; ASTM F669 Group IV (Alternative Design). fence industry $2^{\prime \prime}$ OD, $1^{1 / 1 / N^{\prime \prime}}$ NPS, $1.900^{\prime \prime}$ dec. equiv. $0.120^{\prime \prime}$ min. wall
thick. and min. wt. 2.28 Ib./ft.; with ASTM F1043 metric equivalent internal coating Types B, C or D and external ioating Types A, B, or C; the chromate conversion coating of external
Tpe B shall have a thickness of 15 , Type B shall have a thickness of 15 Mgg/in2. min. and the polymer film topcoat shall have a
thickness of O.OOO3" min.; internal and external coatings are not restricted to the combinations thickness of $0.0003^{3 \prime}$ min.;
of Table 2, ASTM F1043."
B. Corner, end, and pull post options:
(1) Galvanized steel pipe, Schedule
(1) Galvanized steel pipee, Schedule 40- 2" nominal dia. zinc galvanized at the rate of $1.8 \mathrm{oz} . / \mathrm{ft}^{2}$:
ASTM A53 Table X 2, ASTM F1083, and AASHOO M111. (2) Aluminm coated steel pipe:: ASTM A53 sAteel, X 2 Trabies: Schedule 40; 2" nominal dia.
2.375" OD; coated at the rate 0.40 oz.fft.: AASHTO M111.
 or undepleted stock of discontinued A446/A446M base materials; ASTM F669 Group IV
 C or D and external coating Types A, B, or C; the chromate conversion coating of external
Type B shall have a thickness of $15 \mu g / i^{2} h^{2}$, min. and the polymer film topcoat shall have a Type B Shall have a thicknes of 15 ang/in² min. and the polymer film topcoat shall have a
thickness of o.ooo in min.internal and external coatings are not restricted to the combinations
of Table 2. ASTM F1043.
C. Rail options:
(1) Galvanized steel pipe, Schedule 40-11\#4" nominal dia. zinc galvanized at the rate of $1.8 \mathrm{oz} . / \mathrm{ft}^{2}$.;

(3) Aluminum alloated at the rate 0.40 oz./ft.: AASHTO M111
(4) Resistance welded steel pipe; 50,000 psi min. yield strength ASTM A569/A569M, A653/A653M

 and min. Wt. 1.836 ib./ft.; with ASTM F1043 metric equivalent internal coating Types A, B, C or
D and external coating Types A, B, or C; the chromate conversion coating of external Type B

D. Chain link fabric options (2" mesh with twisted and barbed selvage top and bottom for all options
except as described in Note 10): except as described in Note 10): Coated Steel, No. 9 gage (coated wire diameter), coated at the
 (3) at the rate of 0.40 oz./ft? (3ASHTO M181 Type IV- Poilyinyl Chloride (PVC) Coated Steel, No. 9 gage (coated core wire
diameter), core wire-zinc coated steel. PVC coating: M181 Class A (either extruded or extruded diameter), core wire-zinc coated steel. PVC Coating: M181 Class A (either extruded or extruded
and bonded) or Class B (bonded). See table right. Unless the plans call for M181 standard colors medium green, dark grean or or black the coating color shall be soft gray matching that of
No. 36622 of Federal Standard 595 .
E. Tension wire options:
(1) Steel wire No. 7
 (2)
of ASTM B211, Alloy 5055 T Temper H38, or, Alclad Alloy 5056 Temper H192.
(3) Aluminum coated steel wire No. 7 gage coated at the rate of 0.040 oz.ffte. AASHTO M181.
F. Tie wire and hog ring options:
(1) Steel wire No. 9 gage zinc
(1) Steel wire No.9 gage zinc galvanized at the rate of 1.2 oz./ft².
(2) Aluminum alloy wire with a diameter of $0.1443^{\prime \prime}$ or larger Onfo.
(3) Al
(2) Aluminum alloy wire with a diameter of $0.1443^{\prime \prime}$ or larger conforming to the requirements of
ASTM B211, Alloy 5056 Temper H38 or Aldad Allo 5056 Temper (3) Aluminum coated steel wire No 7 gage coated at the rate of 0.040 or. ftz .

$$
\text { 3) Aluminum coated steel wire No. } 1 \text { gage coated at the rate of }
$$

general notes continued

5. Unless a specific material is called for in the plans the Contractor may elect to use either a single
type of material or a combination of material types from the component options listed in note 4 . Combinations of optional materials are restricted as follows:
 (b) Only one line post optional material will be permitted between corner and on end poss ossemblies
(c) Pull post assemblies shall be optional materials identical to either the line post optional material Pull post assemblies shall be optional materials identical to either the line post optional material
or the corner and end post assembly optional materiali; but, pull post tassemblies shall be the same
optional
6. Concrete for bases shall be Class NS concrete as specified in Specification 347
or a packaged, dry material meeting the requirements of a concrete under ASTM C-387. Materials for
Class NS concrete may be proportioned by volume and/or by weight. or a packaged, dry material meeting the requirements of a concrete
Class NS concrete may be proportioned by volume and/or by weight.
7. Line post shall be $8^{-} 6^{\prime \prime}$ long (Standard). Line post are to be set in concrete as described above or
by the following methods: (a) In accordance with special details and/or as specifically described in the Contract Plans and (a) In aciordance
Specifications.
(b) In accordance with ASTM F567 Subsections 5.4 through 5.10 as approved by the Engineer
Line post installed in accordance with Section 5.8 Sall be
$Q^{\prime}-6 " 1$ (c) ${ }^{\text {Linest mounted on concrete structure or solid rock shall be mounted in accordance with the base }}$ plate detail plate detail"Fence Mounting on Concrete Endw
in accordance with ASTM F567 Subsection 5.5.
End, pull and corner post assemblies shall be in concrete as detailed above for all soil conditions other than End, pull and corner post assemblies shall be in concrete as detailed above for all soil conditions other
solid rock. Post within assemblies that are occated on concrete structures or solid rock shall be set by
base plate or by embed ment as prescribed under (b) above for line post. Line and assembly posts for 6^{6} fence which must be lengthened due to a variation in the normal ground
clearance, shall be set an additional $3^{\prime \prime}$ in depth for each $1 l^{\prime}$ of of additional ground clearance. of additional ground clearance.
8. Pull post shall be used at breaks in vertical grades of 15° or more, or at approximately 350^{\prime} center
except that this maximum interval may be reduced by the Engineer on curves where the curve is
ereater than 30°. except that this
greater than 3°.
9. Corner post are to be installed at all horizontal breaks in fence at 15° or more and as required at vertical
breaks over 15° as determined by the Engineer.
10. When fence has an installed top of fabric height less than $6^{\text {' }}$ knuckled top and bottom selvages shall
be used unless the plans specifically identify locations for twisted selvage fabrics.
be used unless the plans specifically identify locations for twisted selvage fabrics.
11. Unless sliding gates or special gates are called for in the plans, all gates shall be chain link swing gates
meeting the material requirements described and as approved by the Engineer. Payment shall include the gates, single or double, all necessary hardware for installation and any addititional length and lor size for
posts at the opening. Gates shall be paid for under the contract unit price for Fence Gates. FA.
12. For construction purposes corner post assemblies shall consist of one corner post, two braces, two truss
rods and all necessary fittings and hardware as detailed. End post assemblies shall consist of one end post, rods, and all necessary fittings and hardware as detailed. End post assemblies
one brace, one truss rod and all necessary fittings and hardware as detailed.
13. In areas where there are physical constraints outside the right-of-way which restricts the fence construction,
the fabric may be installed on the inside of the posts..

TYPE IV VINYL COATED FABRIC										
AASHTO M181 Table 4 Redefined As Follows										
Specified Diameter Of Metallic Coated Core Wire			Minimum Weight of Zinc Coating		PVC Thickness Range					
			M181 Class A Extruded Or Extruded And Bonded Coating)	M181 Class B (Bonded Coating)						
in.	mm	gage			oz./ft ${ }^{\text {2 }}$.	$\mathrm{g} / \mathrm{m}^{2}$	in.	mm	in.	mm
0.148	3.77	9	0.30	92	$\begin{aligned} & 0.015 \\ & \text { to } \\ & 0.025 \end{aligned}$	$\begin{aligned} & 0.38 \\ & \text { to } \\ & 0.64 \end{aligned}$	$\begin{aligned} & 0.006 \\ & \text { to } \\ & 0.010 \end{aligned}$	$\begin{aligned} & 0.15 \\ & \text { to } \\ & 0.25 \end{aligned}$		

DESIGN NOTE

This index details fencing that is constructed with chain link fabric 6^{\prime} (nominal) in height and with specific ground clearance.
for fencing of different height or installation details, the fence shall be fully detailed in the contract plans.

STANDARD WALL

OPTIONAL "C" LINE POST
fence position at locations

III

WITHOUT FRONTAGE ROADS
 0.776
80.000
48.000 $\begin{array}{cc} & \\ & \\ \text { Axes } & \\ 1-1 & 2-2 \\ 0.428 & 0.101 \\ 0.756 & 0.37\end{array}$

aluminum

(REFER TO DETAIL PLANS FOR FENCE POSITION AT
LOCATIONS WITH FRONTAGE ROADS)

OPTIONAL $178^{\prime \prime} \times 15 / 8^{\prime \prime}$ H-BEAM LINE POST

TOP VIEW
two anchor plate option

NOTES
Attachments to be used only when called for in the plans. Attachments to extend ratiection of restraint. Unless otherwise alled for in plans, direction of restraint will be as follow
(a.) Outward on limited access right of way line.
(b.) Outward on controlled access sint of way line.
(c.) Outward from utilties and hazardous facilities locat
(d.) within highway right of way.
(d.) Outward from lateral ditches, outfalls, retention basi
(e.) Inward on pedestrian ways.
Te cap-arm shall be designed to provide a drive fit over the to

The cap-arm shall be designed to provide a drive fit over the top
of posts and to exclude moisture in posts with tubular sections.

BARB WIRE ATTACHMENT
base plate and anchor notes:

1. Base plate identical for line, pull, end and corner posts and shall be
considered an integral part of the respective posts for basis of payment.
2. Post to be plumbed by grout shim under base plate.
3. Anchors (Galvanized Steel):

12" Cast In Place, 101/1" Embedment:
Headed Bolts, U-Bolts or Cluster plates
$8^{\prime \prime}$ Adhesive Anchors, $6^{\prime \prime}$ Min. Embedment*
*Adhesive anchors shall be headless anchor bolts set in drilled
holes with an Adhesive Material System in accordance with holes with an Adhesive Material System in accordance
Specifications 416 and 937 ; drilled holes shal be Iarger in diameter than the anchor bolt.
fence mounting on concrete endwall and retaining walls

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		DESCRIPTION:		FY 2023-24 STANDARD PLANS	$\mathbb{F E} \mathbb{N C E} \mathrm{TYPE} \mathbb{B}$	$\begin{gathered} \text { INDEX } \\ 550-002 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 3 \end{aligned}$

DETAIL A

18"Dia. (Typ.) -
FRONT ELEVATION

SUPPORT POST DETAIL

ROLLER SPACER
BAR

GATE OPENING	GATE FRAME	BACK FRAME
12^{\prime}	$12^{\prime}-3^{\prime \prime}$	6^{\prime}
16^{\prime}	$16^{\prime}-3^{\prime \prime}$	8^{\prime}
20^{\prime}	$20^{\prime}-3^{\prime \prime}$	10^{\prime}
24^{\prime}	$24^{\prime}-3^{\prime \prime}$	12^{\prime}

GENERAL NOTES:

1. Extruded, rolled or formed components that provide equal strength and stability
may be used in lieu of the pipe components shown; and, internal rollers may be may be used in lieu of the pipe components sho
used in lieu of the external roller units shown.
Gate components shall meet or exceed the protective coatings specified on Index 550-002.
2. Steel gate frome shall be fabricated prior to galvanizing, except that truss rods may be galvanized in accordance with Section 24 of AASHTO M36; or, fabricated from pipe components with protective coating meeting the requirements of Inde $550-002$ that ar
tolerant of weld ing (low burn back), and a protective coating applied to the weld and tolerant of welding (low burn back), and a protective coating applied to the werd and
damaged pipe surfaces that is equivalent to the protective coating of the fabricated pipe stock.
3. All fabric shall be knuckled top and bottom selvages.
4. Concrete for bases shall be either Class NS concrete in accordance with Specification 347 or a packaged, dry material meeting the requirements of a concrete under ASTM C -
Materials for Class NS concrete may be proportioned by volume and/or by weight.
5. Cost of all gate components shall be included in the contract unit price for Sliding Fence
Gate (Cantilever). EA.

TYPICAL FRAME - 24' Opening

TYPICAL FRAME - $12^{\prime}, 16^{\prime} \& 20^{\prime}$ opening

LAST		
REVISION		
$11 / 01 / 17$	\sum_{n}^{n}	DESCRIPTION:

APPLIES to bridge over crossroad and crossroad over freeway (bridge over crossroad shown) fencing terminals at rural interchanges

fencing terminals at urban interchanges

fencing terminals at retaining walls

LAST	DESCRIPTION:
revision	
11/01/17	令

DIVIDED NARROW MEDIAN WITH OR WITHOUT CURBED MEDIAN

UNDIVIDED FLUSH SHOULDER

WILDFLOWER SEEDING RATES	
Common Name (Botanical Name)	
\#l Group	
Bas/ac	

GENERAL NOTES

1. All turf establishment shall be performed meeting the requirements of Specification 570
2. Activities such as clearing, grading, and excavating that will disturb one or more acres of land require coverage under the Generic Permit for Stormwater Discharge from Large and Small Construction Activities from the Florida Department of Environmental Protection, and implementation of appropriate pollution prevention measures to minimize erosion and sedimentation and properly manage stormwater.
3. Confirm compatibility of wildflower with Seeding Zones.

Lance-Lexed Susan sTickseed (Rudbeckia hirta)

Coreopsis lanceolata) Goldenmane Tickseed (Coreopsis basalis) | Leavenworth's Tickseed (Coreopsis leavenworthii) | 10 |
| :--- | :--- |
| Fire Wheel (Gaillardia pulchella) | 10 | Softhair Coneflower (Rudbeckia mollis) Crimson Clover (Trifolium incarnatum) \#2 Group roup \qquad

- 10 \begin{tabular}{|l|c|}
Annual Phlox (Phlox drummondii) \& 10

\hline Moss Verbena (Verbena tenuisecta) \& 6

\hline

\hline Leavenworth's Tickseed (Coreopsis leavenworthii) 10

\hline Fir \& 10

\hline
\end{tabular} Fire Wheel (Gaillardia pulchella) Crimson Clover (Trifolium incarnatum) te: Wildflower seeding rates are for restoring

divided wide median with or without curbed median

DIVIDED CURBED

TABLE 2: SOD QUANTITIES (SY)																						
	INDEX 430-010	INDEX 430-011				INDEX 430-020	INDEX 430-030												INDEX 430-040			
		SLOPE				all slopes	SLOPE												SLOPE			
PIPE SIZE	1:4	1:2	1:3	1:4	1:6		1:2			1:3			1:4			1:6			1:2	1:3	1:4	1:6
		PIPES				PIPES	PIPES												PIPES			
	1	1	1	1	1	1	1	2	3	1	2	3	1	2	3	1	2	3	1	1	1	1
$12^{\prime \prime}$						10													14	15	18	22
$15^{\prime \prime}$	15	13 (15)	16	17	23	11	19	21	24	22	26	29	26	30	33	34	38	43	15	17	20	25
$18^{\prime \prime}$	16	14 (16)	17	19	25	11	21	24	27	25	29	33	30	34	38	39	44	50	16	18	22	28
$21^{\prime \prime}$						12																
$24^{\prime \prime}$	19	15 (17)	19	21	28	14	26	30	34	32	37	42	38	44	50	50	58	66	19	22	26	34
$27^{\prime \prime}$						15																
$30^{\prime \prime}$	21	17 (18)	21	24	32	16	31	37	42	39	46	53	46	55	63	62	74	85	21	25	30	40
$36^{\prime \prime}$						18	37	44	52	46	56	65	56	67	79	76	91	107	24	29	35	47
$42^{\prime \prime}$						19	43	53	62	55	67	79	67	82	96	91	111	132	27	32	39	54
$48^{\prime \prime}$						21	50	62	73	64	79	93	78	97	115	108	133	158	30	36	44	61
$54^{\prime \prime}$						21	57	71	85	74	92	110	91	113	136	126	157	188				
$60^{\prime \prime}$						22																
$66^{\prime \prime}$						25																
$72^{\prime \prime}$						26																
() Endwall With Baffles																						

SOD PLACEMENT AT PIPE/CULVERT END TREATMENTS

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$	DESCRIPTION:	$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	PERMANENT EROSION CONTROL	$\begin{gathered} \text { INDEX } \\ 570-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 3 \end{aligned}$

Less Than $3^{\prime \prime}$ Overlay $\stackrel{-}{-}$

COMPLETED SHOULDER
criteria for using treatment I
${ }_{-}^{\text {Project }}$ - is resurffacing, widening and resurfacing or construction

- is resurf facing, widening
- is rural or is urban without curb and gutter
- resurfacing build-up is less than $3^{\prime \prime}$

general notes

1. Treatment I :

If trenching under sod is necessary to achieve the required Drop-Off, excavated topsoil is
to be used for filling voids and low areas at the edde of pavement or for flushing along the to be used for filling voids and low areas at the edge of pavement or for flushing along the
edge of sod. Excess material to
2. Treatment II:
A. Borrow must meet the requirements for a "Select" material in accordance with Index 120-001
B. Borrow may be used in lieu of excavated turf and topsoil when economically feasible. There
will be no additional payment for substituting borrow for excavated turf and tossoil.
3. Special attention is to be directed at achieving the required Drop-Off at the edge of pavement,
4. Actirtes such as clearos or
4. Activities such as clearing, grading, and excavating that will disturb one or more acres of land
require coverage under the Generic Permit for Stormwater Discharge from Large and Small require coverage under the Generic Permit for Stormwater Discharge from Larga and Small
Construction Activities trom the Florida Department of Environmental Protection, and implementation
of aporopriate pollution prevention measures to minimize erosion and sedimentation and properly of appropriate pollution prevention measures to minimize erosion and sedimentation and properly
manage stormwater.
Tur
A. Wildflowers destroyed by shoulder sodding and turf operations are to be reestablished under
the seeding rates prescribed for permanent wildflower $\# 2$ Group shown by table on Index 570-001
B. Establish turf in accordance with Specification 570 .

> CRITERIA FOR USING TREATMENT II Project Praífacing or construction of shoulder pavement ois resural or is urban without curb and gutter is remer resurfacing build-up is $3^{\prime \prime}$ or more

A SIMILAR TREATMENT MAY BE USED FOR PROJECTS THAT REQuire Shoulder widening,
DETAILS ARE TO BE SHON

ROADWAY WITH UTILITY STRIP

$=$ ROADWAY WITHOUT UTILITY STRIP $=$

$\overline{\bar{Z}}$ ROADWAY MEDIAN OR ROUNDABOUT

NOTES:

Work this Index with Specification 591
2. Install Sleeve with the minimum depth measured from the top of the Irrigation Sleeve as shown in the
Plans or specified in Index $630-001$.
3. When installing Irrigation Sleeves in a median crossover, place sleeves along the centerline.
4. Irrigation Sleeves for Electrical Control Wire and Irrigation Pipe must be no further than 12" apart.
5. Install Utility Strip Breaks only when shown in the Plans.

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$		DESCRIPTION:		FY 2023-24 STANDARD PLANS	LANDS CAPE IRRIGATION SLEEVES	$\begin{gathered} \text { INDEX } \\ 591-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 1 \end{aligned}$

GENERAL NOTES

1. Install conduit in accordance with Specification 630 .
2. When sidewalk is damaged by conduit installation,
replace entire sidewalk slab.
3. Trench not to be open more than 250° at a time when constructio area is subject to venicurar or pedestrian traff
4 Sawcut asphalt at the edges of the trench to leave neat lines.
4. Provide route marker and route marker label in accordance with
Specification 630 .

\qquad

PLAN

LAST		
REVISION		
$11 / 01 / 21$	苞	DESCRIPTION:

$\overline{\bar{Z}}$ PLACEMENT WITHIN THE UTILITY STRIP $\bar{\square}$

LACEMENT UNDER SIDEWALK

PLACEMENT NOT EXPOSED $=$ TO VEHICULAR TRAFFIC

PLACEMENT UNDER NEW ROADWAY $\bar{\square}$ PRIOR TO INSTALLATION OF base and pavement

NOTES:

1. Pavement Removal: The removal and replacement of the additional
pavement width (i.e., $6^{\prime \prime}$ Width either side of trench) will not be
required when the trench can be constructed without disturbing the
asphalt surface on either side.
2. Placement Under Existing Pavement: Place conduit prior to installation of base and pavement, unless otherwise shown in the Plans or approved by the Engineer.

工 PLACEMENT UNDER EXISTING PAVEMENT $=$ ADJACENT TO GUTTER

below existing

above existing - Depth 2'-6" or greater

ABOVE EXISTING - DEPTH 2'-6" OR LESS
PLACEMENT ACROSS EXISTING DRAINAGE PIPES OR UTILITIES=

PLAN
\qquad

NOTES:

1. Where conduits are to be installed ove existing underground structures (e.g.,
drainage pipes or utility lines) which drainage pipes or utility lines) which are
less than $2^{\prime}-6^{\prime \prime}$ deep, encase the conduit in Class NS concrete for the entire elength
of conduit that is installed at a depth of conduit that is
of less than $2^{2}-6^{\prime \prime}$
2. Place $3^{\prime \prime}$ Warning Tape when new conduit is installed at a depth of $1 l^{\prime}$-6" or or greater
and the new conduit is not encased in and the
concrete.

LAST REVISION RE $01 / 18$	迢	DESCRIPTION:		FY 2023-24 STANDARD PLANS	CONDUIT INSTALLATION DETAILS	$\begin{gathered} \text { INDEX } \\ 630-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 4 \text { of } 4 \end{aligned}$

CABLE DROP AND TERMINATION WITH FIGURE 8 CABLE $=$

$\overline{\bar{Z}}$ CABLE DROP AND TERMINATION WITH MESSENGER WIRE AND COMPRESSION CLAMP=

= CABLE DROP AND TERMINATION WITH MESSENGER WIRE AND SUSPENSION CLAMP

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 18 \end{gathered}$	\|	$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	$A E R I A L T N T E R C O N N E C T$	$\begin{gathered} \text { INDEX } \\ 634-002 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 1 \end{aligned}$

PLAN

PLAN

NOTES:

1. Provide fiber optic splice boxes with cable hanger racks designed to support cables and splice enclosures.
2. Install a $1^{1}-0^{\prime \prime}$ wide (Min.) concrete apron around all boxes using Class NS concrete. Slope the apron away from the box
3. Where multiple pull boxes are placed side by side, maintain at least $8^{\prime \prime}$ between the pull boxes.
4. Rectangular boxes shown, others similar

GENERAL NOTES:

1. It shall be the contractors responsibility to provide a complete service assembly

2s per the plans and service specifications.
2. The service installation shall meet the requirements of the national electric code

Shop drawings are not required for service equipment, unless noted in the plans.
4. A Pull Box is required at each service point, see Index 635-001.

GENERAL NOTES

1. Work these Index Sheets with the Strain Pole Schedule in the Plans. See Index 634-00 for corresponding signal cable and span wire installation details.
2. Shop Drawings:

This Index is considered fully detailed and no shop drawing are necessary. Submit shop
drawings only for minor modifications not detailed in the Plans.
3. Materials:
A. Concrete:
B.Prestress Strands \& Spiral Reinforcing:
C.Hand and coupler cover plates:
D. Screws:

Class V with 4 ksi minimum strength at transfer or Class VI with 6.5 ksi minimum strength at transfer Specification 641
Non-corrosive material
Round headed, chrome plated
4. Fabrication:
A. Pole Total Taper shown is for pole width, strands, reinforcing and void (0.081 in/ft per face),
B. Concrete Cover: l' $^{\prime \prime}$ minimum.
and butt ends of the pole.
D. The design dimensions for Front Face (FF) and Back Face (BF) of the poles may vary transversely from the section shown by $\pm 1 / 4 / 4$ to assist with removal from forms. Balance addition and subtraction
E. Tie ground wires to the interior of reinforcing steel to prevent displacement during concreting operations.
F. Cut the tip
F. Cut the tip end of the prestressed strand either first or simultaneously with the butt end.
. Provide cover plates and screws for hand hole and couplers. Attach cover plates to the poles using lead
anchors or embedded threaded inserts.
a. Financial Project ID.
b. Pole Manufacturer

Standard Pole Type Number
d. Pole Length (L)
5. $\frac{\text { Support Points: }}{\text { Support Points }}$

Horizontal Pole Support Points shown are for strand release, storage, handling and transport
of the horizontal pole. Keep Back Face oriented downward until final erection.
6. Two point attachment: Provide an eye bolt hole for the messenger wire.
7. Tether wire: When required, field-drill the eyebolt hole prior to installation.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Service Pole - Type P-II (12 ft.)
3	Service Pole - Type P-IIB (36 Ft.)
4	Pedestal Pole - Type P-IIC (12 Ft.)
5	Pedestal Poole - Type P-IID (16 Ft.)
6	Pole - Type P-III
7	Strain Pole - Type P-IV
8	Strain Pole - Type P-V
9	Strain Pole - Type P-VI
10	Strain Pole - Type P-VII
11	Strain Pole - Type P-VIII

> Butt End (Bottom) -
\qquad
(Type P-VII Shown, Others Similar)

$\begin{gathered} \text { LAST } \\ \text { REVISIION } \\ \text { 11/01/22 } \end{gathered}$		$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	CONCRETE POLES	$\begin{gathered} \text { INDEX } \\ 641-010 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 11 \end{aligned}$

SPIRAL REINFORCING ELEVATION
(Strands and Fixtures Not Shown)

SECTION A-A - (Tip End) $=$

SECTION B-B (Typical Square Section) $\bar{\square}$

NOTES:

1. Provide a minimum $3^{\prime \prime}$ concrete plug at the Tip End.
2. For final erection, tilt pole upright with single point
attachment located a distance of 4 feet from the Tip
3. Dimension may vary from $21 / 4$ " to $31 / 2$ " to accommodate
smaller radius of optional stepped (PVC) void. The minimum void diameter is $2^{\prime \prime}$.
4. Strands shown are continuous from Tip End to Butt End.
5. Strands are not shown in the elevation views for clarity.

LEGEND

- Prestressed Strand:
0.5 in. ~ 24 kips before transfer or
0.375 in. ~ 14 kips before transfer (4 strands total)

SERVICE POLE - TYPE P-IIA (12 Ft.)

SPIRAL REINFORCING ELEVATION (Strands and Fixtures Not Shown)

\qquad
Strands and Reinforcing Not Shown)

工 SECTION C-C (Tip End)

SECTION D-D (Typical Square Section) $=$

NOTES:

1. Provide a minimum $3^{\prime \prime}$ concrete plug at the Tip End.
2. For final erection, tilt pole upright with single point attachment located a distance of 10 feet from the Tip End
3. Dimension may vary from $2 \frac{1 / 4}{}{ }^{\prime \prime}$ to $3 / /^{\prime \prime}$ to accommodate smaller radius of optional stepped (PVC) void. The minimum void diameter is $2^{\prime \prime}$.
4. Strands shown are continuous from Tip End to Butt End.
5. Strands are not shown in the elevation views for clarity.

LEGEND

- Prestressed Strand:
0.5 in. -24 kips before transfer or
0.375 in. ~ 14 kips before transfer a 375 in. 114 kips before transfer
(4 strands total) (4 strands total)

SERVICE POLE TYPE P-IIB (36 Ft.)

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ \text { 11/01/22 } \end{gathered}$		$\begin{array}{cc} F D O \bar{T} & \text { FY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	CONCRETE POLES	$\begin{gathered} \text { INDEX } \\ 641-010 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 11 \end{aligned}$

SPIRAL REINFORCING ELEVATION (Strands, Holes, and Fixtures Not Shown

(Strands and Reinforcing Not Shown)

SECTION F-F (Typical Square Section)

NOTES:

1. Provide a minimum $3^{\prime \prime}$ concrete plug at the Tip End.
2. For final erection, tilt pole upright with single point
attachment located a distance of 4 feet from the Tip attachment located a distance of 4 feet from the Tip End.
3. Dimension may vary from $2 \frac{1 / 2}{} /$ to $31 / 2$ to accommodate smaller radius of optional stepped (PVC) void. The minimum void diameter is $2^{\prime \prime}$.
4. Strands shown are continuous from Tip End to Butt End
5. Strands are not shown in the elevation views for clarity.

LEGEND:

- Prestressed Strand:
0.5 in. -24 kips before transfer or
0.375 in. ~ 14 kips before transer
0.375 in. ~ 14 kips before transfer
(4 strands total)

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 22 \end{gathered}$	\|	FDOTY $\begin{gathered}\text { FY 2023-24 } \\ \text { STANDARD PLANS }\end{gathered}$	CONCRETE POLES	$\begin{gathered} \text { INDEX } \\ 641-010 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 4 \text { of } 11 \end{aligned}$

SPIRAL REINFORCING ELEVATION

(Strands and Reinforcing Not Shown)

$\bar{\Longrightarrow}$ SECTION A-A (Tip End) \qquad

DESCRIPTION:
LAST
REVISION
REVISION
11/01/22
高

SECTION B-B (Typical Square Section)

NOTES:

1. Provide a minimum $3^{\prime \prime}$ concrete plug at the Tip End.
2. For final erection, tilt pole upright with single point attachment located a distance of 5 feet from the Tip End.
3. Dimension may vary from $21 / 4$ " to $3 / 2 / 2$ to accommodate smaller radius of optio
diameter is $2^{\prime \prime}$.
4. Strands shown are continuous from Tip End to Butt End
5. Strands are not shown in the elevation views for clarity.

LEGEND:

- Prestressed Strand:
0.5 in. ~ 24 2ins
0.5 in. - 24 kips before transfer or
0.35 in. 14 kips before transfer
0.375 in. 14 kips before transfer
(4 strands total)

SERVICE POLE TYPE P-IID (16 Ft.)

SPIRAL REINFORCING ELEVATION SPIRAL REINFORCING ELEVATION

general notes

Work this Index with Specification 641.
2. This Index is considered fully detailed and no shop drawings are necessary. Submit Shop
Drawings for minor modifications not detailed in the Plans.

Provide either round or 12 -sided Poles
4. See Index 635-001 for additional Pull Box details.
5. See Index 676-010 for cabinet installation details.
6. Materials
A. Pole: Use Class VI concrete with 6 ksi minimum strength at transfer
B. Prestressing Strands: ASTM A416, Grade 270 low relaxation
C. Reinforcing Steel: ASTM A615, Grade 60
D. Spiral Reinforcing: ASTM A1064 Cold-Dran
D. Spiral Reinforcing: ASTM A1064 Cold-D
E. Bolts: ASTM F1554, Grade 55

Nuts: ASTM A563, Grade A Heavy Hex
Washers: ASTM F436
Washers: AATM F436 4 . Steel plates and Pole Cap: ASTM A36 or ASTM A709, Grade 50
F. Steel plates and pole Cap: ASTM A36 or ASTM A709,
G. Galvanization: Bolts, nuts and washers: ASTM F232
All other steel. ASTM Al23
7. Fabrication:
A. Cut the tip end of the prestressed strand first or simultaneously with the butt end
B. For spiral reinforcing, one turn is required for spiral splices and two turns are required C. at the top and bottom, of poles.
C. For Reinforcing Steel, lap splice to consist of a $3^{\prime}-0^{\prime \prime}$ lap length at each splice. No more C. For Reinforcing Stteel, lap splice to consist of a $3^{\prime \prime}-0^{\prime \prime}$ lap length at each splice. No more
than two opposing rebar to be spliced at the same cross section. Stagger lap splices as needed
than two opposing rebar to be spliced at the same cross section. Stagg
D. Provided a class 3 surface finish in accordance with Specification 400.
E. Provide all
E. Provide a 1 " minimum cover.
F. Provide hand hole and coupler

Provide hanahole and coupler cover plates made of non-corrosive materials. Attach cover
with round headed chrome plated screws.
W. Wround headed chrome plated screws.
Grovide Identification Markings on the poles where indicated on the following sheets. Include
the following information using inset numerals with $1^{\prime \prime}$ height or as aporoved in the produce
Financial Project ID Pole Manufa
Pole Length
H. Tie ground wires to the interior of reinforcing steel as necessary to prevent displacement
I. Storage, Handling and Erection locations shown may vary within $\pm 3^{\prime \prime}$.
8. Pole Installation:
A. Install the Pole plumb.
B. Install Pole with the handhole located away from approaching traffic.
9. Cabinet Installation:
A. Splice fiber optic cables in cabinet to preterminated patch panel.
B. Furnish and install Surge Protection Devices (SPDs) on all cabling in cabinet
C. Furnish and install secondary SPDs protection on outlets for equipment in cabine
D. Ensure that all lelectronic equipment powection on outlets for equipment in cabinet.
E. Ensure that and conditioned with SPDs.
Equipment abinet is bonded to CCTV pole grounding system.
E. Ensure that equipment cabinet is bonded to CCTV pole grounding ss
F. Install the pole mounted cabinet with the hinges next to the pole.
F. Install the pole mounted cabinet with the hinges next to the pole.
and cand types of conduits and innerducts for network communications between the pullbox
and cabet are stated in the Contract Documents.
10. Lowering Device Installation:
A. Place the lowering cable that moves within the pole in an interior conduit to prevent it from
tangling or interfering with any electrical wire that is in the pole. Ensure that any electrical tangiting or interfering with any electrical wire that in in the porle. Ensure that any electrical
wire within the pole is routed securely and free from slack.
Bount lowering arm perpendicular to the roadway or as shown in the plans. Position CCTV
pole so that the camera can be safely lowered without requiring lane closures.
Mole so that the camera can be safely reved without requiring lane closures.
cordinate all lowering device hardware requirements (including Tenon, Tenon mounting plates,
parking stand, etc.) with lowering device manufacturer.

CCTV POLE ASSEMBLY

NOTES:

1. Diameter of 12 -sided poles are measured flat to flat.
2. Total Taper applies to pole, strands and reinforcing.
3. For 12-Sided Pole and Round Roles Option 2, Stress prestressed strand to 70%
of Ultimate before transter For Round Pole Option 1 stress prestressed strand of Ultimate before transfer. For Round Pole Option 1, stress prestressed strand
to 60% of Ultimate before transfer.
4. Pole Design Tables, Burial Depth is based on level ground (flatter than 1:5). Increase the burial depth in accordance with the Additional Burial Depth Due To Ground Slope table
for foundations with slopes $1: 5$ and steeper. Use the higher value for slope or diameter the burial depth in accordance with the Additional Burial Depth Due To Ground Slope table
for foundations with slopes $1: 5$ and steeper. Use the higher value for slope or diameter
values that fall between those shown on the table.

12-SIDED POLE DESIGN TABLE (See Note 1)

12-SIDED POLE DESIGN TABLE (See Note 1)										
$\begin{gathered} \text { Pole } \\ \text { Length } \\ (\mathrm{ft}) \end{gathered}$	Pole Height (ft)	Burial Depth (ft)	$\begin{gathered} \text { Total } \\ \text { Taper } \\ \text { (inftr) } \\ \text { (See Note 2) } \end{gathered}$	$\begin{aligned} & \text { Void } \\ & \text { Taper } \\ & \text { (in/ft) } \end{aligned}$	Min. Wall Thickness Tip (in)	Min. Wall Thickness Butt (in)	Tip Diamete (in)	$\begin{gathered} \text { Butt } \\ \text { Diameter } \\ \text { (in) } \end{gathered}$	$\left\lvert\, \begin{aligned} & \text { Strand } \\ & \text { Pattern } \end{aligned}\right.$	Strand Diameter
63	50	13	0.18	0.18	3	3	12	23.34	1	$0.6^{\prime \prime}$
69	55	14	0.18	0.18	3	3	12	24.42	1	$0.66^{\prime \prime}$
75 80	60 65	15 15	0.18 0.18	0.18 0.18	3	3	12	25.50 26.40	2	$\frac{0.6 "}{0.6{ }^{\prime \prime}}$
86	70	16	0.18	0.18	3	3	12	$\stackrel{27.48}{ }$	2	$0.6{ }^{\text {0 }}$

> Conduit Entry Hole Ground Lug Handole Pole Identification Markings

C
Conduit Entry Hole

$\overline{\bar{Z}} A S S E M B L Y=$

NOTES:

1. Install all handhole and opening covers prior
.
2. Install 12 " $\varnothing \times 5^{\prime \prime}$ long stud with hex nut in
3. As an alternate, embed $4-1 / 1^{\prime \prime} \otimes \times 11^{\prime \prime}$
stainless steel threaded rods with a stainless steel threaded rods with a
threaded nut. At top of rod, triead a
coupling nut to attach plate wh $4 \sim / /^{\prime \prime} \times 13^{\prime \prime}$
stainess stel coupping nut to attach
stainless steel bolts.
4. Handhole frame may be Cast Aluminum 356.2.
5. Work these details with Data Tables on Sheet 2

$\overline{=}$ TENON CAP

PLAN VIEW

ELEVATION
$\overline{=}$ TENON COVER=

Plate o.D. =Tip Dia. $\left(\pm^{\left.1 / 4^{1}\right)}\right.$,
PLAN VIEW
$3^{3} /{ }^{\prime \prime} \not \theta^{\prime \prime}$ Eye Bolt
With $1^{\prime \prime}$ Inner \varnothing
3/8" \varnothing Nut (Typ.)

EyE bolt option

PLAN VIEW

elevation
lowering device tenon
elevation CAP PLATE DETAIL CAP PLATE DETAIL
(Without Lowering Device)
\qquad
 $1 / 22^{\prime \prime}$ Thick
Sch. 40 Pipe

PIPE OPTION

PLAN VIEW

NOTES:

1. Work this Index with Specification 646
2. For Pedestrian Signals see Index 653-001
3. For Pedestrian Detector Assembly (i.e., Pushbutton
and Sign) details see Index 665-001
4. Footing may be Cast-In-Place (C-I-P) or Precast.
5. As an alternative to the direct buried "Post Mounted Pedestrian Detector Assembly shown below, the post may be installed on a transformer base. Use a
transformer base included on the transformer base included on the APL approved
an alternative to a "Post Mounted" assembly
 bly (Typ)

ADJACENT TO SIDEWALK
in Sidewalk curb

POST MOUNTED

FY 2023-24 STANDARD PLANS	ALUMINUM POST AND PEDESTAL MOUNTED PEDESTRIIAN DETECTORS AND SIGNALS	INDEX	SHEET 1 of 1
ST ANDARD PLANS	PEDES TRIAN DETECTORS AND SIGNALS	646-001	1 of 1

NOTES:

1. Work with Index 634-001 for grounding and span wire details. See the Plans for clamp
spacing, cable sizes and forces, signals and sign mounting locations and details.
2. Shop Drawings:

This Index is considered fully detailed, only submit shop drawings for
minor modifications not detailed in the Plans.
3. Materials:
A. Strain Pole and Backing Rings:
a. Less than $3 / 6^{\prime \prime}:$ ASTM A10

C. ASTM A595 Grade A
Steel Plates: ASTM A36
B. Steel Plates: ASTM
C. Weld Metal: E7OXX

BoIt S. Nuts and Washers:
a. High Strength Bolts: ASTM F3125, Grade A325, Type 1
b. Nuts: ASTM A563 Grade DH Heavy-Hex
C. Washers: ASTM F436 Type 1, one under turned element
E. Anchor Bolts, Auts and Washers
a. Anchor Bolts: ASTM F1554 Grade 55
b. Nuts: ASM A563 Grade A Heavy-Hex (5 per anchor bolt)
c. Plate Washers: ASTM A36 (2 per bolt). Split-lock washers and
F. Hand hole Frame: ASTM A709 or ASTM A36, Grade 36
F. Hand hole Frame: ASTM A709 or ASTM A36, Grade 36
G. Handole Cover: ASTM A1011 Grade 50, 5 , 60 or 65
H. Atuminum Pole Caps and Nut Covers: ASTM B26 (319-F)
T. Stainless Steel Screws: AISI Type 316
. Mraared Bar S/Studs: ASTM A36 or ASTM A307
K. Concrete: Cass IV (Dilled Shaft) for all environmental classifications.
4. Fabrication:
A. Pole Taper: Change diameter at a rate of 0.14 inches per foot, round or
B. Upright splices are not permitted. Transverse welds are only permitted at the base.
C. Provide bolt hole diameters as follows:
a. Bolts (except Anchor Bolts): Bolt
b. Achor Bolts: :

a. $2^{\prime \prime} \times$ ation (Max.): alumminum details for approval.)
b. Locate on the insidetion tas
b. Locate on the inside of the pole and ivsible from the handhole.
c. Secure to pole with $1 / g^{\prime \prime}$ diameter stainless steel rivets on screw.
c. Secure to pole with $1 /{ }^{\prime \prime}$ " diameter stainless steel

1. Financial Proj
2. Pole heicht
3. Manufature
4. Manufactur ${ }^{\text {5. Fy }}$ of Steel
Name
5.

G. Perform all welding in accordance with Specification 460-6.4

Fabricate longitudinal seam welds in pole with 60 percent minimum penetration or
fusion welds except, within 6 "of the base plate connection use full-penetration
groove welds.
Hot Dip Galvanize after fabrication.
5. Coatings:
A. All Nuts, Bolts, Washers and Threaded Bars/Studs: ASTM F2329
B. All other steel items including plate washers: ASTM A123
6. Construction:
A. Foundation: Specification 455, except that payment is included in the cost of the strain pole.
B. After installation, place wire screen between top of foundation and bottom of base plate in accordance B. After installation, place
with Specification $649-6$.

ELEVATION AND NOTES

GENERAL NOTES:

2. This Index is considered fully detailed; only submit shop drawings for minor modifications not detailed in the plans.
3. See Index 635-001 for additional Pull Box details.
4. See Index 676-010 for cabinet installation details.
5. Materials:
A. Pole: ASTM A1011 Grade $50,55,60$ or 65 (less than $1 / 4{ }^{\prime \prime}$) or ASTM A572 Grade 50,60 or 65 (greater than or equal to $1 / 4$ ") or ASTM A595 Grade A (55 ksi yield) or Grade B (60 ksi yield)
B. Steel Plates and Pole Cap: ASTM A36 or ASTM A709 Grade 50 .
C. Bolts: ASTM F3125, Grade A325, Type 1 Nuts: ASTM A563.
Washers. ASTM F-436.
E. Anchor Bolts: ASTM F1554 Grade 55 with ASTM A563 Grade A heavy-hex nuts and ASTM A36 plate washers.
F. Handhole Frame: ASTM A709 Grade 36 or ASTM A36
G. Handhole Cover: ASTM A1011 Grade 50, 55, 60 or 65
I. Stainless Steel ASrews: AISI Type 316
I. Reinforcing Steel: ASTM A615 Grade 60
6. Galvanization: Bolts, nuts and washers: ASTM F2329 All other steel including plate washer: ASTM A123
7. Fabrication:
a. Specification 460-6.4 and
b. AASHTO RFD Specification for Structural Supports for Highway Signs, Luminaires, and Traffic Signals Section 14.4.4.
B. $\begin{aligned} & \text { a. Round or } 16 \text {-sided (Min.) }\end{aligned}$
a. Taper pole diameter at ot 14 inches per foot
C. Farricate Pole longitudinal seam welds 12 ma
f. Fabricate Pole longitudinal seam welds (2 maximum) with 60 percent minimum penetration or fusion welds except as follows:
 length of one and one-half times the inside diameter of the female seclion plus 6 inches.
e. Circumferentially welded pole shafts and laminated pole shafts are not permitted
c. Identification Tag: (Sumbit detail's for approval)
a. $2^{\prime \prime} \times 4^{\prime \prime}$ (Max.)) luminum tag
a. $2^{\prime \prime} \times 4^{\prime \prime}$ (Max.) aluminum tag
b. Locate on the inside of the
b. Lecate on the inside of the pole and visible from the handhole
c. Secure with $1 / 8^{\prime}$ diameter stainless
d. Include the following information on the ID Tivets or screws.
8. Pole Type
9. Pole Height
10. Manufacturers' Name
11. Yield Strength (Fy of Steel)
12. Base Wall Thickness
13.

D. Exept for Anchor Bolts, , , olt hole diameters are bolt diameter plus $1 / 6^{\prime \prime}$ and anchor bolt holes are bolt diameter
plus $1 / 2$ (Ma) prior to galvanizing.
7. Pole Installation:

位 (nditional wire access holes (not shown in this Index) with a diameter that exceeds $11 / 2$ in diameter. B. Install Anchor Bolts in accordance with Specification 649-5.
C. Cable Supports: Electrical Cable Guides and Eyebolts.
a. Locate top and bottom cable guides within the pole aligned with each other
. Position other cable quide 1" directly below th
d. Position Park Stabe gid
D. Install Pole with the handhole located away from approaching traffic.
E. Install the Pole plumb.
8. Cabinet Installation:
A. Splice fiber optic cables in cabinet to preterminated patch panel B. Furnish and install Surge Protection Devices (SPDS) on all cabling in cabinet.
D. Ensure that all electronic equipment power is on outletts for equipment in cabinet.
D. Ensure that all electronic equipment power is protected and conditioned w
E. Ensure that equipment cabinet is bonded to CCTV pole grounding system.
F. Install the pole mounted cabinet with the hinges next to the pole
G. Sizes and types of conduits and inner ducts for network communications between the
9. Lowering Device Installation:
A. Place the lowering cable that moves within the pole in an interior conduit to prevent it
from tangling from tangling or interfering with any electrical wire that is in the pole. Ens
any electrical wire within the pole is routed securely and free from slack.
B. Mount lowering device perpendicular to the roadway or as shown in the plans. Position
B. Mount Iowering device perpendicular to the roadway or as shown in the plans. Position
CC TV pole so that the camera can be safely lowered without requiring lane closures.

CC TV pole so that the camera can be safely lowered without requiring lane closures.
c. Coordinate all lowering device hardware requirements (including Tenon, Tenon mounting coordinate all owering device hardware requirements (including
plates, parking stands, etc.) with lowering device manufacturer.

LAST REVISION
 EVISION

DESCRIPTION:
FDOTY $\begin{gathered}\text { FY 2023-24 } \\ \text { STANDARD PLANS }\end{gathered}$
\square

SHAFT DESIGN TABLE			
Pole Overall Height (ft)	Shaft Diameter	Shaft Length	Longitudinal Reinforcement
50	$4^{4}-0^{\prime \prime}$	11'-0"	(14) \#11
55	$4^{4}-0^{\prime \prime}$	${ }^{12}{ }^{\prime \prime} 0^{\prime \prime}$	(14) \#11
60	$4^{\prime \prime}-6^{\prime \prime}$	$13^{\prime \prime}-0^{\prime \prime}$	(16) \#11
65	$4^{\prime}-6^{\prime \prime}$	$13^{\prime \prime}-0^{\prime \prime}$	(16) \#11
70	$5^{\prime \prime}-0^{\prime \prime}$	$14^{-00^{\prime \prime}}$	(18) \#11

$\overline{=}$ ASSEMBLY $\overline{=}$

FOUNDATION NOTES:

1. Shaft Length is based on $1^{\prime}-0^{0 \prime}$ height above the finished grade.
2. Shaft Design Table Shaft Length is based on level ground (flatter
than 1.5) Increase the shaft depth in accordance with the than 1:5). Increase the shaft depth in accordance with the
Additional Shaft Depth Due To Ground Slope table for foundations with slopes $1: 5$ and steeper. Use the higher value for slope o

BASE PLATE AND ANCHOR BOLT DESIGN TABLE							
Pole Overall Height (ft)	Base Plate Diameter (in.)	Base Plate Thickness (in.)	Anchor Bolt Circle (in.)	$\begin{gathered} \hline \text { Number } \\ \text { of } \\ \text { Bolts } \end{gathered}$	Anchor Bolt Diameter (in.)	Anchor Bolt Embedment (in.)	Minimum Anchor Bolt Projection (in.)
50	27	2.5	22	6	1.25	31	8.5
55	28	2.5	23	6	1.25	33	8.5
60	33	2.5	27	6	1.50	34	9.5
65	35	2.5	29	6	1.50	35	9.5
70	40	2.5	33	6	1.75	38	10.5

ARM AND BASE PLATE										
Arm IDAxx-ArmLength S-SingleArm D-DoubleArm H-HeavyDuty	$\begin{gathered} \text { Total } \\ \text { Arm } \\ \text { Angth } \\ \text { (ft) } \end{gathered}$	Arm			Arm Extension			Base Plate		
		$\underset{\substack{F A / S A \\(f t)}}{ }$	$\underset{\left(\begin{array}{c} \text { (in) } \end{array}\right.}{ }$	$\begin{array}{\|c} F D / S D \\ (i n) \end{array}$	$\underset{(f t)}{F E / S E}$	$\begin{array}{\|c\|} \hline F G / S G \\ (i n) \end{array}$	$\underset{\substack{\text { FH/SH) } \\ \text { (in) }}}{ }$	$\underset{(i n)}{H T}$	$\begin{aligned} & \text { FJ/SJ } \\ & \text { (in) } \end{aligned}$	FK/SK (in)
A30/S	30	30	11	0.25	--	--	--	22	25	3
A30/S/H			12							
A30/D			11					30	36	
A30/D/H			12							
A40/S	40	40	13	0.25	--	--	--	22	27	3
A40/5/H			14							
A40/D			13					30	36	
A40/D/H			14					30	36	
A50/S	50	32.5	12	0.25	20.5	14	0.313	22	29	3
A50/S/H			13			15		22	29	
A50/D			12			14		30	36	
A50/D/H			13			15		30	36	
A60/S	60	35.5	12	0.25	27.5	15	0.375	30	36	3
A60/S/H			13			16				
A60/D			12			15				
A60/D/H			13			16				
A70/S	70	38	13	0.25	35	17	0.375	30	36	3
A70/S/H			14			18				
A70/D			13			17				
A70/D/H			14			18				
A78/S	78	39	13	0.25	42	18	0.375	30	36	3
A78/5/H			15			20				
A78/D			13			18				
A78/D/H			15			20				

Pole, base plate and arm connection																		
$\begin{aligned} & \text { Pole ID } \\ & \text { Px-PoleNo } \\ & \text { S-SingleArm } \\ & \text { D-DoubleAR m } \\ & \text { L-Luminaire } \end{aligned}$	Upright				Base Plate					Arm-Upright Connection								
	$\underset{(f t)}{(f)}$	$\begin{aligned} & u D_{\text {in }} \end{aligned}$	$\begin{aligned} & \text { (in) } \end{aligned}$	$\begin{aligned} & u G \\ & (f t) \end{aligned}$	$\begin{aligned} & \text { Noor } \\ & \text { Bolts } \end{aligned}$	$\begin{aligned} & B A \\ & (i n) \end{aligned}$	$\begin{aligned} & B B \\ & (\text { in) } \end{aligned}$	$\begin{aligned} & B C \\ & (i n) \end{aligned}$	$\begin{aligned} & B F \\ & (i n) \end{aligned}$	$\begin{gathered} H T \\ (i n) \end{gathered}$	$\begin{aligned} & F J / S J \\ & (\text { (in) } \end{aligned}$	$\underset{(i n)}{F L / S L}$	$\begin{gathered} F N / S N \\ (i n) \end{gathered}$	$\begin{aligned} & \text { FO/SO } \\ & \text { (in) } \end{aligned}$	$\underset{(i n)}{F P / S P}$	$\begin{gathered} F R / S R \\ (i n) \end{gathered}$	$\underset{\substack{\text { FS/SS } \\ \text { (in) }}}{ }$	($\begin{gathered}\text { FT/ST } \\ \text { (in) }\end{gathered}$
P1/S	25	16	0.375		6	32	2.5	2	40	22	25	0.75	0.438	14	1.25	2	8.5	0.438
P1/S/L	39			37.5														
$\frac{P 1 / D}{}$	25			37.5						30	36			23		2.75	12.5	
P2/S	25	18	0.375		6	34	2.5	2	40	22	27	0.75	0.438	15	1.25	2	8.5	0.438
P2/S/L	39			37.5						22	27			15		2		
P P2/D	25 39			37.5						30	36			23		2.75	12.5	
P3/S	25	20	0.375		6	36	2.5	2	40	22	29	0.75	0.438	16	1.25			0.438
P3/S/L	39			37.5						22	29			16		2	8.5	
$\frac{P 3 / D}{\text { P3/D/L }}$	25			37.5						30	36			23		2.75	12.5	
P4/S	25	22	0.375		8	38	2.5	2	40	30	36	0.75	0.438		1.25	2.5	12.5	0.438
P4/S/L	39			37.5										17				
P4/D	25													23				
P4/D/L	39			37.5					40									
P5/S/L	39	24	0.375	37.5	8	40	2.5	2		30	36	0.75	0.5	18	1.25	2.5	12.5	0.5
P5/D	25																	
P5/D/L	39			37.5										23				
P6/S	25	24	0.5		8	40	2.5	2	40	30	36	0.75	0.625	18	1.5	2.5	12	0.625
P6/S/L	39			37.5														
$P 6 / D$ $P 6 / D / L$	25			37.5										23				
P7/5	25	26	0.5		8	42	2.5	2	40	30	36	0.75	0.625	19	1.5	2.5	12	0.625
P7/D	25																	
P7/D/L	39			37.5										23				

NOTE

. Work this Index with Index 649-031.

LUMINAIRE AND CONNECTION											
$\begin{aligned} & \angle A \\ & (f t) \end{aligned}$	$\begin{aligned} & \angle B \\ & (f t) \\ & \left(\begin{array}{l} 1 \end{array}\right. \end{aligned}$	$\underset{(i c}{L(i n)}$	$\begin{gathered} \angle D \\ (i n) \end{gathered}$	$L E$	$\begin{aligned} & L F \\ & (f t) \end{aligned}$	$\begin{aligned} & \angle G \\ & (i n) \end{aligned}$	$\begin{aligned} & L H \\ & (i n) \end{aligned}$	$\frac{L i}{}$	$\angle K$ $(i n)$	$\begin{gathered} \hline L L \\ \text { (deg) } \end{gathered}$	$\begin{gathered} u G \\ (f t) \end{gathered}$
40	10	3	0.125	0.5	8	0.5	0.75	0.25	0.25	0	37.5

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 22 \end{gathered}$	20 DESCRIPTION:	$\begin{array}{cc} F Y \text { 2023-24 } \\ \text { FDANDARD PLANS } \end{array}$	STANDARD MAST ARM ASSEMBLIES	$\begin{gathered} \text { INDEX } \\ 649-030 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 1 \end{aligned}$

GENERAL NOTES:
Shop Drawings: This Index is considered fully detailed, only submit shop drawings
for minor modifications not detailed in the plans.
2. Prior to Fabrication: Verify the installed foundation elevation will result in the
required signal elevation and ad just the Pole height as needed.
3. Details for Signal and Sign locations, Signal Head attachment, Sign attachment,
Pedestrian Head attachment, and Foundation Conduit are not shown for simplicity
4. Materials: A. Poles, Mast Arms and Backing Rings:
a. Less than $3 / 1$ " $^{\prime \prime}$ ASTM A1011 Grade 50, 55, 60 or 65
b. Greater than or equal to $3 / 1 /{ }^{\prime \prime \prime}$. ASTM AST2 Arade 5 Grade $50,55,60$ or 65 B. Steel Plates: ASTM A36
C. Weld Metal. FTOXX
C. Weld Metal: ETOXX
D. Bolts, Nuts and Washer
D. Bolts. Nuts and Washers:
a. High Strength Hex Head Bolts: ASTM F3125, Grade A325, Type 1
b. Nuts: ASTM A563 DH Heavy-Hex b. Nuts: ASTM A563 DH Heavy-H.
c. Washers: ASTM F436 Type 1, one under turned element
c. Washers: ASTM F436 Type 1, one und
E. Anchor Bolts, Nuts and Washers:'
a. Anchor Bolts: ASTM F1554 Grade 55
b. Nuts: ASTM A563 Grade A Heavy-Hex (5 per anchor bolt)
c. Plate Washers: ASTM A36 (2 per bolt)
F. Threaded Bars/Studs: ASTM A36 or ASTM A30
G. Handhole Frame: ASTM ATO9 or ASTM A36, Grade 36
H. Hand hole Cover: ASTM A1011 Grade 50, 55, 60 or 65
I. Pole Caps and Nut Covers: Fabricate from cast aluminum
or galvanized carbon steel.
J. Stainless Steel Screws: AISI Type 316
K. Concrete: Class IV (Drilled Shaft) for all environmental classifications.
L. Reinforcing Steel: Specification 415
5. $\frac{\text { Fabrication: }}{\text { A. Welding: }}$

Welding:
a. Specification $460-6.4$ and
b. AASTIO LRFD Speceification for Structural Supports for
Highway Signs, Luminaires, and Traffic Signals Section
Highway Signs, Luminaires, and Traffic Signals Section 14.4.4
B. Poles and Mast Arms:
a. Round or 12 -sided (Min.)
a. Round or
b. Taper pole diameter at ot 0.14 inches per foot
C. Upright poles must be a single esection
U. Upright poles must te a single section. For arms and upright
poles, circu
permitted.
d. Arms may be either one or two sections. See Sheet 4 for
telescopic splice detail
e. Fabricate Iongitudinal
penetration or fusion welds welds with 60 percent minimum 1. Use a full-penetration groove we
circumferential tube-to-plate connect within 6 inches of the 2. Use full-penetration groove welds on the female end section
of telescopic (i.e slip type) of telescopic (i.e., slip type) field splices for a minimum
length of one and one-half times the inside diameter of the female section plus 6 inches.
Locate longitudinal seams weld al
f. Locate Iongitudinal seams weld along the

1. Lower quadrant of the arms.
2. Same side of the pole as the arm connections
g. Face handhole perpendicular trom arm onnections
perpendicular from the first arm of doule arm poles, perpendicular from the first arm of double arms poles facing
away from traffic or see special instructions on the Mast Arm
Tabulation Sheet.
Provide a
h. Provide a 's' or 'C' hook
support (See Sheet 6)
i First and Second arm camber angle $=2$
j. Bolt holes diameters as for
3. Bolts (except Anchor bolts): Bolt diameter plus $1 / 16^{\prime \prime}$ prior 2. Anchor Bolts: Bolt diameter plus $1 / 2$ " (Max.).
4. $\frac{\text { Coatings: }}{\text { A. AII } N}$
A. AII: Nuts, Bolts, Washers and Threaded Bars/Studs: ASTM F2329
5. Construction:
A. Foundation: Specification 455 Drilled Shaft, except that payment is
included
included in the cost of the Mast Arm.
B. Install Pole vertically.
B. Install Pole vertically.
C. Place structural grout
C. Place structural grout pad with drain between top of foundation and bottom of
baseplate in accordance with Specification $649-7$
baseplate in accordance with Specification $649-7$.
D. Attach Sign anals and Signals centered on the elevation of the Mast Arm.
E. Wire Access holes are $11 / 2$ or less in diameter.
Aluminum Identification Tag not to exceed $2^{\prime \prime} \times 4^{\prime \prime}$. Secure to pole
by $1 / 8^{\prime \prime}$ stainless steel rivets or screws. Fabricators to provide dit
details for approval. Identifications. Tag located on inside of pole
visibile from handhole, or on outside of pole inside Terminal visible from handhole, or on outside of pole inside Terminal
compartment. Tag to be stamped with the following information:

Standard Design
Einancial Project
Pole Type
Arm Type
Nanufacturer's Name
Pole Base (Fy of
Arm (F_{y} of Steel)

> Special Design Financial Project ID Manufacturer's Name Pole Base (Fy of Steel) Arm (Fy of Steell St Pole Wall Thickness (in.) Arm Wall Thickness (in.)

Bottom
of Plate
Signal Conduit
(For No. \& Size
See Signal Plans)
1~2" Conduit Per Assembly
~~" Additional Conduit in
Foundation
(Drilled Shat
Drilled Shaft
See Sheet 2)

Single Arm Shown, Double Arm Similar (Luminaire Arm Not Shown)

ELEVATION AND NOTES
LAST
REVIIION
11/O1/21

NOTES:

1. As an option, pedestrian signals may be installed on concrete poles and pedestals using lead anchors
(two bolts same size per hub) in lieu of the stainless (two bott s sal sal
steel bands.
2. Repair drilled or punched holes in galvanized stee poles or ped stals in accorrance with Speciftication
562 Install grommets or bushings in each hole.
3. Meet grounding requirements of Specification 620 .
4. See APL for Department-approved Pedestrian
Signal Assemblies and hardware.
5. For Prestressed Concrete Poles see Index 641-010.
6. For Steel Strain Poles see Index 649-010.
7. For Pedestal Mounted Signal posts and foundations
see Index $646-001$

new construction

existing construction
\qquad
CONCRETE POLE MOUNTED SIGNAL $\bar{\square}$ \qquad $\overline{=}$ PEDESTAL MOUNTED SIGNAL $\bar{\square}$

NOTES

A. Sign panels, wind beams and associated hardware: See Index 700-020
B. Sign ad justable hangers, wire rope clamps and associated hardware: See APL
C. Wire and additional hardware requirements: See Specification 634
2. Type B and C Attachments.
B. Number of sign hangers rein $6^{\prime \prime}$ of the sign edge.

Number of sign hangers required based on sign width:
sign width < 4'-0": One
b. $4^{-}-0^{\prime \prime} \leq$ sign width $\leq 8^{\prime}-0^{\prime \prime}$: Two
c. Number of wind beams required based on sign depth
a. Sign depth < $3^{\prime}-6^{\prime \prime}:$ One
b. $3^{3^{\prime}-6^{\prime \prime} \leq S i g n ~ d e p t h ~} \leq 7^{\prime}-0^{\prime \prime}:$ Tw
3. Type D Attachments:
$\frac{\text { Type D Attachments: }}{\text { Maximum sign width }}=3^{\prime}-0^{\prime \prime}$
4. Align the bottom edges of signs to approximately the same elevation
5. Use a minimum of 2 bolts with a minimum spacing of $2^{\prime \prime}$ for overlapped connection of the adjustable hangers.

[^1]

GENERAL NOTES:

1. Lowering device to be shipped ready for pole attachment to include 100 ft . of composite power and signal cable
prewired to lowering device at the factory.
2. The lowering device manufacturer shall supply both a portable lowering tool with a manual hand crank and a half-inch chuck variable-speed reversible industrial-duty electric drill that matches the winch's manufacturer-recommended
revolutions per minute. One lowering tool per every 10 lowering devices is required.
3. The lowering device manufacturer shall provide an on-site installation inspection and operator instruction and
certification. This ensures the product is assembled correctly and that all necessary per sons are trained in the proper, safe operation of the system. Before erecting the first pole the contractor must contact the lowering device
supplier and she
4. Design camera mounting arm and connection to tenon according to FDOT Structures Manual (current edition).

CAMERA LOWERING DEVICE DETAIL
5. Camera to be mounted to camera junction box and stabilizing weight via $1 / 2 / 2$ Standard NPT Pipe Thread.
6. Use air terminal extension when the pole top junction box is wider than top of pole.
7. The stainless steel device lowering cable shall be installed inside the pole within a $1 \frac{1}{4 \prime \prime}$ diameter PVC conduit
8. All communication and power cables must be neatly bundled and secured.
9. Use a Camera Lowering Device listed on the Approved Product List (APL).
10. See Index 641-020 for concrete pole details and Index 649-020 for steel pole details.

Camera mounting with lowering device

GENERAL NOTES:

1. If the loop lead-in is 75 'or less from the edge of the loop
detector to controller cabinet, continue the twisted pair to the
 twisted pair an Intermediate Pullbox, splice to shielded lead-in
wire and continue to the controller cabinet.
2. Provide sufficient saw-cut width to allow unforced placement of
loop wires or lead-in cables into the saw-cut Except expansion joints, saw-cut to a standard depth of 3^{4}, but no more han 4 " below the top of surface.
3. On resurfacing or new roadway construction projects, install the
loop wires and lead-in cables in the asphalt structural course prior to to placement of the asphalt friction course. Place the
looo wires and lead-in cables in a saw cut in the structural course.
4. Use nonmetallic hold down material to secure loop wires and
lead-ins to the bottom of saw-cuts. Place the hold down material approximately $12^{\prime \prime}$ intervals around loops and $24^{\prime \prime}$ intervals on lead-ins.
5. The minimum distance between the twisted pairs of loop lead-in
wire is $6^{\prime \prime}$ from the loop to $12^{\prime \prime}$ from the pavement edge or curb.
6. Splice Connections in pull boxes with UL listed, watertight,
insulated enclosures. Place one enclosure over the end of conductor and place a third enclosure over the exposed end of the shielded cable. As an alternate, a larger diameter enclosure that will accommodate both the splices of the conductors and the
exposed end of the shielded cable may be used.
7. Do not disturb more than a $6^{\prime \prime} \times 6^{\prime \prime}$ area of asphalt. Restore
asphalt as directed by the Engineer.
8. Alternative installations may be approved by the State Traffic

NOTES:

1. Cut a slot in the edge of the roadway of
sufficient size and depth to snugly place sufficient size and depth to snu
the end of the flexible conduit.
2. Install the conduit at least $6^{\prime \prime}$ into the roadway pavement and approximately
$2^{\prime \prime}$ below the top of the roadway surface.
3. The departure angle of the conduit from
the roadway is between 30° to 45°.

ELEVATION

INSTALLATION WITHOUT CURB \& GUTTER

3. Place the top of the rigid conduit approximately $2^{\prime \prime}$ belo
4. Fill the hole with loop sealant to the level of the
5. Use a nonmetallic material to prevent excessive 100
sealant from entering the rigid conduit
alternative 1
alternative 2

NOTES:

. If cabinet mounting requires relocation of hole in concrete pole, fill existing hole with concren

Liquidtight flexible conduit is approved for use from the electrical disconnect to the cabinet
when both are installed on the same pole.

metal pole
 CONCRETE POLE
 WOOD POLE

- pole mounted controller cabinet \qquad

NOTES

. Maintenance Service Slab: Use Class NS concrete and slope $1 / 4$ " to $1^{\prime \prime}$ for drainage. Not required in sidewalk, pavement areas, or where R/W is restricted.
2. The number, size and orientation of conduit sweep will vary according to site condition or locations. Povided two spare $2^{\prime \prime}$ PVC conduits in all bases. Place the exits of the spare conduits in the and into a pull box. If obstructions prevent the spare conduit from exiting to the rear, or the rear the cabinet is located on the R/W line, locate sweeps with a weatherproof fitting.

NEW CONTROLLER CABINET

front elevation

EXISting controller cabinet

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 22 \end{gathered}$	20 DESCRIPTION:	FDOT\} $\begin{gathered}\text { FY 2023-24 } \\ \text { STANDARD PLANS }\end{gathered}$	CABINET INS TALLATION DETAILS	$\begin{gathered} \text { INDEX } \\ 676-010 \end{gathered}$	SHEET 1 of 3

NOTES:

1. Maintenance Service Slab: Use Class NS concrete and slope $1 / 4^{\prime \prime}$ to $1^{\prime \prime}$ for drainage. Not required in sidewalk, pavement areas, or where R/W is restricted.
2. If cabinet mounting requires relocation of hole in concrete pole, fill existing hole with concrete or cover
with a noncorrosive cover plate.
3. Liquidtight flexible conduit is approved for use from the electrical disconnect to the cabinet when both are installed on the same pole.
4. Where a pull box is to be placed within the maintenance service slab, the slab width must be extended to provid for the required pull box concrete apron as detailed in Index 635-001.
5. Coordinate placement of maintenance service slab with proposed final grade. Grade and compact side slopes around the maintenance service slab to provide a sta
and level working area and tie into the proposed embankment.

side elevation
metal pole

PLAN VIEW
DETAIL ' A^{\prime}

POLE MOUNTED INTELLIGENT TRANSPORTATION SYSTEMS (ITS) CABINET

NOTES:

1. Maintenance Service Slab: Use Class NS concrete and slope $1 / 4^{\prime \prime}$ to $1^{\prime \prime}$ for drainage. Not required in sidewalk. pavement areas, or where R/W is restricted.
2. The number, size and orientation of conduit sweep will vary according to site condition or locations. Provided the spar PVC conduits in all bases. Place the exits rear of the cabinet base and into a pull box. If obstructions prevent the spare conduit from exiting to RW spare conduit sweeps with a weatherproof fitting
3. When a pull box is to be placed within the maintenance service slab, the slab width must be extended to provide for the required pull box apron as detailed in Index 635-001
4. Coordinate placement of maintenance service slab with proposed final grade. Grade and compact side slopes around the maintenance service slab to provide probosed embankment.

front elevation

ide elevation

pLAN VIEW

NEW ITS CABINET

GROUND MOUNTED INTELLIGENT TRANSPORTATION SYSTEMS (ITS) CABINET=

| $\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 22 \end{gathered}$ | \|c|cos | $\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$ | CABINET INS TALLATION DETAILS | $\begin{gathered} \text { INDEX } \\ 676-010 \end{gathered}$ | SHEET
 2 of 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |

front elevation
$\overline{\overline{ }}$ PEDESTAL MOUNTED CABINET $\bar{\square}$

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 22 \end{gathered}$	20 DESCRIPTION:	$\begin{array}{cc} \text { FDOT } & \text { FY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	CABINET INS TALLATION DETAILS	INDEX $676-010$	$\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 3 \end{aligned}$

CABINET BACKPLANE DETAIL

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$	2 DESCRIPTION:	$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	TRAFFIC MONITORING SITE	$\begin{gathered} \text { SHEET } \\ 3 \text { of } 9 \end{gathered}$

LAST REVISION 11/01/21	DESCRIPTION:	$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	TRAFFIC MONITORING SITE	INDEX $695-001$	$\begin{aligned} & \text { SHEET } \\ & 5 \text { of } 9 \end{aligned}$

$\overline{\bar{Z}}$ TYPE I CONFIGURATION-B
(Vehicle Classification System)

NOTE:

Configuration-A and Configuration-B are based on the vehicle Speed/classification unit. Contact
the TMS Manager in the Transportation Data and Analytics Office for the correct configuration

LANE CONFIGURATION FOR TMS inductive loop and strain gauge/quartz axle sensor

(Commercial Vehicle Weight Enforcement System)
lane configuration for mainline inductive loop and quartz axle sensor

$\begin{aligned} & \text { LAST } \\ & \text { REVISION } \\ & 11 / 01 / 21 \end{aligned}$		FDOT $\begin{gathered}\text { FY 2023-24 } \\ \text { STANDARD PLANS }\end{gathered}$	TRAFFIC MONITORING SITE	$\begin{gathered} \text { INDEX } \\ 695-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 7 \text { of } 9 \end{aligned}$

$$
\begin{aligned}
& \text { STEP 1: Calculate the area and the centroid for an individual sign or a sign cluster. Note that the centroid and areas have been calculated } \\
& \text { for frequently used sign clusters. These are shown on Sheets } 7,8 \text {, and } 9 \text {. }
\end{aligned}
$$

GENERAL NOTES:

Meet the requirements of Specification 700 .
2. Shop Drawings:

This Index is considered fully detailed. Submit Shop Drawings only for .
bREAKAWAY SUPPORTS REQUIREMENTS: Install non-frangible aluminum column (post)

SHEET	CONTENTS
1	General Notes and Design Example
2	Design Example - Centroid
3	Column and Foundation Tables
4	Slip Base and Foundation Details
5	Driven Post, Concrete Stub, and
6	Soil Plate Details
7	Wind Beam Coanection
8	Wind Beam Connection for Flip Down Sign
$9,10, \& 11$	Frequently Usetail Sign Clusters

	$\begin{aligned} & \text { Size } \\ & a \times h \end{aligned}$	Centroid			'A' ${ }^{\prime}$	' $X_{n} \times$ ' A_{n}^{\prime}	' $Y_{n} \times 1 A^{\prime}{ }^{\prime}$
		${ }_{\text {Local }}^{\text {Lecal }}$					
	(in. \times in.)	(in.)	(in.)		(in.2)	(in. ${ }^{\text {3 }}$)	(in. ${ }^{\text {3 }}$)
(1)	21×15	7.5	$-10.5-1.5-1.5=-13.5$	7.5	315	-4,252.5	2,362.5
(2)	21×15	7.5	$10.5+1.5+1.5=13.5$	7.5	315	+4,252.5	2,362.5
(3)	24×24	12	$-12-1.5=-13.5$	$15+1+12=28$	576	$-7,776$	16,128
(4)	24×24	12	$12+1.5=13.5$	$15+1+12=28$	436	5,886	12,208
5	24×12	6	$-12-1.5=-13.5$	$15+1+24+1+6=47$	288	-3,888	13,536
(6)	24×12	6	$12+1.5=13.5$	$15+1+24+1+6=47$	288	3,888	13,536
				TOTALS	2,218	-1,890	60,133

$$
\begin{aligned}
& X_{c}^{\prime}=\frac{\Sigma\left(' X_{n}^{\prime} \times A_{n}^{\prime}\right)}{\Sigma ' A_{n}^{\prime}}=-0.1 \mathrm{ft} . \quad \quad Y_{c}^{\prime}=\frac{\Sigma\left(Y_{n}^{\prime} \times A_{n}^{\prime}\right)}{\Sigma A_{n}^{\prime}}=2.26 \mathrm{ft} \text {. }
\end{aligned}
$$

STEP 2: Determine the height 'H' from groundline to the centroid of the individual sign or sign cluster Assume: ' B ' $=1 \mathrm{ft}$., ' C ' $=7 \mathrm{ft}$.
Calculated: $\quad x_{c}^{\prime}=-0.1 \mathrm{ft}$., ' $Y_{c}^{\prime}=D^{\prime} D^{\prime} 2.26 \mathrm{ft}$.

$$
' H^{\prime}={ }^{\prime} B^{\prime}+' C^{\prime}+D^{\prime}=10.26 \mathrm{ft.}==>\text { USE } 11 \mathrm{ft.} \quad \sum\left({ }^{\prime} A_{n}^{\prime}\right)=15.4 \mathrm{ft.}{ }^{2} \quad=>\text { USE } 16 \mathrm{ft.2}
$$

STEP 3: Refer to the Aluminum Column (Post) Selection Tables and find the intersection point. See Sheet 3.

STEP 4: For sign assemblies with signs oriented in two directions, only the sign with the
largest area should be analyzed to determine the Column (Post) requirements.

SIGN CLUSTER

$$
X_{c}^{\prime}=\frac{\Sigma\left(X_{n}^{\prime} \times A_{n}^{\prime}\right)}{\Sigma ' A_{n}^{\prime}} \quad C^{\prime}=Y_{c}^{\prime}=\frac{\Sigma\left(Y_{n}^{\prime} \times A^{\prime} A_{n}^{\prime}\right)}{\Sigma ' A_{n}^{\prime}}
$$

' $A_{n}^{\prime}=$ Area of individual sign
' B ' $=$ Height of the edge of pavement from the mounting elevation
$' C^{\prime}=$ Height of the the bottom of the sign or cluster from the edge of pavement elevation
${ }^{\prime} D^{\prime}=$ Height of the centroid of the sign or cluster from the bottom of the sign or cluster
h = Individual sign height
'H' = Height of sign or cluster centroid from groundline
a $=$ Individual sign width
${ }^{\prime} X_{c}{ }_{c}=$ Centroid horizontal location of sign or cluster from \& Aluminum Column (Post)
${ }^{\prime} Y^{\prime}{ }_{c}=$ Centroid height of sign or cluster from bottom of sign cluster
$x_{n}{ }^{\prime}=$ Individual sign centroid horizontal location from $\&$ Aluminum Column (Post)
${ }^{\prime} Y^{\prime}{ }_{n}=$ Individual Sign centroid height from bottom of sign cluster

NOTES:

1. For 'B' \& 'C' see Index 700-101 and Roadway Plans.
2. Do not exceed an area of 30 SF or a width of 60 inches for a sign or a sign cluster, incluaing rotated sign panels.
3. Vertical sign spacing ($1^{\prime \prime}$ shown on Sign Cluster detail) also applies to rotated signs.
$\overline{=}$ CALCULATION OF SIGN CLUSTER CENTROID $\overline{=}$

$\overline{=}$ RAILROAD $=$

DESIGN EXAMPLE - CENTROID

700-010 2 of 11

foundation table						
$\begin{aligned} & \text { Column (Post) } \\ & \text { Size } \end{aligned}$		Foundation Alternatives				
		Driven Post *		Concrete (Class II)		
Outside Diameter (in)	$\begin{aligned} & \text { Wall } \\ & \begin{array}{c} \text { Thr. } \\ \text { (in) } \end{array} \end{aligned}$	Embedment	Depth (ft)		Embedment	
		without Soil Plate	$\begin{array}{\|l\|l\|} \hline \text { with } \\ \text { Soil Plate } \end{array}$	(ft)	$\begin{aligned} & \text { Depth } \\ & (f t) \end{aligned}$	$\begin{gathered} \text { Length } \\ (\mathrm{ft}) \end{gathered}$
2.0	1/8	4.5	2.5	---	---	---
2.5	1/8	5.0	3.0	---	---	---
3.0	1/8	5.0	3.5	---	---	---
3.5	3/6	6.0	4.5	---	---	---
4.0	1/4	---	---	2.0	3.5	3.0
4.5	1/4	---	---	2.0	4.0	3.0
5.0	1/4	---	---	2.0	4.5	3.0
6.0	1/4	---	---	2.0	5.0	3.0
8.0	1/4	---	---	2.0	5.5	3.0

installing frangible column supports:
Columns (posts) $3^{11 / 2}$ O.D. and less are considered frangible and may be installed either by driving the post or setting the posts in preformed holes. Backfill preformed holes with suitable material tamped in layers not thicker than $6^{\prime \prime}$ (to provide adequate

$\overline{\underline{Z}}$ OFFSET SIGN $\bar{\square}$
NOTES:

1. For offset sign placement see Index 700-101
2. For signs with widths greater than 4^{\prime} see Index 700-011.
3. offset signs with driven posts require a soil plate.

| LAST REVISION $11 / 01 / 22$ | \|c|c | DESCRIPTION: | FDOT | $\begin{gathered} \text { FY 2023-24 } \\ \text { STANDARD PLANS } \end{gathered}$ | S INGLE COLUMN GROUND S IGGNS | $\begin{gathered} \text { INDEX } \\ 700-010 \end{gathered}$ | $\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 11 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

EEVE \& BASE PLATE DETAILS=

(Welded) \qquad

 (Non-Frangible Column, Typ.) (Non-Frangible Column In Crossovers, Medians \& Sidewalks)

SLIP BASE AND FOUNDATION DETAILS

ALUMINUM SOIL PLATE DETAIL $\bar{\square}$

Optional Slotted Holes

DETAIL "B"

NOTE: Grout seal only required
When sidewalks is present.

NOTE
Embedment Depth is $2^{2}-6^{\prime \prime}$ for 2.0
and 2.5" Column (Post) Stubs and
$3^{\prime}-6^{\prime \prime}$ for 3.0^{\prime} and $3.5^{\prime \prime}$ column
$3^{1-6} 6^{6}$ for $3.0^{\prime \prime}$
(Post) Stubs.

NCRETE/STUB DE
(Frangible Post In Through Sidewalk Shown (Frangible Post In Through Sidewalk Shown
Installations without Sidewalk Similar)

DRIVEN POST, CONCRETE/STUB, AND SOIL PLATE DETAILS

LAST REVISION 11/01/22	DESCRIPTION:	$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	S INGLE COLUMN GROUND S IGGNS	$\begin{gathered} \text { INDEX } \\ 700-010 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 5 \text { of } 11 \end{aligned}$

$\bar{\sim}$ WIND BEAM CONNECTIONS DETAILS $\bar{\square}$

NOTES:

1. $5 / 6^{6 "} \emptyset$ stainless steel hex head bolts with nylon washer under head and washer under nut may be used in lieu of $1 / 4^{\prime \prime} \varnothing$ aluminum button or flat head bolts.
2. Use nylon washers (provided by the sheeting supplier) unde
sign sheeting.
3. Slots up to $2^{\prime \prime}$ long are allowed in wind beams to accommodate U-Bolts for varying Column (Post) diameters.
4. Wind beams may be oriented in either direction
5. For signs greater than $66^{\prime \prime}$ in height, install a third wind beam evenly spaced between the lop and bottom wind beams. For signs up to 1 in height, use only one wind beam at \mathbb{Q} Sign.
Install two wind beams on signs with heights Install two wind beams on signs with heights
greater than 12 and less than or equal to 66

$\overline{\bar{Z}}$ SIGN PANEL SIDE VIEW
NOTES:
6. Install sign in the undeployed (up) position.
7. Provide a continuous stainless steel hinge with minimum $0.060^{\prime \prime}$ leaf thickness, $2^{\prime \prime}$ open width and $0.120^{\prime \prime}$ pin diameter. Stake the hinge at both ends to prevent pin movement.
8. Install Stainless Steel Spring Loaded Slam-Latch with cover to bottom face of flip sign per manufacturer's recommendations.
9. Punch or drill a $3 / 4$ " diameter hole in the "L" shaped bracket on site to match location of $1 / 2$ " wide slam-latch pin. Remove any burs or sharp edges.

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 22 \end{gathered}$	\|	$\begin{array}{cc} \text { FDOT } & \text { FY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	S INGLE COLUMN GROUND S IGGNS	$\begin{gathered} \text { INDEX } \\ 700-010 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 7 \text { of } 11 \end{aligned}$

DETAIL "A

DETAIL "B" $=$ \qquad

Stainless Steel Slam-Latch

LAST REVISION 11/01/22	DESCRIPTION:	$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	S INGLE COLUMN GROUND S IGGNS	$\begin{gathered} \text { INDEX } \\ 700-010 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 8 \text { of } 11 \end{aligned}$

LAST
REVISION
I1

2. Work with Index 700-010.
3. Shop Drawings: Not required
4. Construction:
A. Locate Sign Support a minimum of 5 feet from an open joint or transition (sig
B. Base plate must be flush with back of Traffic Railing
C. Anchors in Traffic Railings:
a. Install Adhesive Anchors in accordance with Specification 416 except perfo
support location.
support location.
placement of C-I-P Em
c. Do not drill into existing conduit

Temporary Signs on Permanent Traffic Railings: Same as
Permanent except Field testing of anchors is not required
5. Removal of Temporary Signs on Permanent Traffic Railings:
A. Cut anchor rods flush with the top of the traffic ralling B. Coat anchors with Type F-1 epoxy to prevent corrosion a. Extend coating 2 inches beyond edge of cut anchor rods

Bridge deck shown. Approach slabs, j miscellaneous structures are similar.
7. Traffic railings are shown. Concrete barriers and parapets are similar.

SIGN LIMITATIONS TABLE	
MAX. SIGN AREA	MAX. SIGN CENTROID. HEIGHT
(SF)	(DIM. A + DIM. C)
25	$9^{\prime}-7^{\prime \prime}$

Dimension $A=$ Distance from centerline of the Support Post to the bottom
of the sign or sign cluster.
Dimension $\mathrm{c}=$ Vertical distance from the bottom of the sign or sign cluster
to the Centroid of the sign or sign cluster.

GENERAL NOTES:

Meet the requirements of Specification 700
2. Work with Index 700-010
3. Shop Drawings: Not required.
4. Construction:
A. Locate Sign Support a minimum of 5 feet from an open joint or transition (sign B. Bataioning may be ad ad justed to accommodate this requirement
B. Base plate must te flush wi
C. Anchors in Traffic Railings:

Anchors il Tratfic Railings:
a. Install Adhesive Anchors in accordance with Specification 416 except perform
field test
field test on one anchor per sign support location
b. Use template and tie anchors as necessary to maintain correct placement of C-I-P
End E. Embedded Anchors
. c. Do not drill into existing reinforcing Railings, Same as Permanent except field
E. Testing of anchors is not required signs on Temporary Railings/Barriers:
a. Install sign Supports at the midpoint along the length of a single segment
b. Avoid drilling through existing reinforcement; use of metal detector not required. b. Avoid drilling through existing reinforcem
c. Field testing of anchors is not required
5. Removal of Temporary Signs on Permanent Traffic Railings
A. Cut anchor rods flush with the top of the railing
B. Coat anchors with Type $F-1$ epoxy to prevent corr a. Extend coating 2 inches seyond edge of cut anchor rods
b. Epoxy coating $1 / 16^{\prime \prime}$ thick minimum

\qquad
\qquad

LAST REVISION 11/01/22	2	DESCRIPTION:		FY 2023-24 STANDARD PLANS	S INGLE POST S IGN S UPPORT BARRIER TOP-MOUNTED	$\begin{gathered} \text { INDEX } \\ 700-013 \end{gathered}$	SHEET 1 of 2

back elevation
=MULTI-COLUMN SIGN ASSEMBLY=

NUMBER OF WIND BEAMS BASED ON SIGN DEPTH (D) \qquad | 2 Beams | 3 Beams | 4 Beams | 5 Beams |
| :--- | :--- | :--- | :--- |
| $D \leq s$ | | | | $D \leq 8^{\prime} \quad 8^{\prime}<D \leq 12^{\prime} 12^{\prime}<D \leq 16^{\prime} 16^{\prime}<D \leq 20^{\prime}$

**Designation gives (Member Depth in inches) \times
(Flange Width in inches) $\times(11 b / f t)$

\qquad

C MULTI-COLUMN SIGN BACK PANEL

WIND BEAM, BACKING STRIP \& FUSE/HINGE PLATE DETAILS
LAST
REVISION
$11 / 01 / 22$

REVISION
$1 / 01 / 22$
11/01/22

FDOTS

 MULTII-COLUMN GROUND SIGN

TYPICAL SIGN FOR OVERHEAD TRUSS

GENERAL NOTES:

1. Meet the requirements of Specification 700 .
2. Work this Index in conjunction with CANTILEVER SIGN STRUCTURE DATA TABLES in the Plans and Index 700-030.
3. Handholes are required at pole base for DMS Structures. Refer to Index 700-090 for Handhole Details.
4. Shop Drawings are required.

Obtain Shop Drawing approval prior to fabrication. Include the following: A. Upright Pipe height ('A') and Foundation elevations: Verify dimension in the field prior to submittal to ensure minimum vertical clearances of
the sign panel over the roadway.
B. Height of the foundation above adjacent ground.
C. Anchor bolt orientation with respect to centerline of truss and the direction of traffic.
D. Chord Splices
E. Handholes at pole base (when required)

\qquad CANTILEVER SIGN ASSEMBLY \qquad

SECTION A-A
(With Gusset Plates And Web Angles Omitted For Clarity)

$$
\square
$$

UPRIGHT-TRUSS CONNECTION DETAIL

1. out-of-plane members are
not shown for clarity.
2. Wrap fillet weld around
plate termination on the Plate termination on the
tube wall.
3. Chord Splices not shown.

Section B-B (Section C-C Similar)

$$
\text { (See Note } 1 \& 3 \text {) }
$$

ilar) \qquad

$$
L Y \mp
$$解 N Equal Panels

Bolt Size	Distance	
	EA	EB
$11 / 4^{\prime \prime}$ ø	$4{ }^{\frac{3}{8}}{ }^{\prime \prime}$	$21 / 4{ }^{\prime \prime}$
$1^{\prime \prime} \varnothing$	$3{ }^{1 / 2}$	$1^{3 / 4} 4^{\prime \prime}$
$7 /{ }^{\prime \prime}$	$3^{\prime \prime}$	11/2"
3/4/ 0	2/2/1	11/4"
5/8" \varnothing	2\%/4"	$1^{1 / 81}$

= DETAIL ' $D^{\prime}=$

= DETAIL 'G' $=$

| LAST | DESCRIPTION: |
| :---: | :---: | :--- |
| REVISION | 気 |
| $11 / 01 / 22$ | |

$=$

SPLICE CONNECTION NOTES:

1. Only 6 bolts are shown in detail for clarity. (One Half Each Side of Splice)
2. Splices are not permitted for trusses less than or equal to 40 ', Splice optional for trusses greater than 40'
3. Chord Splices: "SD" Panel from upright is the closest panel in which a chord splice may be used. See Plans for CANTILEVER SIGN STRUCTURE
DATA TABLE. Minimum splice spacing is two truss panel lengths apart.

$\bar{\square}$ TRUSS PLUG DETAIL $\bar{\square}$

general notes:

Meet the requirements of Specification 700
2. Work this Index in conjunction with SPAN SIGN STRUCTURE DATA TABLES in the Plans and Index 700-030
3. Handholes at the pole base are required for DMS Structures. Refer to Index 700-090 for Handhole Details.
4. Shop Drawings are required
obtain Shop Drawing approval prior to fabrication. Include the following. A. Upright Pipe height ' 'C' \& ' B^{\prime}) and foundation elevations: Verify learances of the sign panel over the roadway.
B. Height of the foundation above adjacent ground.
C. Anchor bolt or ientation with respect to centerline of truss and the direction of traffic.
D. Method to be used to provide the required parabolic camber Hand Camber Diagram.
E. Handholes at pole base (when required).
5. Provide a parabolic camber with the required upward deflection as shown on the Camber Diagram

SPAN SIGN ASSEMBLY \qquad

CAMBER DIAGRAM \qquad

OPTION 1
OPTION 2

MAST ARM ASSEMBLY

NOTES:

1. Free-swinging, internally-illuminated street signs shall only be installed on the signal pole for span wire assemblies. For mast arm assemblies the street sign may be installed on the arm or pole.
2. Free-swinging, internally-illuminated street signs meet the requirements of Specification 700 .
3. Pole attachments and cantilever arm (or truss) assemblies may be accepted by Contractor certification provided the signs being supported meet the weight and area limitations included in Specification 700 for "Acceptance by Certification"
4. Pole attachments and cantilever arm (or truss) assemblies supporting signs not meeting the weight or area limitations included in Specification 700 for "Acceptance by Certification" require the submittal of structural calculations and Shop Drawings that have been prepared by and sealed by the Specialty Engineer

SPAN WIRE ASSEMBLY

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	20	DESCRIPTION:	FDOT	FY 2023-24 STANDARD PLANS	FREE-SWINGING, INTERNALLY-ILLUMIINATED STREET SIGN ASSEMBLIES	$\begin{gathered} \text { INDEX } \\ 700-050 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 1 \end{aligned}$

GENERAL NOTES:

1. Meet the requirements of Specification 700 .
2. Furnish and install the Dynamic Message Sign (DMS), sign structure in accordance with Index 700-040 or 700-041. Locate foundations
at locations shown in the Plans.
3. Shop Drawings are required:
A. Include the DMS connection
B. Do not start fabrication until the shop drawings are approved
4. If required, install guardrail at location show in the Plans and in accordance with Index 536-001.
5. Installation:
A. See project requirements for location of DMS Cabinet. B. Field Adjust pole-mounted DMS cabinet height to achieve as directed by the Engineer. Avoid conflicts with stiffeners, handhole and maintenance of anchor bolts.
Locate the sign horizontal on the structure as shown in the Plans. Vertically center the sign enclosure with the centerlin the truss.
D. Before erection, field drill the bolt holes in the vertical sign enclosure. Field locate holes to allow vertical hanger placement as shown on the Plans with no conflicts with
gusset or splice plates
on sign side of upright above the
F. Connect grounding conductors to the steel framework that has been cleaned to base metal by use of bonding plates having contact area of not less than 8 square inches or by
welding or brazing. Drilling and tapping the steel structure welding or brazing. Drilling and tapping the steel structure
to accept a threaded connector is also an acceptable method
G. If steel framework is to be drilled and tapped to accept threaded connector, the threaded connector shall be galvanized and have at least 5 threads fully engaged and secured with a jam nut to the steel framework.
. Bends in the conduit must be greater than the minimum bending in the conduit. DMS within the sign structure or in conduit. Transition conduit in foundation to indicate underduit locations. with appopriate reducer outside the limits of the found condian

CANTILEVER ISOMETRIC VIEW

SPAN ISOMETRIC VIEW

	FY 2023-24 STANDARD PLANS	DYNAMIC MESSAGE SIGN WALK-IN	$\begin{gathered} \text { INDEX } \\ 700-090 \end{gathered}$	SHEET 1 of 5

\qquad
DETAIL "B"

20' Radius Each "Sphere of Influence"

TYPICAL
(20' Rods, 40^{\prime} Spacing) GROUND ROD ARRAY DETAIL

(Thru Handhole) SECTION A-A

DETAIL "E" \qquad

(Cantilever Sign Structure Shown, Span Sign Structure Similar)

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		DESCRIPTION:	FDOTY	FY 2023-24 STANDARD PLANS	DYNAMIC MESSAGE SIGN WALK-IN	$\begin{gathered} \text { INDEX } \\ 700-090 \end{gathered}$	SHEET 5 of 5

gENERAL NOTES:

1. Neet the requirements of Specification 700
2. Shop Drawings are required:
A. Provide length as shown in the Plans
B. Design in accordance with AISC, AASHTO, and OSHA requirements
B. Do not start fabrication until the shoo drawings are approved
3. Catwalk hangers must be positioned to avoid conflicts with the sign structure truss and gusset plates. Place walkway close to the sign with a maximum open distance from walkway grate to DMS sign of $1 / 2$ ".
4. Maximum spacing of Catwalk hanger supports is $5^{\prime \prime}-0^{\prime \prime}$. Cantilever ends of grating is $8^{\prime \prime}$.
5. Galvanized steel catwalk grating meeting the requirements of Specification 504-2.3. Mus Support a 90 psf load and have a $3^{11 / 2 "}$ minimum toe kick. Attach grating in accordance with the manufacturer's instructions using stainless steel or galvanized fasteners.
6. Supply and install an OSHA 1910 compliant, self closing, hot dip galvanized safety gate . Supply and install an oer manufactures instructions.
7. Chain link fabric options (2" mesh with knuckled selvage top and bottom for all options):
A. AASHTO M181 Type I - Zinc Coated Steel, No. 9 gage (coated wire diameter), coated
at the rate of $1.8 \mathrm{oz} / \mathrm{ft}^{2}$. (M181 Class $D 2.0$ oz./ft ${ }^{2}$. modified to $1.8 \mathrm{oz} . / f \mathrm{ft}^{2}$).
AASHTO M181 Type II - Aluminum Coated Steel, No. 9 gage (coated wire diameter), coated at the rate of $0.40 \mathrm{oz} . \mathrm{ft}^{2}$
8. Install 2" NPS (Sch. 40) guiderail and posts: ASTM A53 Grade B for standard weight pipe.

	TABLE OF CONTENTS:
Sheet	Description
1	General Notes and Content
2	General Assembly and Fixed Base Details
3	Walkway Support Details

METEMGH:

DETAIL "C"
(Guiderail Attachment)
(Guiderail Attachment)

O DESCRIPTION:
LAST
REVISION
11/01/19
FDOTY $\begin{gathered}\text { FY 2023-24 } \\ \text { STANDARD PLANS }\end{gathered}$

(Bolting Plate)

$$
\overline{\bar{Z}} \text { WALKWAY SUPPORT DETAILS } \overline{\bar{Z}}
$$

(Stiffener Plate)
WALKWAY SUPPORT DETAILS

DIGITS	NUMERAL SIZE	SERIES LEGEND	PANEL SIZE
$1-3$	$15^{\prime \prime}$	C	$48^{\prime \prime} \times 36^{\prime \prime}$
4	$12^{\prime \prime}$	C	$48^{\prime \prime} \times 36^{\prime \prime}$

NOTES

1. Stroke width of State Outline shall be $1^{\prime \prime}$.
2. $2^{1 / 2 "}$ Radi

INDEPENDENT USE FOR FREEWAY

1 OR 2 DIGITS

3 OR MORE DIGITS

NOTES:

1. Florida marker shall have Black
2. Stroke width of State outline
strall be 13" for Guide Sign.
3. Series D Legend.
4. $5 /$ /n $^{\prime \prime}$ Border

A	B	c	D	E	F	G	H
$30^{\prime \prime}$	$24^{\prime \prime}$	$26^{\prime \prime}$	12"	$1{ }^{1 / 4}{ }^{\prime \prime}$	23/4"	$8^{1 / 4}{ }^{11}$	11/4"
$36^{\prime \prime}$	$30^{\prime \prime}$	$32^{\prime \prime}$	15"	11/4"	31/4"	$83 / 4{ }^{\prime \prime}$	11/4"
$42^{\prime \prime}$	$36^{\prime \prime}$	$38^{\prime \prime}$	15"	1/1/4	$6^{1 / 4}{ }^{11}$	$11^{\prime \prime}$	11/4"

GUIDE SIGN USE

- FLORIDA ROUTE MARKER
\qquad

1 or 2 DIGITS

NOTES

1. Stroke width of State Outline shall be 1^{1}

3.11/" Radii
= INDEPENDENT USE OTHER THAN FREEWAY \qquad

NOTES

1. Series D Legend.
2. Color: Yellow Legend and
Border on Blue Background
3. When used on a guide sign, marker must be overlaid on
a rectangular Yellow Background a rectangular Yell
as shown in chart.
4. When two or more County Route Markers are mounted together,
use the dimensions of the largest marker for all other markers.

SIGN	dimensions												Rectangular Yellow Background Dimensions See Note 3
	A	B	c	D	E	F	${ }^{6}$	H	J	k	R	5	
$\begin{gathered} 4 \text { DIGIT } \\ \text { POST MOUNTED } \end{gathered}$	251/8"	$42^{\prime \prime}$	3/4"	$10^{\prime \prime}$	$4^{\prime \prime}$	$4 "$	$8^{\prime \prime}$	$8^{\prime \prime}$	833"	$22^{\prime \prime}$	$5{ }^{\prime \prime}$	$83^{3 / 1}$	
$\begin{gathered} 2 \text { DIGIT } \\ \text { OVERHEAD } \end{gathered}$	21/2"	$36^{\prime \prime}$	1/2"	71/2"	$3^{\prime \prime}$	$3^{\prime \prime}$	$12^{\prime \prime}$	41/2"	71/8"	$188^{7 \prime \prime}$	41/4"	71/2"	$42^{\prime \prime} \times 42^{\prime \prime}$
$\begin{gathered} 3 \text { DIGIT } \\ \text { OVERHEAD } \end{gathered}$	251/8"	$42^{\prime \prime}$	3/4"	$8^{\prime \prime}$	$4^{\prime \prime}$	$4 "$	$12^{\prime \prime}$	$6^{\prime \prime}$	$8^{3} 8^{\prime \prime}$	$22^{\prime \prime}$	$5{ }^{\text {" }}$	$8^{3} / 4$	$48^{\prime \prime} \times 48^{\prime \prime}$
$\begin{gathered} 4 \text { DIGIT } \\ \text { OVERHEAD } \end{gathered}$	297\% ${ }^{\prime \prime}$	$48^{\prime \prime}$	3/4"	8"	$5^{\prime \prime}$	5"	$12^{\prime \prime}$	$8^{\prime \prime}$	$93 / 4$	$2558^{\prime \prime}$	53/4"	101/4"	$52^{\prime \prime} \times 52^{\prime \prime}$

$\overline{\overline{\bar{Z}}}$ FTP-18-06 - COUNTY ROUTE MARKER $($ M1-6 $)=\bar{\square}$

Sign FTP-10-06

Sign FTP-11-06

Sign FTP-12-06

Sign FTP-13-06

but may be altered slightly if cond driver communication

Tourist Information Center
 next right

Notes:

1. Signs and sign structures shall be erected in accordance with the details shown on Index $700-020$.
2. Sign FTP-12-06 shall be located on the Welcome Center grounds in proximity to the building and as ar from
3. Sign FTP-10-06, 11-06, 12-06 shall be located as limited access highways only.
4. All legend to be Series E

Note: Sign FTP-14-06 shall be used as a supplemental guide sign at
5. See Index 700-102 for sign details. interchanges which have a Tour ist Information Center approved
for such signing llocate half-way between normal guide signs)

FOR LIMITED ACCESS HIGHWAYS

4 White Reflective
4 White Reflective
Markers Event Spaced
" $^{\text {o off }} 1$ ' $^{\prime \prime}$ White Cherron

> Direction of Travel

Outside Shoulder
DETAIL " A "

NOTES:

1. Roadways with Two-Way Traffic

No passing zone should be extended 1570' in advance of narrow bridge.
2. If the bridge or the approach is on a curve, delineators shall be installed for a distance of 1570^{\prime} in advance of narrow bridge on the outside portion of the roadway. Spacing shall be 100 ' between delineators. Delineators are to be placed not less than 2^{\prime} or not more than 8^{\prime} outside
the outer edge of pavement.
3. Object markers and delineators on both sides of roadway shall face traffic approaching bridge
4. The $O M-3 R \& O M-3 L$ object markers shall be installed 4^{\prime} above the roadway edge. The panels may be post mounted at the bridges.
5. Install Audible and Vibratory treatments (e.g., ground-in rumble strips or profiled thermoplastic) in accordance with the Plans.

4 Yellow Reflective
Markers Evenly Spaced

Direction of Travel \square
Median Shoulder
DEATIL " B " $=$

Shoulder Width	No. of RPM's	Spacing
2^{\prime}	2	$14^{\prime \prime}$
3^{\prime}	3	$13^{\prime \prime}$
4^{\prime}	3	$19^{\prime \prime}$
5^{\prime}	4	$16.67^{\prime \prime}$

(1)

WEIGHT LIMIT RESTRICTION AHEAD

FTP-50-06
(2)

X MILES
W 16-3A
(3)

$R 12-5$ ($24^{\prime \prime} \times 36^{\prime \prime}$)
(4)

WEIGHT
LIMIT
LAST

FTP-51-06

NOTES:

1. See Standard Highway Signs for sign R12-5 and W16-3 details.
2. Location of Sign 3 may require some field adjustment.
3. The Cross Road is the last detour to route around the restricted bridge.
4. Location of Sign 2 should be established from the Cross Road
.
5. See Index 700-102 for sign details.

6. Fabrication:

See sign layout sheet for dimension "L" and sign face details in the Plans.
4. For right exits, install the Exit Numbering Panel to the top right side of the Highway Sign.
5. For left exits, install the Exit Numbering Panel to the op left side of the Highway Sign.

Overhead Sign (See Index 700-030)
Multi-Column Ground Sign (See Index 700-020)

side elevation

-POWER CONFIGURATION 'A' CONVENTIONALLY POWERED

GENERAL NOTES

1. Meet the reqirements of Specifications 646 and 700.
2. Engage all threads on the transformer base and post unless the aluminum post is fully seated into base.
3. Install a concrete slab around all roadside assemblies on slopes 6:1 or greater. The minimum slab dimension is $6^{\prime \prime}$ by $4^{\prime}-0^{\prime \prime}$ by $5^{\prime}-0^{\prime \prime}$
4. When wire entry holes are drilled in the sign column, use a bushing or rubber grommet to protect conductors.

front elevation

without auxiliary pole

POWER CONFIGURATION
SOLAR POWERED
(Type B1 Shown)

POWER CONFIGURATION 'B' NOTES:

1. Install a separate pole for mounting the solar panel, controller and batteries for all roadside assemblies with solar panels, controllers and batteries weighing more than 170 lds .
2. Install the auxiliary pole as close to the right of way boundary as possible.
3. Install the auxiliary pole so that the height is the same as the column for the roadside assembly.
4. Orient solar panel to face South for optimal exposure to sunlight.
5. The controller and the solar batteries may be located in the same compartment.

DETAIL "B"
700-120

NOTES:

1. Type A1 Assembly (conventionally powered) is shown.
Type B1 Assemblies (solar powered) similar.

Type B1 Assemblies (solar powered) similar.
2. Foundation reinforcement not shown.

NOTES:

1. Type A2 Assembly (conventionally powered) is shown
Type B2 Assemblies (solar powered) similar

Tye B2 Assedies (solar por
2. Foundation reinforcement not shown

$\begin{aligned} & \text { LAST } \\ & \text { REVISION } \\ & 11 / 01 / 22 \end{aligned}$		$\begin{array}{cc} \text { FDOT } & \text { FY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	$\mathbb{E} H \mathbf{N} C E D \mathbb{H}$

NOTES:

1. Type A3 Assembly (conventionally powered) is shown
Type B3 Assemblies (solar powered) similar

Type B3 Assemblies (solar powered) similar.
2. Use electronic speed feedback sign with 15 " high
numerals for posted speed of 45 mph or less, and $18^{\prime \prime}$ als for posted speed of 45 mph or less, $18^{\prime \prime}$ high nume
than 45 mph.
3. Foundation reinforcement not shown

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$	\|	$\begin{array}{cc} \text { FDOT } & \text { FY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	$\mathbb{E} H \mathbb{N} C E D \mathbb{H} \mathbb{I} \mathbb{H}$	$\begin{gathered} \text { INDEX } \\ 700-120 \end{gathered}$	sheet 5 of 11

NOTES:

1. Type A4 Assembly (conventionally powered) is show
Type B4 Assemblies (solar powered) similar.
2. Foundation reinforcement not shown

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$		FDOT $\begin{gathered}\text { FY 2023-24 } \\ \text { STANDARD PLANS }\end{gathered}$	$\mathbb{E} H A \mathbb{N C E D}$ HIGHWAY SIGNING ASSEMBLIES	$\begin{gathered} \text { INDEX } \\ 700-120 \end{gathered}$	sheet 6 of 11

NOTES:

1. Type A5 Assembly (conventionally powered) is shown

Type B5 Assemblies (solar powered) similar
2. Use electronic speed feedback sign with $15^{\prime \prime}$ hig numerals for posted speed of 45 mph or less, and $18^{\prime \prime}$ high numerals for posted speeds greater
3. Foundation reinforcement not shown

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$	号気DESCRIPTION:	$\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	$\mathbb{E} H A \mathbb{N C E D}$ HIGHWAY SIGNING ASSEMBLIES

NOTES:

1. Type A6 Assembly (conventionally powered) is shown
Type B6 Assemblies (solar powered) similar

Type B6 Assemblies (solar powered) similar
2. Use electronic speed feedback sign with $15^{\prime \prime}$ high
numerals for posted speed of 45 moh or less. numerals for posted speed of 45 mph or less,
and $18^{\prime \prime}$ high numerals for posted speeds greater and $18^{\prime \prime}$ high
than 45 mph.
3. Foundation reinforcement not shown

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$		DESCRIPTION:		FY 2023-24 STANDARD PLANS	\mathbb{E} NHANCED $H I G H W A Y$ SIGNING ASSEMBLIES	$\begin{gathered} \text { INDEX } \\ 700-120 \end{gathered}$	SHEET 8 of 11

NOTES

1. Type A1 Assembly (conventionally powered) is shown
2. Blank Out Sign visors are optional.
3. Foundation reinforcement not shown
$\bar{工}$ FRONT ELEVATION \qquad
\qquad SIDE ELEVATION $\overline{=}$

LAST REVISION 11/01/21		DESCRIPTION:	FDOTY	$\begin{gathered} \text { FY 2023-24 } \\ \text { STANDARD PLANS } \end{gathered}$	$\mathbb{E} H A \mathbb{N C E D} \mathbb{H} I \mathbb{G} H W A Y$ SIGNING ASSEMBLIES	$\begin{array}{\|c\|} \hline \text { INDEX } \\ 700-120 \end{array}$	$\begin{gathered} \text { SHEET } \\ 10 \text { of } 11 \end{gathered}$

- OVERHEAD SCHOOL SIGN ASSEMBLY

OVERHEAD SIGN ASSEMBLY

LAST REVISION $11 / 01 / 21$	\|	DESCRIPTION:		$\begin{gathered} \text { FY 2023-24 } \\ \text { STANDARD PLANS } \end{gathered}$		$\begin{gathered} \text { INDEX } \\ 700-120 \end{gathered}$	SHEET 11 of 11

$\bar{\square}$ ALTERNATING SKIP LINE WITH TWO-WAY LEFT TURN LANE $\bar{\square}$

NOTES:

1. Offset all RPMs l" $^{\text {f }}$ from solid Iongitudinal lines unless otherwise noted or shown.
2. Spacing may be reduced for sharp
curves if required.
3. For placement of RPMs on ramps, see Index 711-003.
4. Make the traffic face of the RPM the same color as the pavement
marking that it is supplementing.

LEGEND:
$B / C=B A C K$ OF CURB
EOP = EDGE OF PAVEMENT
RPM $=$ RAISED PAVEMENT MARKER
$W / R=W H I T E / R E D$ RPM
Y/Y $=$ YELLOW/YELLOW RPM
$Y / R=Y E L L O W / R E D$ RPM
MD/Y $=\underset{\substack{\text { MONO-DIRECTIONAL } \\ \text { YELLOW RPM }}}{\text { MiO }}$

= RPM ORIENTATION DETAIL= \qquad

POSTED SPEED LIMIT MPH	"Y" FEET
30 OR LESS	10
35	20
40	20
45	30
50 OR MORE	40

LEGEND:

$B / C=B A C K$ OF CURB
EOP = EDGE OF PAVEMENT
RPM $=$ RAISED PAVEMENT MARKER
$W / R=W H I T E / R E D$ RPM
Y/Y = YELLOW/YELLOW RPM
$Y / R=Y$ ELLOW $/$ RED RPM
MD/Y $=$ MONO-DIRECTIIONAL

NOTES:

. For Type "E" Curb, install RPMs along the pavement edge marking using the same spacing shown.
2. Orient traffic faces of RPMs in curb median radii to be parallel to direction of travel lanes.
3. Use epoxy adhesive to install RPMs on concrete median nose curbs.
4. Install RPMS on clean, unpainted surface. be placed.

| $\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$ | \|c|che | $\begin{array}{cc} \text { FDOT 2023-24 } \\ \text { STANDARD PLANS } \end{array}$ | TYPICAL PLACEMENT OF RAISED PAVEMENT MARKERS | $\begin{gathered} \text { INDEX } \\ 706-001 \end{gathered}$ | $\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 6 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

DETAIL "G"
DETAIL "J"

RPM PLACEMENT AT ISLANDS
RPM PLACEMENT AT TRAFFIC SEPARATORS
(When called for in the Plans)
(When called for in the Plans)

NOTES:

1. For Type "E" Curb install RPMs along
the pavement edge marking using the
same spacing shown.
2. Orient traffic faces of RPMs in
median radii to be parallel to direction
median radil to

LEGEND:

$B / C=B A C K$ OF CURB
EOP $=$ EDGE OF PAVEMENT
RPM $=$ RAISED PAVEMENT MARKER
$W / R=W H I T E / R E D ~ R P M$
$Y / Y=$ YELLOW/YELLOW RPM
$Y / R=Y E L L O W / R E D R P M$
$M D / Y=\begin{gathered}\text { MONO-DIRECTIONAL } \\ \text { YELLOW RPM }\end{gathered}$
MD/W $=$ MONO-DIRECTIONAL

| $\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$ | \|c|cher | FDOT\} $\begin{gathered}\text { FY 2023-24 } \\ \text { STANDARD PLANS }\end{gathered}$ | TYPICAL PLACEMENT OF RAISED PAVEMENT MARKERS | $\begin{gathered} \text { INDEX } \\ 706-001 \end{gathered}$ | $\begin{aligned} & \text { SHEET } \\ & 4 \text { of } 6 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

LAST	DESCRIPTION:
REVISION	
11/01/18	0

FDOTY FY 2023-24

two-lane roadway

IMITED ACCESS ROADWAY

multilane roadway

two-LaNE ROADWAY at intersection

multilane roadway WIth turn lane

multilane roadway at intersection

\qquad

$\overline{\overline{-} \text { DOTTED LINE WITH ALTERNATING CONTRAST MARKINGS }}$
DOTTED LINE WITH ALTERNATING CONTRAST
${ }^{6 \prime \prime}$ Solid White
${ }^{1.5^{\prime \prime} \text { Wide Min. Black Contrast }}$
1.5" Wide Min. Black Contrast

LONGITUDINAL SOLID LANE LINE WITH CONTRAST MARKINGS $\overline{\text { (Not For Use On }}$ (Not For Use on Edge Lines)

DESCRIPTION:

YIELD LINES

Yield Lines consist of five - $18^{\prime \prime} \times 27^{\prime \prime}$ white triangles which face
traffic. Equally spac triangles within traffic lane. When a bike lane
is present, add one additional triangle in the
center of the bike lane.

CURB AND GUTTER

flush shoulder
$x=$ LANE WIDTH (FT.)
$Y=$ BUFFERED BIKE LANE WIDTH (FT.)

STRIPING FOR BUFFERED BIKE LANE \qquad [

CURB AND GUTTER

FLUSH SHOULDER
$x=$ LANE WIDTH (FT.)
y = PAVED Shoulder / bike Lane

STRIPING WITH SHOULDER OR NON-BUFFERED BIKE LANE $\bar{\square}$

\qquad Striping With no shoulder or bike lane $=$

NOTES:

1. Lane widths (X) may not be same for each lane in the section.
2. For placement of RPMs, see Index 706-001.
\qquad

PLACEMENT OF LONGITUDINAL PAVEMENT MARKINGS 11/01/21 刽

FDDTY $\begin{gathered}\text { FY 2023-24 } \\ \text { STANDARD PLANS }\end{gathered}$ PAVEMENT MARKINGS

NTERSECTION APPROACH STRIPING WITH TURN lanes and buffered bike lane key hole

| $\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$ | \|c|c | DESCRIPTION: | FDOTY | $\begin{gathered} \text { FY 2023-24 } \\ \text { STANDARD PLANS } \end{gathered}$ | PAVEMENT MARKINGS | $\begin{gathered} \text { INDEX } \\ 711-001 \end{gathered}$ | $\begin{aligned} & \text { SHEET } \\ & 4 \text { of } 13 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

PAVEMENT MARKINGS AND DELINEATORS FOR MEDIAN CROSSOVER \qquad

NOTES:

1. Apply yellow reflective paint to the noses of curbed medians traffic separators, and raissed islands. When applying yellow
reflective paint in conjunction with Raised Pavement Markers, reflective paint in
see Index $706-001$
A. Option grassed medians
according to tar Marker (Yellow). Attach Tubular Marker according to manufacturer's instructions. Non-Paved Surface
Foundation (See Detail " A ") is provided as an option if no Foundation (See Detail "A"") is provided as an option if no
other suitable surface is provided. Install Non-Paved Surfa
Foundation flush with the surrounding ground surface.
B. Option 2: Delineator Post. Use yellow retro-reflective sheeting
on both sides of the delineator. Install the post so that the on both sides of the delineator. Install the post so that
top is $4^{4}-0^{\prime \prime}$ above the grade at the edge of the pavement.
2. Extend double yellow centerlines 100 back from intersection on all
approaches or 50' for unmarked cross roads.

PAVEMENT MARKINGS FOR INTERSECTIONS WITH MAJOR AND MINOR ROADS

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$		$\begin{array}{cc} \text { FDOTY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	PAVEMENT MARKINGS	$\begin{gathered} \text { INDEX } \\ 711-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 7 \text { of } 13 \end{aligned}$

- MARKINGS FOR TRAFFIC SEPARATION

SPECIAL EMPHASIS CROSSWALK DETAILS=

NOTES:

1. For crosswalk width, exceed width of the adjacent sidewalk, but do not make width less than 6^{\prime} for intersection
crosswalks and 10' for midblock crosswalks. Measure width from the inside of the transverse crosswalk markings.
2. When the Special Emphasis Crosswalk is not perpendicular to the lane lines, make the longitudinal markings parallel to the lane lines.
3. Refer to Index 522-002 when Curb Ramps are present.

Arrow should be evenly spaced between first and last arrow. Turn lanes longer than 200' add one arrow for each 100' additional length.

ARROW SPACING

Through Lane Becomes Optional Left Turn
=TURNS LANE MARKINGS

NOTES:

1. This Index also applies to right turn lanes.
2. Make farn
3. Make Edgeline pavement markings yellow for
left-turn lanes and white for right-turn lanes.

NOTES:

1. All grids are $4^{\prime \prime} \times 4^{\prime \prime}$.
2. Pavement Marking Should Not Extend Into Opposing Lane
3. Center School Pavement Marking in lane.

SCHOOL PAVEMENT MARKING

SINGLE-LANE APPROACH
tWO-LANE APPROACH

MULTI-LANE APPROACH
(Three or More)

shared lane marking (slm)

NOTES:

1. All bicycle markings and pavement messages shall be white.
2. All bicycle markings shall be preformed thermoplastic.
3. All grids are $4^{\prime \prime} \times 4^{\prime \prime}$.

GENERAL NOTES:

1. Make the traffic face of the raised pavement marker (RPM) the same color as the pavement marking that it is supplementing.
2. See Index 706-001 for additional Raised Pavement Markers (RPM) requirements.

PARALLEL-TYPE ENTRANCE WITH ADDED LANE

NOTES:

1. Extend this $8^{\prime \prime}$ white Pavement Marker one-fourth the length of the
acceleration lane from the gore markings.
acceleration lane from the gore markings.
2. See Index 711-001 for pavement message dimensions and details.
3. Discontinue the $6^{\prime \prime}$ White ($3^{\prime}-9^{\prime}$) Dotted Interchange Line where the merging taper begins for a Single-Lane Parallel-Type Entrance Without Added Lane,
Merge Pavement Message and Arrow only used for Two-Lane Entrances.
\qquad

PARALLEL DECELERATION LANE

MARKINGS AT DUAL LANE EXITS

TYPICAL PARTIAL CLOVERLEAF/TRUMPET EXIT RAMP

EXIT RAMP WITHOUT AUXILIARY LANE

EXIT RAMP WITH AUXILIARY LANE $=$

NOTES:

Use compacted select material in accordance with Index 120-001
2. Concrete shall be Class NS with a minimum strength at 28 days of $f^{\prime} c=2.5 \mathrm{ks}$.
3. Outside edge of slab shall be cast against formwork
4. The pull box shown is $13^{\prime \prime} \times 24^{\prime \prime}$; others approved under
5. Slabs to be placed around all Poles and Pull Boxes in rural locations. adjusted as shown in the plans.
6. Concrete for slabs around pull boxes shall be included

SLAB DIMENSIONS

SECTION A-A

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	$\underset{\sim}{2}$ DESCRIPTION:	$\begin{array}{cc} F D O T\} & \text { 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	CONVENTIONAL LIGHTITNG	$\begin{gathered} \text { INDEX } \\ 715-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 3 \end{aligned}$

NOTES:

1. Use compacted select material in accordance with Index 120-00
2. Concrete shall be Class NS with a minimum strength at 28 days of $f^{\prime} c=2.5 \mathrm{ksi}$.
3. Outside edge of slab shall be cast against formwork.
4. The pull box shown is $13^{\prime \prime} \times 24^{\prime \prime}$; others approved under
5. Slabs to be placed around all Poles and Pull Boxes. In urban areas or wher space is limited slab dimensions may
6. Concrete for slabs around poles and pull boxes shall be included
in the price of pole or pull box.
in the price of pole or pull box
7. The expansion joint shall consist of $1 / /{ }^{\prime \prime}$ of closed-cell polyethylene foam expansion material. The top wish of expansion material shal be removed after
pourung the slab and sealed with an APL approved Type A sealant meeting the
requirements of specification 932.

SLAB DIMENSIONS

SECTION B-B
SLAB DETAILS

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	$\underset{\sim}{2}$ DESCRIPTION:	$\begin{array}{cc} F D O T\} & \text { 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	CONVENTIONAL LIGHTITNG	$\begin{gathered} \text { INDEX } \\ 715-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 3 \end{aligned}$

GENERAL NOTES:

1. Poles are designed to support the following:
A. Luminaire Effective Projected Area (EPA): 1.55 SF
A. Luminaire Eft
B. Weight: 75 lb .
2. Shop Drawings: This Index is considered fully detailed, only submit shop drawings for minor modifications not
included in the Plans.
3. Materials:
A. Pole, Pole Connection Extrusions and Arm Extrusions: ASTM B221, Alloy 6063-T6 or Alloy 6061-T6
B. Bars, Plates, Stiffeners and Backer Ring: ASTM B221, Alloy 6063-T6

E. Aleel Bearing Plate: ASTM A709 or ASTM A36 Grade 36
E. Ald Material: $E R ~ 4043$
E. Aluminum Weld Materiall ER 4043
F. Iransformer and Frangible Base Materials: ASTM B26 or ASTM B108, Alloy 356-T6
G. Bolts, Nuts and Washers:
a. Shoe Base Bolts: ASTM F3125, Grade A325, Type 1
b. Nuts: ASTM AS63 Grade DH
c. Washer. ASTM F436 Yppe 1
H. Anchor Bolts. Nt
H. Anchor Bolts, Nuts, and Washers:
b. Nuts: ASTM A563 Grade A Heavy-Hex
I. Stainle ss Steel I Asteneners: ASTM F593 Alloy Group 2, Condition A, CW1 or SH1
4. Nut Covers: ASTM B26 (319-F)
K. Concrete. 1 lass II
L. Reinforcing Steel: Specification 415
5. Fabrication:
A. Weld Arm and Pole (Alloy 6063) in the T4 temper using 4043 filler. Age the Arm and Pole artificially to the T6 temper after welding.
B. Transverse welds areonny allowed at the base.
C. Roadway Light Pole Taper: Taper as required to

Roadway Light Pole Taper: Taper as required to provide a round top O.D. of $6^{\prime \prime}$ and a base $0 . D$. of $8^{\prime \prime}$ for 20^{\prime} and
25^{\prime} mounting heights and $10^{\prime \prime} 0 . D$. for poles with 30^{\prime} to 50^{\prime} muntin heighs. Portions af the pole near the base Sho and at the arm connections may be held constant to simplify fabrication. . Wedran base. Portionted the pole Taper:Taper as required to provide a $6^{\prime \prime} 0 . D$. round top with an $11^{\prime \prime} \times 7^{\prime \prime} 0.0$. $7^{\prime \prime}$ oblong and $6^{\prime \prime}$ round respectively to simplify fabrication.

F. Equip poles located on bridges, walls and concret
G. Perform all welding in accordance with AWS D1.2.
H. Embedded Junction Bo f
G. Perform all welding in accord
H. Embedded Junction Box (EJB):
a. Weld all seams continuously and grind smooth.
b. Hot Dip Galvanize after fabricationd
c. Provide a watertight cover with neoprene gasket and secure cover with galvanized screws

1. For Median Barrier Mounted Aluminum Light Poles, the fabricator must demonstrate the ability to produce a crack
free pole. The fabricator's Department-aporoved OC P fabrication:
a. Tests demonstrating a pole with a $1 / 4$ " wall thickness achieves and ultimate moment capacity of 36 kip*ft in

 c. Test results showing the pole does not buckle at the shape transition area under the ultimate moment d. Capacity loads.

Identification Taq: (Submit details for the reinforced 4"x $6^{\prime \prime}$ (Min.) handhole located $1^{1}-6{ }^{\prime \prime}$ above the base plate. a. $2^{\prime \prime} \times 4^{\prime \prime}$ (Max.) aluminum identification tag
c. Secure to the inside of the transformermer base and visible from the door opening.
c. Secure to transformer base with $1 / / 口 l_{\text {" diameter stainless steel rivets or screws. }}^{\text {d. Include the following information on the ID Tag: }}$.

1. Financial Project ID
2. Pole Height
3. Manufacturer's Name
4. Coatings/Finish:

Pole and Arm Finish: 50 grit satin rubbed
B. Galvanize Steel Bolts, Screws, Nuts and Washers: ASTM F2329
C. Hot Dip Galvanize EJB and other steel items including poles and plate washers: ASTM A123
6. Construction:
A. Foundation:
B. Frandation: Specification 455, except payment for the foundation is included in the cost of the pole
a. Certify that the Clamp, rangible Transformer Base, and Base Shoe Design are capable of providing the required capacity,
b. Certify the Base conforms to the current FHWA required AASHTO Frangibility Requirements, tested under b. Certify the Base conforms to the current FHWA required AASHTO Frangibility Requirements, tested under

NCHR Report 350 Guidelines (e.g. Akron Found
c. Do not erect pole without Luminaire attached.
7. Embedded Junction Box (EJB): Install EJBS per Note 4 and in accordance with Specification 635, as shown on the following Sheets. 8. Wind Speed by County:

120 MPH
Alachua, Baker, Bradford, Calhoun, Clay, Columbia, Dixie, Duval, Gadsden, Gilchrist, Hamilton, Jackson,
Jefferson, Lafayette, Leon, Liberty, Nassau, Madison, Putnam, Suwannee, Taylor, Union and Wakulla Counties. ${ }_{B}^{140 \mathrm{MPH}}$ Bay Citrus
Bay, Citrus, De Soto, Flagler, Franklin, Glades, Gulf, Hardee, Hendry, Hernando, Highlands, Hillsborough,
Holmes, Lake, Holmes, Lake, Levy, Manatee, Marion, olazoosa, okeechobee, Orange, Osceola,
Rosa, Seminole, St. Johns, Sumter, Volusia, Walton and Washington Counties.
160 MPH
160 MPH Broward, Charlotte, Collier, Escambia, Indian River, Lee, Martin, Miami-Dade, Monroe, Palm Beach,
Brevard,
Sarasota and St. Lucie Counties.

| $\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 22 \end{gathered}$ | \|c|cher | $\begin{array}{cc} \text { FDOTY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$ | STANDARD ALUMINUM LIGHTING | $\begin{gathered} \text { INDEX } \\ 715-002 \end{gathered}$ | $\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 9 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |


```
I" | x 3" Bar Each Side of Arms. Extruded
Saddle, or Other Acceptable
Connection
```


ARM SECTION

DIMPLE DETAIL
 Notes on sheet 1 for
Materil Spectication

ARM ELEVATION

VIEW B-B

VIEW C-C

ARM TUBE EXTRUSIONS NOTES: At the pole connections, provide arm tube extrusions witt dimensions as
shown. Uniformly transition elliptical section to a cylindrical section at the arm connection.

The fabricator may substitute elliptical cross sections other than those
tabulated, provided the section properties about the vertical axis and the tabulated, provided the section properties about the vertical axis and th
area of the section equal or exceed that of the required section, and provide minimum wall thickness of $1 / 8^{\prime \prime}$ nominal and within the Aluminum Association Tolerances.
The outside diameter about the minor axis should be held at $2^{3 / 81}$ at the upper and lower arms.

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 22 \end{gathered}$	DESCRIPTION:	$\begin{array}{cc} \text { FDOT } & \text { FY 2023-24 } \\ \text { STANDARD PLANS } \end{array}$	STANDARD ALUMINUM LIGHTING	$\begin{array}{\|c\|} \hline \text { INDEX } \\ 715-002 \end{array}$	$\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 9 \end{aligned}$

GENERAL NOTES:

1. LUMINAIRE LOAD: Poles are designed to support the following
A. Luminaire Effective Projected Area (EPA): 1.55 SF A. Luminaire Weight: 75 lo .
2. SHOP DRAWINGS: This Index is considered fully detailed; only submit shop drawings for
3. MATERIALS:
A. Pole, Arm Tubes, Strut Tubes, Bars, Plates, Stiffeners: ASTM B221, Alloy 6063-T6 or
Alloy $6061-T 6$

Alloy 6061-T6
B. Pole Connection Extrusion Clamp: ASTM B221, Alloy 6061-T6
Caps and Covers s. ASTM B-26, Alioy 319-F
D. Alraminum Weld Material: ER 4043
E. Transformer and Frangible Base Materials: ASTM B26 or ASTM
F. Base Bolts, Nuts and
a. Shoe Base Bolts: ASTM F3125, Grade A325, Type

G. Anchor Boits. Muts, and Wa shers:
a. Anchor Boits: ASTM F1554 Grad
a. Anchor Bolts: ASTM F1554 Grade 55
b. Nuts ASTM A53 Grade A Heavy-Hex
H. Clamp Hardware: See Sheet 2 2
I. Stainless Steel Cap Fasteners: ASTM F593 Alloy

Group 2, Condition A, CW1 or SH
J. Nut Covers: ATM B26 (319-F)
J. Nut Covers: ASTM B26 (319-F)
K. Concrete: Cass III:
L. Reinforcing Steel: Specification 415
4. FABRICATION:
A. Weld Arm and Pole Alloy in the T4 temper using 4043 filler. Age the Arm and Pole artificially to the TT temper after weld ding.
C. Lransverse weld are only allowed at the base. Light pole Properties: Taper as required to provide a round top O.D. of $8^{\prime \prime}$ and a base
o.D. of $10^{\prime \prime}$ for all pole heights. Portions of the pole near the base shoe and at the arn connections may be held constant to simplify fabrication. Maintain pole wall thickness
of $0.313^{\prime \prime}$ Min.
D. Fixture Arm Tube Properties: See Sheet 2 .
E. Provide 'J' 'S or 'C' heok at top of pole for
E. Provide 'S', 'S' or 'C' hook at top of pole for electrical wires
F. Perform all welding in accordance with AWS D1.2
G. Identificication Tag: (Submit details for approval.)
a. Locate on the inside of the transformer base and visible from the door opening.
b.
c. Secure to transformer base with $/ / /{ }^{\prime \prime}$ diameter stainless steel rivets or screws.
d. Include the following information on the ID Tag
2. Pole Height
3. Manufacturer's Name
5. COATINGS/FINISH:
A. Pole and Arm Finish: 50 grit satin rubbed
B. Galvanize Steel Bolts, Screws, Nuts and Washers: ASTM F2329
6. construction

Specification 455, except payment for the foundation is included in the cost . Frangible Base, Base Shoe, and Pole Connection Extrusion Clamp: a. Certify that the Pole Connection Extrusion Clamp, Frangible Transformer Base, and Base Shoe Design are capable of providing the required capacity, assuming a design
wind speed of 1 lo MPH b. Certify the Base conforms to the FHWA required AASHTO Frangibility Requirements, bo not erect pole without Luminaire attached

LIGHT POLE - ELEVATION

highmast Lighting notes:

1. Poles are designed to support the following:
A. Oe (1) cylind rical head assembly with a maximum effective projected area of 6 sf and 340 lbs (Max.)
B. Eight (8) cylindrical luminaires with a maximum effective projected are of 1.5 sf and 771 lbs each. A. One (1) cylindrical head assembly with a maximum effective projected area of 6 and and 340 Ibs Max.
B. Eight (1) cylindrical luminaires with a maximum effective projected are of 1.5 sf and 77 lbs each.
2. Shop Drawings: This Index is considered fully detailed, only submit shop drawings for minor modifications
not detailed in the Plans.
3. High Mast Structure Materials:
A. Poles and Backing Rings:
b. Greater than or equal to $3 / 1 /{ }^{\prime \prime}$ ". ASTM A572 Grade $50,55,60$ or 65
B. Steel Plates: ASTM A709 or ASTM A36
C. Pole Caps: ASTM A1011 Grade 50, 55, 60 , or 65 or ASTM B209 C. Pole Caps: ASTM
D. Weld Metal: $770 X X$
E. Stainless Steel Screws: AISI 316
a. Anchor Bolts: ASTM F1554 Grade 55
b. Nuts ASTM A563 Grade A Heavy-Hex (5 per anchor bolt)
C. Plate Washer: ASTM A36 (2 per anchor bolt)
G. Nut Covers: ASTM B26 (319-F)
H. . Concrete: : 1 Ilas IV IV (Drilled Shaft)
I. Reinforcing Steel: Specification 415
4. Fabrication:
A. Welding:
a. Specification Section $460-6.4$ and
b. AASHTO LRFD Specification for Structural Supports for Highway Signs, Luminaires, and Traffic

Signals Section 14.4.4
B. Polles: $\begin{aligned} & \text { a. Round or } 16 \text {-sided (min) } \\ & \text { a }\end{aligned}$
a. Round or $16-$ sided (Min.)
b. Taper pole diameter at o. 14 inches per foot

Cole shaft mai be up to three sections (using telescopic field splices)
d. Circumferentially welded pole shafts and laminated pole shafts are not permitted
e. Fabiricate Pole longitudinal seam welds (2 maximum) with 60 percent minimum penetration or fusion

Welds except as follows:
i. Use a full-penetration groove weld within 6 inches of the circumferential tube-to-plate connection and
i. Use
1i. Use a full-penetration grove weld within 6 inches of the circumferential tube-to-plate connection
ii. Use full-penetration groove welds on the female end section of telescopic (i.e., sliop type) field
splices for a minimum length of 42 inches.
C. Identification Tag:: (Submit details for approval)
a. ""x 4" (Max.) aluminum tag
b. Locate on the inside of the pole and visible from the handhole
. Secure with $1 / 8^{\prime \prime}$ diameter stainless steel rivets or screws.
Include the following information on the ID Tag:

1. Financial Proj
2. Pole Height
3. Manufacture
4. Manufacturers ${ }^{\prime}$ Name
5. Base Wall Thickness
D. Except for Anchor Bolts, bolt hole diameters are bolt diameter plus $1 / 16^{\prime \prime}$ and anchor bolts holes are
bolt diameter . bot diameter plus s/2" Max) prior to galvanizing.
E. Hot Dip Galvanize after fabrication
6. Coating:
A. Galvanize Anchor Bolts, Nuts and Washers: ASTM F2329
B. Hot Dip Galvanize all other steel items including plate washers: ASTM A123
7. Construction:
A. Foution: ation: Specification 455 Drilled Shaft, except that payment is included in the cost of the Structure:
B. After Installation: : Place wire screen between top of foundation and bottom of baseplate in accordance with Specification 649-6.
8. Wind Speed by County:

130 MPH
Alachua, Baker, Bradford, Calhoun, Clay, Columbia, Dixie, Duval, Gadsden, Gilchrist, Hamilton, Jackson,
Jefferson, Lafayette, Leon, Liberty, Nassau, Madison, Putnam, Suwannee, Taylor, Union and Wakulla Counties.
150 MPH

Rosa s, Lake, Levy, Manatee, Marion, okaloosa, okeechobee, or ange, osceola,
170 MPH
Brevard
Brevard, Broward, Charlotte, Collier, Escambia, Indian River, Lee, Martin, Miami-Dade, Monroe, Palm Beach,
Sarasota and St. Lucie Counties.

STANDARD POLE DESIGN NOTES

LAST REVISION 11/01/18		DESCRIPTION:		FY 2023-24 STANDARD PLANS	HIIGH MAS T LIGHTINTG	$\begin{gathered} \text { INDEX } \\ 715-010 \end{gathered}$	SHEET 1 of 6

NOTES:

1. At all pull boxes and pole bases, ends of conduit shall be
sealed in accordance with Specification 630 .
2. Slabs to be placed around all Poles and Pull Boxes.
3. For Pull Boxes between Poles refer to Index 715-001

WIRING DETAILS

LAST REVISION 11/01/17	号DESCRIPTION:	FDOTY	FY 2023-24 STANDARD PLANS	HIGH MAS	$\begin{gathered} \text { INDEX } \\ 715-010 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 4 \text { of } 6 \end{aligned}$

NOTE
The contractor's attention is directed to those plan Sheets detailing the mounting of luminaires at the
pole top. Particular attention is directed to alignment of luminaire light distributions. Special attention must be exercised in the physical
alignment of these luminaires to ensure that alignment of these luminaires to ensure that the at each lighting standard in the field. A marking shall be placed on the external face of the refractor to allow visual inspection of alignment.
The marking shall correspond to the 0° axis of the The marking shall correspond to the 0° axis of the
refractor.
Luminaire support ring -

HIGH MAST POLE WIRING DIAGRAM

SCHEMATIC OF REMOTE AUXILIARY POWER UNIT

NOTES:

1. Use compacted select material in accordance with Index 120-001
2. Concrete shall be Class NS with a minimum strength at 28 days of $f^{\prime} c=2.5 \mathrm{ksi}$.
3. Outside edge of slab shall be cast against formwork.
4. The pull box shown is $13^{\prime \prime} \times 24^{\prime \prime}$ ", others approved under
Specification 635 may be used.
5. Slabs to be placed around all Poles and Pull Boxes. In urban areas or where
6. Concrete for slabs around poles and pull boxes shall be included
7. Concrete for slabs around poles
in the price of pole or pull box.
8. The expansion joint shall consist of $1 / 2 / 2$ of closed-cell polyethylene foam The expansion joint shall consist of "20 of closed-cell polyethylene foam
expansion material. The top $1 / 2$ of expansion material shal be removed after
pouring the slab and sealed with an APs approved Type A sealant meeting the requirements of Specification 932 .

SLAB DIMENSIONS

SLAB DETAILS

CROSSING SURFACES	
Type	Definition
C	Concrete
R	Rubber
$R A$	Rubber/Asphalt
TA	Timber/Asphalt

STOP ZONE FOR RUBBER CROSSING

Design Speed (mph)	Zone Length (Distance From Stop)
45 or Less	250^{\prime}
$50-55$	350^{\prime}
$60-65$	500^{\prime}
70	600^{\prime}

Notes:

1. Type R Crossings are NOT to be used for multiple track crossings within zones for an existing or scheduled uture vehicular stop. Zone lengths are charted above
2. Single track Type R Crossings within the zones on the hart may be used unless engineering or safety considerations dictate otherwise.

GENERAL NOTES:

1. The Railroad Company will furnish and install all track bed (ballast), crossties, rails, crossing surface panels and accessory components, All pavement material, including that through the crossing, will be furnished and installed by the Department or its Contractor, unless negotiated otherwise.
2. When a railroad grade crossing is located within the limits of a highway construction project, a transition pavement will be maintained at the approaches of the crossing to reduce vehicular impacts to the crossing. The transition pavement will be maintained as appropriate to protect the crossing from low clearance vehicles and vehicular impacts until the construction project is completed and the final highway surface is constructed.
3. The Central Rail office will maintain a list of currently used Railroad Crossing Products and will periodically distribute the current list to the District offices as the list is updated.
4. The Railroad Company shall submit engineering drawings for the proposed crossing surface type to the Construction Project Engineer and/or the District Rail office for concurrence along with the List of Railroad Crossing Products. The approved engineering drawings of the crossing surface type shall be made a part of the installation agreement.
5. Sidewalks shall be constructed through the crossing between approach sidewalks of the crossing. Sidewalks shall be constructed with appropriate material to allow unobstructed travel through the crossing in accordance with ADA requirements.
6. Install pavement in accordance with the Specifications.
7. The Department will participate in crossing work, that requires adjustments to rail outside of the crossing, no more than 50 feet from the edge of the travel way

HALF PLAN CURBED ROADWAYS

HALF PLAN

ROADWAYS WITH FLUSH SHOULDERS

[^0]: $\overline{=}$ PEDESTRIAN LONGITUDINAL CHANNELIZING DEVICES $\overline{ }$

[^1]: = TYPICAL INSTALLATIONS FOR SIGN PANEL(S) MOUNTED ON SPAN WIRE=

