

FY 2022-23 STANDARD PLANS FOR ROAD CONSTRUCTION

Effective for Projects with Lettings in the Fiscal Year (FY) from
July 1, 2022 through June 30, 2023

State of Florida Department of Transportation on projects under their jurisdiction

It is the responsibility of the Engineer of Record using these Standard Plans to determine the fitness for a particular use of each standard in the design of a project. The inappropriate use of and adherence to these standard Plans does not exempt the engineer from the professional responsibility of developing an appropriate design.

Patented devices, materials and processes
The use of any design, method, process, material or device either expressed or implied by these standards that are covered by patent, copyright, or proprietary privilege is the sole responsibility The use of any design, method, process, material or device either expressed or implied by these standards that are covered by patent, copyright, or proprietary privilege is the sole responsibility
of the user. Any infringement on the rights of the inventor, patentee, assignee or licensee shall be the sole responsibility of the user. For additional information refer to Subsection $7-3$ of the FDOT Standard Specifications for Road and Bridge Construction.

DISTRIBUTION OF EXEMPT PUBLIC DOCUMENTS:

It is the policy of the Department to protect the State Highway System's infrastructure by defining the responsibilities for disclosure and use of sensitive documents showing the structural elements used in the design and construction of Department structures. Section $119.071(3)(b)$, Florida Statute (F.S.), provides that these sensitive documents are exempt from Chapter 119 , F.S.,
Florida's public records law. In accordance with Section $119.071(3)(b)$. F. S., the Department has adopted Procedure 050-020-026, Distribution of Exempt Public Documents Concerning Department Florida's public records law. In accordance with Section $119.071(3)$ (b), F.S., the Department has adopted Procedure 050-020-026, Distribu
Structures and Security System Plans, to define the method and responsibilities for disclosure and use of these sensitive documents.

Structure is defined in Section 334.03(27), F.S., as "a bridge, viaduct, tunnel, causeway, approach, ferry slip, culvert, toll plaza, gate, or other similar facility used in connection with a transportation facility" which would include related pipes and pipe systems. However, for the purpose of the public records law and Procedure 050-020-026, the Department has determined that the term "structure" includes "bridges with an opening of more than 20 feet between undercopings of abutments or spring lines of arches or extreme ends of openings for multiple boxes, and those other bridges subject to safety inspection under Section 335.074, F.S." A roadway is not otherwise a structure for the purposes of Procedure 050-020-026.

Therefore, plans, blueprints, schematic drawings, and diagrams of structures owned by the Department are exempt from the public records provisions of Chapter 119, F.S. This exemption includes draft, preliminary, and final formats as described in Procedure 050-020-026 and includes paper, electronic, and other formats. The Department has provided for the limited release of such documents in Procedure 050-020-026.
Entities or persons outside the Department requesting or receiving copies of any portion of plans or other documents considered Exempt Documents under Procedure 050-020-026 must complete
 to all Department internal or contracted staff who have access to such Exempt Documents in their Department work. Refer to Procedure 050-020-026 for additional requirements.

CERTIFICATION STATEMENT

This doc ument has been digitally signed and sealed by Derwood Sheppard. Printed copies of this document are not considered signed and sealed and the signature must be verified on any electronic copies.

The official version of the Standard Plans is the PDF version and can be found at:
http://www.fdot.gov/design/standardplans

Florida Department of Transportation

605 Suwannee Street
Tallahassee, FL 32399-0450

KEVIN J. THIBAULT, P.E. SECRETARY

October 15, 2021

James Christian
Division Administrator
Federal Highway Administration
3500 Financial Plaza, Suite 400
Tallahassee, Florida 32312

Re: Office of Design
FY 2022-23 Standard Plans for Road and Bridge Construction

Dear Mr. Christian:
In accordance with the Stewardship and Oversight Agreement on Project Assumption and Program Oversight by and between the Federal Highway Administration, Florida Division, and the State of Florida Department of Transportation we are requesting approval of the FY 2022-23 Standard Plans for Road and Bridge Construction (Standard Plans) for use on federal aid projects. Copies of all revised Indexes for the FY 2022-23 Standard Plans were previously provided to the Florida Division Office for review and approval. All comments from the reviews have been addressed.

Sincerely,

Derwood Sheppard, P.E.
State Standard Plans Engineer

For FHWA Florida Division Office use:
Approved for Use on Federal Aid Projects:

BREN I GEORGE | Digitally signed by BRENI |
| :---: |
| $\begin{array}{c}\text { GEORE } \\ \text { Date: 2021.10.25 13:37:40 } \\ -04^{\prime} 00^{\prime}\end{array}$ |

James Christian, P.E.
Division Administrator

ABBREVIATIONS

Abbreviation	Meaning	Abbreviation	Meaning	Abbreviation	Meaning
AASHTO	American Association Of State Highway And Transportation Officials	CSIP	Cost Savings Initiative Proposal	G	Shear Modulus
AC	Alternating Current	CSL	Cross-hole Sonic Logging	g	Gram
Accel.	Acceleration	CTPB	Cement Treated Permeable Base	Ga.	Gauge or Gage
ACI	American Concrete Institute	Ctr., Ctrs.	Center	Galv.	Galvanized
ADA	Americans with Disabilities Act	Cu. Ft.	Cubic Feet	GFI	Ground Fault Interrupter
ADT	Average Daily Traffic	Cu. Yd., cy,	Cubic Yard	GFRP	Glass Fiber Reinforced Polymer
AFAD	Automated Flagger Assistance Device	D		Grd.	Ground
AISC	American Institute of Steel Construction	D	Depth, Distance or Diameter	--	H -----------------
AISI	American Iron and Steel Institute	Dia. or \varnothing	Diameter	Hd.	Head
Alt.	Alternate	Dы.	Double	H.S., HS	High Strength
Alum.	Aluminum	Decel.	Deceleration	HDPE	High Density Polyethylene
ANSI	American National Standards Institute	Deg.	Degree	Horiz.	Horizontal
AOS	Apparent Opening Size	Dim.	Dimension	HP	Horsepower or H-Pile
APL	Approved Products List	Dist.	Distance	HSHV	High Strength Horizontal Vertical
App.	Approach	DMM	Domestic Mail Manual	-----------------	I ----------------
Approx.	Approximate	DPI	Ditch Point Intersection	ID, I.D.	Inside Diameter or Identification
ARTBA	American Road \& Transportation Builders Association	Dt	Ditch	in.	Inch(es)
Asph.	Asphalt	dtoe	District Traffic Operations Engineer	Inc.	Incorporated
Assem.	Assembly	- E	-----------------	Int.	Interior
ASTM	American Society For Testing And Materials	e	Superelevation Rate	Inv.	Invert
ATPB	Asphalt Treated Permeable Base	E.P. or EOP	Edge Of Pavement	ITS	Intelligent Transportation Systems
Auxil.	Auxiliary	EA or Ea.	Each	----------------- J	------------------
AWg	American Wire Gauge	EIA	Electronic Industries Alliance	JCT	Junction
AWS	American Welding Society	El. or Elev.	Elevation	Jt.	Joint
------------	B ----	Embed.	Embedment	------------------ K	K ---------------
Bot.	Bottom	EPDM	Ethylene Propylene Diene Monomer	k	kip
Brkwy.	Breakaway	Eq.	Equation or Equal	kip	1000 Pounds
b / w	Between	Equip.	Equipment	ksi	Kips Per Square Inch
-----	c ----------	etc.	Et Cetera (And So Forth)	kVA	Kilovolt Ampere
cc, c to C	Center to Center	ETP	Electronic Tough Pitch	----------------- L	L -----------------
$c \& G$	Curb And Gutter	Ex.	Example	L	Length
c.c.	Crash Cushion	Exist.	Existing	LA	Limited Access
cCTV	Closed-Circuit Television	Exp.	Expansion	lb or lbs.	Pound(s)
CFR	Code of Federal Regulations	Ext.	Extension	1b/sy	Pounds Per Square Yard
CFRP	Carbon Fiber Reinforced Polymer	--------------- F	-----------------	lbf	Pound force
cfs, CFS	Cubic Feet Per Second	FAC	Florida Administrative Code	LBR	Lime rock Bearing Ratio
CIP, C.I.P. or C-I-P	Cast In Place	FC	Friction Course	LF	Linear Foot (Feet)
CJP	Complete Joint Penetration	Fdn.	Foundation	Lgth.	Length
ckt.	circuit	F.L. or E	Flow Line	Long.	Longitudinally or Longitudinal
q	Center Line	FI.	Florida	LRFD	Load Resistance Factor Design
Cl.	Clearance	FDEP	Florida Department Of Environmental Protection	LRS	Low-Relaxation Strand
CMP	Corrugated Metal Pipe	FDOT	Florida Department of Transportation	LS	Lump Sum
con.	Connection	FHWA	Federal Highway Administration	LSD	Lump Sum per Day
conc.	Concrete	FIB	Florida-I Beam	Lt.	Left
Const.	Construct or Construction	F.S.	Florida Statutes		
Cont.	Continuation or Continuous	FS	Far Side		
corr.	Corrugated	FSB	Florida Slab Beam		
cov.	Cover	Ft.	Foot or Feet		

		$\begin{gathered} A B B F \\ \text { FY 2022- } \end{gathered}$	REVIATIONS -23 STANDARD PLANS		
Abbreviation	Meaning	Abbreviation	Meaning	Abbreviation	Meaning
m	Meter	Pen.	Penetration	St. or ST.	Street
m^{2}	Meter Square	PPB	Pier Protection Barrier	Sta.	Station
Mach.	Machine	PPP	Polypropylene pipe	std.	Standard
MAS	Motorist Awareness System	Prest.	Prestressed	Stg.	Strong
MASH	Manual for Assessing Safety Hardware (AASHTO)	PRS	Portable Regulatory Sign	Stl.	Steel
Max.	Maximum	psf	Pounds Per Square Foot	sw	Skewed Angle
mes	Mitered End Section	PSI or psi	Pounds Per Square Inch	Swk.	Sidewalk
м.H.	Manhole or Mounting Height	PT	Point of Tangency or Pressure Treated	SYM	Symmetrical
mнw	Mean High Water	PTFE	Polytetrafluoroethylene	-----------	--
Mid.	Middle	PVC	Polyvinyl Chloride	Tor t	Thickness, Tangent Distance or Time
mil or mils	One-Thousandth of An Inch	------------ ${ }^{\text {a }}$	------------------	Tan	Tangent
Min.	Minimum or Minute	Q	Flow Volume	$T \& G$	Tongue and Groove
Misc.	Miscellaneous	Qty.	Quantity	TCP	Traffic Control Plan(s)
mLw	Mean Low Water	--- R	------------------	tCz	Traffic Control Zone
mm	millimeter	R or Rad.	Radius	Temp.	Temperature or Temporary
Mod.	Modification	Rt.	Right	Theo.	Theoretical
мот	Maintenance Of Traffic	R/W	Right of Way	thw or thwn	Insulation (Flame Retardant, Moisture
MPH or mph	Miles Per Hour	RC	Reverse Crown		And Heat Resistant Thermoplastic)
MUTCD	Manual On Uniform Traffic Control Devices	RCP	Reinforced Concrete Pipe	tma	Truck/Trailer Mounted Attenuator
-- N	--------------	Rd.	Road or Round	TN	Ton
N	Standard Penetration Number	Rdwy.	Roadway	Trans.	Transition or Transverse
NA or N/A	Not Available or Not Applicable	Rect.	Reticuline or Rectangular	tTC	Temporary Traffic Control
NC	Normal Crown	Ref.	Reference	tVSs	Transient Voltage Surge Suppression
NCHRP	National Cooperative Highway Research Program	Reinf.	Reinforced or Reinforcement	TX	Transmit
ndCbu	Neighborhood Delivery And Collection Box Unit	Req. or Reqd.	Required	Typ.	Typical
NEMA	National Electrical Manufacturers Association	RGS	Rigid Galvanized Steel	- U	---------------
NHW	Normal High Water	RPM	Raised Pavement Markers	UL	Underwriters Laboratories
No.	Number	R/R or R R	Railroad	UPS	Uninterruptible Power Supply
Nom.	Nominal	RSDU	Radar Speed Display Unit	USPS	United States Postal Service
NPS	Nominal Pipe Size	RU	Rack Unit	Util.	Utilities
NPT	National Pipe Thread	RX	Receive	uv	Ultraviolet
NS or N.S.	Near Side	-------------- S	-----------------	-------------- V	---------------
NS	Non-Structural	S or s	Speed, Spacing or Second	veh.	Vehicle
NTS	Not To Scale	Sch.	Schedule	vert.	Vertical
----------- 0	---------------	SHBR	Special Height Bicycle Railing	VPD or Vpd.	Vehicles Per Day
o.c.	on Center	shidr.	Shoulder	----------- w	-----------------
0 to 0 or 0.0.	Out to Out	shw	Seasonal High Water	w	Width or wide
O.B.G.	Optional Base Group	SIP	Stay In Place	wT	Weight
OD or O.D.	Outside Diameter	SP	Superpave	wwm	Welded Wire Mesh
oz.	Ounce	Spa., Spcg. or Sp.	Space(ing)(s)	wWR	Welded Wire Reinforcing
-- P	-------	Spec.	Specification	----------------- Y	------------------
Pavt.	Pavement	sq	Square	rd.	Yard
PBR	Pedestrian/Bicycle Railing	Sq. Ft., SF, sf or S.F.	Square Foot	Yr.	Year
PC	Point of Curvature	sq. in.	Square Inch		
PCC	Plain Cement Concrete	Sq. Yd., SY or S.Y.	Square Yard		
pcf	Pounds per Cubic Foot	SR	State Road		
PCMS	Portable Changeable Message Sign	FSB	Florida Slab Beam		
P.E. or PE	Professional Engineer	Ss	Stainless Steel		

TABLE OF CONTENTS

FY 2022-23 STANDARD PLANS FOR ROAD CONSTRUCTION

Standard Plans Index	Index Title	Standard Plans Index	Index Title
Miscellaneous		Bituminous Treatments, Surface Courses, and Concrete Pavement	
000-510	Superelevation Transitions - High Speed Roadways	Concrete Pavement	
000-511	Superelevation Transitions - Low Speed Roadways	330-001	Paved and Graded Driveways
000-525	Ramp Terminals	350-001	Concrete Pavement Joints
General Construction Operations		353-001	Concrete Slab Replacement
Maintenance of Traffic		370-001	Bridge Approach Expansion Joint - Concrete Pavement with Special Select Soil Base
102-100	Temporary Barrier	Structures	
102-110	Type K Temporary Concrete Barrier System	Concrete Structures	
102-120	Low Profile Barrier	400-010	Cantilever Retaining Wall (C-I-P)
102-600	General Information for Traffic Control Through Work Zones	400-011	Gravity Wall
102-601	Two-Lane and Multilane Roadway, Work Beyond Shoulder	400-021	Concrete Steps
102-602	Two-Lane and Multilane, Work on Shoulder	Inlets, Manholes and Junction Boxes	
102-603	Two-Lane, Two-Way, Work within the Travel Way	425-001	Supplementary Details for Manholes and Inlets
102-604	Two-Lane, Two-Way, Intersection Work	425-010	Structure Bottoms - Type J and P
102-606	Two-Lane Roadway, Lane Closure Using Temporary Traffic Signals	425-020	Curb Inlet Tops - Types 1, 2, 3 and 4
102-607	Mobile Operations	425-021	Curb Inlet Tops - Types 5 and 6
102-608	Two-Lane, Two-Way, Temporary Diversion Connection	425-022	Curb Inlet - Type 7
102-613	Multilane Roadway, Lane Closures	425-023	Curb Inlet - Type 8
102-615	Multilane Roadway, Intersection Work	425-024	Curb Inlet Top - Type 9
102-620	Multilane Roadway, Temporary Diversion	425-025	Curb Inlet Top - Type 10
102-625	Temporary Road Closure	425-030	Median Barrier Inlets Types 1 and 2
102-628	Two-Way Left-Turn Lanes	425-031	Adjacent Barrier Inlet
102-655	Traffic Pacing	425-032	Curb and Gutter Barrier Inlet
102-660	Sidewalk Closure	425-040	Gutter Inlet - Type S
102-661	Bicycle Facility Closures	425-041	Gutter Inlet - Type V
102-665	Limited Access Temporary Opening	425-050	Ditch Bottom Inlet - Type A
102-680	Haul Road Crossing	425-051	Ditch Bottom Inlet - Type B
Clearing Construction Site		425-052	Ditch Bottom Inlets - Types C, D, E and H
Clearing and Grubbing		425-053	Ditch Bottom Inlets - Types F and G
110-100	Tree Protection and Preservation	425-054	Ditch Bottom Inlet - Type J
110-200	Mailboxes	425-055	Ditch Bottom Inlet - Type K
Earthwork and Related Operations		425-060	Back of Sidewalk Drainage
120-001	Embankment Utilization	425-061	Closed Flume Inlet
120-002	Subsoil Excavation	425-070	Skimmer for Outlet Control Structures
125-001	Utility Adjustments thru Existing Pavement	425-080	Utility Conflicts thru Drainage Structures
141-T01	Settlement Plate	425-090	Safety Modifications for Inlets In Box Culverts
160-001	Miscellaneous Earthwork Details		

TABLE OF CONTENTS

FY 2022-23 STANDARD PLANS FOR ROAD CONSTRUCTION

Pipe Culverts - End Treatments

430-001 Miscellaneous Drainage Details
430-010 U-Type Concrete Endwalls With Grates - 15" to 30" Pipe
430-011 U-Type Concrete Endwalls - Baffles and Grate Optional - 15" to 30" Pipe
430-012 U-Type Concrete Endwall - Energy Dissipator - 30" to 72" Pip
430-020 Flared End Section
430-021 Cross Drain Mitered End Section
430-022 Side Drain Mitered End Section
430-030 Straight Concrete Endwalls - Single and Multiple Pipe
430-031 Straight Concrete Endwalls - Single and Double 60" Pipe
430-032 Straight Concrete Endwalls - Single and Double 66" Pipe
430-033 Straight Concrete Endwalls - Single and Double 72" Pipe
430-034 Straight Concrete Endwalls - Single 84" Pipe
430-040 Winged Concrete Endwalls
$430-090$ Safety Modifications for Endwalls
Structures - Miscellaneous Drainage
436-001 Trench Drain
440-001 Underdrain
440-002 Underdrain Inspection Box
443-001 French Drain
443-002 Skimmers for French Drain Outlets
444-T01 Deep Well Injection Box
446-001 Concrete Pavement Subdrainage
Structures Foundations - Sheet Pile Wall
455-400 Precast Concrete Sheet Pile Wall (Conventional)
455-440 Precast Concrete Sheet Pile Wall (CFRP/GFRP \& HSSS/GFRP)

Incidental Construction

Miscellaneous
508-T01 Traffic Control Devices for Movable Span Bridge Signals
509-070 Railroad Grade Crossing Traffic Control Devices
509-100 Advance Warning for R/R Crossing
Metal Pedestrian/Bicycle Railings, Guiderails and Handrails
515-052 Pedestrian/Bicycle Railing (Steel)
515-062 Pedestrian/Bicycle Railing (Aluminum)
515-070 Pipe Guiderail (Aluminum)
515-080 Pipe Guiderail (Steel)
Concrete Gutter, Curb Elements and Traffic Separator
520-001 Curb and Gutter
520-005 Concrete Shoulder Gutter Spillway
520-010 Median Opening Flume
520-020 Traffic Separators

Standard

Concrete Barriers, Traffic Railings, and Parapets

521-001 Concrete Barrier
521-002 Pier Protection Barrier
521-010 Opaque Visual Barrier
521-510 Concrete Barrier/Noise Wall ($8^{\prime}-0^{\prime \prime}$)
521-511 Concrete Barrier/Noise Wall (14'-0")
521-512 Concrete Barrier/Noise Wall-Junction Slab
521-513 Concrete Barrier/Noise Wall T-Shaped Spread Footing
521-514 Concrete Barrier/Noise Wall L-Shaped Spread Footing
521-515 Concrete Barrier/Noise Wall Trench Footing
521-600 MSE Wall Coping (Precast or C-I-P)
521-610 Concrete Barrier/Junction Slab - Wall Coping
521-611 Concrete Barrier/Junction Slab-Wall Coping (FRP)
521-620 Concrete Barrier/Raised Sidewalk - Wall Coping
521-630 Parapet with C-I-P Sidewalk - Wall Coping
521-640 Drainage Inlet Openings in Junction Slab - Wall Coping
521-650 Light Pole Pedestal - Wall Coping
Concrete Sidewalk and Driveways
522-001 Concrete Sidewalk
522-002 Detectable Warnings and Sidewalk Curb Ramp.
522-003 Concrete Flared Driveways
Ditch and Slope Pavement
524-001 Ditch Pavement and Sodding
Noise and Perimeter Walls
534-200 Noise Walls (Precast)
534-250 Perimeter Walls
Guardrail
536-001 Guardrail
536-002 Guardrail Transitions and Connections for Existing Bridges
Crash Cushions
544-001 Crash Cushion Transition Details
Rumble Strips
546-001 Raised Rumble Strips
546-010 Ground-In Rumble Strips

Retaining Wall Systems

548-020 MSE Retaining Wall Systems - Permanent
548-030 MSE Retaining Wall Systems - Temporary
Fencing
550-001 Fence - Type
550-002 Fence - Type B
550-003 Cantilever Slide Gate - Type B Fence
550-004 Fence Location

TABLE OF CONTENTS

FY 2022-23 STANDARD PLANS FOR ROAD CONSTRUCTION

Standard
Plans
Performance Tur
570-001 Permanent Erosion Control
570-010 Shoulder Sodding and Turf on Existing Facilities
andscape
580-001 Landscape Installation
Traffic Control Signals and Devices
630-001 Conduit Installation Details
634-001 Signal Cable and Span Wire Installation Details
634-002 Aerial Interconnect
635-001 Pull and Splice Boxes
639-001 Service Point Details
639-002 Electric Power Service
641-010 Concrete Poles
641-020 Concrete CCTV Pole
646-001 Aluminum Post and Pedestal Mounted Pedestrian Detectors and Signals
649-010 Steel Strain Pole
649-020 Steel CCTV Pole
649-030 Standard Mast Arm Assemblies
649-031 Mast Arm Assemblies
653-001 Pedestrian Control Signal Installation Details
654-001 Rectangular Rapid Flashing Beacon Assembly
659-010 Span Wire Mounted Sign Details
659-020 Camera Mounting Details
660-001 Vehicle Loop Installation Details
665-001 Pedestrian Detector Assembly Installation Details
671-001 Standard Signal Operating Plans
676-010 Cabinet Installation Details
695-001 Traffic Monitoring Site
Signing, Pavement Markings and Lighting
Highway Signing
700-010 Single Column Ground Signs
700-011 Single Column Cantilever Ground Mounted Sign
700-012 Single Post Bridge Mounted Sign Support
700-013 Single Post Median Barrier Mounted Sign Support
700-020 Multi-Column Ground Sign
700-030 Wind and Hanger Beams for Overhead Signs
700-031 External Lighting for Signs
700-040 Cantilever Sign Structure
700-041 Span Sign Structure

Standard
lans
Index Title

Highway Signing (Cont.)
700-050 Free-Swinging, Internally-Illuminated Street Sign Assemblies
700-090 Dynamic Message Sign Walk-In
700-091 Catwalk Detail
700-101 Typical Sections for Placement of Single and Multi-Column Signs
700-102 Special Sign Details
700-104 Signing for Motorist Services
700-105 Welcome Center Signing
700-106 Rural Narrow Bridge Treatment
700-107 Bridge Weight Restrictions
700-108 Typical Signing for Truck Weigh and Inspection Stations
700-110 Mounting Exit Number Panels to Signs
700-120 Enhanced Highway Signing Assemblies
Pavement Markings
706-001 Typical Placement of Raised Pavement Markers
711-001 Pavement Markings
711-002 Bicycle Markings
711-003 Interchange Markings
Highway Lighting Systems
715-001 Conventional Lighting
715-002 Standard Aluminum Lighting
715-003 Utility Conflict Pole
715-010 High Mast Lighting
Railroad Crossing
830-T01 Railroad (Grade) Crossings

INDEX CROSSWALK

FY 2022-23 Standard plans for road and bridge construction

$\begin{gathered} \text { Design } \\ \text { Standards } \\ \text { Index } \\ \hline \end{gathered}$	Standard Plans Index	Index Title	$\begin{gathered} \text { Design } \\ \text { Standards } \\ \text { Index } \\ \hline \end{gathered}$	Standard Plans Index	Index Title
Erosion Con	1 and Water	Quality	Drainage (cont.)		
104	570-001	Permanent Erosion Control	261	430-011	U-Type Concrete Endwalls-Baffles and Grate Optional - 15" To 30" Pipe
105	570-010	Shoulder Sodding and Turf on Existing Facilities	264	430-012	U-Type Concrete Endwall-Energy Dissipator - 30" to 72" Pipe
Drainage			266	430-040	Winged Concrete Endwalls - Single Round Pipe: Renamed: Winged Concrete Endwalls
200	425-010	Structure Bottoms - Type J and P	268	Deleted	U-Type Sand-Cement Endwalls
201	425-001	Supplementary Details for Manholes and Inlets	270	430-020	Flared End Section
206	436-001	Trench Drain	272	430-021	Cross Drain Mitered End Section
210	425-020	Curb Inlet Tops - Types 1, 2, 3 and 4	273	430-022	Side Drain Mitered End Section
211	425-021	Curb Inlet Tops - Types 5 and 6	280	430-001	Miscellaneous Drainage Details
212	425-022	Curb Inlet - Type 7	281	524-001	Ditch Pavement and Sodding
213	425-023	Curb Inlet - Type 8	282	425-060	Back of Sidewalk Drainage
214	425-024	Curb Inlet Top - Type 9	283	520-010	Median Opening Flume
215	425-025	Curb Inlet Top - Type 10	284	520-005	Concrete Shoulder Gutter Spillway
216	425-061	Closed Flume Inlet	285	443-001	French Drain
217	425-030	Median Barrier Inlets Types 1 and 2	286	440-001	Underdrain
218	425-031	Shoulder Barrier Inlet: Renamed: Adjacent Barrier Inlet	287	446-001	Concrete Pavement Subdrainage
219	425-032	Curb and Gutter Barrier Inlet	288	444-T01	Deep Well Injection Box
220	425-040	Gutter Inlet - Type S	289	400-289	Concrete Box Culvert Details (LRFD)
221	425-041	Gutter Inlet - Type V	291	400-291	Supplemental Details for Precast Concrete Box Culverts
230	425-050	Ditch Bottom Inlet - Type A	292	400-292	Standard Precast Concrete Box Culverts
231	425-051	Ditch Bottom Inlet - Type B	293	425-090	Safety Modifications for Inlets in Box Culverts
232	425-052	Ditch Bottom Inlet - Type C, D, E and H	295	430-090	Safety Modifications for Endwalls
233	425-053	Ditch Bottom Inlet - Type F and G	Curbs, Concrete Pavement and Sidewalks		
234	425-054	Ditch Bottom Inlet - Type J	300	520-001	Curb \& Curb and Gutter (Renamed: Curb and Gutter)
235	425-055	Ditch Bottom Inlet - Type K	301	Deleted*	Turn Lanes [*Content moved to the FDM]
240	425-070	Skimmer For Outlet Control Structures	302	520-020	Traffic Separators
241	443-002	Skimmers For French-Drain Outlets	303	Deleted	Curb Return Profiles
245	440-002	Underdrain Inspection Box	304	522-002	Detectable Warnings and Sidewalk Curb Ramps
250	430-030	Straight Concrete Endwalls - Single And Multiple Pipe	305	350-001	Concrete Pavement Joints
251	430-031	Straight Concrete Endwalls - Single And Double 60" Pipe	306	370-001	Bridge Approach Expansion Joint - Concrete Pavement: Renamed: Bridge
252	430-032	Straight Concrete Endwalls - Single And Double 66" Pipe			Approach Expansion Joint - Concrete Pavement with Special Select Soil Base
253	430-033	Straight Concrete Endwalls - Single And Double 72" Pipe	307	125-001	Miscellaneous Utility Details
255	430-034	Straight Concrete Endwalls - Single 84"Pipe	307	425-080	NEW: Utility Conflicts thru Drainage Structures (Note: Index 307, Sheet 2 of 3)
258	Deleted	Straight Sand-Cement Endwalls	308	353-001	Concrete Slab Replacement
260	430-010	U-Type Concrete Endwalls with Grates - 15" to 30" Pipe	310	522-001	Concrete Sidewalk

INDEX CROSSWALK FY 2022-23 STANDARD PLANS FOR ROAD AND BRIDGE CONSTRUCTION					
$\begin{gathered} \text { Design } \\ \text { Standards } \\ \text { Index } \\ \hline \end{gathered}$	$\begin{gathered} \text { Standard } \\ \text { Plans Index } \\ \hline \end{gathered}$	Index Title	$\begin{gathered} \text { Design } \\ \text { Standards } \\ \text { Index } \\ \hline \end{gathered}$	Standard Plans Index	Index Title
Traffic Railings			General		
400	536-001	Guardrail	500	120-002	Removal of Organic and Plastic Material (Renamed: Subsoil Excavation)
402	536-002	Guardrail Transitions and Connections for Existing Bridges	505	120-001	Embankment Utilization
404	521-404	Guardrail Transitions - Existing Post \& Beam Bridge Railings (Narrow \& Recessed Curbs)	506	160-001	Miscellaneous Earthwork Details
405	521-405	Guardrail Transitions - Existing Post \& Beam Bridge Railings (Wide Curbs)	510	000-510	Superelevation - Rural Highways, Urban Freeways and High Speed Urban Highways
410	521-001	Concrete Barrier	511	000-511	Superelevation - Urban Highways and Streets
411	521-002	Pier Protection Barrier	515	$\begin{array}{r} 330-001522- \\ 003 \end{array}$	Turnouts
412	102-120	Low Profile Barrier	516	$\begin{gathered} 330-001522- \\ 003 \end{gathered}$	Turnouts - Resurfacing Projects
414	102-110	Type K Temporary Concrete Barrier System	517	546-001	Raised Rumble Strips
415	102-100	Temporary Concrete Barrier Renamed: Temporary Barrier	518	546-010	Shoulder Rumble Strips
420	Deleted	Traffic Railing - (32"F Shape)	521	400-021	Concrete Steps
421	Deleted	Traffic Railing - (Median 32"F Shape)	525	000-525	Ramp Terminals
422	521-422	Traffic Railing - (42" Vertical Shape)	526	Deleted*	Roadway Transitions [*Content moved to the FDM]
423	521-423	Traffic Railing - (32" Vertical Shape)	527	Deleted*	Directional Median Opening [*Content moved to the FDM]
424	Deleted	Traffic Railing - (Corral Shape)	530	Deleted	Rest Area Pavilion
425	Deleted	Traffic Railing - (42"F Shape)	532	110-200	Mailboxes
426	521-426	Traffic Railing - (Median 36" Single-Slope)	535	Deleted	Tractor Crossing
427	521-427	Traffic Railing - (36" Single-Slope)	540	141-T01	Settlement Plate
428	521-428	Traffic Railing - (42" Single-Slope)	542	110-100	Tree Protection and Preservation
430	544-001	Crash Cushion Details	544	580-001	Landscape Installation
461	521-010	Opaque Visual Barrier	N/A	591-001	Landscape Irrigation Sleeves
470	460-470	Traffic Railing - (Thrie-Beam Retrofit) General Note \& Details	546	Deleted*	Sight Distance at Intersections [*Content moved to the FDM]
471	460-471	Traffic Railing - (Thrie-Beam Retrofit) Narrow Curb	560	830-T01	Railroad Crossings
472	460-472	Traffic Railing - (Thrie-Beam Retrofit) wide Strong Curb Type 1	Traffic Cont	1 Through Wor	Zones
473	460-473	Traffic Railing - (Thrie-Beam Retrofit) Wide Strong Curb Type 2	600	102-600	General Information for Traffic Control Through work Zones
474	460-474	Traffic Railing - (Thrie-Beam Retrofit) Intermediate Curb	601	102-601	Two-Lane, Two-Way, Work Outside Shoulder Renamed: Two-Lane and Multilane
475	460-475	Traffic Railing - (Thrie-Beam Retrofit) Wide Curb Type 1			Roadway, Work Beyond Shoulder
476	460-476	Traffic Railing - (Thrie-Beam Retrofit) wide Curb Type 2	602	102-602	Two-Lane, Two-Way, Work on Shoulder Renamed: Two-Lane and Multilane,
477	460-477	Thrie-Beam Panel Retrofit (Concrete Handrail)			Work on Shoulder
N/A	460-490	Traffic Railing - (Rectangular Tube Retrofit)	603	102-603	Two-Lane, Two-Way, Work Within The Travel Way
480	521-480	Traffic Railing - (Vertical Face Retrofit) General Notes \& Details	604	102-604	Two-Lane, Two-Way, Work in Intersection Renamed: Two-Lane, Two-Way, Intersection Work
481	521-481	Traffic Railing - (Vertical Face Retrofit) Narrow Curb	605	Deleted*	Two-Lane, Two-Way, Work Near Intersection [*Combined with 102-604]
482	521-482	Traffic Railing - (Vertical Face Retrofit) Wide Curb	606	102-606	Two-Lane, Two-Way, Work within the Travel Way - Signal Control Renamed: Two-Lane
483	521-483	Traffic Railing - (Vertical Face Retrofit) Intermediate Curb			Roadway, Lane Closure Using Temporary Traffic Signals
484	521-484	Traffic Railing - (Vertical Face Retrofit) Spread Footing Approach	607	102-607	Two-Lane, Two-Way, Mobile Operation, Work On Shoulder and Work Within the Travel Way Renamed: Mobile Operations

INDEX CROSSWALK						
Design Standards Index	Standard Plans Index	Index Title	Design Standards Index	Standard Plans Index	Index Title	
Traffic Control Through Work Zones (Cont.) Traffic Control Through Work Zones (Cont.)						
608	102-608	Two-Lane, Two-Way, Temporary Diversion Connection	667	Deleted	Toll Plaza, Traffic Control Standards	
611	Deleted*	Multilane, Work Outside Shoulder [*Combined with 102-601]	670	Deleted*	Motorist Awareness System [*Combined with 102-613]	
612	Deleted*	Multilane, Work on Shoulder [*Combined with 102-602]	N/A	102-680	Haul Road Crossing (New Index)	
613	102-613	Multilane, Work Within Travel Way-Median or Outside Lane Renamed: Multilane Roadway, Lane Closures	Fencing and Pedestrian Railings			
			800	550-004	Fence Location	
614	Deleted*	Multilane, Work Within Travel Way-Center Lane [*Combined with 102-613]	801	550-001	Fence - Type A	
615	102-615	Multilane, work in Intersection Renamed: Multilane Roadway, Intersection Work	802	550-002	Fence - Type B	
616	Deleted*	Multilane, Work Near Intersection-Median or Outside Lane	803	550-003	Cantilever Slide Gate - Type B Fence	
		[*Combined with 102-615]	810	550-010	Bridge Fencing (Vertical)	
617	Deleted*	Multilane, Work In Intersection [*Combined with 102-615]	811	550-011	Bridge Fencing (Curved Top)	
618	Deleted*	Multilane, Work In Intersection - Two Lanes Closed-45mph or Less	812	550-012	Bridge Fencing (Enclosed)	
		[*Combined with 102-615]	820	521-820	27" Concrete Parapet with Pedestrian/Bicycle Bullet Railing	
619	Deleted*	Multilane, Mobile Operations Work on Shoulder, Work within Travel Way	821	515-021	Bridge Aluminum Pedestrian/Bicycle Bullet Railing for Traffic Railing	
		[*Combined with 102-607]	822	515-022	Bridge Aluminum Pedestrian/Bicycle Bullet Railing Details	
620	102-620	Multilane, Divided, Temporary Diversion Connection Renamed: Multilane	825	521-825	42"Concrete Pedestrian/Bicycle Railing	
		Roadway, Temporary Diversion	851	515-051	Bridge Pedestrian/Bicycle Railing (Steel)	
621	Deleted*	Multilane Undivided, Temporary Diversion Connection [*Combined with 102-620]	852	515-052	Steel Pedestrian/Bicycle Railing	
622	Deleted	Multilane, Work Near Intersection - Temporary Diversion Connection 35mph or Less	861	515-061	Bridge Pedestrian/Bicycle Railing (Aluminum)	
623	Deleted*	Multilane, Work Within the Travel Way Double Lane Closure [*Combined with 102-613]	862	515-062	Aluminum Pedestrian/Bicycle Railing	
625	102-625	Temporary Road Closure - 5 Minutes or Less Renamed: Temporary Road Closure	870	515-070	Aluminum Pipe Guiderail	
628	102-628	Two Way Left Turn Lane Closure Renamed: Two-Way Left-Turn Lanes	880	515-080	Steel Pipe Guiderail	
630	Deleted	Crossover for Paving Train Operations, Rural	Noise And Perimeter Wall Systems			
631	Deleted	Temporary Crossover	5200	534-200	Precast Noise Walls	
640	Deleted	Converting Two-Lanes to Four-Lanes Divided, Rural	5210	521-510	Traffic Railing/Noise Wall ($\left.8^{\prime}-0^{\prime \prime}\right)$	
641	Deleted	Converting Two-Lanes to Four-Lanes Divided, Urban	5211	521-511	Traffic Railing/Noise Wall ($14^{\prime}-0^{\prime \prime}$)	
642	Deleted*	Transitions for Temporary Concrete Barrier Wall on Freeway Facilities [*Combined with 102-100]	5212	521-512	Traffic Railing/Noise Wall ($8^{\prime}-0^{\prime \prime}$) Junction Slab Renamed: Concrete Barrier/Noise Wall-Junction Slab	
650	Deleted	Two-Lane Two-Way, Rural Structure Replacement	5213	521-513	Traffic Railing/Noise Wall T-Shaped Spread Footing Renamed: Concrete	
651	Deleted	Multilane Divided, Maintenance and Construction			Barrier/Noise Wall T-Shaped Spread Footing	
655	102-655	Traffic Pacing	5214	521-514	Traffic Railing/Noise Wall L-Shaped Spread Footing Renamed: Concrete	
660	102-660	Pedestrian Control for Closure of Sidewalks Renamed: Sidewalk Closure			Barrier/Noise Wall L-Shaped Spread Footing	
N/A	102-661	Bicycle Facility Closures (New Index)	5215	521-515	Traffic Railing/Noise Wall Trench Footing Renamed: Concrete	
665	102-665	Limited Access, Temporary Opening			Barrier/Noise Wall Trench Footing	
			5250	534-250	Perimeter Walls	3

INDEX CROSSWALK

FY 2022-23 Standard plans for road and bridge construction

Design Standards Index	Standard Plans Index	Index Title	Design Standards Index	Standard Plans Index	Index Title
Wall Systems			Signing and Marking (Cont.)		
6010	400-010	C-I-P Cantilever Retaining Wall	17354	Deleted*	Tourist Oriented Directional Signs [*Content moved to the FDM]
6011	400-011	Gravity Wall	17355	700-102	Special Sign Details
6020	548-020	Permanent MSE Retaining Wall Systems	17356	659-010	Span Wire Mounted Sign Details
6030	548-030	Temporary MSE Retaining Wall Systems	17357	700-107	Bridge Weight Restrictions
6040	455-400	Precast Concrete Sheet Pile Wall	17359	700-106	Rural Narrow Bridge Treatment
6100	521-600	MSE Wall Coping (Precast or C-I-P)	Roadway Lighting		
6110	521-610	Wall Coping with Traffic Railing/Junction Slab	17500	715-001	Conventional Lighting
N/A	521-611	Concrete Barrier/Junction Slab-Wall Coping (FRP) (New Index)	New	715-003	Utility Conflict Pole
6120	521-620	Wall Coping with Traffic Railing/Raised Sidewalk	17502	715-010	High Mast Lighting
6130	521-630	Wall Coping/Parapet with C-I-P Sidewalk	17504	639-001	Service Point Details
6200	521-650	Coping Mounted Light Pole Pedestal	17505	700-031	External Lighting For Signs
6201	521-640	Junction Slab at Drainage Inlet Openings	17515	715-002	Standard Aluminum Lighting
Signing and	arking		Traffic Signal and Equipmen		
11200	700-020	Multi-Column Ground Sign	17700	635-001	Pull \& Splice Box
11300	700-030	Steel Overhead Sign Structures	17721	630-001	Conduit Installation Details
11310	700-040	Cantilever Sign Structure	17723	649-010	Steel Strain Pole
11320	700-041	Span Sign Structure	17725	641-010	Concrete Poles
11860	700-010	Single Column Ground Signs	17727	634-001	Signal Cable \& Span Wire Installation Details
11861	700-011	Single Column Cantilever Ground Mounted Sign	17733	634-002	Aerial Interconnect
11862	700-120	Roadside Flashing Beacon Assembly	17736	639-002	Electrical Power Service
11862	654-001	Rectangular Rapid Flashing Beacon Assembly	N/A	646-001	Aluminum Post and Pedestal Mounted Pedestrian Detectors and Signals (New Index)
11870	700-012	Single Post Bridge Mounted Sign Support	17743	649-030	Standard Mast Arm Assemblies
11871	700-013	Single Post Median Barrier Mounted Sign Support	17745	649-031	Mast Arm Assemblies
13417	700-110	Mounting Exit Number Panels To Highway Signs	17748	700-050	Free-Swinging Internally-Il/uminated Street Sign Assemblies
17302	700-101	Typical Sections For Placement of Single \& Multi-Column Signs	17764	653-001	Pedestrian Control Signal Installation Details
17328	700-108	Typical Signing for Truck Weigh \& Inspection Stations	17781	660-001	Vehicle Loop Installation Details
17344	Deleted*	School Signs \& Markings [*Content moved to Speed Zone Manual]	17784	665-001	Pedestrian Detector Assembly Installation Details
17345	711-003	Interchange Markings	17841	676-010	Cabinet Installation Details
17346	711-001	Pavement Markings	17870	671-001	Standard Signal Operating Plans
17347	711-002	Bicycle Markings	17881	509-100	Advance Warning For R/R Crossing
17349	Deleted*	Traffic Controls For Street Terminations *See to FDM 230/Specification 705	17882	509-070	Railroad Grade Crossing Traffic Control Devices
17350	700-104	Signing For Motorist Services	17890	508-T01	Traffic Control Devices For Movable Span Bridge Signals
17351	700-105	Welcome Center Signing	$\underline{\text { Planning }}$		
17352	706-001	Typical Placement of Reflective Pavement Markers	17900	695-001	Traffic Monitoring Site

INDEX CROSSWALK

FY 2022-23 Standard plans for road and bridge construction

$\begin{gathered} \text { Design } \\ \text { Standards } \\ \text { Index } \\ \hline \end{gathered}$	Standard Plans Index	Index Title	Design Standards Index	Standard Plans Index	Index Title
Intelligent T	ransportation Sy	stems (ITS)	Bridge Bearings		
18100	Deleted	CCTV Pole Placement	20502	450-502	Beveled Bearing Plate Details - Prestressed Florida-U Beams
18101	Deleted*	Typical CCTV Site [*Combined with CCTV Indexes]	20510	400-510	Composite Elastomeric Bearing Pads-Prestressed Florida-I \& AASHTO Type II Beams
18102	Deleted*	Grounding And Lightning Protection [*Combined with CCTV and DMS Indexes]	20511	450-511	Bearing Plates (Type I) - Prestressed Florida-I \& AASHTO Type II Beams
18104	Deleted	Typical CCTV Cabinet Equipment Layout	20512	450-512	Bearing Plates (Type 2) - Prestressed Florida-I \& AASHTO Type II Beams
18105	Deleted	CCTV Block Diagram	Square and Round Concrete Piles (With Carbon Steel)		
18107	Deleted*	Ground Mounted CCTV Cabinet [*Combined with CCTV Indexes]	20600	455-001	Notes and Details For Square Prestressed Concrete Piles
18108	Deleted*	Pole Mounted CCTV Cabinet [*Combined with CCTV Indexes]	20601	455-002	Square Prestressed Concrete Pile Splices
18110	659-020	Camera Mounting Details	20602	455-003	EDC Instrumentation For Square Prestressed Concrete Piles
18111	649-020	Steel CCTV Pole	20612	455-012	12" Square Prestressed Concrete Pile
18113	641-020	Concrete CCTV Pole	20614	455-014	14" Square Prestressed Concrete Pile
18300	700-090	Dynamic Message Sign Walk-In	20618	455-018	18" Square Prestressed Concrete Pile
N/A	700-091	Catwalk Details	20620	Deleted	20" Square Prestressed Concrete Pile
Prestressed	Concrete Beams		20624	455-024	24" Square Prestressed Concrete Pile
20010	450-010	Typical Florida-I Beam Details and Notes	20630	455-030	30" Square Prestressed Concrete Pile
20036	450-036	Florida-I 36 Beam - Standard Details	20631	455-031	High Moment Capacity 30" Square Prestressed Concrete Pile
20045	450-045	Florida-I 45 Beam - Standard Details	20654	455-054	54" Precast/Post- Tensioned Concrete Cylinder Pile
20054	450-054	Florida-I 54 Beam - Standard Details	20660	455-060	60" Prestressed Concrete Cylinder Pile
20063	450-063	Florida-I 63 Beam - Standard Details	Approach Slabs		
20072	450-072	Florida-I 72 Beam - Standard Details	20900	400-090	Approach Slabs (Flexible Pavement Approaches)
20078	450-078	Florida-I 78 Beam - Standard Details	20910	400-091	Approach Slabs (Rigid Pavement Approaches)
20084	450-084	Florida-I 84 Beam - Standard Details	Bridge Expansion Joints		
20096	450-096	Florida-I 96 Beam - Standard Details	21100	458-100	Strip Seal Expansion Joint
20120	450-120	AASHTO Type II Beam	21110	458-110	Poured Joint with Backer Rod Expansion Joint System
20199	450-199	Build-Up \& Deflection Data For Prestressed I-Beams	Structures Access and Lighting		
20210	450-210	Typical Florida-U Beam Details and Notes	21200	521-660	Light Pole Pedestal
20248	450-248	Florida-U 48 Beam - Standard Details	21210	630-010	Conduit Details
20254	450-254	Florida-U 54 Beam - Standard Details	21220	510-001	Navigation Light System Details (Fixed Bridges)
20263	450-263	Florida-U 63 Beam - Standard Details	21240	715-240	Maintenance Lighting For Box Girders
20272	450-272	Florida-U 72 Beam - Standard Details	21250	460-250	Access Hatch Assembly For Steel Box Sections
20299	450-299	Build-Up and Deflection Data For Florida-U Beams	21251	460-251	Access Hatch Assembly For Concrete Box Sections
N/A	450-450	Florida Slab Beam Typical Details and Notes (New Index)	21252	460-252	Access Door Assembly For Concrete Box Sections
N/A	450-451	12" Florida Slab Beam (New Index)	Standard Bar Bending Details		
N/A	450-452	15" Florida Slab Beam (New Index)	21300	415-001	Standard Bar Bending Details Renamed: Bar Bending Details (Steel)
N/A	450-453	18" Florida Slab Beam (New Index)	N/A	415-010	Bar Bending Details (FRP) (New Index)

INDEX CROSSWALK

FY 2022-23 STANDARD PLANS FOR ROAD AND bRIDGE CONSTRUCTION

Design Standards Index	Standard Plans Index		Index Title

STANDARD PLANS

FY 2022-23 REVISIONS LOG

| Standard
 Plans
 Index | Description |
| :---: | :---: | :---: |
| 000-510 | Sheet 1: Added directional arrows to SECTION AA; Updated the Table to
 match FDM; Added 2-Lane option to pavement with median to be
 consistent with FDM. |
| 000-511 | Sheet 1: Updated Note 4 to match values in FDM; Added ONE Lane option
 to the Facilities to be consistent with FDM. |
| Sheet 2: Update table to match FDM; Changed ratio in the PROFILE views | |
| for clarity. | |

$\begin{gathered} \text { Standard } \\ \text { Plans } \\ \text { Index } \end{gathered}$	Description
102-615	Sheet 1: Changed Note 5 - "work zone" to "work operation"; Deleted Note 8. Sheet 4: Moved buffer space to not include TMA and added arrow board callout to TMA.
102-620	Sheet 1: Deleted Note 5. Sheet 2: Changed Note - "work zone" to "work operation".
102-628	Sheet 1: Changed Note 3 - "work zone" to "work operation"; Moved buffer zone and the associated dimension " B " before the Truck Mounted Attenuator in the work zone. Sheet 3: Changed the Arrow Board Mode to "CAUTION" in the approach traffic lanes.; Changed WZ sign 20-5aR to W 1-4L.
102-660	Sheet 2: Changed Note 4 - "work zone" to "work operations"; Added Note 5 - "Pedestrian Diversion Option 2 may only be used for work zone speeds of less than or equal to 35 mph and when called for in the Plans or as approved by an Engineer"; Changed title "TEMPORARY PEDESTRIAN WAY" to "PEDESTRIAN SPECIAL DETOUR"; Changed title "TEMPORARY PEDESTRIAN WAY DIVERTING TRAFFIC INTO THE TRAVELED WAY" to "PEDESTRIAN DIVERSION - OPTION 1"; Added new detail "PEDESTRIAN DIVERSION - OPTION 2".
102-661	All Sheets: Title Change to "BICYCLE FACILITY CLOSURES". Sheet 1: Changed Note 4 - "work zone" to "work operation". Sheet 2: Added Notes; Updated Symbols; Added Typical PCMS Display; Changed TEMPORARY BICYCLE DIVERSION to "BICYCLE SPECIAL DETOUR" and TEMPORARY BICYCLE WAY DIVERTING TRAFFIC INTO THE TRAVELED WAY to "BICYCLE FACILITY SHIFT (With Lane Closure)"; Added "BICYCLE FACILITY SHIFT (Work Zone Speed of 35 mph or Less)".
102-680	Sheet 1: Changed Note 6 - "work zone" to "work operation".
350-001	Sheet 1: Updated Note 3.B (Deleted "standard load transfer" and changed Spacing of \#5 bars from 38"); Updated Note 7 to revise reference to Specification 350 and Specification 931; Correct line work to extend to the bottom of the pavement in the BUTT CONSTRUCTION JOINT details; Added "Relation of Dowels to Tie Bars" detail.
370-001	Sheet 1: Changed "Class I" to "Class II" in SECTION A-A; Revised Note 1 to read " For asphalt base, use four expansion joints, spaced at 15-ft, per Index 350-001."
425-060	Sheet 3: Changed "Class I" to "Class II" in Table 1. Sheet 4: Changed "Class I" to "Class II" in the SHALLOW DITCHES - INLET VIEW detail.

Standard Plans Index	Description
425-061	Sheet 2: Remove reference to Dimension "D" in SPI and change text in SPI and Index to "Flume Length" to allow for this to be called for in the Plans. The "varies" callouts were deleted from the section references and note because the sections as shown are not variable.
430-001	Sheet 4: Moved "Joining Mainline Pipe to Stub Pipe Details" and Notes 2 and 3 to the Standard Plans Instructions: Deleted Notes 5-7.
430-010	Sheet 1: Changed GENERAL NOTE 1 from "Class I" to "Class II". Sheet 2: Changed "Class I " to "Class II" in TABLE 2.
430-011	Sheet 1: Changed GENERAL NOTE 1 from "Class I" to "Class II". Sheet 2: Changed "Class I " to "Class II" in the DIMENSION AND QUANTITIES FOR ONE U-ENDWALL TABLE and added TABLE 1 to the title. Sheet 3: Changed "Class I" to "Class II" in the DIMENSION AND QUANTITIES FOR ONE U-ENDWALL TABLE and added TABLE 2 to the title. Sheet 4: Changed "Class I" to "Class II" in the DIMENSION AND QUANTITIES FOR BAFFLES TABLE and added TABLE 3 to the title; Changed "Class I" to "Class II" in the DIMENSION AND QUANTITIES FOR ONE U-ENDWALL TABLE and added TABLE 4 to the title. Sheet 5: Added TABLE 5 to the title of the TABLE OF DIMENSION AND QUANTITIES FOR ONE GRATE.
430-012	Sheet 1: Changed GENERAL NOTE 1 from "Class I" to "Class II".
430-020	Sheet 1: Changed GENERAL NOTE 3 - Cast Toe Walls in place using Class II Concrete. Sheet 2: Changed "Class I" to "Class II" in the TABLE; Corrected the Dimension " B " in the Plan View of the Straight Flare Detail to " P ".
430-030	Sheet 1: Changed GENERAL NOTE 1 from "Class I" to "Class II". Sheet 2: Changed "Class I" to "Class II" in both Tables.
430-040	Sheet 1: Changed GENERAL NOTE 1 from "Class I" to "Class II". Sheet 2: Changed "Class I " to "Class $I I$ " in the DIMENSION AND estimated quantities tables.
430-090	Sheet 1: Changed GENERAL NOTE 1 from "Class I" to "Class II". Sheet 2: Changed "Class I" to "Class II" TABLE 1 - U-ENDWALL DIMENSIONS AND QUANTITIES.
440-002	Sheet 1: Changed GENERAL NOTE 2 from "Class I" to "Class II".
450-010	Sheet 1: Updated language concerning N type strands in the notes for clarity.

$\begin{gathered} \text { Standard } \\ \text { Plans } \\ \text { Index } \\ \hline \end{gathered}$	Description
450-199	Sheet 1: Changed the camber tolerance 1" from 1/2".
509-070	Sheet 1: Renumbered Sheet 2: Renumbered Sheet 3: Moved the RAILROAD CROSSING AT TWO-LANE ROADWAY and the RAILROAD CROSSING AT MULTILANE ROADWAY details to the FDOT Design Manual (FDM); Moved the RELATIVE LOCATION OF CROSSING TRAFFIC CONTROL DEVICES detail to New Sheet 3; Moved the RAILROAD DYNAMIC ENVELOPE (RDE) PAVEMENT MARKING DETAIL and the RAILROAD CROSSING PAVEMENT MESSAGE detail to Index 711-001. Sheet 4: Renumbered; Added the RELATIVE LOCATION OF CROSSING TRAFFIC CONTROL DEVICES detail.
509-100	Sheet 1: Changed "Class I" to "Class II" in the Front View of the ACTIVE STATE Detail.
515-052	Sheet 5: Added knuckled selvage as an option to the chain-link railing option.
515-062	Sheet 6: Added knuckled selvage as an option to the chain-link railing option.
520-001	Sheet 1: (NEW SHEET) General Note and Overview. Sheet 2: (Old Sheet 1) Renumbered, rearranged, and updated notes. Sheet 3: (Old Sheet 2) Renumbered, rearranged and moved General Notes to new Sheet 1.
520-005	Deleted notes; redrew details.
520-010	Redeveloped Index; Redrew details; Rewrote Notes
521-610	Sheet 1: Note 15: Added reference to Index 630-001 (Conduit Details Embedded) for information on embedded junction boxes and conduits.
521-650	Sheet 1: Note 5: Added reference to Index 630-010 (Conduit DetailsEmbedded) for information on embedded junction boxes and conduits.
521-660	Sheet 1: Added a pedestal design to allow slip forming of the traffic railing. Reconfigured sheet layout.
522-002	Sheet 1: Added Note 2.C. Sheet 4: Changed back of sidewalk in CR-D detail to accommodate 4'-0" minimum dimension.
548-020	Sheet 1: Deleted alternative allowable wall type 2E from 2D.
550-001	Sheet 1: Changed GENERAL NOTE 8 from "Class I" to "Class II".

STANDARD PLANS

FY 2022-23 REVISIONS LOG

Standard Plans Index	Description
630-001	Sheet 1: Added fiber optic cable route marker label detail; Revised General Note 2 to read "When sidewalk is damaged by conduit installation, replace entire sidewalk slab".
641-010	Redeveloped Index Sheet 1: (NEW SHEET) General Note, Table of Contents, and added Concrete Pole Assembly. Sheet 2: (NEW SHEET) Service Pole P-IIA. Sheet 3: (NEW SHEET) Service Pole P-IIB. Sheet 4: (NEW SHEET) Pedestal Pole P-IIC. Sheet 5: Previously Sheet 3 - Updated Notes and Legend. Sheet 6: Previously Sheet 4 - Updated Notes and Legend. Sheet 7: Previously Sheet 5 - Updated Notes and Legend. Sheet 8: Previously Sheet 6 - Updated Notes and Legend. Sheet 9: Previously Sheet 7 - Updated Notes and Legend. Sheet 10: Previously Sheet 8 - Updated Notes and Legend.
641-020	Sheet 1: Moved Note 3 to new Note 7; Added Note 7; Renumbered General Notes; Dashed the Identification Tag and the handhole in the CCTV POLE ASSEMBLY detail. Sheet 2: Updated the Assembly detail to match Sheet 1; Realigned the PLAN VIEW detail to match the Pole direction; Dashed the Identification Tag and the Handhole in the ELEVATION detail. Sheet 3: Updated the Assembly detail to match Sheet 1; Moved the Spiral wire note in the SPIRAL REINFORCING ELEVATION detail to the Notes and added See Note 1 to the Spiral Reinforcing call out; Dashed the Conduit Entry Holes in the POLE ELEVATION detail to be consent with the Pole's view. Sheet 4: Updated the Assembly Detail to match Sheet 1; Added Note 5. Sheet 5: Added Handhole to the CONCRETE CCTV POLE GROUNDING detail and to DETAIL "D"-SIDE VIEW detail.
646-001	Changed Note 4 to remove concrete type since specified in Spec 646; Added Note 5 "As an alternative to the direct buried "Post Mounted" Pedestrian Detector Assembly shown below, the post may be installed on a transformer base. Use a transformer base included on the APL approved as an alternative to a "Post Mounted" assembly."; Updated the PEDESTAL MOUNTED detail - to show in the ADJACENT TO SIDEWALK detail "Tie Bars" callout as a \#4 Stirrups equally spaced, with a $12^{\prime \prime}$ maximum spacing; Changed all references "4" Nominal Aluminum Pole" to "Nominal 4" Aluminum Post (Sch.40)".
649-010	Sheet 3: Changed weld on Handhole.

$\begin{gathered} \hline \text { Standard } \\ \text { Plans } \\ \text { Index } \\ \hline \end{gathered}$	Description
649-020	Sheet 1: Added Note 3 to the GENERAL NOTES; Renumbered Notes; Deleted Note B and Added Note C and D to new Note 6; Added the Cabinet Adapter Bracket and dashed the Handhole in the STEEL CCTV POLE ASSEMBLY detail. Sheet 2: Updated the Assembly Detail to match Sheet 1; Dashed the Handhole in the ELEVATION detail. Sheet 3: Updated the Assembly detail to match Sheet 1. Sheet 4: Updated the Assembly detail to match Sheet 1. Update callout to "See Note" on Handhole Detail. Sheet 5: Updated the Assembly detail to match Sheet 1. Sheet 6: Dashed the Handhole in the CONCRETE CCTV POLE GROUNDING detail and added the Handhole to DETAIL "E"-SIDE VIEW detail.
649-031	Sheet 1: Note 4 added optional other materials. Sheet 2: Added note 4. Sheet 3 and 4: Added bolt as option for splice connection. Sheet 6: Clarified that domed shape top cap is permissible.
654-001	Sheet 1: Reorganized to show the Beacon Assembly adjacent to the sidewalk; Update Note 1 to reference Index 700-120 for pull box, conduit, wiring and grounding installation requirements; Updated Note 7; Change all references "4" Nominal Aluminum Pole" to "Nominal 4" Aluminum Pole (Sch. 40)"; Updated anchor bolts; Updated callouts. Sheet 2: (NEW SHEET) showing the Beacon Assembly in the Sidewalk Curb.
659-010	Changed Note 2.B.b. updated width to greater than or equal to 8'.

STANDARD PLANS

FY 2022-23 REVISIONS LOG

Standard Plans Index	Description
	All Sheets: Renumbered Sheets 1 through 7: Due to introduction of two new sheets, updated the total sheet number from 7 to 9.
	Sheets 1, 2, 4: Updated the name of the office from "Transportation Statistics" to "Transportation Data and Analytics".
Sheet 2: Added 12 Port Patch Panel, Managed Field Ethernet Switch, and for installation.	
Noted 12 Port Patch Panel, Managed Field Ethernet Switch, and	
Note 6 for installation.	

$\begin{gathered} \text { Standard } \\ \text { Plans } \\ \text { Index } \end{gathered}$	Description
700-102	Sheet 5: Updated FTP-38-06 fort, dimension, and numbering; Changed the fine amount on FTP-40-06. Sheet 6: Changed the fine amount on FTP-41-06. Sheet 10: Added FTP-90-22 and FTP-91-22; Updated MOT-1-06, MOT-4-06, MOT-5-06 MOT-6-06, MOT-7-06, MOT-8-06, and MOT-9-06 font size, dimension, and numbering; Shifted to accommodate new signs; Moved MOT-8-06 (MOT-8-22) and MOT-9-06 (MOT-9-22) to Sheet 11. Sheet 11: Updated MOT-10-06 font size, dimension, and numbering; Shifted to accommodate new signs; Moved G20-1 and G20-2 to Sheet 12. Sheet 12: Shifted signs: Added MOT-26A-22 and MOT-26B-22.
700-109	Deleted Index.
700-120	All Sheets: Renumbered Sheet 1: Updated General Note 4; Change all references "4" Nominal Aluminum Pole" to "Nominal 4" Aluminum Pole (Sch. 40)"; Updated anchor bolts. Deleted the ground wire from the FRONT VIEW in the POWER CONFIGURATION 'B' - WITHOUT AUXILIARY POLE. Sheet 2: Added new detail to show foundation reinforcement; Change all references "4" Nominal Aluminum Pole" to "Nominal 4" Aluminum Pole (Sch. 40)"; Updated anchor bolts. Deleted the ground wire and strain relief fitting from DETAIL "B". Sheets 3 through 11: Updated callouts to point to both details; Changed all references "4" Nominal Aluminum Pole to "Nominal 4" Aluminum Pole (Sch. 40)"; Updated anchor bolts; Added Note "Foundation reinforcement not shown". Sheet 9: Changed "Point to Point Microwave" to "Wireless" from the FRONT VIEW and from Note 2; Removed "Microwave" from the FRONT VIEW and from Note 2. New Sheet 10: Added Roadside Sign Assembly-8, Blank Out Signs. Sheet 10: Renumbered as Sheet 11.
706-001	Sheet 3: Added - Note 3: "Use epoxy adhesive to install RPMs to concrete median nose curbs"; Added Note 4: "Install RPMs on clean, unpainted concrete surface. Do not paint curb surface where RPMs will be placed"; Changed all references to Yellow Reflective Durable Paint-Yellow. Sheet 4: Revise Detail "G" to remove yellow paint from nose and call for white RPMs to be consistent with MUTCD.

Standard Plans Index	Description
711-001	All Sheets: Renumbered Sheet 1: Deleted Note 1 for Pavement Messages; Changed Note 5 (New Note 4) to "All pavement messages must be white except Route Shields and In Pavement Warning Markings"; Deleted Pavement Message Spacing Table; Deleted the General Notes; Added Pavement Warning Marking. Sheet 2: Moved the MARKING FOR MERGE detail from Sheet 8. Sheet 8: Deleted Right Turn Lane Drop and Island Details and DETAIL "C" from Index. Moved to the FDM, Combined with Signing Details shown in 230-5; Deleted the Traffic Channelization at Gore detail Note; Moved the Instructions associated with the TWO-WAY LEFT TURN LANE details to the SPI. Sheet 9: Deleted Schemes for Transition details and DETAIL "D" from Index. Moved to FDM, Combined with Signing Details shown in Exhibit 230-05; Changed Detail "E" to "Markings for Merge" and Deleted the NOTE; Moved Details to Sheet 2; Moved the "Markings for Traffic Separation" to Sheet 8; Deleted Sheet 9. Sheet 11: New Sheet 10: Revert to previous FY 2018-19 Index and delete redundant information shown in FDM Exhibit 212-1. Sheet 12: (New Sheet 11) Deleted Note 4; Changed reference to "See Note $5^{\prime \prime}$ in the UNIVERSAL SYMBOL OF ACCESSIBILITY detail. Sheet 14: (NEW SHEET) Added RAILROAD DYNAMIC ENVELOPE (RDE) PAVEMENT MARKING DETAILS and RAILROAD CROSSING PAVEMENT MESSAGE from Index 509-070 and RAILROAD CROSSING PAVEMENT MESSAGE from Index 509-070.
711-003	Sheet 1: Added 18" white Chevrons to both entrance ramps. Dotted line for lane extension to extend to end of taper. Sheet 2: Added 18" white Chevrons to both entrance ramps. Dotted line for lane extension to extend to end of taper. Sheet 5: Added 18" white Chevrons to entrance ramp gore; Moved Detail "C" from sheet 5 to Sheet 3 of Index 706-001; Moved Note 1 to the Wrong-Way Arrow callout at the Gore; Deleted Note 2; Deleted the "See Note 3" reference from the Yellow Post Mounted Delineator callout. Sheet 6: Moved Note 1 to the Wrong-Way Arrow callout at the Gore; Deleted the note reference and the Detail "C" reference for the Wrong-Way Arrow callout on the off ramp.
715-001	Sheet 1: Updated fuse holder slug (blank) requirement from solid copper to manufacturer's suggested in three drawing locations.

Standard Plans Index	Description
$715-002$	Sheets 1, 4, \& 7: Changed general concrete requirement from Class I to Class II.
Sheet 2: Added clarification to callout. Wildlife-Sensitive lighting may also be used with standard mounting heights 30 feet through 50 feet (original intent).	
$715-003$	NEW INDEX: "Utility Conflict Pole", light pole with a 15' rise X
16 'length arm.	

Straight Line Superelevation
ransition L (Varies, 100' Min.) Normal Crown Slope To
Normal Crown Superelevation Slope

SLOPE RATIOS FOR				
number of lanes in one DIRECTION	design speed, mp			
	25-40	45-50	55-60	
		1	d	
Lane \& 2 Lane	1:175	1:200	1:2	
3 Lane		1:160	1:180	
4 Lane or More		1:170	1:170	1:190
The length of superelevation transition is to be determined by the relative slope between the travel way edge of pavement and the profile grade, except that the minimum length of transition shall be 100 ft .				

* Short Vertical Curves Are To Be Used on Construction To Avoid Angular Breaks In Edge Profiles

Pavement width
 SECTION AA

2-LANE, 4-LANE OR 6-LANE PAVEMENT WITH MEDIAN

2-LANE, 4-LANE OR 6-LANE PAVEMENT, NO MEDIAN
Transitions for these exceptions are to be as detailed in the plans.

SYMBOL:

\longrightarrow Direction of Traffic

NOTES:

1. These details apply to both paved and grassed shoulders. For median shoulders use 0.05 in lieu of 0.06 .
2. SHOULDER ON HIGH SIDE: A shoulder Slope of 0.06 downward from the edge of travel way will be maintained until a 0.07 break in slope at the pavement edge is reached due to superelevation of the pavement. As the pavement superelevation increases, the 0.07 break in slope will be maintained and the shoulder flattened until
the shoulder slope reaches the minimum of 0.02 downward from the edge of travel way. Any further increase the shoulder slope reaches the minimum of 0.02 downward from the edge of travel way. Any further increase
in pavement superelevation will necessitate sloping the inside half of the shoulder toward the travel way and the outer half outward, both at 0.02 for superelevations $0.06-0.09$ and both at 0.03 for superelevation 0.10. For shoulders with paved widths 5 feet or less see Special Shoulder Break Over Details on Sheet 2 of 2 .
3. SHOULDER ON LOW SIDE: Maintain 0.06 cross slope across shoulder until pavement cross slope reaches 0.06 . flopavement cross siopes greaterion (Sheet 2).

SECTION A-A
NORMAL CROWNED SECTION

SECTION D-D
PLANE INCLINED SECTION LT SUPERELEVATION TRANSITION RT

SECTION B-B SUPERELEVATION SECTION LT. \& RT

SECTION C-C SUPERELEVATION SECTION LT PLANE INCLINED SECTION RT.

SECTION E-E SUPERELEVATION TRANSITION LT FULL SUPERLEVATION RT.

SECTION F-F FULL SUPERELEVATION LT. \& RT.

8-LANE PAVEMENT WITH TWO LANES SLOPED TO MEDIAN Z DESCRIPTION:

Index	sheet
$000-510$	2 of 2

one or two travel lanes each direction

two travel lanes each
TWO TRAVEL LANES EACH
direction with auxiliary lanes

one or two travel lanes each DIRECTION WITH MEDIAN

GENERAL NOTES:

Obtain Superelevation by rotating the plane successively about the break points of the section until the plane has attained a slope equal to that required by the Plans. Should the rotation traverse the entire section and further superelevation be required, the remaining rotation of the
plane shall be about the low edge of the inside travel lane. Crown is to be removed in the auxiliary lane to the outside of the curve only when the adjoining travel lanes require positive superelevation
2. When positive superelevation is required, continue the slope of the pavement across the gutter on the high side.
3. Place short vertical curves at all angular profile breaks within the limits of the superelevation transition
4. The variable superelevation transition length "L" has a minimum value of 50 feet for design speeds of $25-30 \mathrm{MPH}$ and 75 feet for design speeds of $40-45 \mathrm{MPH}$.
5. Roadway sections having lane arrangements different fro those shown, but composed of a series of planes, are superelevation in a similar manner.
two travel lanes each direction

three travel lanes each direction with median

Maximum
Superelevated Section

UNDIVIDED FACILITIES \qquad
\qquad

SUPERELEVATION TRANSITION SECTIONS FOR LOW SPEED HIGHWAYS

NOTE:
The sections and profiles shown are examples of superelevation transitions. Similar schemes should be used for roadways having other sections.

LINE	DESCRIPTION
T	Inside Travel Lane
U	Inside Lane Line
V	Inside Median Edge Pavement
W	q Construction
X	Outside Median Edge Pavement
Y	Outside Lane Line
Z	Outside Travel Lane
Inside And Outside Are Relative To Curve Center	

PROFILE
\qquad

SLOPE RATIOS FOR	
SUPERELEVATION	
TRANSITIONS	
design SPEED	1:d
MPH	
25-35	1:100
40	1:125
45	1:150
1:125 May Be Used For 45 mph Under Restricted Conditions.	

two lanes each direction with median and auxiliary lane

EXAMPLE SUPERELEVATION SECTIONS AND PROFILES FOR LOW SPEED HIGHWAYS

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$			SUPERELEVATION TRANSITIONS LOW SPEED HIGHWAYS	INDEX $000-511$	SHEET 2 of 2

THREE THRU LANES - APPROACH AUXILIARY LANE (Shown Without Shoulder Gutter)

Q
Limits of Pay For Mainline Thickness_Limits of Pay For Ramp Thickness
fLEXIBLE PAVEMENT THICKNESS TRANSITION
\qquad
DETAIL "A" $\bar{\square}$

Shoulder Slope Break

$$
\text { Shoulder Pavement } \rightarrow \text { Shoulder Pavement }
$$

$$
\overline{\overline{ }} \text { SECTION C-C }
$$

TWO LANE RAMPS - EXIT TERMINALS

GENERAL NOTES:

1. Temporary barrier systems may be any of the following:
A. Type K Temporary Concrete Barrier System (Index 102-110) installed as either Free-Standing or Anchored
B. Proprietary Temporary Barrier Systems on the Approved Product List (APL
a. Concrete Barrier (Free-Standing or Anchored)
b. Steel Barrier (Anchored)
. Water Filled Barrier (Free-Standing)
2. Where existing flexible pavement is not present, construct a minimum $2^{\prime \prime}$ thick temporary Asphalt Pad using Miscellaneous Asphalt Pavement in accordance with Specification 339 with the exception that the use of a pre-emergent herbicide is not required.
3. For Barrier Delineators, see Specification 102. Mount on top of temporary barriers. Color must match adjacent Iongitudinal pavement marking.
4. Remove all grass debris, loose dirt, and sand for the pavement, bridge deck, or asphalt pad surface within the barrier footprint just prior to placement of the temporary barrier.
5. Ensure the setback distance is clear of any grass, construction debris, stockpiled materials, equipment, and objects.
6. Transitions are required between Type κ Barrier and free-standing, anchored, back-filled or other types of temporary barrier. See Index 102-110 for transitions between Type K Barrier and permanent bridge or traffic alling. Refer to the APL for transitions allowed for Proprietary Temporary Barrier Systems.

7. Anchoring (Bolting) of temporary barrier or crash cushions is not permitted on bridge superstructures that contain post-tensioned tendons within the concrete deck (top flange of concrete box girders) or on bridge superstructures consisting of longitudinally prestressed, transversely post-tensioned, solid or voided concrete slab units.
8. Anchor abutting segments of temporary barrier terminated with a Crash Cushion as shown in Index 102-110
or the APL.
9. The requirements of this Index do not apply to Temporary Low Profile Barrier, See Index 102-120.
10. Setback requir rements below cover most Temporary Barrier options. Provide additional setback distance for APL products that require additional setback (deflection) space

INSTALLATION DATA			
CONDITION	$\begin{aligned} & \text { LATERAL } \\ & \text { OFFSET } \end{aligned}$	SETBACK dISTANCE	PAVEMENT/ ASPHALT WIDTH
Anchored	2' Min.	2' Min. (See Note)	1^{\prime} Min.
Free-standing	2^{\prime} Min.	4' Min.	4' Min.
NOTE: For Bridge Decks see Index 102-110 or APL.			

\qquad
APPROACH SHOULDER BARRIER TRANSITION ON UNDIVIDED FACILITIES

\qquad

$\overline{\bar{Z}}$ DEPARTURE SHOULDER BARRIER TRANSITION ON UNDIVIDED FACILITIES $\bar{\square}$

$\overline{\bar{\sim}} \mathrm{CEPARTURE}$ (TRAILING) SHOULDER BARRIER TRANSITION ON DIVIDED FACILITIES $\overline{<}$

SYMBOL:

\Longrightarrow Direction of Traffic

| $\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 1 / 20 \end{gathered}$ | \|c|cher | $\begin{gathered} \text { FDO 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$ | TEMPORARY BARRIER | InDEX $102-100$ | $\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 4 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

BARRIER AND TRANSITION LOCATED ON SHOULDERS
(Right Lane Shown - Inverted For Left Lane)

BARRIER AND TRANSITION WITH LANE DROP ON MULTILANE FACILITIES

NOTE:
$L=$ Taper Length, See Index 102-600 for "L"
and channelizing device spacing values.
SYMBOLS:
Vlllar work Area

- Channelizing Device (See Index 102-600)
c.C. Crash Cushion
\Longrightarrow Lane Identification and Direction of Traffic

GENERAL NOTES

Meet the requirements of Index 102-100

2. For fabrication details see Sheets 15 thru 17.
3. HANDLING: Do not lift or move the Barrier Units by using Bars 6D that extend from the ends of the units. Approximate weight of one unit equals 2.7 tons.
4. CONNECTION PIN ASSEMBLY: Use steel for Connection Pin and Top Plate assemblies in accordance with ASTM A36 or ASTM A709 Grade 36. Nondestructive testing of welds is not required. At the Contractor's option, a $3 / / 8$ diameter hole may be provided at the bottom of the Connection Pin, as shown, for the installation of a vandal resistance bolt.
5. CONNECTION PIN INSTALLATION: Initially set Barrier Units by using a $38^{\prime \prime}$ wooden block between ends of adjacent units. Install Connection Pin between adjacent Barrier Units as shown, then pull newly placed Barrier Unit away from adjacent Barrier Unit to remove slack between Connection Pin and Bars 6D (except as shown on Sheet 2). Do not use Barrier Units unconnected
6. REUSE OF CONNECTION PINS AND STAKES: Connection pins and stakes may be reused if they have the structural integrity of new pins.
7. REMOVAL OF BOLTS, STAKES AND KEEPER PINS: Upon removal or relocation of Barrier Units, remove all Anchor Bolts and completely fill the remaining holes in bridge decks, approach slabs and roadway rigid pavements that are to remain with Magnesium Ammonium Phosphate Concrete in accordance with
Specification 930 or with an Epoxy Resin Compound, Type F or Q, in accordance with Specification 926 . If a flexible pavement is present and is to remain, completely fill the remaining holes in the flexible pavement with hot or cold patch asphalt material.
8. TYPE K ANCHORED TO FREE-STANDING TRANSITIONS: Use the 3-3-2-1 Anchorage Transition Detail when transitioning Free-Standing and Anchored Units or when connecting Free-Standing runs to Crash Cushions, as shown in this Index.

DETAIL OF CONNECTION BETWEEN BARRIER UNITS $\overline{=}$

THRIE-BEAM GUARDRAIL SPLICE INSTALLATION NOTES:

1. THRIE-BEAM GUARDRAIL: Provide Thrie-Beam Guardrail for splices meeting the requirements of specification 967 and as follows: Two panels per splice (one panel per side) of Class B (10 Gauge), or Four panels per splice (Two nested panels per side) of Class A (12 Gauge). Use a 121 '-6" guardrail panel. accordance with Index 536-001. Install five Guardrail Anchor Bolts at each end of each splice in any of the standard seven anchor bolt holes in the Thrie-Beam Terminal Connector. If reinforcing steel is encountered when drilling holes for Guardrail Anchor Bolts in Type K Barrier Units, shift Thrie-Beam Terminal Connector so as to clear reinforcing steel within the given tolerances or select a different bolt hole to use. Do not drill or cut through reinforcing steel within Type K Barrier Units. Drilling or cutting through reinforcing steel within permanent concrete traffic railings is permitted.
2. GUARDRAIL OFFSET BLOCKS: Provide and install timber Offset Blocks meeting the requirements of Specification 967. Field trim Offset Blocks as required for proper fit. Utilize offset Blocks as shown and required in order to prevent bending or kinking of Thrie-Beam Guardrail panels.
3. CONCRETE FOR FILLING TAPERED TRAFFIC RAILING TOES: Provide concrete for filling tapered toes of Traffic Railings as shown meeting the material requirements of Specification 346, any Class, or a commercially available pre-bagged concrete mix (3000 psi minimum compressive strength). Sampling, testing, evaluation and certification of the concrete in accordance with Specification 346 is not required. Saturate with water the surfaces upon and
against which the concrete fill will be placed prior to placing concrete. Place and finish concrete fill using forms or by hand methods to the general configurations shown so as to provide a smooth shape transition between the Type K Barrier and the adjacent traffic railing. A low slump is desirable if placing and finishing concrete by hand methods. Cure the concrete fill by application of a curing compound, or by covering with a wet tarp or burlap for a minimum of 24 hours. Completely remove the concrete fill upon relocation or removal of the Type K Temporary Concrete Barrier.

3-3-2-1 ANCHORAGE TRANSITION DETAIL

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$		$\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	TYPE K TEMPORARY CONCRETE BARRIER SYSTEM	$\begin{gathered} \text { INDEX } \\ 102-110 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 17 \end{aligned}$

THROUGH BOLTED ANCHOR $\overline{=}$

WITH ASPHALT

ITH ASPHALT
OVERLAY

BOLTED INSTALLATION NOTES:

Bridge deck shown, approach slab or rigid pavement similar; installation adjacent to drop-off shown, median transition installation similar. antion of Use: This installation technique can only be used on rigid pavement and concrete bridge decks as shown. Anchor Bolts must not be installed on both sides of the Barrier Units. Do not bolt down Barrier Units across bridge finger or modular expansion joints. ANCHOR BOLTS, NUTS AND WASHERS: When using Adhesive-Bonded Anchor Bolts, use fully threaded rods in accordance with ASTM F 1554 Grade 36. Install Anchor Bolts for through bolting in accordance with ASTM A 307 or ASTM F 1554 Grade 36. Install nuts in accordance with ASTM A 563 or ASTM A 194. Install Flat Washers in accordance with ASTM F 436 and Plate Washers in accordance with ASTM A 36 or ASTM A 709 Grade 36.
Install three (3) Anchor Bolts per Barrier Unit on the traffic side of the Barrier Units as shown, except for Transition Installations. For the number and positions of Anchor Bolts required in Transition Installations see Sheets 8 and 9 and Index 102-100. Drilling through deck reinforcing steel to install Anchor Bolts is permitted. Unless otherwise shown in the Plans, at the Contractor's option Barrier Units may be installed by through bolting (where geometrically possible) or by the use of Adhesive-Bonded Anchor Bolts. Do not drill into or otherwise damage the tops of supporting beams or girders, bridge deck expansion joints or drains. Install Anchor Bolts and Nuts so that The maximum extension beyond the face of the Barrier Units is $1 / 2 "$. Snug tighten the Nuts on the Anchor Bolts. For through bolted

Omit one (1) Anchor Bolt within a single Barrier Unit if a conflict exists between the Anchor Bolt location and a bridge deck expansion joint or drain. The adjacent Barrier Units must each be installed with the standard three (3) Anchor Bolts.
mit one (1) Anchor Bolt within a single Barrier Unit as shown in the Treatment at Bridge Deck Expansion Joint Schematic if the Barrier Unit straddles a bridge deck expansion joint. The adjacent Barrier Units must each be installed with the standard three (3) Anchor Bolts. ADHESIVE-BONDING MATERIAL SYSTEMS: When using Adhesive Bonding Material Systems for Anchor Bolts, Use Type HSHV in accordance with Specification 937 and installed them in accordance with Specification 416. Prior to installation of the Barrier Units in the Plan location(s), install a demonstration Barrier Unit using the proposed production installation method, at a location approved by the Engineer In lieu of the production test requirements of Specification 416, install six (6) Adhesive-Bonded Anchor Bolts in the demonstration Barrie Unit and test each Anchor Bolt with a 29,800 pound tensile proof load. Install and test additional demonstration Barrier Units when esting as directed by the Engineer.

TOP

воттом

BOTTOM
Supplemental)

NOTE: Dimension as required to span SIP Metal Form Corrugations p/us $1 / 2$ " Minimum overlap each side.

$\stackrel{\text { ING DETAIL }}{ }$

NOTE:To accommodate movement at Expansion Joint, set Barrier Units with $33 / 4$ gap at locations shown. treatment at bridge deck expansion joint schematic

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$	DESCRIPTION:

FDOT\} $\begin{gathered}\text { FY 2022-23 } \\ \text { STANDARD PLANS }\end{gathered}$

NOTE:Traffic Side for transition to median traffic railings, see Sheet 6 TYPICAL SECTION

Stake detail

STOP PLATE DETAIL

pLAIN STAKE HEAD DETAIL
Threaded Stake Head
for Extraction (Extraction

optional extraction
OPTIONAL EXTRACTION
STAKE HEAD DETAIL

STAKED INSTALLATION NOTES:

LIMITATION OF USE: This installation technique can only be used on flexible pavement or an Asphalt Pad as shown. Stakes must not be
installed on both sides of the Barrier Units.

STAKES: Provide steel for Stake assemblies in accordance with ASTM A 36 or ASTM A 709 Grade 36. Weld in accordance with the American Welding Society Structural Welding Code (Steel) ANSI/AWS D1.1 (surrent edition). Welding metal are E60XX or E70XX. Nondestructive esting of welds is not required

Install three (3) Stakes on the traffic side of the Barrier Units as shown, except for Transition Installations. For the number and positions of stakes required in Transition Installations see Sheets
45 and 6 and Index 102-100. Install Stakes so that the Stop Plate 4,5 and 6 and Index 102-100. Install Stakes so that
is snug against the bottom of the Anchor Blockout.

BURIED UTILITIES: Prior to installation of Stakes verify locations of all adjacent buried utilities, drainage structures, pipes, etc. If conflicts between Stake locations and buried elements exist, a maximum of two (2) Stakes within a single Barrier Unit may standard three (3) Stakes.

- ANCHORED INSTALLATIONS - STAKED

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		$\begin{gathered} \text { FY 2022-23 } \\ \text { FDTANDARD PLANS } \end{gathered}$	$T Y P E \mathbb{K} T E M P O R A R Y$ CONCRETE BARRIER SYSTEM	$\begin{gathered} \text { INDEX } \\ 102-110 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 17 \end{aligned}$

NOTE:
Provide Excavatable Flowable Fill in
accordance with Specification 121.

FLOWABLE FILL BACK-FILL ROADSIDE INSTALLATIONS \qquad

adjacent to retaining wall with soil back-fill

Mech
Anchored Barrier \qquad Iransition (4 Units) (See Note)
Free-Standing Barrier (13 Units Min.) (See Note) \qquad

$$
\overline{\Longrightarrow \quad A P P R O A C H ~ T R A N S I T I O N ~ F R O M ~ F R E E-S T A N D I N G ~ T O ~ B A C K-F I L L E D ~ T Y P E ~ K ~ T E M P O R A R Y ~ C O N C R E T E ~ B A R R I E R S ~} \overline{=}
$$

- trailing end transition from anchored to free-standing type k temporary concrete barriers

NOTE:
Where Barrier is located within
Clear Zone of opposing traffic,
Approach Transition is required
SYMBOLS:
Dot indicates number and
position of Bolts or Stakes
\rightleftarrows
\Longrightarrow Direction of Traffic

$\overline{\bar{Z}}$ TRAILING END TRANSITION FROM BACK-FILLED TO FREE-STANDING TYPE K TEMPORARY CONCRETE BARRIERS $\overline{ }$


``` See Approach Transition Splice Details Sheets \(7,9 \& 10\) Transition (4 Units) ...Free-Standing Barrier (13 Units Min.)
```

 Thrie-Beam Guardrail Splice (Typ.)
 Thrie-Beam Guardrail Splice (Typ.)

Edge of Travel Way

NOTE:
Where Barrier is located within
clear zone of opposing traffic, Approach Transition is required.

SYMBOLS:
(Dot indicates number and $\begin{aligned} & \text { position of Bolts or Stakes }\end{aligned}$
\ldots
\Longrightarrow Direction of Traffic

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	2	DESCRIPTION:	$\text { FDOT\} }$	$\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	TYPE K TEMPORARY CONCRETE BARRIER SYSTEM	$\begin{gathered} \text { INDEX } \\ 102-110 \end{gathered}$	SHEET 6 of 17

partial plan view at median traffic railing

partial plan view at shoulder traffic railing

partial elevation view

FOR F AND NEW JERSEY SHAPE TRAFFIC RAILINGS AND 8' \& 14 traffic railing / NOISE WaLls (CONCRETE BARRIER WALL SIMILAR)

SYMBOL:

\Longrightarrow Direction of Traffic

NOTE:
See Thrie-Beam Guardrail Positioning Detail, Sheet 10 and Notes for Thrie-Beam Guardrai

partial elevation view - florida corral traffic railing

partial elevation View - Vertical shape traffic railings

FOR FLORIDA CORRAL AND VERTICAL SHAPE TRAFFIC RAILINGS

CROSS REFERENCES:
See Sheet 10 for Section A-A.
see Sheet 10 for Section A-A,
Section B-B and Section $C-C$.
FDOT
FY 2022-23
STANDARD PLANS

partial plan view

partial elevation view

partial plan view

FOR F AND NEW JERSEY SHAPE TRAFFIC RAILINGS

SYMBOL:
\Longrightarrow Direction of Traffic

NOTE: Sheet 10 and Notes for Thrie-Beam Guardrall Splice Installations, Sheet 1

ROSS REFERENCES.
Section $B-B$ and Section $C-C$.

FDOTY	FY 2022-23 STANDARD PLANS	$T Y P E \mathbb{K} T E M P O R A R Y C O N C R E T E ~ B A R R I E R ~ S Y S T E M ~$	$\begin{gathered} \text { INDEX } \\ 102-110 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 8 \text { of } 17 \end{aligned}$

SECTION A-A
32" F Shape Median Traffic Barrier Wall (Similar)

SECTION A-A
32" F Shape Traffic Railing (Shown), raffic Railing and $8^{\prime} \& 14$ Traffic
Railing / Noise Walls (Similar)

Splice

SECTION A-A
32" New Jersey Shape Concrete Barrier SECTION A-A Wall (Shown) Jersey Shape Concrete Barrier Railing \& Other Narrow Traffic Railings (Similar)

$$
\begin{aligned}
& 32^{\prime \prime} \& 42^{\prime \prime} \text { Vertical Shape Traffic } \\
& \text { Railing (Shown) Florida Corral }
\end{aligned}
$$ Traffic Railing (Similar)

SECTION B-B Adjacent to Shoulder Traffic Railings

Adjacent to 32" F or New Jersey Shape Median Traffic Railing or
Median Concrete Barrier Wall

Adjacent to Shoulder Traffic Railings

SECTION D-D 32" F or New Jersey Shape Traffic
Railing, Railing Transition \& End Post

32" New Jersey Shape Traffic Railing (Shown) 32" F Shape Traffic Railing (Similar)

CROSS SECTIONS

Bridge Traftic Raling or
Roadway Concrete Barrier wall
THRIE-BEAM GUARDRAIL POSITIONING DETAIL

approach transition from free-standing proprietary temporary barriers to anchored type k temporary concrete barriers

approach and trailing end transitions from free-standing type K temporary concrete barriers to free-standing proprietary temporary barriers

NOTE:

Where Barrier is located within Clear Zone of opposing traffic, Approach Transition is required. SYMBOLS:

Dot indicates number and
position of Bolts or Stakes $\stackrel{\text { pos }}{\longrightarrow}$
\Longrightarrow Direction of Traffic
trailing end transition from anchored type K temporary concrete barriers to free-standing proprietary temporary barriers

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		$\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	$T Y P E \mathbb{K} T E M P O R A R Y$ CONCRETE BARRIER SYSTEM

\qquad
\square

approach transition from free-standing proprietary temporary barriers to back-filled type k temporary concrete barriers

Type K-Proprietary Barrier
Transition Unit A or B (See APL)

NOTE:
Where Barrier is located within Clear Zone of opposing traffic, Approach Transition is required. SYMBOLS:
(Dot indicates number and $\begin{aligned} & \text { position of Bolts or Stakes }\end{aligned}$ \ldots
\Longrightarrow Direction of Traffic
trailing end transition from back-filled type k temporary concrete barriers to free-standing proprietary temporary barriers

median approach and trailing end transitions from free-standing type k temporary concrete barriers to free-standing proprietary temporary barriers
\qquad

DESCRIPTION:
LAST
REVISION
R1/01/17

FDOTY | FY 2022-23 |
| :---: |
| STANDARD PLANS |

NOTE:

When subjected to reverse direction hits, construct Transition Panels from Temporary Barrier to Crash crash cushion drawings on the APL.

SYMBOLS:
(Dot indicates number and $\begin{aligned} & \text { position of Bolts or Stakes }\end{aligned}$
\ldots

```
\(\Longrightarrow\) Direction of Traffic
```


bidirectional - SEPARATED traffic

two-way traffic with crash cushion located within opposing lane clear zone
end treatment when shielded by a crash cushion shoulder - right or left (right side shown

SHIELDING ENDS WITH REDIRECTIVE CRASH CUSHIONS (REDIRECTIVE OPTION) | LAST |
| :---: |
| REVISION |
| $11 / 01 / 17$ |

11/01/17

FDOT	FY 2022-23 STANDARD PLANS	TYPE K TEMPORARY CONCRETE BARRIER SYSTEM	$\begin{gathered} \text { INDEX } \\ 102-110 \end{gathered}$	$\begin{gathered} \text { SHEET } \\ 14 \text { of } 17 \end{gathered}$

FABRICATION NOTES:

In order to maintain crashworthiness of the Barrier System, do not substitute different grades, sizes, shapes or types of reinforcing stee for those shown for constructing Type K Barrier Units. Also, do not substitute different type, size, length or material grade anchor bolts, nuts, washers, adhesives, connector pins, stakes, keeper pins, or guardrail components for installing Type K Barrier Units.
FABRICATOR PREQUALIFICATIONS
A. The Concrete Plant that meets the requirements;
a. Specification 450 for prestressed concrete
b. Specification 105 for precast.

CONCRETE

A. Construct Barrier Units with Class IV concrete in accordance with Specification 346.
B. Specification $346-10$ is not applicable.
C. Barrier Units represented by concrete acceptance strength tests which fall below 5000 psi will be rejected.

ReINforcing steel:
A. Use only steel reinforcing that meet ASTM A 615, Grade 60 , with the exception of Bars 6D1, 6D2 and 6D3
B. Bars $6 D 1,6 D 2$ and $6 D 3$ use steel reinforcing that meets ASTM A 706, with the exception that a $23 / 4 /$ diameter pin must be used for the 180 degree bend test.
C. After steel reinforcing fabrication, hot dip galvanized in accordance with Specification 962 or coated with a cold galvanizing compound
in accordance with Specification 562, all or part of Bars 60 .
may be galvanized or coated.
E. The minimum limit of galvanizing or coating is shown in the Bending Diagrams.
F. Install Bars 6 D within $1 / 8$ " of the plan dimensions.
H. At the option of the Fabricator, Deformed Welded Wire Fabric in accordance with Specification 931 and the details shown on Sheet 15 may be utilized in lieu of Bars 4A and 5B.
J. Install all reinforcing steel with a $2^{\prime \prime}$ minimum cover, except as noted.

LIFTING SLEEVE ASSEMBLY:
A. Inclusion of the Lifting Sleeve Assemblies is optional
B. Use steel in accordance with ASTM A 53 for the Pipe Sleeve.
C. Hot-dip galvanize the Lifting Sleeve Assemblies after their fabrication in accordance with the Specifications.

SURFACE FINISH:
A. Construct Barrier Units in accordance with Specifications 400 and 521.
B. Finish the top and sides of the Barrier Units with a General Surface Finish.
C. Finish the bottom of the Barrier Units to a dense uniform surface by floating in lieu of the General Surface Finish
D. Use stationary metal forms or stationary timber forms with a form liner.

MARKING:
A. Permanently mark the top left end of each Barrier Unit by the use of an embedded and anchored metallic plate with letters
and figures a minimum of $0.5^{\prime \prime}$ tall.
C. Permanently mark with the following information:

- Type K1

Fabricator's name or symbol
Date of manufacture (day, month and year)

BAR $6 C$

BAR $4 E$

TOP VIEW ••- 8^{n} Min. (Limit of Galvanizing) $1 .-1$
 NO. 4 DRAIN BAR OVER

CONFIGURATION ONE

NOTES:

1. Place 2 ~No. 5 Bars (12'-3" long) in bottom of Welded Wire
cement cage as shown
2. Match D17.2 spacing to Bars 4 A in the Elevation View, Sheet 15 .
3. Field trim D17.2 to clear drain slot by $2^{\prime \prime}$.
4. Place 2 ~No. 5 Bars (12^{\prime} - $3^{\prime \prime}$ long) tied to D 19.7 inside of bottom
Welded Wire Reinforcement cage as shown.
5. Match D19.7 spacing to Bars $4 A$ in the Elevation View, Sheet 15.
6. Field trim D19.7 to clear drain slot by 2

NOTES:

1. Provide $3 / 4 "$ Chamfer at top and bottom corners of Barrier
2. Provide a minimum of $2^{\prime \prime}$ cover on the top and bottom.
3. Provide a minimum of $134^{\prime \prime}$ cover on both sides.

TERNATE REINFORCING STEEL DETAIL
WELDED WIRE REINFORCEMENT
CROSS SECTION $=$

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	\|res	DESCRIPTION:	FDOT	$\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	TYPE K TEMPORARY CONCRETE BARRIER SYSTEM	$\begin{gathered} \text { INDEX } \\ 102-110 \end{gathered}$	SHEET $17 \text { of } 17$

GENERAL NOTES:
Pursuant to 35 United States Code, Chapter 18, also known as the Bayh Dole Act of 1980 the non mountable curb was developed through federal funding. The 'Portable Temporary
Low Profile Barrier For Roadside Safety' is a licensed design by the University of Florida. Any infringement on the rights of the designer shall be the sole responsibility of the user.
2. This Index is provided by the Florida Department of Transportation solely for use by the Department and its assignees. The purpose for this Index is to indicate the approval of identifying the barrier unit; and, to provide general installation geometry for the barrier
3. This legally mandated relationship is unique to federally funded University patents that pursue royalties for a valid patent. Only those barrier units cast by producers licensed by the University of Florida will be allowed for installation on the State Highway System in Florida. Barrier wall units shall conform to Specification 521 and shall be produced in
Department-approved plants with quality control plans for precasting concrete barrier walls. Department-approved plants with quality control plans for precasting concrete barrier walls.
Each barrier wall unit shall be permanently marked with an identification that is traceable to the manufacturer, the producing precast concrete plant and the date of production.
This permanent identification mark will serve as certification that the unit has been This permanent identification mark will serve as certification that the unit has been the approved quality control program.
4. The low profile barrier is to be installed only with hardware and accessories furnished by the IIcensed barrier producer. Units shall be used for no purpose other than as
interconnected segments in a run of barrier. Low profile barrier wall units shall firm contact with adjoining units. Nuts on tensioning rods shall be installed snug tight.
5. The low profile barrier is applicable for work zone speeds of 45 mph or less.
6. If the plans specify Low Profile Barrier then substitution with other barrier types is not
permitted. permitted.
7. Tubular markers shall be orange in color and installed along the run of barrier at the ends and at 50^{\prime} centers on tangents and 25^{\prime} centers on radii. The markers shall be fixed to the top of the barrier by an adhesive or other method approved by the engineer. Approach end Type I object marker shall be included in the cost of the low profile barrier.
8. Information regarding licensing, shop drawings, specifications, quality control and certification of compliance can be obtained from the University Of Florida: Office of Technology Licensing, Fax: 352-392-6600. Reference UF \#11052.
9. The Portable Temporary Low Profile Barrier For Roadside Safety shall be paid for under the contract unit price for Barrier Wall (Temporary) Low Profile Concrete, LF, and will be full compensation for furnishing, installing, maintaining and removing barrier wall.
10. Setback distance shall be kept clear of any grass, construction debris, stockpiled materials, equipment, and objects.

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$	\|el	$\begin{gathered} \text { FY 2022-23 } \\ \text { FDOTY } \\ \text { STANDARD PLANS } \end{gathered}$	LOW PROFILE BARRIER	INDEX 102-120	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 5 \end{aligned}$

CONCAVE CONNECTION

parallel connection

convex connection

flat face female end

beveled face male end

END VIEWS \qquad

-- Type I Object Marker
\Longrightarrow Direction of Traffic

	Lateral OFFSET	
($\begin{gathered}45 \text { MpH } \\ 0 \text { R LESS }\end{gathered}$		$9^{\prime \prime}$

Approach Traffic \square

NOTES:

1. LIMITATION OF USE: This installation technique can only be used on flexible or rigid pavement.
2. ASPHALT PAD: Where existing pavement is not present, construct $2^{\prime \prime}$ Asphalt Pad using miscellaneous aspha/t pavement in accordance the use of a pre-emergent herbicide is not required. Payment for asphalt pad will be included in the cost of the barrier.
3. Minimum $9^{\prime \prime}$ on $1: 10$ or flatter slopes for Portable Temporary Low Profile Barrier For see Index 102-60

SYMBOLS:

SHEET	TABLE OF CONTENTS
1	General Notes, TTC Tables
2	Definitions Temporary Traffic Control Devices Overhead Work Railroads Sight Distance Above Ground Hazard
3	Clear Zone Widths For Work Zones Superelevation Length of Lane Closures overweight/oversize Vehicles Lane Widths High-Visibility Safety Apparel Speed Reduction Signing
4	Flagger Control Survey Work Zones Signs
5	Work Zone Sign Supports Commonly Used Warning and Regulatory Signs In Work Zones
6	Manholes/Crosswalks/Joints Truck Mounted Attenuators Signals Channelizing Devices Channelizing Devices Consistency Advanced Warning Arrow Boards
8	Drop-Offs In Work Zones
9	Business Entrance Temporary Asphalt Separator
10	Channelizing Devices Notes Temporary Barrier Notes
11	Pavement Markings

GENERAL NOTES:

1. This Index contains information specific to the Federal and State guidelines and standards for the preparation of traffic control plans and for the execution of traffic control in work zones, for construction and maintenance operations and utility work on highways, roads and streets on the
State Highway System. Certain requirements in this Index are based on the high volume nature of State Highway System. Certain requirements in this Index are based on the high volume nature of
State Highways. For highways, roads and streets off the State Highway System, the local agency (city/County) having jurisdiction may adopt requirements based on the minimum requirements
provided in the MUTCD.
2. Use this Index in accordance with the Plans and Indexes 102-601 through 102-680. Indexes 102-601 through 102-680 are Department-specific typical applications of commonly encountered situations. Adjust device location or number thereof as recommended by the Worksite Traffic Supervisor and approved by the Engineer. Devices include, but are not limited to, flaggers, portable temporary
signals, signs, pavement markings, and channelizing devices. Comply with MUTCD or applicable Department criteria for any changes and document the reason for the change.
3. Except for emergencies, any road closure on State Highway System must comply with Section 335.15, F.S.

TABLE 1				
CHANNELIZING DEVICE SPACING				
$\begin{aligned} & \text { Work } \\ & \text { Zone } \\ & \text { Soped } \\ & \text { (mph) } \end{aligned}$	Max. Spacing (feet)			
	$\begin{gathered} \text { Cones or } \\ \text { Temporary } \\ \text { Tubular Markers } \end{gathered}$		Type I Barricades Type II Barricades Vertical Panels, or Drums	
	Taper	Tangent	Taper	Tangent
≤ 45	25	50	25	50
≥ 50	25	50	50	100

TABLE 2	
TAPER LENGTH "L"	

TABLE	
WORK ZONE SIGN	

$T A B$	LE 4 ENGTH "B"
Work Zone	$\begin{aligned} & \text { Min. } \\ & \text { Length (feet) } \end{aligned}$
25	155
30	200
35	250
40	305
45	360
50	425
55	495
60	570
65	645
70	730

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$		$\begin{gathered} \text { FDO } 5 \mathrm{~T}\} \quad 2022-23 \\ \text { STANDARD PLANS } \end{gathered}$	GENERAL INFORMATION FOR TRAFFIC CONTROL THROUGH WORK ZONES	$\begin{gathered} \text { INDEX } \\ 102-600 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 11 \end{aligned}$

DEFINITIONS

Requlatory Speed (In Work Zones)
he maximum permitted travel speed posted for the work zone is indicated by the regulatory speed limit signs. The work zone speed
must be shown or noted in the plans. This speed should be used as the minimum design speed to determine runout lengths, departure rates, flare rates, lengths of need, clear zone widths, taper lengths, rash cushion requirements, marker spacings, superelevation and

Advisory Speed

he maximum recommended travel speed through a curve or a hazardous are
Travel Way
The portion of the roadway for the movement of vehicles. For traffic control through work zones, travel way may include the temporary use of shoulders and any other permanent or temporary surface
for use as a lane for the movement of vehicular traffic.
a. Travel Lane: The designated widths of roadway pavement marked to carry through traffic and to separate it from opposing traffic or traffic occupying other traffic lanes.
b. Auxiliary Lane: The designated widths of roadway pavement marked to separate speed change, turning, passing and climbing maneuver from through traffic.

Detour, Lane Shift, and Diversion
A detour is the redirection of traffic onto another roadway to bypass the temporary traffic control zone. A lane shift is the redirection of traffic
onto a different section of the permanent pavement. A diversion is the onto a different section of the permanent pavement. A diversion is the
redirection of traffic onto a temporary roadway, usually adjacent to the permanent roadway and within the limits of the right of way.

Aboveground Hazard

An aboveground hazard is any object, material or equipment other than located within the clear zone which does not meet the Department's safety criteria, i.e., anything that is greater than $4^{\prime \prime}$ in height and is firm and unyielding or doesn't meet breakaway requirements.

TEMPORARY TRAFFIC CONTROL DEVICES:

1. All temporary traffic control devices shall be oN the Department's Approved Products List (APL). Ensure the appropriate APL number is permanently
marked on the device in a readily visible location.
2. All temporary traffic control devices shall be removed as soon as practical When they are no longer needed. When work is suspended for short periods of time, temporary traffic control devices that are no longer appropriate shall be removed or covered. Do not store temporary traffic control devic
on the shoulder, sidewalk, or other roadway facility not affected by the work when work is suspended.
3. Arrow Boards, Portable Changeable Message Signs, Radar Speed Display
Trailer, Portable Requlatory Signs, and any other trailer mounted device Trailer, Portable Regulatory Signs, and any other trailer mounted device in use and shall be moved outside the travel way and clear zone or be shielded by a barrier or crash cushion when not in use.

OVERHEAD WORK

Work is only allowed over a traffic lane when one of the following options is used:

option 1 (OVERHEAD WORK USING A MODIFIED LANE CLOSURE)

Overhead work using a modified lane closure is allowed if all of the following
conditions are met:
a. Work operation is located in a signalized intersection and
limited to signals, signs, lighting and utilities,
c. Speed limit is 45 mph or less.
d. Aerial lift equipment in the work area has high-intensity, rotating, flashing, oscillating, or strobe lights operating.
e. Aerial lift equipment is placed directly below the work area to close the lane.

- Traffic control devices are placed in advanc
the lane using a minimum 100 foot taper.
g. Volume or complexity of the roadway may dictate additional devices, signs,
flagmen and/or a traffic control officer.
option 2 (OVERHEAD work above an open traffic lane)
Overhead work above a open traffic lane is allowed if all of the following conditions
are met:
a. Work operation is located on a utility pole, light pole, signal pole, or their appurtenances.
b. Work operations are 60 minutes or less.
c. Speed limit is 45 mph or less.
d. No encroachment by any part of the work activities and equipment within an
area bounded by 2 feet outside the edge of travel way and 18 feet high
e. Aerial lift equipment in the work area has high-intensity, rotating, flashing,
oscillating, or strobe lights operating.
f. Volume or complexity of the roadway may dictate additional devices, signs,
flagmen and/or a traffic control officer
objects from falling into open lanes of traffic, tools, equipment and other
h. Other Governmental Agencies, Rail facilities, of
clearance. The greater clearance required prevails as the require a greater
OPTION 3 (OVERHEAD WORK ADJACENT TO AN OPEN TRAFFIC LANE)
Overhead work adjacent to an open traffic lane is allowed if all of the following conditions are met:
a. Work operation is located on a utility pole, light pole, signal pole, or their

6. Work operations are 1 day or les
d. No encroachment by any part.
foot from the edge of travel way work activities and equipment within 2 encroachment by any part of the work activities and equipment over the open traffic lane (except as allowed in Option 2 for work operations of 60 minutes or less).
Aerial lift
Aeriallift equipment in the work area
oscillating, or strobe lights operating
f. Volume or complexity of the roadway may dictate additional devices, signs,
flagmen and/or a traffic control officer.
g. Adequate precautions are taken to prevent parts, tools, equipment and other
objects from falling into open lanes of traffic
clearance. The greater clearance required prevades may require a greater

OVERHEAD WORK: (Cont.)

option 4 (overhead work maintaining traffic with no encroachment below the overhead work area rraffic shall be detoured, shifted, diverted or paced as to not encroach in the appropriate index drawing or detailed in the plans. This option applies
to, but not limited to, the following construction activities.
a. Beam, girder, segment, and bent/pier cap placement.
b. Form and falsework placement and removal.
c. Concrete placement.
d. Railing construction located at edge of deck.
option 5 (CONDUCTOR/CABLE pulling above an open traffic lane overhead cable and/or de-energized conductor installations initial pull to proper temporary traffic control plan.

Continuous pulling operations of secured cable and/or conductors are allowed over open lane(s) of traffic with no encroachment by any part of the work activities, materials or equipment within the minimal vertical clearance above conductors/cables at no time fall below the minimum vertical clearance.

On Limited Access facilities, a site specific temporary traffic control plan is
equired. The temporary traffic control plan shall include.
a The temporary traffic control set up for the initial pulling of the pull
rope across the roadway
Changeable Message Sign upstream of thing consisting of no less than a messages, "Overhead Work Ahead" and "Be Prepared to Stop" followed by a traffic control officer and police vehicle with blue lights flashing
during the pulling operation. during the pulling operation

RAILROADS:

Railroad crossings affected by a construction project should be evaluated for raffic controls to reduce queuing on the tracks. The evaluation should includ lane closure or taper locations, signal timing, etc.

SIGHT DISTANCE

 1. Tapers: Transition tapers should be obvious to drivers. If restricted sightdistance is a problem (e.g., a sharp vertical or horizontal curve), the taper should begin well in advance of the view obstruction. The beginning of tapers should not be hidden behind curves.
2. Intersections: Traffic control devices at intersections must provide sight distances for the road user to perceive potential conflicts and to travers the intersection safely. Construction equipment and materials shall not restrict intersection sight distance.

ABOVEGROUND HAZARD

1. Aboveground hazards (see definitions) are to be considered work areas during working hours and treated with appropriate work zone traffic
control procedures. During nonworking hours, all objects, materials and equipment that constitute an aboveground hazard must be stored/placed outside the travel way and clear zone or be shielded by a barrier or crash cushion.
.For aboveground hazards within a work zone the clear zone required should be based on the regulatory speed posted during construction.

CLEAR ZONE WIDTHS FOR WORK ZONES:

 The term 'clear zone' describes the unobstructed relatively flat area impacted by construction, extending outward from the edge of the traffic lane. The table below gives clear zone widths in work zones for medians and roadside conditions other than for roadside canals; where roadside canals are present,clear zone widths are to conform with the distances to canals as described in the FDOT Design Manual 215.2.

TABLE 5

CLEAR ZONE WIDTHS FOR WORK ZONES

WORK ZONE SPEED (MPH)	 MULTILANE RAMPS (feet)	 SINGLE LANE RAMPS (feet)
$60-70$	30	18
55	24	14
$45-50$	18	10
$30-40$	14	10
ALL SEEDS CURB \& GUTTER	4' BEHIND FACE OF CURB	4 4 BEHIND FACE OF CURB
NOTE: For temporary conditions where existing curb has been removed		

but not reconstructed, curb and gutter values may be used.

NOTES

. $x=$ Work Zone Sign Spacing
2. When called for in the Plans, use this detail in accordance with the Plan and Standard Plans. Place the speed reduction signs (W3-5 and R2-1) in advance of the "Road Work Ahead" sign (W2O-1F) as shown.
3. Do not use this detail in conjunction with the Motorist Awareness System
4. For speed reductions greater than 10 MPH , reduce the speed in 10 MPH increments of ' x ' distance. Do not reduce the speed below the minimum statutory speed for the class of facility.
5. Place additional "Speed Limit" signs (R2-1) at intervals of no more than one mile for rural conditions and 1,000 feet for urban conditions.
6. For undivided roadways, omit the signs shown in the median
. Remove temporary regulatory speed signs as soon as the conditions requiring the reduced speed no longer exist. Once the work zone regulatory speeds are removed, the regulatory speed existing prior to constructio will automatically go back into effect. and Standara Plans. Place the speed reduction signs (W3-5 and R2-1) in For speed reductions greater than 10 MPH , reduce the speed in 10 MPH

SUPERELEVATION

Hontront should have constructed in conjunction with work zone trafric adii. Under conditions where normal crown controls curvature, the minimum radii that can be applied are listed in the table belo

TABLE 6	
MINIMUM RADII FOR	
work zone POSTED SPEED	minimum radius
MPH	feet
70	4090
65	3130
60	2400
55	1840
50	1390
45	1080
40	820
35	610
30	430
Superelevate When Smaller Radii is Used	

OVERWEIGHT/OVERSIZE VEHICLES:

Restrictions to Lane Widths, Heights or Load Capacity can
greatly impact the movement of over dimensioned loads. The Contractor shall notify the Engineer who in turn shall notify the State Permits office, phone no. (850) 410-5777, at least sev
calendar days in advance of implementing a maintenance of traffic plan which will impact the flow of overweight/oversized vehicles. Information provided shall include location, type of restriction (height, width or weight) and restriction time frames When the roadway is restored to normal service the State Permits Office shall be notified immediately.

LANE WIDTHS

Lane widths of through roadways should be maintained through work zone travel ways wherever practical. Provide minimum widths for
work zone travel lanes as follows: 11' for Interstate with at least one 12 ' lane provided in each direction, unless formally excepted by the Federal Highway Administration; 11' for all other limited access roadways; and 10^{\prime} for all other facilities.

HIGH-VISIBILITY SAFETY APPAREL.

All high-visibility safety apparel shall meet the requirements of the International Safety Equipment Association (ISEA) and the American National Standards Institute (ANSI) for "High-Visibility Safety Apparel", and labeled as ANSI/ISEA 107-2004 or newer. The apparel background (outer) material color shall be either fluoresc retroreflective material shall be orange, yellow, white, silver, yellow-green fluorescent version of these colors, and shall be visible at a minimum distance of 1,000 feet. Class 3 apparel may be substituted for Class 2 apparel. Replace apparel that is not visible at 1,000 feet.

WORKERS: All workers within the right-of-way shall wear ANSI/ISEA Class 2 apparel. Workers operating machinery or equipment in which loose clothing could become entangled during operation shall wear fitted high-visibinty sareti apparel. Workers inside
safety apparel.

UTILITIES: When other industry apparel safety standards require utility workers to wear apparel that is inconsistent with FDOT requirements such as NFPA, OSHA, ANSI, etc., the other standards for apparel may prevail.
FLAGGERS: For daytime activities, Flaggers shall wear ANSI/ISEA Class 2 apparel. For nighttime activities, Flaggers shall wear ANSI/ISEA Class 3 apparel.

LENGTH OF LANE CLOSURES:
For interstates and state highways with a posted speed of SMPH or greater, lane closures must not exceed 3 miles and must not close two consecutive interchanges.
 ,
\qquad

FLAGGER CONTROL

Regulatory Speed (In Work Zones)
Where flaggers are used, a FLAGGER symbol or legend sign must replace
the wORKERS symbol or legend sign.
The flagger must be clearly visible to approaching traffic for a distance sufficient to permit proper response by the motorist to the flagging
instructions, and to permit traffic to reduce speed or to stop as rea instructions, and to permit traffic to reduce speed or to stop as required
before entering the work site. Flaggers shall be positioned to maintain maximum color contrast between the Flagger's high-visibility safety appare and equipment and the work area background.

Hand-Signaling Devices
STOP/SLOW paddles are the primary hand-signaling device. The STOP/SLOW paddle shall have an octagonal shape on a rigid handle. If the STOP/SLOW paddle is placed on a rigid staff, the minimum length of the staff, measured from the bottom of the paddle to the end of the staff that rests on the ground, must not be less than 6 ft . STOP/SLOW paddles shall be at least 24 inches wide with letters at
least 6 inches high and should be fabricated from light semirigid material The background of the STOP face shall be red with white letters and border. The background of the SLOW face shall be orange with black letters and border: When used at night-time, the STOP/SLOW paddle shall be retroreflectorized.
Flag use is limited to immediate emergencies, intersections, and when working on the centerline or shared left turn lanes where two (2) flaggers are required
and there is opposing traffic in the adjacent lanes. Flags, when used, shall be a minimum of 24 inches square, made of a good grade of red material, and securely fastened to a staff that is approximately 36 inches in length. When used at nighttime, flags shall be retroreflectorized red
Flashlight, lantern or other lighted signal that will display a red warning light shall be used at night.

Flagger Stations

Flagger stations shall be located far enough in advance of the work area so hat approaching road users will have sufficient distance to stop before
entering the work area. When used at nighttime, the flagger station shal be illuminated.

SURVEY WORK ZONES:

the SURVEY CREW AHEAD symbol or legend sign shall be the principal Advance Warning Sign used for Traffic Control Through Survey Work zones and may replace the ROAD WORK AHEAD sign when lan losures occur, at the discretion of the Party Chief.

When Traffic Control Through Work Zones is being used for survey purposes only, the END ROAD WORK sign as called for on certain 102 Series of Indexes should be omitted.
Survey Between Active Traffic Lanes or Shared Left Turn Lanes The following provisions apply to Main Roadway Traffic Control Work Zones. hese provisions must be adjusted by the Party Chief to fit roadway and traffic conditions when the Survey Work Zone includes intersections.
A) A STAY IN YOUR LANE (MOT-1-06) Sign shall be added to the Advance Warning Sign sequence as the second most immediate sign from the work area.
(B) Elevation Surveys-Cones may be used at the discretion of the Party Chief to protect prism holder and flagger(s). Cones, if used, may be placed at up to $50^{\prime \prime}$ intervals along the break line throughout the work zone.

SURVEY WORK ZONES: (Cont.)

(C) Horizontal Control-With traffic flow in the same direction, cones shall be used to protect the backsight tripod and/or instrument. Cones shal towards the flow of traffic.
(D) Horizontal Control-With traffic flow in opposite directions, cones shal e used to protect the backsight tripod and/or instrument. Cones shal placed at the equipment, and up to 50^{\prime} intervals for at least 200^{\prime} in both directions towards the flow of traffic.

SIGNS:

SIGN MATERIAL
Mesh signs and non-retroreflectice vinyl signs may only be used for daylight operations. Non-retrorefle
Specifications Section 994

Retroreflective vinyl signs meeting the requirements of Specification Section 994 may be used for dayight or night operations not to exceed 1 day except as noted in the Indexe

Rigid or Lightweight sign panels may be used in accordance with the vendor APL drawing for the sign stand to which they are attached.

Intersecting road signing

Signing for the control of traffic entering and leaving work zones by way of zone conditions. When Work operations exceed 60 minutes, place the ROAD WORK AHEAD sign on the side street entering the work zone.
ADJoining and or overlapping work zone signing Adjoining work zones may not have sufficient spacing for standard placement in some cases other areas within their traffic control zones. Where such restraints or conflicts occur or are likely to occur, one of the following methods will be employed to avoid conflicts and prevent conditions that could lead to misunderstanding on the part of the traveling public as to the intended travel way by the traffic control procedure applied
(A) For scheduled projects the engineer in responsible charge of project design will resolve anticipated work zone conflicts during the development of the project tratfic control plan. This may entail revision of plans on preceding projects and coordination of plans on concurrent projects.
(B) Unanticipated conflicts arising between adjoining in progress highway Construction projects will be resolved by the Resident Engineer for projects under his residency, and, by the District Construction Engineer or in progress projects under adjoining residencies.
(C) The District Maintenance Engineer will resolve anticipated and occurring conflicts within scheduled maintenance operations.
(D) The Unit Maintenance Engineer will resolve conflicts that occur within routine maintenance works; between routine maintenance work, unscheduled ork and/or permitted work; and, between unit controlled maintenance works and highway construction projects.

SIGNS: (Cont.)

sign covering and intermittent work stoppage signing Existing or temporary traffic control signs that are no longer applicable or are

Sign blanks or other available coverings must completely cover the existing sign. Rigid sign coverings shall be the same size as the sign it is covering, and bolted in a manner to prevent movement.
Sign covers are incidental to work operations and are not paid for separately. SIGNiNG FOR DETOURS, LANE SHIFTS AND DIVERSIONS Detours should be signed clearly over their entire length so that motorists can easily determine how to return to the original roadway. The reverse curve W1-4) warning sign should be used for the advanced warning for a lane shift
extended distance advance warning sign
Advance Warning Signs shall be used at extended distance of one-half mile or more when limited sight distance or the nature of the obstruction may require a motorist to bring their vehicle to a stop. Extended distance Advanced Warning Signs may be required on any type roadway, but particularly be considered
multilane divided highways where vehicle speed is generally in the higher range (45 MPH or more).
UTILITY WORK AHEAD SIGN
he UTILITY WORK AHEAD (W21-7) sign may be used as an alternate to the ROAD WORK AHEAD or the ROAD WORK XX FT (W2O-1) sign for utility operations on or adjacent to a highway.
LENGTH OF ROAD WORK SIGN
The length of road work sign (G20-1) bearing the legend ROAD WORK NEXT_ of miles entered should be rounded up to the nearest mile. The sign shall be located at begin construction points.

grooved pavement ahead sign

he GROOVED PAVEMENT AHEAD sign is required 500 feet in advance of a mille ard shall be used in

END ROAD WORK SIGN

he END ROAD WORK sign (G20-2) should be installed on all projects, but may be omitted where the work operation is less than 1 day. The sign should be placed
approximately 500 feet beyond the end of a construction or maintenance project approximately 500 feet beyond the end of a construction or maintenance project
unless other distance is called for in the plans. When other construction or Maintenance Operations occur within 1 mile this sign should be omitted and signing coordinated in accordance with Index 102-600, ADJOINING ANDIOR
OVERLAPPING WORK ZONE SIGNING.

NOTES:
All signs shall be post mounted when work operations exceed one day except for:
a. Road closure signs mounted in accordance with the vendor drawing for the Type III Barricade shown
b. Pedestrian and bicycle advanced warning or pedestrian
regulatory signs mounted on sign supports in accordance with the vendor drawing shown on the APL.
c. Median barrier mounted signs per Index 700-013 d. Bridge mounted signs per Index 700-012.

Uness shielded with barrier or outside of the Clear Zone, signs mounted on temporary supports or barricades, and barricade/sign combination must be crashworthy in accordance with NCHRP 350 requirements and included on the Approved Products List (APL).
3. Use only approved systems listed on the Department's Approved Products List (APL).
4. Manufacturers seeking approval of U-Channel and steel square tube sign support assemblies for inclusion on application, design calculations (for square tube only), and detailed drawings showing the product meets all the requirements of this Index.
5. Provide $3 \mathrm{lb/ft}$ Steel U-Channel Posts with a minimum section modulus of $0.43 \mathrm{in}^{3}$ for 60 ksi steel, a minimu
section modulus of $0.37 \mathrm{in}^{3}$ for 70 ksi steel, or a minimum section modulus of $0.34 \mathrm{in}^{3}$ for 80 ksi steel.
6. Provide $4 \mathrm{lb} / \mathrm{ft}$ Steel U-Channel Posts with a minimum section modulus of 0.56 in ${ }^{3}$ for 60 ksi steel, or a
minimum section modulus of $0.47 \mathrm{in}^{3}$ for 70 ksi or 80 ksi steel.
7. U-channel posts shall conform with ASTM A 499, Grade
60, or ASTM A 576, Grade 1080 with a minimu rield 60, or ASTM A 576, Grade 1080 (with a minimum yield strength of 60 ksi). Square tube posts shall conform
with ASTM A 653, Grade 50, or ASTM A 1011, Grade 50
8. Sign attachment bolts, washers, nuts, and spacers shall conform with ASTM A307 or A 36 .
9. Install $4 \mathrm{lb} / \mathrm{ft}$ Steel U-Channel Posts with approved breakaway splice in accordance with the manufacturer's detail shown on the APL.
10. The contractor may install 3 lb/ft Steel U-Channel Posts with approved breakaway splice in accordance with the manufacturer's detail shown on the APL.
11. Install all posts plumb.
12. The contractor may set posts in preformed holes to the specified depth with suitable backfill sign posts and any size base post in accordan with the manufacturer's detail shown on the APL.

RURAL
RURAL

TABLE 7 POST AND FOUNDATION TABLE FOR		
WORK ZONE SIGNS		

Notes For Table:

I. Use 3 lb/ft posts for Clear Height up to 10 and $4 \mathrm{lb} / \mathrm{ft}$ posts for Clear Height up to $12^{\prime \prime}$ 2. Minimum foundation depth is 4.0° for $3 \mathrm{lb/ft}$ posts and 4.5' for $4 \mathrm{lb} / f t$ posts.
3. For both $3 \mathrm{lb} / f t$ and $4 \mathrm{lb} / f \mathrm{ft}$ base or sign posts installed in rock, a minimum cumulative depth of 2^{\prime} of rock layer is required
4. The soil plate as shown on the APL vendor sign posts installed in existing rock (as defined in Note 3), asphalt roadway, shoulder pavement or soil under sidewalk.
5. For diamond warning signs with supplement plaque (up to $5 \mathrm{ft}^{2}$ in area), use $4 \mathrm{lb} / \mathrm{ft}$ posts
for up to 10 ft Clear Height (measure to the bottom of diamond warning sign).

See APL for post, splice and connection details.
No bolts installed closer than $1^{1 "}$ to cutting edge.

$$
\overline{=} \text { FOUNDATION DETAIL }
$$

(SCHEMATIC)
SECTION A-A (WITHOUT Z-bRACKET)
= SIGN ATTACHMENT DETAIL= WORK ZONE SIGN SUPPORTS

move/merge right

MOVE/MERGE

 $\stackrel{R I G H T}{o R}$OR
LEFT

- Minimum Required Lamps

Additional Lamps Allowed

notes:

arrow board in the arrow or chevron mode shall be used only for stationary or moving lane closures on multilane roadways.

For shoulder work, blocking the shoulder, for roadside work near the shoulder, or for temporarily closing one lane on a two-lane, two-wa
single arrow board shall not be used to merge traffic laterally more than one lane. When arrow boards are used to close multiple lanes, a single board shall be used at the merging taper for each closed lane
When Advance Warning Arrow Boards are used at night, the intensity of all be reduced during darkness when lower intensities are desirable.

NOTES:
Manholes extending $1^{\prime \prime}$ or more above the travel lane and crosswalks having
an uneven surface greater than $1 / 4$ " shall have a temporary asphalt apron
constructed as shown above.
All transverse joints that have a difference in elevation of $1^{\prime \prime}$ or more shall have a temporary asphalt apron constructed as shown above.

The apron is to be removed prior to constructing the next lift of asphalt. The cost of the temporary asphalt shall be included in the contract unit price for Maintenance of Traffic. LS.
\qquad
\qquad

NOTE:
ptionally, use "Flagger Ahead" sign with ter (120-7). " "Fler

SIGNALS:
Existing traffic signal operations that require modification in order to carry out work zone traffic control shall be included Engineer.

Refer to Specification 102-9 for additional information

CHANNELIZING DEVICES

Channelizing devices for work zone traffic control shall be as prescribed in Part VI of the MUTCD, subject to supplemental evisions provided in the contract documents and the 102 Series of Indexes. Lighting Devices must not be used to
supplement channelization. Omit tapers and channelizing devices for paved shoulders less than 4' in width

CHANNELIZING DEVICE CONSISTENCY: Barricades, vertical panels, cones, tubular markers and drums Shall not be intermixed withi
within the tangent

TRUCK/TRAILER-MOUNTED ATTENUATORS
Truck/Trailer-mounted attenuators (TMA) can be used for moving operations and short-term stationary operations. For moving operations, see Part VI of the MUTCD.

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$	\|	$\begin{gathered} \text { FY 2022-23 } \\ \text { FTANDARD PLANS } \end{gathered}$	GENERAL INFORMATION FOR TRAFFIC CONTROL THROUGH WORK ZONES	$\begin{gathered} \text { INDEX } \\ 102-600 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 7 \text { of } 11 \end{aligned}$

DROP-OFF CONDITION NOTES

1. These conditions and treatments can be applied only in work areas that fall within a properly signed work zone.
2. When drop-offs occur within the clear zone due to construction or maintenance activities, protection devices are required (See Table 8). A drop-off is defined as a drop in elevation, parallel to the adjacent travel lanes, greater than $3^{\prime \prime}$ with slope (A:B) steeper than 1:4. In superelevated sections, the algebraic difference in
slopes should not exceed 0.25 (See Drop-off Condition Detail).
3. Drop-offs may be mitigated by placement of slopes with optional base material per Specifications Section 285. Slopes shallower than 1:4 may be required to avoid algebraic difference in slopes greater than 0.25. Inc/ude the cost for the placement and removal of the material in Maintenance of Traffic, LS. Use of this treatment in
ieu of a temporary barrier is not eligible for CSIP consideration Conduct daily inspections for deficiencies related to erosion, excessive slopes, rutting or other adverse conditions. Repair any deficiencies immediately.
4. For Setback Distance, refer to the Index or Approved Products List (APL) drawing of the selected barrier.
5. For Conditions 1 and 3 provided in Table 8, any drop-off condition that is created and restored within the same work period will not be subject to use of temporary barriers; however, channelizing devices will be required.
6. When permanent curb heights are $\geq 6^{\prime \prime}$, no channelizing device will be required. For curb heights < $6^{\prime \prime}$, see Table 8 .

DROP-OFF CONDITION DETAIL

Table 8 Drop-off			
Protection Requirements			

travel lane treatment for

Milling or resurfacing notes

1. This treatment applies to resurfacing or milling operations between adjacent travel lanes.
2. Whenever there is a difference in elevation between adjacent travel lanes, the W8-11 sign with "UNEVEN LANES" is required at intervals of $1 / 2$ mile maximum.
3. If D is $11 / 2$ or less, no treatment is required
4. Treatment allowed only when D is $3^{\prime \prime}$ or less.
5. If the slope is steeper than 1:4 (not to be steeper than 1:1), the R4-1 and MOT-1-06 signs shall be used as a supplement to the w8-11; this condition should never exceed 3 miles in length.

travel lane treatment for MILLING OR RESURFACING DETAIL

PEDESTRIAN WAY DROP-OFF CONDITION NOTES

1. A pedestrian way drop-off is defined as:
a. a drop in elevation greater than $10^{\prime \prime}$ that is closer than $2^{\prime \prime}$ from the edge of the pedestrian way
b. a slope steeper than $1: 2$ that begins closer than 2^{\prime} from the edge of the pedestrian way when the total drop-off is greater than 60
2. Protect any drop-off adjacent to a pedestrian way with pedestrian Iongitudinal channelizing devices, temporary barrier wall, or approved handrail.

PLAN

1. For single business entrances, place one $24^{\prime \prime} \times 36^{\prime \prime}$ business sign for each driveway entrance affected. Signs shall show specific business names. Logos may be provided by business owners. Standard BUSINESS ENTRANCE sign in Index 700-102 may be used when approved by the Engineer.
2. When several businesses share a common driveway entrance, place one $24^{\prime \prime} \times 36^{\prime \prime}$ standard BUSINESS ENTRANCE sign in accordance with Index 700-102 at the common driveway entrance.
3. Channelizing devices shall be placed at a reduced spacing on each side of the 3. Channelizing devices shall be placed at a reduced spacing on each side of the
driveway entrance, but shall not restrict sight distance for the driveway users.
4. Business entrance signs are intended to guide motorist to business entrances moved/modified or disturbed during construction projects. Business entrance which is often the case with resurfacing type projects.

PLACEMENT OF BUSINESS ENTRANCE SIGNS AND CHANNELIZING DEVICES AT BUSINESS ENTRANCE

orange
rtical Panel
$0 / w$
o/w

FIXED (SURFACE MOUNTED) CHANNELIZING DEVICES

SECTION AA

1. Temporary lane separators shall be supplemented with any of the following approved fixed (surface mounted channelizing devices: temporary tubular markers, vertical panels, or opposing traffic lane divider pane/s. opposing traffic lane divider panels (W6-4) shall only be used as center lane dividers to separate opposing vehicular traffic on a two-lane, two-way operation. Temporary Tubular Markers, Vertical Panels and Opposing Traffic Lane Divider
panels shall not be intermixed within the limits where the temporary lane separator is used. The connection between the channelizing device and the temporary lane separator curb shall hold the channelizing device in vertical position.
2. Reflectorized materials shall have a smooth sealed outer surface which will display the same approximate color da Reflectorized materials shall have a smooth sealed outer surface which will display the same approximate color day
and night. Furnish channelizing devices having retroreflective sheeting meeting the requirements of Section 990 .
3. 12" openings for drainage shall be constructed in the asphalt and portable temporary lane separator at a maximum spacing of 25^{\prime} in areas with grades of 1% or less or 50^{\prime} in areas with grades over 1% as directed by the Enginee.
4. Tapered ends shall be used at the beginning and end of each run of the temporary lane separator to form a Tapered ends shall be used at the beginning and end of each run of the temporary lane separ
gradual increase in height from the pavement level to the top of the temporary lane separator
5. The Contractor has the option of using portable temporary lane separators containing fixed channelizing devices in leu of the temporary aspliall separator and channelizing devices detaired on this shee.. The portable temporary lane separator shall come in portable sections that can be connected to maintain continuous alignment between the eparate curb sections. Each temporary lane separator section shall be 36 inches to 48 inches in total length. ortare temporary lane separators shall duphicate the colion pavement separators shall be one of those listed on the Approved Products List.

TEMPORARY LANE SEPARATOR

CHANNELIZING DEVICE NOTES:

The details shown on this sheet are for the following purposes:
b. To provide information that supplements or supersedes that provided by the MUTCD.
2. The Type III Barricade shall have a unit length of $6^{\prime}-0$ " only. When barricades of greater lengths are required those lengths shall be in multiples of the $6^{\prime}-0^{\prime \prime}$ unit.
3. No sign panel should be mounted on any channelizing device unless the channelizing device/sign combination was found to be crashworthy and the sign panel is mounted in accordance with the vendor drawing for the channelizing device shown on the Approved Products List (APL)
4. Ballast shall not be placed on top rails or any striped rails or higher than $13^{\prime \prime}$ above the driving surface
5. The direction indicator barricade may be used in tapers and transitions where specific directional guidance to drivers is necessary. If used, direction indicator barricades shall be used in series to direct the driver through the transition and into the intended travel lane.
6. The splicing of sheeting is not permitted on channelizing devices or MOT signs.
7. For rails less than $3^{\prime}-0^{\prime \prime}$ long, $4^{\prime \prime}$ stripes shall be used
8. Cones shall:

Be Be used only in active work zones where workers are present.
Be reflectorized as per the MUTCD with Department-approved
reflective collars when used at night.
9. For pedestrian longitudinal channelizing devices, the device shall have a minimum of $8^{\prime \prime}$ continuous detectable edging above the walkway. A gap not exceeding a height of
$2^{\prime \prime}$ is allowed to facilitate drainage. The top surface of the device shall be a minimum height of $32^{\prime \prime}$ and have a $1 / 8^{\prime \prime}$ or less difference in any plane at all connection points between the devices to facilitate hand trailing. The bottom and the top surface of the device shall be in the same vertical plane. If pedestrian drop-off protection is required the device shall have a footprint or offset of at least 2^{\prime}, otherwise the device must be 200 lb lateral point load at the top of the device.

PEDESTRIAN LONGITUDINAL CHANNELIZING DEVICES

TEMPORARY BARRIER NOTES.

Where a barrier is specified, any of the types below may be used in
mane

Index Description
102-100 Temporary Barrier
536-001 Guardrail
2. Trailer Mounted Barriers may be used to provide positive protection for workers within the work areas. APL drawings may be used as that are signed and sealed by the Contractor's Engineer.

RPM PLACEMENT ON tWO-LANE ROADWAYS

RPM PLACEMENT ON MULTILANE ROADWAYS

RPM PLACEMENT ON MULTILANE ROADWAS
PLAN VIEW
(Lane Shift Shown, Other Multilane Typical Applications Similar)

NOTES:

1. Install RPMs as a supplement to.
a. All lane lines
b. Edge lines in transitions (e.g., merges, diversions, lane shifts)
c. Edge lines of gore

Edge lines of gore areas
2. Extend pavement marking and 5' RPM spacing by 100^{\prime} in each direction
for all transitions regardless of the line type.
3. Place RPMs in accordance with this detail and Index 706-001.

SYMBOLS:

\longrightarrow Work Area
\longrightarrow Lane Identification and Direction of Traffic

DETAIL "A"

LAST REVISION $11 / 01 / 20$	\|	$\begin{gathered} \text { FY 2022-23 } \\ \text { FDOTANDARD PLANS } \end{gathered}$	GENERAL INFORMATION FOR TRAFFIC CONTROL THROUGH WORK ZONES	$\begin{gathered} \text { INDEX } \\ 102-600 \end{gathered}$	SHEET 11 of 11

NOTES:

1. This Index applies to Two-Lane, Two-Way and Multilane Roadways
including Medians of divided roadways, with work beyond the shoulder.
2. Use Index 102-602 when the work operation (excluding establishing and terminating the work area) requires that two or more work vehicles cross the offset Zone in any one hour period.

SYMBOLS:

Lane Identification and Direction of Traffic
3. Use Index 102-660 when Work Area encroaches a Sidewalk.

NOTE

. This Index applies to Two-Lane, Two-Way and Multilane Roadways, incluaing Meda
of divided roadways, with work on the shoulder.
2. $L=$ Taper Length
$X=$ Work Zone Sign Spacing
$B=$ Buffer Length
See Index 102-600
channelizing device spacing values.
3. Where work activities are between 2^{\prime} 15' from the edge of traveled way, the Engineer may omit signs and channelizing
devices for work operations 60 minutes or less.
4. When four or more work vehicles enter the through traffic lanes in a one hour period (excluding establishing and terminating the
work area), use a flagger or lane closure to accommodate work vehicle ingress and egress.
5. For work less than z^{\prime} from the traveled way and work zone speed is greater than 45 MPH use a lane closure.
6. The Speeding Fines Doubled When Workers Present" signs (MOT-13-06) and "End Road Work" Signs (G20-2) along with the distances may be omitted when the work operation is in place for 24 hours or less.
7. Temporary pavement markings may be omitted when the work operation is in place for 3 days or less.
8. Omit "Shoulder Closed" signs (W21-5a) along distances for work on the median.
9. When there is no paved shoulder, the "Worker" sign (W21-1) may be used inste
of the "Shoulder Closed" sign (W21-5a).

SYMBOLS

- Channelizing Device (See Index 102-600)

Work Zone Sign
Lane Identification and Direction of Traffic

TWO-LANE ROADWA
SHOULDER WORK LESS THAN 2' FROM THE TRAVELED WAY
WITH WORK ZONE SPEED OF 45 MPH OR LESS

\qquad
SHOULDER WORK BETWEEN 2' AND 15' FROM THE TRAVELED WAY

SHOULDER WORK LESS THAN 2' FROM THE TRAVELED WAY WITH WORK ZONE SPEED OF 45 MPH OR LESS

SYMBOLS:

VZlla work Area

- Channelizing Device (See Index 102-600)
[] Work Zone Sign
Lane Identification and Direction of Traffic

$\overline{\overline{\text { SHOU }}}$ SHOULDER WORK BETWEEN 2' AND 15' FROM THE TRAVELED WAY

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$	\|	$\begin{gathered} \text { FY 2022-23 } \\ \text { FDTANDARD PLANS } \end{gathered}$	TWO-LANE AND MULTILANE, WORK ON SHOULDER	$\begin{gathered} \text { INDEX } \\ 102-602 \end{gathered}$	SHEET 2 of 2

$\overline{\bar{C}}$ TEMPORARY RAILROAD CROSSING BUFFER SPACE EXTENSION= \qquad

TEMPORARY LANE SHIft To SHOULDER WHEN WORK AREA ENCROACHES ON THE CENTERLINE
(For Work Operations In place 24 Hours or Less)

SYMBOLS:

Work Area

- Channelizing Device (See Index 102-600)
[W Work Zone Sign
\square Flagger
Lane Identification and Direction of Traffic

| $\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$ | \|c|cos | $\begin{array}{cc} \text { FDOT } 2022-23 \\ \text { STANDARD PLANS } \end{array}$ | TWO-LANE, TWO-WAY
 WORK WITHIIN THE TRAVEL WAY | $\begin{gathered} \text { INDEX } \\ 102-603 \end{gathered}$ | $\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 2 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

GENERAL NOTES:

1. This Index applies to two-lane, two-way roadways with work within or near the intersection.
2. $x=$ Work Zone Sign Spacing

See Index 102-600 for " x " and channelizing device spacing values.
3. Optionally, use "Flagger Ahead" sign with text (W2O-7A) instead of "Flagger Ahead" sign with symbol (W2O-7).
4. If vehicles in a parking zone block the line of sight to TCZ signs, locate and post mount signs in accordance with Index 700-101
5. If the work area extends across a crosswalk, close the crosswalk in accordance with Index 102-660.
6. District Traffic Operations Engineer must approve temporary signal phasing modifications prior to beginning of work
7. For unsignalized intersections, use Temporary Raised Rumble Strips in accordance with Index 102-603. Placeme
of Rumble Strips and additional signs should begin at FLAGEER sign location.
8. The "End Road Work" signs (G20-2) along with the associated work zone sign distances may be omitted when the work zone will be in place for 24 hours or less.
9. As an option to the "STOP" sign (R1-1) and Restricted Left/Right Turning Movement sign (R3-1 or R3-2), the
"SIDE ROAD INTERSECTING THE WORK ZONE" flageing SIDE RAD NTRSEC 102-600 may be used" flagging operation from Index 102-600 may be used

SYMBOLS

llas Work Area

- Channelizing Device (See Index 102-600)
(b) Work Zone Sign
\triangle Type III Barricade
- Stop Bar
- Flagger

Lane Identification and Direction of Traffic

$620-2$

NOTES:

1. $L=$ Taper Length
$B=$ Buffer Length
$x=$ Work Zone Sign Distance
$X=$ Work Zone Sign Distance
See Index $102-600$ for "L", "B", "X", and channelizing device spacing values
2. Optionally, use "Signal Ahead" signs with symbols (W3-3) instead of signal Ahead" signs with text (W3-3A).
3. Use temporary raised rumble strips in accordance with Index 102-603.
4. The "Speeding Fines Doubled When Workers Present" signs (MOT-13-06) and "End Road Work" signs (620-2), along with associated work zone sign distances, may be omitted when the work operation will be in place for 24 hours or less.
5. For the maximum distance between temporary traffic signals, do not exceed the distance at which the temporary traffic signals can safely communicate. When the distance at which the temporary traffic signals can safely communicate. When the distance
temporary traffic signals is greater than 0.25 miles, use a combination of a pilot vehicla and manually-controlled temporary traffic signals.
6. Monitor temporary traffic signals by having one or more workers present during operation In the event of a temporary traffic signal failure, use flaggers to control traffic.

SYMBOLS:
VIII Work Area

- Channelizing Device (See Index 102-600)

■ Work Zone Sign
(\%) Temporary Traffic Signal
Lane Identification and Direction of Traffic
102-606 1 of 1

GENERAL NOTES

1. This Index applies to two-lane, two-way and multilane roadways with work that requires a moving operation.
2. Mount vehicle-mounted signs with the bottom of the sign at a minimum heigh of 48 inches above the pavement. Vehicle mounted changeable message signs
may be used in lieu of truck mounted static signs and arrow boards. Ensure hangeable message signs flash alternately to read "Left or Right Lane" or "Two Left or Two Right Lanes", "Closed Ahead", and the arrow symbol. Do not use arrow boards in combination with truck mounted changeable message signs or obscure boards with equipment, supplies, signs, or enclosure Cover or turn sign legends from view when work is not in progress.
3. For multilane roadways with curb and no paved shoulder, omit the shadow vehicle that would have been used on the paved shoulder. In such instances, the work vehicle.
4. Where work activities within 2 ' of the edge of travel way are incidental (i.e., Mowing, Litter Removal), the Engineer may omit requirements for signs and the Shadow vehicle on the shoulder.
5. Minimize the longitudinal spacing between vehicles to deter road users from driving in between.
6. Use inverted plan of the illustrations for work on left side of roadways.
7. Ensure that all vehicles in the mobile operation convoy have functional wo-way communication
8. If the speed of the mobile operation exceeds the existing posted minimum speed limit on limited access roadways and one half the existing posted speed limit on other roadways, the Engineer may delete requirements
shadow vehicles and attenuators. In such situations, mount arrow board and sign on the work vehicle.
9. The distance between the advance warning sign and the work location should not exceed 5 miles.

SYMBOLS:

\Rightarrow Lane Identification and Direction of Traffic
(4) Truck/Trailer Mounted Attenuator (TMA)

WIT Work Vehicle With Warning Lights
SID Shadow (S) Vehicle With Warning Lights And Arrow Board
[b Work Zone Sign

WORK ON SHOULDER
(Two-Lane Roadway Shown, Multilane Roadway Similar)

\qquad
WORK in traveled way - two-lane roadway, lane closure

= WORK in traveled way - multilane roadway, single lane closure =

\qquad

SYMBOLS:
W町 Work Vehicle with Warning Lights

SII Shadow (S) Vehicle With Warning Lights
And Arrow Board
Truck/Trailer Mounted Attenuator (TMA)
$\overline{\bar{Z}}$ WORK IN TRAVELED WAY - MULTILANE ROADWAY, TRIPLE LANE CLOSURE $\bar{\square}$
Lane Identification and Direction of Traffic

Z DESCRIPTION:

Index	Sheet
$102-607$	2 of 2

SYMBOLS:
Wlark Area

- Channelizing Device (See Index 102-600)
[b Work Zone Sign
\& Arrow Board
Lane Identification and Direction of Traffic

GENERAL NOTE

1. $L=$ Taper Length

B $=$ Buffer Length
$x=$ Work Zone Sign Distance
$X=$ Work Zone Sign Distance" "L", and channelizing device spacing values. ${ }^{\text {See }}$ Index 102-600 for "L", "X",
2. On undivided highways the median signs as shown are to be omitted
3. On limited access facilities, omit "Right Shoulder Closed" signs (W21-5a) and associated work zone sign spacing distances.
4. If the paved shoulder is less than 4^{\prime} in width, omit the taper and channelizing devices from the paved shoulder.
5. The Speeding Fines Doubled When Workers Present" signs (MOT-13-06) and "End Road Work" signs (G20-2) and "Right Shoulder Closed" (W21-5a), along with associated work zone sign distances, may be omitted when the work
operation will be in place for 24 hours or less. For Single Lane closures operation will be in place for 24 hours or ess. For Single Lane Closures
arrow boards and buffer (B) may also be omitted when the work operation will be in place for 60 minutes or less and the speed limit is 45 mph or less.
6. Use inverted plan of the illustrations for work on left side of roadways.
7. Temporary pavement markings may be omitted when the work operation is in place for 3 days or less.

double lane closure

SYMBOLS:
Tllat work Area

- Channelizing Device (See Index 102-600)
[] Work Zone Sign
: Arrow Board
Lane Identification and Direction of Traffic

Z DESCRIPTION:
LAST
REVISION
i11/01/20
FDOT FY 2022-23 STANDARD PLANS

lane closure with lane shift

NOTE:
If the tangent distance "T" is less than 600', then use "Double Reverse
Curve" signs (W24-1A) instead of the first pair of "Reverse Curve" sign
(W1-4B) and omit the second pair of "Reverse Curve" signs.

SYMBOLS:

llas Work Area

Channelizing Device (See Index 102-600)
Tb Work Zone Sign
: Arrow Board
Lane Identification and Direction of Traffic

$\begin{array}{\|c\|} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{array}$		$\begin{gathered} \text { FY 2022-23 } \\ \text { FDOTANDARD PLANS } \end{gathered}$	MULTILANE ROADWAY, LANE CLOS URES	INDEX $102-613$	SHEET 4 of 5

SYMBOLS:

『 Work Zone sign
(1) PCMS = Portable Changeable (Variable) Message Sign

团 (2) PRS= Portable Regulatory Sign-Speed Limit When Flashing
(2) RSDU= Radar Speed Display Unit
\longleftrightarrow Lane Identification and Direction of Traffic

NOTES:

1. Use the Motorist Awareness System (MAS) for lane closures of at least 5 days (consecutive or not) on
multilane divided facilities with a posted sped multilane divided facilities with a posted speed of protected by a barrier.
2. Locate the Motorist MAS devices (i.e., PCMS, PRS, and RDSU) within the advance warning signs as shown. Continue with the remainder of the work
zone signs and devices in accordance with the Plans or Standard Plans after the appropriate "Lane Closed Ahead" (W20-XX) sign.
3. For a posted speed of 65 mph or greater, display speed with a ten mph reduction. For a posted speed of outside of the lane closure, use the posted speed as the work zone speed
4. Omit the PCMS in the median for roadways with three lanes or less in the same direction of traffic

TYPICAL PCMS DISPLAY

With speed reduction:
Message 1: WORKERS PRESENT AHEAD Message 2: SPEED REDUCED NEXT XXM

Without speed reduction:
Message 1:WORKERS PRESENT AHEAD Message 2: NEXT XX MILES
-

GENERAL NOTES

1. L = Taper Length
$B=$ Buffer
$x=$ Work Zone Sign Distance
See Index 102-600 for "L", " B ", " X ", and channelizing device spacing values.
2. If vehicles in a parking zone block the line of sight to TCZ signs, If vehicles in a parking zone block the line of sight to TCZ signs,
locate and post mount signs in accordance with Index 700-101.
3. District Traffic Operations Engineer must approve temporary signal phasing modifications prior to beginning of work
4. Use temporary "STOP" sign (R1-1) where the existing stop bar is more than 30^{\prime} from the taper, remove or cover existing sign.
5. The "Speeding Fines Doubled When Workers Present" sign (MOT-13-06) and "End Road Work" Sign (G20-2), along with associated Work Zone Sign Distances, may be omitted when the work operation will be in place
for 24 hours or less. Additionally, arrow boards mar be omitted when for 24 hours or less. Additionally, arrow boards may be omitted when limit is 45 mph or less.
6. If the work area extends across a crosswalk, close the crosswalk in accordance with Index 102-660.
7. Dual signs are required for divided roadways.

SYMBOLS:

Tllar work Area

- Channelizing Device (See Index 102-600)
(b) Work Zone Sign
\triangle Type Ill Barricade
: Arrow Board
- Stop Ba

Lane Identification and Direction of Traffic

=WORK IN INTERSECTION OF MULTILANE ROADWAY=

NOTES:
Confine work operations to the following lane or lane combinations:
a. Outside travel lane
b. Outside auxiliary lane
c. Outside travel lane and adjoining auxiliary lane d. Inside travel lane
e. Inside auxiliary lane
f. Inside travel lane and adjoining auxiliary lane

If the work area is confined to an auxiliary lane, the work area must be barricaded. Replace the RIGHT (LE
LANE CLOSED AHEAD signs with ROAD WORK AHEAD
signs, and omit the merge symbol signs and arrow board.

right lane closed on far side of minor side street \qquad
W20-1F

\qquad

FDOTY	FY 2022-23 STANDARD PLANS	MULTILANE ROADWAY, INTTERSECTION WORK	$\begin{gathered} \text { INDEX } \\ 102-615 \end{gathered}$	$\begin{gathered} \text { SHEET } \\ 2 \text { of } 5 \end{gathered}$

NOTES:
Confine work operations to the following lane or lane combinations:
. Outside travel lane
b. Outside auxiliary lane
d. Inside travel lane
e. Inside auxiliary lane
f. Inside travel lane and adjoining auxiliary lane

If the work area is confined to an auxiliary lane, the work area must be barricaded. Replace the RIGHT (LEFT)
LANE CLOSED AHEAD signs with ROAD WORK AHEAD signs, and omit the merge symbol signs and arrow board
2. Provide sufficient Queue Length so that left-turning vehicles do not block through lanes.

\qquad

SYMBOLS:

IIII Work Area

- Channelizing Device (See Index 102-600)
§ Work Zone Sign
\geqq Type III Barricade
¿ Arrow Board
- Stop Bar

Lane Identification and Direction of Traffic

NOTES:

1. Confine work operations to one center travel lane
and leave the adjacent travel lanes open to traffic.
2. Ensure that the merging taper only directs vehicular
traffic into either the right or left lane.

SYMBOLS:

Zllan work Area

- Channelizing Device (See Index 102-600)

『 Work Zone Sign
Type Ill Barricade
: Arrow Board

- Stop Bar

Sill Shadow (S) Vehicle with Warning Lights And Arrow Board
© Truck/Trailer Mounted Attenuator (TMA)
Lane Identification and Direction of Traffic

SYMBOLS: (See General Note 5) DOUBLE LANE CLOSURE FOR WORK MORE THAN 200' FROM INTERSECTION \qquad
Channelizing Device (See Index 102-600)
[] Work Zone Sign
8. Arrow Board

- Stop Bar

Lane Identification and Direction of Traffic

| $\begin{array}{c\|} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{array}$ | \|c|cher | $\begin{gathered} \text { FY 2022-23 } \\ \text { FTANDARD PLANS } \end{gathered}$ | MULTILANE ROADWAY, INTERSECTION WORK | INDEX 102-615 | SHEET
 5 of 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |

NOTE:
Temporary pavement markings may be omitted when
the work operation is in place for 3 days or less.

SYMBOLS:
VIIII Work Area

- Channelizing Device (See Index 102-600)
[Work Zone Sign
\triangle Type III Barricade
Crash Cushion
\Rightarrow Lane Identification and Direction of Traffic

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$		$\begin{gathered} \text { FY 2022-23 } \\ \text { FDOTANDARD PLANS } \end{gathered}$	MULTILANE ROADWAY, TEMPORARY DIVERSION	$\begin{gathered} \text { INDEX } \\ 102-620 \end{gathered}$	SHEET 2 of 2

(Multilane Roadway Shown, Two-Lane Roadway Similar)

SYMBOLS:

VIIIIA Work Are

${ }^{b}$ Work Zone Sign
$\underset{\sim}{c d}$ Traffic Control Office
Lane Identification and Direction of Traffic

NOTES:

1. This Index applies to two-lane, two-way and multilane
roadways, except limited access facilities, with temporary daytime roadway closures of 5 minutes or less.
2. $B=$ Buffer Length

Se Work Zone Sign Distance
See Index 102-600 for " B " and " X " values.
3. For Two-Lane Roadways, a Flagger may substitute the traffic control office with approval of the Engineer.
4. Traffic volume or complexly of the roadway may dictat adational signs, devices or traffic control officers.
5. Optionally, use "Flagger Ahead" sign with symbol (W20-7) instead of "Flagger Ahead" sign with text (W20-7A).
6. Dual Signs are required for divided roadways only.

TEMPORARY MULTILANE, TWO-WAY LEFT-TURN LANE, TURN LANE CLOSURE
(Closure of One Inside Lane Shown, Closure of both Similar)

SYMBOLS:
WIIA Work Area

- Channelizing Device (See Index 102-600)
[J Work Zone Sign
: Arrow Board
SII] Shadow (S) Vehicle With Warning Lights And Arrow Board
© Truck/Trailer Mounted Attenuator (TMA) Lane Identification and Direction of Traffic

GENERAL NOTES

1. This Index applies to roadways with work in the two-way left-turn lane
2. L = Taper Length
$x=$ Work Zone Sign Distance
See Index 102-600 for "L", "X", "B", and channelizing device spacing values.
3. The "Speeding Fines Doubled When Workers Present" signs (MOT-13-06) and "End Road Work" Sign (G20-2), along with associated Work Zone Sign Distances, may be omitted when the work operation will be in place for 24 hours or less.
4. If closure of both inside lanes on multilane roadways is needed, duplicate lane closure and merge; signs, channelizing devices, taper, and arrow board, for both directions

TEMPORARY TWO-WAY LEFT-TURN LANE CLOSURE, TWO-LANE, TWO-WAY ROADWAY, WORK WITHIN THE traveled way with lane closures of 24 HRS OR LESS AND WORK ZONE SPEED OF 45 MPH OR LESS

SYMBOLS:

ZIIIIt work Area

- Channelizing Device (See Index 102-600)
[b Work Zone Sign
․ Flagger
\Rightarrow Lane Identification and Direction of Traffic

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{array}$		FDOT) $\begin{gathered}\text { FY 2022-23 } \\ \text { STANDARD PLANS }\end{gathered}$	TWO-WAY LEFT-TURN LANES	$\begin{gathered} \text { INDEX } \\ 102-628 \end{gathered}$	SHEET 2 of 3

TEMPORARY SHIFT TO TWO-WAY LEFT-TURN LANE, WORK WITHIN THE TRAVELED WAY WITH LANE CLOSURES OF 24 HRS OR LESS AND WORK ZONE SPEED OF 45 MPH OR LESS

SYMBOLS:

VIIIII Work Area

- Channelizing Device (See Index 102-600)

『 Work Zone Sign
: Arrow Board
․ Flagger
Lane Identification and Direction of Traffic

Begin Traffic Pacing

TYPICAL PCMS DISPLAY:
During day of pacing operation:
Message 1: ROAD WORK TONIGHT
Message 2: EXPECT PERIODIC DELAYS
During pacing operation:
Message 1: SLOW TRA Message 1: SLOW TRAFFIC AHEAD
Message 2: BE PREPARED TO STOP
One week prior to pacing operation (Optional): Message 1: EXPECT DELAYS
Message 2: (Month Day Time)

SYMBOLS:

Work Area- Portable Changeable Message Sign (PCMS)

Traffic Control officer
Lane Identification and Direction of Traffic

NOTES

1. $P=$ Traffic Pacing Length
For "P" value, see Traffic Pacing Length table or calculate using Formulas.
2. See the Plans for traffic pacing restrictions.
3. Do not exceed work duration of 30 minutes or traffic pacing length of 10 miles.
4. Coordinate with the traffic control officer supervisor to provide the correct number of traffic control officers for each traffic pacing operation. Ensure traffic control officers are located at roadway access points in accordance with the pacing plan.
5. Ensure that the necessary equipment is properly positioned for the work befor requesting that the traffic control officer supervisor initiate the traffic pacing operation.
6. If workers or equipment are within the traveled way during the traffic pacing operation, use a truck- or trailer-mounted attenuator with portable changeable message sign to protect the work.
7. For work durations of less than five minutes (e.g, moving large vehicles across the roadway), portable changeable message signs and truck-mounted attenuator are not required. Use traffic pacing length values from the five minute column of the table.
8. Where feasible, do not pace traffic past the last available existing egress until the work has been completed
9. When more than one traffic pacing operation is required in a calendar day, allow sufficient time between pacing operations to permit traffic to return to normal speed and flow.
10. Maintain communications with all police vehicles throughout the traffic pacing

TRAFFIC PACING LENGTH "P"						
Pacing Speed $=20 \mathrm{mph}$						
Work Zone						
Speed (mph)	5	10	15	20	25	30
70	2.3	4.7	7.0	9.3	-	-
65	2.4	4.8	7.2	9.6	-	-
60	2.5	5.0	7.5	10.0	-	-
55	2.6	5.2	7.9	-	-	-
50	2.8	5.6	8.3	-	-	-
SOTES: (1) All lengths in the above table are in miles.						

NOTES: (1) All lengths in the above table are in miles.
(1) whill

FORMULAS

$s_{w}=$ Work Zone Speed (mph)
$S_{p}=$ Pacing Speed (mph)
$t_{W}=$ Work Duration (minutes)

$$
\begin{aligned}
& P=\frac{t_{w}}{60} S_{P}\left(\frac{S_{p}}{S_{W}-S_{p}}+1\right) \\
& P=P_{c}+P_{W}
\end{aligned}
$$

$P_{C}=$ distance paced vehicles must trave before the vehicles at regulatory
speed have cleared the work zone

$$
P_{c}=\left(\frac{\frac{t_{w}}{60} \times S_{p}{ }^{2}}{S_{W}-S_{p}}\right)
$$

$P_{w}=$ distance paced vehicles $=\begin{aligned} & \text { distance paced vehicles } \\ & \text { travel while work is performed }\end{aligned}$ $\rho_{w}=\left(\frac{t_{w}}{60} \times s_{p}\right)$

NOTES:

1. Cover or deactivate pedestrian traffic signal display(s) controlling closed crosswalks.
2. Place pedestrian LCDs across the full width of the closed sidewalk.
3. For post mounted signs located near or adjacent to a sidewalk, maintain a minimum 7^{\prime} clearance from the bottom of the sign panel to the surface of the sidewalk.
4. "Sidewalk Closed" signs (R9-XX) may be mounted on pedestrian LCDs in accordance with the manufacturer's instructions.
5. Omit the Advance Closure LCD if it blocks access to other pedestrian facilities (e,g,, transit stops, residences, or business entrances).

SYMBOLS

VIIIIt work Area
W Work Zone Sign
-. Pedestrian Longitudinal Channelizing Device (LCD) Lane Identification and Direction of Traffic

PEDESTRIAN DETOUR \qquad

NOTES:

$\begin{aligned} \text { 1. } L & =\text { Taper Length } \\ B & =\text { Buffer Lengt }\end{aligned}$
$x=$ Work Zone Sign Distance
See Index 102-600 for " L ", " B ", "X", channelizing device spacing values.
2. Provide a 5^{\prime} wide temporary pedestrian way with a maximum cross-slope of 0.02, except where space restrictions warrant a minimum width of 4^{\prime}.
Provide a 5' $\times 5^{\prime}$ passing space for temporary pedestrian ways less than 5^{\prime} in width at intervals not to exceed 200'.

3. When temporary pedestrian ways require curb ramps, meet the requirements of Index 522-002. Detectable warnings are not required for curb ramps diverting pedestrian traffic into a closed lane.
4. The "Speeding Fines Doubled When Workers Present" signs (MOT-13-06) and "End Road Work" signs (620-2), along with associated work zone sign distances, may be omitted when the work operation will be in place for 24
hours or less hours or less.
5. Pedestrian Diversion Option 2 may only be used when called for in the Plans or as approved by an Engineer.

SYMBOLS:

VIITA Work Area
Temporary Pedestrian Way

- Channelizing Device (See Index 102-600)
- Pedestrian Longitudinal Channelizing Device (LCD)
[Work Zone Sign
\& Arrow Board
\because Crash Cushion
Lane Identification and Direction of Traffic

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$		$\begin{gathered} \text { FY 2022-23 } \\ \text { FTANDARD PLANS } \end{gathered}$	S IDE WALK CLOS URE	$\begin{gathered} \text { INDEX } \\ 102-660 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 2 \end{aligned}$

NOTES:

1. $X=$ Work Zone Sign Distance, see Index 102-600 for "X" value.
2. Use mitered end sections for any end sections within the clear zone.
3. Match cross slope of existing shoulder for widening.
4. Provide 2' of unpaved shoulder outside of the widening.
5. No more than two (2) access openings will be allowed on each project.
6. Do not vary from the plan detail without approval of the Engineer.

SYMBOLS:
(B)Work Zone Sign
\longrightarrow Lane Identification and Direction of Traffic

LENGTH OF		ACCESS LANES
Grade	D (feet)	E (feet)
2\% or less	590	1540
3 to 4\% Upgrade	530	2310
3 to 4\% Downgrade	710	925

(Two-Lane Roadway Shown, Multilane Roadway Similar)

SYMBOLS:

Work Zone Sign
Temporary Traffic Signa
¢. Flagger
Lane Identification and Direction of Traffic

NOTES

1. This Index is intended for two-way and multilane roadways, excluding limited access facilities, with haul roads that intersect the roadway.
2. District Traffic Operations Engineer must approve the installation and timing of temporary signals prior to beginning of work. Adjust timing based on changing field conditions as approved by the Worksite Traffic Supervisor. Obtain approval
from the District Traffic Operations Engineer for any timing changes that are either reoccurring or last longer than 24 hours.
3. $X=$ Work Zone Sign Distance, see Index 102-600 for "X" values.
4. Use Type III Barricades to block haul road access when the haul road is not in operation and a flagger/signal operator is not on duty, except when the haul road is an existing properly marked road.
5. Optionally, use "Signal Ahead" signs with symbols (W3-3) instead of "Signal Ahead" signs with text (W3-3A).
6. The "End Road Work" signs (620-2) may be omitted when the work operation is in place for 24 hours or less.
7. Optionally, use temporary traffic signals for control of the haul road.

NOTES

1. Critcal Root Zone: Extends in all airections one foot per
from trunk of tree to a distance equal to one inch of trunk diameter at breast height.
2. Staging, storage, dumping, washing and operation of
equipment is not permitted within the limits equipment is not permitted within the limits of the tree
3. Install all tree protection prior to commencement of construction and remove when directed by the Enginee
Maintain protection at all times.
4. For closely spaced groups of trees, place the protection barrier around the entire group.
5. Inspect trunk protection and tree quarterly to prevent
girdling. Ad just bands to allow tree growth as needed.
6. See plans for any additional requirements or modifications within the tree protection area.
7. Place weather resistant sign every 50° along the barrier with 6" minimum text height and provide text in English and
Spanish. Sign should read "Keep Out Tree Protection Area".
8. Alternate tree protection systems approved by the Engineer may be used in lieu of the tree protection barrier detailed
on this Index as long as the critical root zone is protected.
9. The Critical Root Zone may be reduced, in the field, by a
certified Arborist or Landscape Architect.

-TREE PROTECTION BARRIER

PLAN
=PROTECTION BARRIER FOR TREE GROUPINGS=

NOTES:

1. Trunk protection may be used when Tree Protection Barrier can not be ,
2. See Selective Clearing and Grubbing Plan for location of trunk protection, orla
3. Adjust bands to allow tree growth (inspect quarterly to prevent girdling).
$\overline{\bar{Z}}$ TRUNK PROTECTION

LAST
REVISION
11/

REVISION
$11 / 01 / 18$ DESCRIPTION:
${ }_{5}^{2}$年 \square FDOF FY 2022-23
FDOTY $\begin{gathered}\text { FY 2022-23 } \\ \text { STANDARD PLANS }\end{gathered}$
$T R E E$ PROTECTION AND PRESERVATION
index
$110-100$

SHEET -

GENERAL NOTES:

The location and construction of mailboxes shall conform to the rules and regulation of the United States Postal Service as modified by this Index.
2. Mailboxes will not be permitted on Interstate highways, freeways, or other highways where prohibited by law or regulation
3. The contractor shall give the Postmaster of the delivery route(s) written notice of project construction 7 days prior to the beginning of work, with Saturdays, Sundays and Holidays excluded.

The Contractor shall furnish and install one mailbox in accordance with this Index at each mail patron delivery location and maintain the box throughout the contract period.
The Contractor shall apply box numbers to each patron box in accordance with he Contractor shall apply box numbers to each patron box in accordance with where local street names and house numbers are authorized by the Postmaster as a postal address, the Contractor shall inscribe the house number on the box; if the box is located on a different street from the patrons residence, the Contractor shall inscribe the street name and house number on the box

The Contractor shall coordinate removal of the patrons existing mailboxes. Immediately after installing the new mailboxes the Contractor must notify each "Mail Delivery Patron"
by Certified Mail that removal of the existing mailboxes must be accomplished in 21 days after receipt of notices. Patrons shall have the option of removing their existing mailboxes or leaving the mailboxes in place for removal by the Contractor; removal by Contractor shall dispose of mailboxes and supports in areas provided by him.

Reuse of existing mailboxes by the Contractor will not be a requirement under any Construction project; however where an existing mailbox meets the design requirements of this Index and is structurally and functionally sound, the Contractor at his option may elect to reuse the existing mailbox in lieu of constructing a new mailbox. Any us

Mailboxes shall be light sheet metal or plastic construction, in traditional style only, and only in Size 1 as prescribed by the Domestic Mail Manual of the U. S. Postal Service (DMM).
Mailbox production standards, lists of approved manufacturers and suppliers of mailboxes, design approval and guidance may be obtained by writing to the Rural Defivery Division,
es shait becal of the elivery route, except on one-way roads and streets where they may be placed on the eft-hand side.

Mailboxes on rural highways shall be set with the roadside face of the box off set from he edge of the traveled way a minimum distance of the greater of the following.
a. Shoulder width plus $8^{\prime \prime}$ to $12^{\prime \prime}$
b. 10^{\prime} for ADT over $10,000 \mathrm{vpd}$

8' for ADT 100 to $10,000 \mathrm{vpd}$
σ^{\prime} for ADT under 100 vpd
6^{\prime} for ADT under 100 vpd
$2^{\prime}-6^{\prime \prime}$ for low speed and ADT under 100 vpd
When a mailbox is installed within the limits of guardrail it should be placed behind the guardrail whenever practical.

Mailboxes on curbed highways, roads, and streets shall be set with the face of the box between $6^{\prime \prime}$ and $12^{\prime \prime}$ behind the face of curb. If the sidewalk abuts the curb or if a nusual condition exists which makes it difficult or impractical to install or serve permitted to install all mailboxes at the back edge of the sidewalk, where they can be served by the carrier from the sidewalk.

Mailboxes shall be set with the bottom of the box between $42^{\prime \prime}$ and $48^{\prime \prime}$ above the mal stop surface, unless the U.S. Postal Service establishes other height restrictions.

No more than two mailboxes may be mounted on a support structure unless the support accordance with NCHRP Report 350 .

Neighborhood Delivery and Collection Box Units (NDCBU) are a specialized multiple mailbox installation that must be located outside the highway and street clear zones. The location of NDCBUS is the sole responsibility of the Postmaster for the delivery route under consideration.
8. Lightweight newspaper receptacles may be mounted below the mailbox on the side of the support post in conformance with the USPS Domestic Mail Manual. The mail patron shall be responsible for newspaper receptacle installation and maintenance.
9. Wood and steel support posts for both single and double mailbox mountings shall be embedded no more than $24^{\prime \prime}$ into the ground

Concrete, block, brick, stone or other rigid foundation structure or encasement, either above or below the shoulder ground line, will not be permitted for mailboxes on rural hignways. on urban roads and streets where mailbox support posts are set within rigid pavement back of curb, the support posts shall be separated from the pavement by a minimum of $1^{\prime \prime}$ of expansion materia.

Support posts shall not be fitted nor installed with surface mount base plates.
10. At driveway entrances mailboxes shall be placed on the far side of the driveway in the direction of the delivery route
At intersecting roads mailboxes shall be located 100^{\prime} or more from the centerline of he intersecting road on the far side in the direction of the delivery route, with the distance increased to 200^{\prime} when the route volume exceeds 400 vehicles per day.
11. Wood support posts shall be in conformance with the material and dimensional requirements of Specification 952 and the treatment requirements of Specification 955

Steel support posts shall have an external finish equal to or better than two coats of weather resistant, air dried or baked, paint or enamel. Surface(s) shall be cleaned all loose scale prior to finishing. The Postal Service prefers that posts be painted

Mounting brackets, plates, platforms, shelves and accessory hardware surface finishes are to be suited to support post finish.
12. Mailboxes shall be paid for under the contract unit price for Mailboxes, Each. Payment hall be full compensation for boxes, posts and accessory items essential for installation in accordance with this standard; erection; adjustments to suit construction needs; and, for identification letters and numbers.

Payment shall be limited to one mailbox per patron address whether the mailbox is nel eused, salvaged, reset or relocated. Payment shall be per mailbox regardless of the number of mailboxes per support or grouping arrangement.

The above compensation shall include any work and cost incurred by the contractor for removal and disposal of existing mailboxes.

There shall be no payment participation for NDCBU furnishing, assembly, installation resetting or relocation

Median
edian

\qquad

DIVIDED ROADWAYS

GENERAL NOTES

1. Roadway dimensions are representative. Subgrade dimensions and control lines are standard. The details shown on this Index do
not supersede the details shown in the Plans or Indexes $120-002$ and 160-001.
2. Plastic (P) soils may be placed above the existing water level (at the time of construction) to within 4 feet of the proposed base. It should be placed uniforsace along the project rather than depth for short distances.
3. High Plastic (H) soils excavated within the project limits may be used in embankment construction as indicated on this Index. High
Plastic soils are not to be used for embankment construction when obtained from outside the project limits.
4. Select (S) soils having an average organic content of more than two and one-half (2.5) percent, or having an individual test value which exceeds four (4) percent, are not permitted in the subgrade
portion of the roadbed. Select (S), Plastic (P), or High Plastic (H) portion of the roadbed. Select (S), Plastic (P), or High Plastic percent, or an organic content individual test result which exceeds seven (7) percent, are not permitted in the portion of embankment inside the control line, unless written authorization is provided by the District Geotechnical Engineer; these soils may be used for by the Plans or otherwise specified in the Plans, provided they can be compacted sufficiently to sustain a drivable surface fo operational vehicles as approved by the Engineer. Determine average organic content from the test results from a minimum of hree randomly selected samples from each stratum or stockple AASHTO T 267 on the portion of a sample passing the No. 4
5. Highly organic soils, composed primarily of partially decayed organic matter, often dark brown or black in color with an odor of decay, and sometimes fibrous, are designated as muck. Further,
any stratum or stockpile of soil which contains pockets of highly organic material may be designated as Muck (M). Highly organic soils are not permitted within the subgrade or embankment portion of the roadbed

NOTES:

1. All material in the shaded area is excess base to be removed
2. There is no additional payment for removal of excess base material

SYMBOL	SOIL		CLASSIFICATION (AASHTO M 145)
S	Select	A-1, A-3, A-2-4 **	
P	Plastic	A-2-5, A-2-6, A-2-7, A-4, A-5, A-6, A-7 (ALL WITH LL < 50)	
H	High Plastic	A-2-5, A-2-7, A-5 Or A-7 (ALL WITH LL >50)	
M	Muck	A-8	

Classification listed left to right in order of preference.
See General Notes Nos. 4 \& 5 for utilization of soils classified as organic material or muck
** Certain types of A-2-4 material are likely to retain excess moisture and may be difficult to dry and compact. They should be used in the embankment above the water level existing at time of construction. They may be used in the subgrade portion of the roadbed when approved by the District Materials Engineer. A-2-4 material placed below the existing water
level must he nonplastic and contain less than 15% passing the No. 200 U.S. Standard sieve

For cut sections this dimension may be reduced to 24"; see Index 120-002. For minor collectors and local facilities this dimension may be reduced to 18

FDOF | FY 2022-23 |
| :---: |
| STANDARD PLANS |

DIVIDED ROADWAYS

= UNDIVIDED ROADWAY

SYMBOL	SOIL	CLASSIFICATION (AASHTO M 145)
S	Select	A-1, A-3, A-2-4**
P	Plastic	A-2-5, A-2-6, A-2-7, A-4, A-5, A-6, A-7 (ALL WITH LL < 50)
H	High Plastic	A-2-5, A-2-7, A-5 or A-7 (ALL WITH LL > 50)
M	Muck	A-8

Classification listed left to right in order of preference.
】See General Notes Nos. $4 \& 5$ for utilization of soils classified as organic material or muck.
** Certain types of A-2-4 material are likely to retain excess moisture and may be difficult to dry and compact. They should be used in the embankment above the water level existing at time of construction. They may be used in the subgrade portion of the roadbed when approved by the District Materials Engineer. A-2-4 material placed below the existing water level must be nonplastic and contain less than 15\% passing the No. 200 U.S. Standard sieve.

For cut sections this dimension may be reduced to 24"; see Index 120-002. For minor colletors and local facilities this dimension may be reduced to 18

DIVIDED ROADWAYS

UNDIVIDED ROADWA

SYMBOL	SOIL	CLASSIFICATION (AASHTO M 145)
s	Select	A-1, A-3, A-2-4 **
S+	Special Select	A-3 *** With Minimum Average Lab Permeability of $5 \times 10^{-5} \mathrm{~cm} / \mathrm{sec}$. (0.14 ft ./day) as per AASHTO 215
P	Plastic	A-2-5, A-2-6, A-2-7, A-4, A-5, A-6, A-7 (ALL WITH LL<50)
H	High Plastic	A-2-5, A-2-7, A-5 or A-7 (ALL WITH LL>50)
M	Muck	A-8

Classification listed left to right in order of preference.
(1) See General Notes Nos. 4 \& 5 for utilization of soils classified as organic material or muck.
** When called for in the Plans, some types of A-2-4 material may be approved in writing by the District Materials Engineer This material must meet the minimum lab permeability requirement, be nonplastic, and not exceed 12% passing the No. 200 U.S. Standard sieve

* Certain types of A-2-4 material are likely to retain excess moisture and may be difficult to dry and compact. They should be used in the embankment above the water level existing at time of construction. A-2-4 material placed
Special Stabilized Subbase: $3^{\prime \prime}$ of \#57 or \#89 Coarse Aggregate Mixed Into Top 6

with overburden - half section
without overburden - half section
\qquad CONSTRUCTION OF CURBED ROADWAY \qquad
* Remove overlying material and organic material within the limits shown and backfill in accordance with Index 120-001,
unless approved otherwise by the District Geotechnical Engineer; The limits include full median width when applied odivided facilities with median widths up to 64^{\prime}; When median width is greater than 64^{\prime} and for bifurcated roadways oadway that will
accommodate one future median lane on each roadway unless specified otherwise by the plans.

GENERAL NOTES:

1. All details shown on this Index for removal of organic and plastic materials apply unless otherwise shown on the plans. 2. Utilize excavated materials in accordance with Index 120-001.
2. Where organic or plastic material is undercut, backfill with suitable material in accordance with Index 120-001,
3. The term "Plastic Material" used in this Index in conjunction with removal of plastic soil is as defined under soil
classifications for Plastic (P) and High Plastic (H) on Index 120-001.
4. See Index 160-001 for miscellaneous earthwork details.
5. The term "Organic Material" as used on this Index is defined as any soil which has an average organic content greater than five (5.0) percent, or an individual organic content test result which exceeds seven (7.0) percent. Remove organic material as shown on this
Index and the plans unless directed otherwise by the District Geotechnical Engineer. Determine the average organic content from the Index and the plans unless directed otherwise by the District Geotechnical Engineer. Determine the average organic content from the
test results from a minimum of three randomly selected samples from each stratum. Perform tests in accordance with AASHTO T267 test resuls from a minimum of three randomly sele
on the portion of a sample passing the No. 4 sieve.
6. In areas of curbed roadway, where underdrain is to be constructed beneath the proposed pavement, the grade of the underdrain filter
material will not extend above the bottom of the stabilized section of the subgrade. Gradation of the filter material must conform to standard specifications. The minimum grade of staderdrain pipe is 0.2%. Standard Specifications. The minimum grade of underdrain pipe is 0.2%

typical cut section on superelevation

typical cut section on superelevation AND MAJOR COLLECTORS HAVING DEPRESSED MEDIANS

NOTES:

1. See Sheet 1 for the GENERAL NOTES
2. When the typical cut details are applied to minor collectors and
local facilities, the undercut may be reduced from $24^{\prime \prime}$ to $18^{\prime \prime}$.
3. Where frequency of median breaks indicates that it is impractical to leave plastic material in the median, the designer may elect to
indicate total removal of this material. If during construction it becomes apparent, due to normal required construction procedures, that it is impractical to leave the plastic material in the median,
total removal of this material shall be approved by the Engineer.
4. Refer to roadway cross sections to determine whether minimum 4. Refer to roadway cross section
or preferable removal is used.
5. Where the Preferable Removal method is shown in the plans and it is impossible to place the underdrain at the outer Cut Limit due to
conflict with storm drain trunk lines, remove to Inner Cut Limit and place underdrain at location shown for Minimum Removal (See Special Removal Detail)
6. Cross slopes of 0.02 shown above are minimums. Follow the cross
slope of the pavement to the extent possible.

CONSTRUCTION AND LOCATION OF UNDERDRAIN IN CURBED ROADWAY
(See Note 4)
REMOVAL OF PLASTIC MATERIAL

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		DESCRIPTION:	FDOTY	FY 2022-23 STANDARD PLANS	SUBSOIL EXCAVATION	$\begin{gathered} \text { INDEX } \\ 120-002 \end{gathered}$	SHEET 2 of 2

NOTES:

PAVEMENT REMOVAL AND REPLACEMENT

1. Pavement shall be mechanically sawed.
2. The replacement asphalt shall match the existing structural and friction courses for type and thickness in
accordance with current
3. The new base materials shall be either of the same type and composition as the materials removed or of
equal or greater structural adequacy.

BACKFILL OPTION

1. COMPACTED AND STABILIZED FILL
A. Place backfill material in accordance with Specification 125
B. In Stage \# \# construct compacted fill beneath the haunches of the pipe, using mechanical tamps suitable
for this purpose. This compaction applies to the material placed beneath the haunches of the pipe and above any bedding.
In Stage \#2, construct compacted fill along the sides of the pipe and up to the bottom of the base, with
the upper 12" receiving Type B Stabilization. In lieu of Type B Stabilization, the Contractor may construct the upper $12^{\prime \prime}$ receiving Type
using optional Base Group 3 .
2. FLOWABLE FILL
A. If compaction can not be achieved through normal mechanical methods then flowable fill may be used
B. Flowable fill is to be placed in accordance with Specification 121, as approved by
the Engineer.
C. Do not allow the utility being installed to float. If a method is provided to prevent flotation from
occurring, Stages $\# 1$ and $\# 2$ can be combined, if approved by the Engineer.
D. In Stage \#1, place flowable fill midway up on both sides of the utility. Allow to harden before placing
E. In Stage \#2, place flowable fill to the bottom of the existing base course.

general notes

1. The details provided in this Index apply to cases in which jack and bore or directional boring methods are not required
by the
2. Flowable fill shall not be placed directly over loose, or high plastic, or muck material (see Index 120 -001) which will cause settlement
due to fill weight. Where highly compressible material exists, the amount, shape and depth of flowable fill must be engineered to prevent pavement settlement.
3. These details do not apply to utility cuts longitudinal to the centerine of the roadway which may require the additional use of
geotextiles, special bedding and backill, or other special requirements.
4. Method of construction must be approved by the Engineer
5. Some pipe may require special granular backfill up to $6^{\prime \prime}$ above top of pipe. Geotextiles may be required to encapsulate the special over the replacement siab. The overray shal match the existing asphat pavement thickness. The replacement fric
match the existing friction course, except structural course may be used in lieu of dense graded friction course.
Thoudder pavement, curb, curb and gutter, and their substructure disturbed by utility trench cut construction shall be restored in kind.
6. The use of flowable fill to reduce the time traffic is taken off a facility is acceptable but must have prior approval by the Engineer. Flowable fill use is allowed only when propery engineered for pavement irossings. whether straight or diagonal, and shall not be instaled for significant depth or lengths. The maximum lenth shall be fifter (50) feet and a maximum depth of six (6) feet unless
supported by an engineering document prepared by aregistered prof essiof al engineer that specializes in soils sengineering. The
7. Excavatable flowable fill is to be used when the flowable fill option is selected

TRENCH CUTS AND RESTORATIONS ACROSS ROADWAYS
LAST
REVISION
11/01/17

DESCRIPTION:
REVISI/17

FDOㄷT | FY 2022-23 |
| :---: |
| STANDARD PLANS |

$\overline{\bar{Z}}$ PARTIAL CUTS FOR RING AND COVER ADJUSTMENTS $\bar{\square}$

NOTES

1. Cut-Lines must be straight and cleanly sawed.
2. See Sheet 1 for replacement pavement.
3. Adjust manholes prior to placing friction course when pavement resurfacing is occurring in the
area adjacent to the manhole.
4. Align Longitudinal Cut-Lines with pavement joint or center of traffic lane to avoid wheel path
5. For rigid pavement, align Transverse Cut-Lines with nearest existing joint.

Direction of Traffic
TRAFFIC SEPARATOR

NOTES:

1. When the median has curb or curb and gutter, stabilize $4^{\prime \prime}$ back of curb.
2. When the median has shoulder with no curb or curb and gutter, stabilize to normal shoulder width
3. See the details above for stabilizing requirements at crossroads.
4. Stabilize entire area under all paved traffic islands.
5. Stabilize full width under all traffic separators.
6. Provide select soil where shown above and as defined on Index 120-001. For minor collectors and
local facilities the depth of select material thickness may be reduced from $24^{\prime \prime}$ to $18^{\prime \prime}$.
7. Limits of Stabilization for Intermediate U-Turn Crossovers and, unless otherwise specified in the Plans, at paved and unpaved private roads and unpaved public roads.

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$		DESCRIPTION:	FDOTY	FY 2022-23 STANDARD PLANS	MEDIAN STABILIZING DETAILS	InDEX $160-001$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 1 \end{aligned}$

= FLUSH SHOULDER ROADWAY - DRIVEWAY CONSTRUCTION $\overline{=}$
\qquad

PLAN

STABILIZING AND BASE AT DRIVEWAYS

DRIVEWAY ENTRANCES NOTES:

1. See Plans for Driveway width (W) and Return Radius (R).
2. See the Plans for drainage pipe size and length or as determined by the Engineer. The size will be no less than $15^{\prime \prime}$ diameter or equivalent.
3. Stable material may be required for graded driveways to private property as directe by the Engineer in accordance with Specification 102-8.
4. The driveway pavement requirement at graded connections may be waived for connections serving one or two homes or field entrances with less than 20 trips per day, or 5 trips per hour as approved by the Engineer, or when not shown in the Plans.
5. Point of Connection
a. Construct paved driveways for all paved connecting facilities. The connecting point will be determined by the Engineer
b. Construct paved driveways for all business, commercial, industrial or high volume residential graded connecting facilities. Construct the connecting point $30^{\prime}-0^{\prime}$ from edge of travel way or at R/W line, whichever is less.
c. Construct paved driveways for all side road connections. The R/W is the connecting point.

section at - resurfacing
\qquad

GENERAL NOTES

Driveways are to be constructed or resurfaced for low volume (single family, duplex, farm, etc.) residential connections as directed by the Engineer.
2. Driveways construction is not required for low volume residential connections where roadway shoulders are paved.
3. Match existing paved shoulder widths $\geq 4^{\prime}$. For all other shoulders conditions, construct at 5^{\prime} wide. 4. Connections beyond the shoulder width are to be constructed as directed by the Engineer.
5. Construct Driveway Base in accordance with Specification 286.
6. Payment for structural course and friction course is to be included in roadway pavement pay item.

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 18 \end{array}$	\|	$\begin{gathered} \text { FDOT } \\ \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	PAVED AND GRADED D RIVEWAYS

Note: Dimension w will be shown in the plans or
established by the Engineer based on field established by the Engineer based on field
conditions. Dimension will be constructed
so that the hame factor wit has m mind so that the shape factor w/t has a m maximu
value of 2.0 and a minimum value of 1.0 . for rehabilitation projects
TAPE BOND BREAKER
$d=w=3 / 4$ Unless Specified Otherwise In The Plans

Joint Sealant Material To Be
As Specified In The Plans
Backer Rod Bond Breaker

BACKER ROD BOND BREAKER

CONCRETE-CONCRETE JOINTS

for new and rehabilitation projects BACKER ROD BOND BREAKER

BACKER ROD BOND BREAKER (CONCRETE-CONCRETE JOINTS)				
Joint dimensions (inches)				
$\begin{aligned} & \text { JOINT } \\ & \text { WIDTH } \end{aligned}$	$\begin{gathered} \text { SEALANT } \\ \text { BEAD } \\ \text { THICKNESS } \end{gathered}$	$\begin{gathered} \text { BACKER } \\ \text { ROD DIA. } \end{gathered}$	$\begin{gathered} \hline \text { MINIMUM } \\ \text { JOINT } \\ \text { DEPTH } \\ \hline \end{gathered}$	$\begin{gathered} \text { BACKER ROD } \\ \text { PLACEMENT } \\ \text { DEPTH } \end{gathered}$
1/4	1/4	3/8	1	1/2
3/8	$1 / 4$	1/2	$11 / 4$	1/2
1/2	1/4	5/8	$11 / 4$	1/2
5/8	5/6	3/4	11/2	9/6
3/4	3/8	1	13/4	5/8
7/8	1/16	11/8	$13 / 4$	11/16
1	1/2	11/4	2	3/4
>1	1/2	11/4+	$2+$	3/4
Unless otherwise indicated on the plans the joint width for new construction will be $1 / 4 / 4$ for construction joints, 3/8" for all other joints.				
For rehabilitation projects the joint width will be shown on the plans or established by the Engineer based on field conditions.				

FOR NEW AND REHABILITATION PROJECTS;
ITHER TAPE OR BACKER ROD BOND BREAKER REQURED,
SHOULDER MUST BE REPAIRED IF PROPER JOINT SHAPE
can not be attained

CONCRETE-ASPHALT SHOULDER JOINTS

JOINT SEAL DIMENSIONS

Anchor bolts shall be Grade C in accordance with ASTM A 307 Threaded sleeves shall develop the full strength of the bolt
and meet the material and thread requirements of ASTM A 56 and meet the material and thread requirements of ASTM A 563.

SECTION AA

TOP VIEW

alternate keyway and hook bolt
STEEL HOOK BOLT ASSEMBLY
CONTRACTION ASSEMBLY

JOINT LAYOUT AT THRU INTERSECTION

JOINT LAYOUT AT ' T ' INTERSECTIONS

SECTION DD

JOINT ARRANGEMENT

NOTES

1. Longitudinal joints will not be required for single lane pavement 14^{\prime} or less in width. For entrance and exit ramp joint details, see Sheet 4
2. Arrangement of longitudinal joints are to be as directed by the Engineer.
3. All manholes, meter boxes and other projections into the pavement shall be boxed-in with $1 / 2$ " preformed expansion joint material.
LAST
REVISION
11/

11/01/18
FDOT
FY 2022-23
STANDARD PLANS

EXPANSION ASSEMBLY

Note: Proprietary contraction and expansion assemblies may be used. Products shall be introduced to Proprietary contraction and expansion assemblies may be used. Products shall be introduced to
the State Construction Office in accordance with section (C) of the Product Evaluation Procedure.

entrance taper with auxiliary lane

EXIT TAPER WITH AUXILIARY LANE

3-THRU LANES WITH AUXILIARY LANE AND 2-LANE EXIT RAMP

Note: Transverse joint spacing should not exceed 15-ft or twenty-four times the slab thickness,
whichever is less. If a lane exceeds 15 - $f t$ width, such as single lane ramps and weigh
stations, longitudinal joint to be constructed in centerline of lane

Z DESCRIPTION:
LAST
REVISION
$11 / 01 / 18$

11/01/18
FDOTY $\begin{gathered}\text { FY 2022-23 } \\ \text { STANDARD PLANS }\end{gathered}$
JOINT LAYOUT AT ENTRANCE AND EXIT RAMP TERMINALS

figure 10.2-REPAIR METHOD: NONE OR CLEAN AND SEAL

FIGURE 10.3-FULL SLAB FULL DEPTH REPLACEMENT

Existing Transverse Joint $\quad \therefore \begin{aligned} & \text { Bond Breaker } \\ & \text { (Along All Lon }\end{aligned}$
Fulll-Depth
Repair Area
figure 10.4-PARTIAL SLAB FULL DEPTH REPLACEMENT

figure 10.6-multiple slab full depth replacement

GENERAL NOTES

1. For Repair and Replacement Criteria see Sheet 2.
2. Full depth repairs consist of removing and replacing at least a portion of the existing slab to the bottom of the concrete.
3. Repair boundaries shall be sawed full-depth with diamond saw blades. On hot days, it may not be possible to make this cut without first making a wide, pressure relief cut within the repair boundaries. A carbide-tipped wheel saw may be used for this purpose, but the wheel saw must not intrude on the if wheel saw cuts are made, diamond saw cuts must be made 18 in. outside the wheel saw cuts. To prevent damage to the base, the wheel saw must not be allowed to penetrate more than 0.5 in. into the base.
4. No additional base or subgrade material shall be added and all loose base or subgrade material shall be removed prior to placement of the new concrete slab. The concrete slab shall be placed to the full depth of the material removed. No additional compensation will be allowed for additional concrete
required to bring proposed concrete slab up to finished grade.
5. Removal of the damaged concrete pavement shall be by lifting. Any good concrete pavement which is damaged during removal of damaged areas shall be removed and replaced by the contractor at his expense.
6. If the roadway contract includes grinding, then the slab replacement shall be performed first.
7. During slab replacement operations, fill any saw cut over runs into adjacent slabs with epoxy.
8. Install tie bars at longitudinal joints when two full adjacent or multiple replaced slabs.

SLAB REPAIR AND REPLACEMENT CRITERIA

DISTRESS PATTERN	SEVERITY/DESCRIPTION		REPAIR METHOD	REFERENCE
CRACKING				
Longitudinal	Light	< $1 / 88^{\prime \prime}$, no fauting, spaliing <1/2" wide	None	Figure 10.2
	Moderate	1/8" <width <1/2", spalling <3" wide	Clean and Seal	Figure 10.2
	Severe	width > $1 /{ }^{\prime \prime}$, spalling $>3^{\prime \prime}$ faulting $>1 / z^{\prime \prime}$	Replace	Figure 10.3
Transverse	Light	< $1 / 8^{\prime \prime}$, no faulting, spalling <1/2" wide	None	Figure 10.2
	Moderate		Clean and Seal	
	Severe	width > $1 / 2^{\prime \prime}$, spalling $>3^{\prime \prime}$ faulting >1/2"	Replace	Figure 10.3, 10.4 and 10.5
Corner Breaks	A corner of the slab is separated by a crack that intersects the adjacent longitudinal and transverse joint, describing an approximate 45° angle with the direction of traffic.		Full Depth	Figure 10.4 and 10.5
Intersecting Random Cracks (Shattered Slab)	Cracking patterns that divide the slab into three or more segments.		Full Depth	Figure 10.3 and 10.4
JOINT DEFICIENCIES				
Spall Nonwheel Path	Light	spall width <11/2, < $1 / 3$ slab depth, <12" in length	None	Figure 10.4 and 10.5
	Moderate	$1^{11 / 2 \prime}<$ spall width <3", < $1 / 3$ slab depth, <12" in length	None	Figure 10.4 and 10.5
	Severe	spall width >3" or length >12"	Full Depth	Figure 10.4 and 10.5
Spall Wheel Path	Light	spall width <11/2", <than $\frac{1}{3}$ slab depth, <12" in length	None	Figure 10.4 and 10.5
	Moderate	11/2" <spall width <3", < $1 / 3$ slab depth, <12" in length	Full Depth	Figure 10.4 and 10.5
	Severe	spall width $>3^{\prime \prime}$ or length $>12^{\prime \prime}$	Full Depth	Figure 10.4 and 10.5
SURFACE DETERIORATION				
Pop Outs Nonwheel Path	Small pieces of surface pavement broken loose, normally ranging from 1 to 4 in. diameter and $1 / 2$ to 2 in. in depth.			
	Light	Not deemed to be a traffic hazard	Keep under observation	
	Severe	Flying debris deemed a traffic hazard	Full Depth	Figure 10.4
Pop Outs Wheel Path	Small pieces of surface pavement broken loose, normally $>3^{\prime \prime}$ diameter and $2^{\prime \prime}$ in depth.			
	Light	Deemed to be a traffic hazard	Full Depth	Figure 10.4
	Severe	Flying debris deemed a traffic hazard	Full Depth	Figure 10.4
MISCELLANEOUS DISTRESS				
Faulting	Elevation differences across joints or cracks.			
	Light	Faulting <4/32"	None	
	Moderate	4 < Faulting <16/32"	Grind	
	Severe	Faulting $>16 / 32^{\prime \prime}$	Grind	
Lane To Shoulder Drop-Off	Light	0 <drop-off <1"	None	N/A
	Moderate	$1^{\prime \prime}<$ drop-off <3"	Build Up	
	Severe	drop-off >3"	Build Up	
Water Bleeding Or Pumping	Seeping or ejection of water through joints or cracks.		Install appropriate drainage, edge drain, permeable subbase, reseal joints, etc.	N/A
Blowups	Upward movement at transverse joints or cracks often accompanied by shattering of the concrete.		Full Depth	Figure 10.3 and 10.4

general notes

For asphat base, use four expansion joints, spaced at 15 feet, per Index 350-001.
2. The centerline of roadway and the centerline of bridge do not necessarily coincide. Determine the centerline of the roadway paveme.
placement of the expansion joint.
3. For information on other types of concrete pavement joints see Index 350-001
4. Pay quantity for expansion joint is the length of joint to be constructed across the roadway and shoulder pavements, measured at right angles to he centerline of the roadway. Payment for construction, including reinforced concrete subslab, sheet metal strip and compression seal, but, not including roadway pavement reconstruction associated with joint replacement or reconstruction. Expansion joint to be paid for under the contract
Δ Construct Expansion Joints Parallel To The Existing
Transverse Pavement Joints On Rehabilitation Projects, And Parallel To The Standard Transvers
In The Plans For New Construction.

* Finish surface smooth. Cure with heavy coating of wax base white pigmented curing compound. Apply second application immediately prior to placing pavement.

PLAN

SECTION A-A

EXPANSION JOINT

RIGID SHOULDER PAVEMENT NOTES:

1. Immediately prior to placing the seal, thoroughly clean the joint of all foreign material. Immediately after the seal is placed, bend up the sheet metal strip against the pavement edge.

SODDED SHOULDER OR FLEXIbLE SHOULDER PAVEMENT
2. Use a minimum 16 gage steel, $12^{\prime \prime}$ wide sheet metal strip, Galvanized in accordance with
ASTM A-526, Coating Designation G90.

NOTE:
Thoroughly coat all contacting surfaces between the
compression seal and concrete with a lubricant-adhesive.
joint dimensions
optional seals

(Shear key shown dashed)

NOTES

RAFFIC RAILINGS OR PARAPETS:
If there is a Traffic Railing or Parapet on the wall, align Wall Joints with V-Grooves, and Wall Expansion Joints with Barrier Open Joints.
Foundation:
Prepare the soil below the footing in accordance with the requirements for spread footings in Specification Section 455.

* Shear Key is required only when specified in the Plans.

TYPICAL SECTION

Z DESCRIPTION:

general notes:

1. Use a 1-piece cover, unless the 2-piece cover is called for in the Plans, except at inlets and manholes
with sump bottoms. Use the 2-piece cover when the sump depth exceeds 2^{2}, unless otherwise noted.
2. Include "Adjustable" on the cover for Type I manhole adjustable frames.
3. For square or rectangular precast drainage structures, use either deformed or smooth WWR meeting the requirements of Specification 931. WWR must be continuous around the box and lapped in
accordance with Option 1 or 3 as shown in the Wall Reinforcing Splice Details.
4. Lap splice horizontal steel in the walls of rectangular structures in accordance with Option 1,2 or 3 as shown in the Wall Reinforcing Splice Details.
5. Welding of splices and laps is permitted. Use AASHTO M259 requirements and restrictions on welds.
6. Rebar straight end embedment of peripheral reinforcement may be used in lieu of ACI standard hooks for top and bottom slabs, except when hooks are specifically called for in the Plans.
7. Precast opening for pipe must be the pipe OD plus $6^{\prime \prime}\left(\pm 2^{\prime \prime}\right.$ tolerance). Use mortar to seal the pipe
into the opening of such a mix that shrinkage will not cause leakage into or out of the structure. Dry-pack mortar may be used to seal openings less than $2 \frac{1}{2}{ }^{\prime \prime}$ wide.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes, Contents, Manhole Top Overview, and Manhole Covers
2	Manhole Frames and Manhole Tops
3	Inlet Locking Grates, Subgrade and Base Temporary Drains, and Pipe to Structure Filter Fabric Wrap
4	Drainage Structure Invert, Sump Bottom, Wall Reinforcing Splice Details, and Typical Slab to Wall Details
5	Precast Option and Equivalent Reinforcement substitution
6	Construction Joints and Minimum Box Riser Segment Dimensions
7	Skewed Pipe in Rectangular Structures
8	Miscellaneous Pipe Connection Details

вотtом

PLAN

elevation
1-PIECE COVER
\qquad
2-PIECE COVER

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$		FDOTY	FY 2022-23 STANDARD PLANS	S UPPLLEMENTARY DETAILS FOR DRAINAGE STRUCTURES

TABLE 1

\section*{WEIGHT OF CASTINGS (Ib)} | Frame | $2^{\prime}-0^{\prime \prime}$ OPENING | $3^{\prime \prime}-0^{\prime \prime}$ OPENING |
:---	:---	:---		$\begin{array}{c}\text { Frame } \\ \text { Type }\end{array}$	Frame	Cover (Std.).	Frame	2-Piece Cover					
Inside	Outside	Total											
It	155	190	25			I	155	190	220	Inside	Outside	Total	
:---:	:---:	:---:	:---:	:---:	:---:	:---:							
II	145	190	255	410				$I I$	145	190	255	190	220
:---:	:---:	:---:	:---:	:---:	:---:								
III	90	190	180	190	220								

NOTE:
Frame Type I in Table 1, includes Ad justable frames.

PLAN

PLAN

S
oncrete or $8^{\prime \prime}$ Brick
See Note 3)

precast concentric cone
TYPE 8

precast eccentric cone

NOTES:

. Use Class II concrete for Manhole top Type 7 slabs.
2. Manhole top Type 7 slabs may be of cast-in-place or precast construction. The optional key is for precast tops and in lieu of dowels. Omit
3. Manhole top Type 8 may be of cast-in-place, precast concrete construction, or brick construction. For concrete construction, use the same
concrete and steel reinforcement as the supporting wall unit. An eccentric cone may be used.

Use contruction join orion, as
4. Use construction joint options, as shown on Sheet 6 to secure manhole tops to structures.
5. Frames may be adjusted to a maximum 12" height with brick or precast ASTM C478 grade rings.
6. Manhole top Type 8 may be substituted for a Type 7, if the minimum dimensions are not reduced.
7. Manhole top Type 7 may be substituted for Type 8, if the minimum thickness (h) above pipe opening cannot be maintained with Type 8 .

TYPE I ADJUSTABLE FRAME

LAST		
REVISION		
$11 / 01 / 20$	$\hat{0}$ 	DESCRIPTION:

FDOㄷT $\begin{gathered}F Y \text { 2022-23 } \\ \text { STANDARD PLANS }\end{gathered}$

THRU-BOLT
NOTES:

1. Install either a $1 / 3 " \emptyset \times 1$ l" Diameter Threaded Straight (Thru-Bolt) a J-Type,
or an adhesive Bonded Anchor Eyebolt.
2. Install a $5 / 1^{\prime \prime}$ " Chain and $3 / 1$ a $^{\prime \prime}$ Cold Shuts. When chaining two grates

3. Install adhesive bonded anchor option with a minimum of 4" embedment, and
in accordance with Specification 416 .

EYEBOLT AND TABLE 2					
CHAIN REQUIREMENTS					

LOCKING GRATES TO INLETS

NOTES:

1. Bevel cut upper stub to match forming for apron face. Capping or plugging of upper stub is not required. Remove friable base material at stub opening to permit covering of opening with structural course material.
2. Remove riprap, cement PVC cap on lower stub, and place compacted fill in entrance prior to placing base material.
\qquad
= SUBGRADE AND BASE TEMPORARY DRAINS

NOTE: For all structures unless excluded by special detail.
= DRAINAGE STRUCTURE INVERT \qquad

NOTES:

1. Construct sumps in inlets and manholes connecting to

French Drains unless excluded in the Plans.
2. Construct sumps only where called for in the Plans
at all other locations.
3. Construct weep holes in sump bottom only where called
for in the Plans.
(0ption 1) Lap Splice: At Quarter Point
(30 Bar Diameters or Vertical Wire

half PLAN
HALF PLAN
\qquad

Bottom Reinforcing
Rebar Straight End Embedment
4. Min. Beyond Ind Inside Face of or
Structure Wall for All Bar sizes Extend Top and Bottom Slabs

NOTES:
. See Sheet 6 for optional construction joints.
2 Bend bars as required to maintain cover.
TYPICAL SLAB TO WALL DETAILS
(PRECAST STRUCTURE SHOWN)

example table of equivalent steel area								
SChedule	GRADE 60 REINFORCING BAR		EQuIVALENT GRADE 40 REINFORCING BAR		EQUIVALENT 65 KSI SMOOTH welded wire reinforcement		EQUIVALENT 70 KSI DEFORMED welded wire reinforcement	
	Bar Size \& Spacing	$\begin{aligned} & \text { Steel } \\ & \text { Area } \\ & \left(i^{2} / f t\right) \end{aligned}$	Bar Size \& Spacing	$\begin{gathered} \text { Steel } \\ \text { Area } \\ \left(i^{2} / f t\right) \end{gathered}$	Style Designation	$\begin{gathered} \text { Steel } \\ \text { Area } \\ \left(i n^{2} / f t\right) \end{gathered}$	Style Designation	$\begin{aligned} & \text { Steel } \\ & \text { Area } \\ & \left(i^{2} / 2 / f t\right) \end{aligned}$
A	$\begin{aligned} & \text { \#3 @ 6¹2" Ctrs. } \\ & \text { \#4 @ 12" Ctrs. } \end{aligned}$	0.20	$\begin{aligned} & \text { \#3 @ 41/2" Ctrs. } \\ & \text { \#4 @ 8 } 8^{\prime \prime} \text { Ctrs. } \\ & \text { \#5 @ 12" Ctrs. } \end{aligned}$	0.30	$3^{\prime \prime} \times 3^{\prime \prime}-W 4.6 \times W 4.6$ $4^{\prime \prime} \times 4^{\prime \prime}-W 6.2 \times W 6.2$ $6^{\prime \prime} \times 6^{\prime \prime}-W 9.2 \times W 9.2$	0.1846	$\begin{aligned} & 3^{\prime \prime} \times 3^{\prime \prime}-D 4.3 \times D 4.3 \\ & 4^{4 \prime} \times 4^{\prime \prime}-D 5.7 \times D 5.7 \\ & 6^{\prime \prime} \times 6^{\prime \prime}-D 8.6 \times D 8.6 \end{aligned}$	0.1714
B	$\begin{aligned} & \text { \#3 @ 5½" Ctrs. } \\ & \text { \#4 @ } 10^{\prime \prime} \text { Ctrs. } \end{aligned}$	0.24	\#3 @ $3^{11 / 2}$ Ctrs. \#4 @ $61 / 2$ ² $^{\prime \prime}$ Ctrs. \#5 @ 10" Ctrs	0.36	3"x3"-W5.5xW5.5 $4^{\prime \prime} \times 4^{\prime \prime}-$ W7.4xW7.4 $6^{\prime \prime} \times 6^{\prime \prime}-$ W $11.1 \times$ W 11.1	0.2215	$\begin{gathered} 3^{\prime \prime} \times 3^{\prime \prime}-D 5.1 \times D 5.1 \\ 4^{\prime \prime} \times 4^{\prime \prime}-D 6.9 \times D 6.9 \\ 6^{\prime \prime} \times 6^{\prime \prime}-D 10.3 \times D 10.3 \end{gathered}$	0.2057
Special 1	$\begin{aligned} & \text { \#3 @ 5" Ctrs.. } \\ & \text { \#4 @ 9" Ctrs. } \end{aligned}$	0.267	\#3 @ 3" Ctrs. \#4 @ 6" Ctrs. \#5 @ 9"Ctrs.	0.40	$\begin{gathered} 3^{\prime \prime} \times 3^{\prime \prime}-W 66.2 \times W 6.2 \\ 4^{\prime \prime} \times 4^{-1}-W 8.2 \times W 8.2 \\ 6^{\prime \prime} \times 6^{\prime \prime}-W 12.3 \times W 12.3 \end{gathered}$	0.2465	$\begin{aligned} & 3^{\prime \prime} \times 3^{\prime \prime}-D 5.7 \times D 5.7 \\ & 4^{4 \prime} \times 4^{\prime \prime}-D 7.6 \times D 7.6 \\ & 6^{\prime \prime} \times 6^{\prime \prime}-D 11.4 \times D 11.4 \end{aligned}$	0.2289
c	\#3 @ $3^{11 / 2}$ Ctrs. \#4@ $61 / 22^{\prime \prime}$ Ctrs. \#5 @ 10" Ctrs.	0.37	\#4 @ 4" ctrs. \#5 @ $61 / 2$ " Ctrs. \#6 @ 91/2" Ctrs.	0.555	$3^{\prime \prime} \times 3^{\prime \prime}-W 8.5 \times W 8.5$ $4^{4 \prime} \times 4^{\prime \prime}$-W $11.4 \times$ W 11.4 $6^{\prime \times} \times 6^{\prime \prime}-$ W $17.1 \times$ W $^{2} 17.1$	0.3415	$3^{\prime \prime} \times 3^{\prime \prime}-D 7.9 \times D 7.9$ $4^{\prime \prime} \times 4^{\prime \prime}-D 10.6 \times D 10.6$ $6^{\prime \prime} \times 6^{\prime \prime}-D 15.9 \times D 15.9$	0.3171
D	\#4@41/2" Ctrs. \#5 @ 7" Ctrs. \#6 @ 10" Ctrs.	0.53	\#4@3"Ctrs. \#5 @ 41/2"Ctrs. \#6 @ 6½" Ctrs.	0.795	$3^{\prime \prime} \times 3^{\prime \prime}-$ W $12.2 \times$ W 12.2 $4^{4 \prime \times 4}$ "-W $16.3 \times$ W 16.3 $6^{\prime \prime} \times 6^{\prime \prime}-W 24.5 \times W 24.5$	0.4892	$3^{\prime \prime} \times 3^{\prime \prime}-D 11.4 \times D 11.4$ $4^{\prime \prime} \times 4^{\prime \prime}-D 15.1 \times D 15.1$ $6^{\prime \prime} \times 6^{\prime \prime}-D 22.7 \times D 22.7$	0.4543
E	$\begin{aligned} & \text { \#4 @ 3" Ctrs. } \\ & \text { \#5 @ 5" ctrs. } \\ & \text { \#6 @ 7" Ctrs. } \end{aligned}$	0.73	\#5 @ $31 / 2{ }^{\prime \prime}$ Ctrs. \#6 @ $41 / 2{ }^{1 / 2}$ Ctrs. \#7 @ $6^{1 / 2}$ Ctrs.	1.095	3"x3"-W $16.8 \times W 16.8$ 4"x4"-W $22.5 \times W 22.5$ 6" $\times 6$ " - W $33.7 \times$ W 33.7	0.6738	$\begin{aligned} & 3^{\prime \prime} \times 3^{\prime \prime}-D 15.6 \times D 15.6 \\ & 4^{\prime \prime} \times 4^{\prime \prime}-D 20.9 \times D 20.9 \\ & 6^{\prime \prime} \times 6^{\prime \prime}-D 31.3 \times D 31.3 \end{aligned}$	0.6257
F	\#5 @ $3^{11 / 2}$ Ctrs. \#6 @ 5" Ctrs. \#7 @ 7" Ctrs.	1.06	\#6 @ 3" Ctrs. \#7 @ 41⁄2" Ctrs. \#8 @ 6" Ctrs.	1.59	$3^{\prime \prime} \times 3^{\prime \prime}-W 24.5 \times W 24.5$ $4^{\prime \prime} \times 4^{\prime \prime}-W 32.6 \times$ W 32.6 6"x6"-W48.9xW48.9	0.9785	$\begin{aligned} & 3^{\prime \prime} \times 3^{\prime \prime}-D 22.7 \times D 22.7 \\ & 4^{\prime \prime} \times 4^{\prime \prime}-D 30.3 \times D 30.3 \\ & 6^{\prime \prime} \times 6^{\prime \prime}-D 45.4 \times D 45.4 \end{aligned}$	0.9086
Special 2	\#5 @ $3^{\prime \prime}$ Ctrs. \#6 @ 4" Ctrs. \#7 @ 5½" Ctrs.	1.24	$\begin{aligned} & \text { \#7 @ 4" Ctrs. } \\ & \text { \#8 @ } 5^{\prime \prime} \text { Ctrs. } \end{aligned}$	1.86	3"x3"-W28.6xW28.6 $4^{\prime \prime} \times 4^{\prime \prime}$-W $38.2 \times$ W 38.2 $6^{\prime \prime} \times 6^{\prime \prime}-W 57.2 \times W 57.2$	1.1446	$\begin{aligned} & 3^{\prime \prime} \times 3^{\prime \prime}-D 26.6 \times D 26.6 \\ & 4^{\prime \prime} \times 4^{\prime \prime}-D 35.4 \times D 35.4 \\ & 6^{\prime \prime} \times 6^{\prime \prime}-D 53.1 \times D 53.1 \end{aligned}$	1.0629
G	$\begin{aligned} & \text { \#6 @ 31/" Ctrs. } \\ & \# 7 \text { @ } 5^{\prime \prime} \text { ctrs. } \end{aligned}$	1.46	$\begin{aligned} & \# 7 \text { @ } 3^{\prime \prime} \text { ctrs. } \\ & \# 8 \text { @ } 4^{\prime \prime} \text { Ctrs. } \end{aligned}$	2.19	$\begin{aligned} & 3^{\prime \times} \times 3^{\prime \prime} \text {-W } 33.7 \times \text { W33.7 } \\ & 4^{4} \times 4^{-W 44.9} 44.9 \end{aligned}$	1.3477	$\begin{aligned} & 3^{\prime \prime} \times 3^{\prime \prime}-D 31.3 \times D 31.3 \\ & 4^{\prime \prime} \times 4^{\prime \prime}-D 41.7 \times D 41.7 \end{aligned}$	1.2514

NOTES

1. See inlet indexes for optional precast inlet construction details up to depths of ${ }^{\text {15 }}$
2. Interior dimensions of an Alt. "B" Bottom may be adjusted to reflect these inlet interior Index 425-010.
3. Use concrete meeting the requirements of ASTM C478 or Class IV for precast structures with $6^{\prime \prime}$ wall or slab thickness.
4. Reinforcement may be deformed bar reinforcement or welded wire reinforcement. Bar reinforcement other than 60 ksi may be used, however only two grades are recognized:
Grade 40 and Grade 60 . Smooth welded wire reinforcement will be recoanized as having Grade 40 and Grade 60 . Smooth welded wire reinforcement will be recognized as having
a design strength of 65 ksi and deformed welded wire reinforcement will be recognized as having a design strength of 70 ksi . The welded wire reinforcement will be recogniz adjusted in accordance with the Equivalent Steel Area Table provided. Use the follow

Grade 40 Steel Area $=A 540=60 / 40 \times$ As60
Smooth Welded Wire Reinforcement Steel Area $=$ As65 $=60 / 65 \times$ A560
Deformed Welded Wire Reinforcement Steel Area $=$ As70 $=60 / 70 \times$ As60
When a reduced area of reinforcement is provided, any maximum bar spacing shown must also be reduced as determined by the following equations, unless otherwise shown
Max Grade 40 Bar Spacing $=$ Grade 60 Bar Spacing
Max. Smooth Welded Wire Spacing $=$ Grade 60 Bar Spacing $\times 0.86$
Max. Deformed Welded Wire Spacing $=$ Grade 60 Bar Spacing $\times 0.74$
When an increased area of reinforcing is provided, the maximum bar spacing may be
increased by the squared ration of increased steel area, but not to exceed 12":
Max. Bar Spacing Provided $\leq=$ Max. Bar Spacing Required $\times\left(\frac{\text { Steel Area Provided }}{\text { Min. Steel Area Required }}\right)^{2}$
Use wire no smaller than than W3.1 or D4.O, or larger and with spacing $8^{\prime \prime}$ or less. Use bar reinforcement displaying the minimum yield designation grade mark, or either the number 60 or one (1) grade mark line to be acceptable at the higher value. Use maximum bar spacing no greater
than two (2) times the slab thickness with a maximum spacing of 12 or three (3) times the wall thickness, with a maximum spacing of $18^{\prime \prime}$ for vertical bars and $12^{\prime \prime}$ for horizontal bars. Wires smaller than W3.1 or D4.0 may be used in the walls of ASTM C 478 round structure bottoms and round risers.
5. Fiber-reinforced concrete may be substituted for conventional steel reinforcement in accordance with the Structures fiber-reinforced concrete mix design for approval to the State Drainage office.

NOTES:

1. One or more types of joints may be used in a single structure, except brick wall structure. Brick wall construction is permitted on circular units only
2. All grouted joints are to have a maximum thickness of $1^{\prime \prime}$
3. Keyways are to be a minimum of $11 / 2$ deep.
. Joint dowels are to be \#4 bars, 12 long with a minimum of 6 bars per joint approximately evenly spaced for circular structures or at maximum 12" spacing for rectangular structures. Bars may be either Adhesive Bonded Dowels in
accordance with Specification 416, or placed approximately $6^{\prime \prime}$ into fresh accordance with Specification 416, or placed approximately $6^{\prime \prime}$ into fresh
concrete leaving the remainder to extend into the secondary cast. Welded wire reinforcement may be substituted for the dowel bar in accordance with the equivalent steel area table on Sheet 5 .
4. Minimum cover on dowel reinforcing bars is $2^{\prime \prime}$ to outside face of structure.
5. Seal joints between wall segments and between wall segments and top or bottom slabs with preformed plastic gasket material inaccordance with Specification 430 or non-shrink grout in accordance with Specification 934.

$h_{1} \geq 2^{\prime \prime}$ and $h \geq 6^{\prime \prime}$

NOTES:

1. h may be less than $\sigma^{\prime \prime}$ when approved by the Engineer
2. Dowel construction joint or monolithic cast only

- SEGMENTS FOR SLAB TO WALL DOWEL CONSTRUCTION JOINTS OR MONOLITHIC CAST-_

7. Insert products approved by the Engineer may be used in lieu of dowel embedment.

- CONSTRUCTION JOINT OPTIONS

TABLE 4-MAXIMUM PIPE SKEW FOR PRECAST ROUND OPENINGS													
	$\begin{array}{\|c\|} \hline \text { WALL } \\ \text { THICKNESS } \end{array}$	PIPE SIZE											
		18"	$24^{\prime \prime}$	$30^{\prime \prime}$	$36^{\prime \prime}$	42"	48"	54"	$60^{\prime \prime}$	$66^{\prime \prime}$	$72^{\prime \prime}$	78"	$84^{\prime \prime}$
MAXIMUM	$8^{\prime \prime}$	19°	17°	16°	16°	15°	14°	14°	13°	13°	13°	12°	12°
SKEW ANGLE	$6^{\prime \prime}$	21°	20°	18°	17°	17°	16°	15°	15°	14°	14°	13°	13°
NOTE:													

PLAN VIEW

These values are based on $2^{\prime \prime}$ clearance for precast structures. Larger skews are possible
for Cast-In-Place Structures or elliptical pipe openings when approved by the Engineer. Lap splice: 20 bar diameter for deformed wire or bar, but not less than
vertical wire spacing plus $2^{\prime \prime}$ for WWR or 40 bar diameters for smooth wir

MAXIMUM PIPE SKEW FOR PRECAST ROUND OPENINGS $=$

pLAN VIEW

- multiple parallel pipe connections - rectangular structures=

MISCELLANEOUS PIPE CONNECTION DETAILS

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$	\|rest DESCRIPTION:	$\begin{array}{cc} \text { FDOT 2022-23 } \\ \text { STANDARD PLANS } \end{array}$	S UPPLEMENTARY DETAILS FOR DRAINAGE STRUCTURES	$\begin{array}{\|c\|} \text { INDEX } \\ 425-001 \end{array}$	SHEET 8 of 8

general notes:

1. Work this Index with Specification 425 and Index 425-00
2. Type P standard structure bottoms are $4^{\prime}-0^{\prime \prime}$ diameter and smaller (Alt. A) and $3^{\prime}-6^{\prime \prime}$ square (Alt. B) . Larger standard structure bottoms are designated Type J. Risers are permitted for all structures.
3. Walls of circular structures (Alt. A) constructed in place may be of brick or reinforced concrete. Construct precast and rectangular structures (Alt. B) with reinforced concrete only.
4. Wall thickness and reinforcement are for either reinforced cast-in-place or precast concrete units except that precast circular units may be furnished with walls in accordance with
ASTM C478 (See Table 1) ASTM C478 (See Table 1).
5. Top and bottom slab thickness and reinforcement are for precast and cast-in-place construction Use Class II concrete, except when Class IV concrete is shown in the Plans.
6. Alt. A or Alt. B structure bottoms may be used in conjunction with curb inlet tops Types 1, 2, 3, 4 $5,6,9$, and 10, and any manhole or junction box. Alt. B structure bottoms may be used in conjunction with curb inlet Types $7 \& 8$, or any ditch bottom inlet,
7. Rectangular structures may be rotated as directed by the Engineer in order to facilitate connections between the structure walls and pipes.
8. Use straight embedment reinforcement in top and bottom slabs, except when ACI hooks are specifically required
9. Construct corner fillets as shown for rectangular structures used with circular risers and inlet throats, and when used on skew with rectangular risers, inlets, and inlet throats. Construct fillets in the top slab of the Alt. A structure bottoms when used with the Type B risers. Reinforce each fillet with two \#5 bars. not cause or increase the severity of utility conflicts. Furnish such larger units at no additional cost to he Department. Larger Alt. A units cannot replace Alt. B units without approval of the Engineer. This Note applies to this Index only.

REINFORCEMENT NOTES

Locate wall reinforcement in rectangular structures as shown in the WALL REINFORCEMENT SPLICE DETAILS in Index 425-001.
2. Provide a minimum $2^{\prime \prime}$ clear cover for all reinforcement unless otherwise noted and except for $3^{\prime} 6^{\prime \prime} d i a m e t e r$ ASTM 6478 units.
3. Additional bars used to restrain hole formers for precast structures with grouted pipe connections may be left flush with the hole surface.

4. Cut or bend reinforcement at pipe openings to maintain cover
5. Remove exposed ends of reinforcing at precast pipe openings and grouted joints to 1 " below the concrete surface and seal with a Type F Epoxy meeting the requirements of Specification 926.
6. Equivalent area smooth or deformed welded wire reinforcement may be substituted in accordance with Index 425-001.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Dimensional and Reinforcing Details
3	Tables 1, 2, 3, and 4
4	Tables 5 and 6

ALTERNATE B

table 1- alternate a - structures									
TYPE	STRUCTURE/RISER DIAMETER (ft)	CAST-IN-PLACE ITEMS CLASS II CONCRETE			PRECAST ITEMS				
					CLASS II CONCRETE			ASTM C 478	
		$\begin{gathered} t_{1} \\ R I S E R \\ (i n .) \end{gathered}$	$\begin{gathered} t_{2} \\ \text { Botrom } \\ \text { (in..) } \end{gathered}$	$\begin{gathered} A_{s} \\ \left(i_{2}^{2} / f f t\right) \end{gathered}$	$\begin{gathered} t_{1} \\ \text { RISER } \\ \text { (in.) } \end{gathered}$	$\begin{gathered} t_{2} \\ \text { Botrom } \\ \text { (in.) } \end{gathered}$	$\begin{gathered} A_{S} \\ \left(i n^{2} / f t .\right) \end{gathered}$	$\begin{gathered} \hline t_{1} \text { or } t_{2} \\ \text { (in.) } \end{gathered}$	$\begin{aligned} & A_{2^{* * *}} \\ & \text { (in./ft.) } \end{aligned}$
P	$3^{\prime \prime}-6^{\prime \prime}$	6	8	0.20	6	8	0.20	${ }^{* *}$	0.105
P	$4^{\prime}-0^{\prime \prime}$	6	8	0.20	6	8	0.20	5**	0.120
1	$5^{\prime}-0^{\prime \prime}$	-	8	0.20	-	8	0.20	6**	0.150
J	$6^{\prime}-0^{\prime \prime}$	-	8	0.20	-	8	0.20	6	0.180
J	$7^{\prime}-0^{\prime \prime}$	-	8	0.20	-	8	0.20	7	0.210
J	$8^{\prime}-0^{\prime \prime}$	-	8	0.20	-	8	0.20	8	0.240
J	$10^{\prime}-0^{\prime \prime}$	-	10	0.40\#\#	-	10	0.40\#\#	10	0.300
J	$12^{2}-0^{\prime \prime}$	-	10	0.40\#\#	-	12	0.40\#\#	12	0.360

t_{1} and t_{2} - Wall Thickness.
A_{s} - Vertical and horizontal areas of reinforcement.
\#\#Provide 0.20 eq. in.2/ft. at each face, $12^{\prime \prime}$ max. bar spacing
**Modified minimum wall thickness.
***Min. total circumferential reinforcement for continuous steel hoops:
A2 $=0.40$ sq. in. for riser section height equal or less than $2^{\prime}-0^{\prime \prime}$ (2 hoop min.)
$A_{2}=0.60$ sq. in. for riser section height more than $2^{\prime}-0^{\prime \prime}$ up to $4^{\prime}-0^{\prime \prime}(3$ hoop min. $)$ Areas of reinforcing for precast items are based on Grade 60 reinforcing.
No reduction in the area of reinforcement is allowed for welded wire fabric in Table 1 Area of vertical reinforcing may be reduced in accordance with ASTM C478.

See Table 4 for Reinforcing Schedule.

TABLE 3	- REINF	ORCIN	G SCHE	EDULE
SChedule	GRADE 60 BARS OR 65 KSI \& 70 KSI WELDED WIRE REINFORCING			
	$\begin{gathered} \text { GRADE } 60 \\ \text { AREA } \\ \left(\text { in. }^{2} / f t\right) \end{gathered}$	maximum spacing		
		$\begin{gathered} \text { GR } 60 \\ \text { BARS } \\ \text { (in.) } \end{gathered}$	WWR EQUIV. AREA	
			$65 K S I$	$\begin{gathered} 70 \mathrm{KSI} \\ \text { (in.) } \end{gathered}$
A12	0.20	12	8	8
${ }^{\text {A6 }}$	0.20	6	5	4/22
B10	0.24	10	8	$71 / 2$
B5.5	0.24	51/2	5	4
C6.5	0.37	$61 / 2$	6	5
C3.5	0.37	31/2	3	21/2
D7	0.53	7	6	5
D4.5	0.53	4/2	4	31/2
E5	0.73	5	4	4
E3	0.73	3	3	3
F5	1.06	5	4	4
F3.5	1.06	31/2	3	3
65	1.45	5	4	4
6.3.5	1.45	31/2	3	3
H4	1.75	4	3	3

TABLE 5-SLAB DESIGNS - SQUARE AND RECTANGULAR STRUCTURES
(all slabs 8" thick except as noted - Reinforcing parallel to short way and long way)

SHORT-WAY		LONG-WAY	
$\begin{gathered} \text { SLAB } \\ \text { DEPTH } \end{gathered}$	SCHEDULE (Bars A)	$\begin{gathered} \text { SLAB } \\ \text { DEPTH } \end{gathered}$	sChedule (Bars B)
SIZE: 3^{\prime}-6" \times UNLIMITED			
$\geq 0.5^{\prime}<8^{\prime}$	B10	$\geq 0.5^{\prime}<24^{\prime}$	B10
$8^{\prime}<13^{\prime}$	$B 5.5$	24-40'	B5.5
$13^{\prime}<31^{\prime}$	C6.5		
31'-40'	D7		
SIZE: $4^{\prime} \times$ UNLIMITED			
$\geq 0.5^{\prime}<7^{\prime}$	B5.5	$\geq 0.5^{\prime}<15^{\prime}$	B10
$7^{\prime}<19^{\prime}$	C6.5	$15^{\prime}<29^{\prime}$	$B 5.5$
$19^{\prime}<31^{\prime}$	D7	29'-40	C6. 5
$31^{\prime}-40^{\prime}$	E5		
SIZE: $5^{\prime} \times 5^{\prime}$			
$\geq 0.5^{\prime}<3^{\prime}$	C6.5	$\geq 0.5^{\prime}<3^{\prime}$	C6.5
$3^{\prime}<7^{\prime}$	$B 5.5$	$3^{\prime \prime}<13^{\prime}$	C6.5
$7^{\prime}<22^{\prime}$	C6.5	$13^{\prime}<22^{\prime}$	D7
$22^{\prime}<29^{\prime}$	D7	$22^{\prime}<29^{\prime}$	D4.5
29'-40'	E5	29'-40	E5
SIZE: $5^{\prime} \times 6^{\prime}$			
$\geq 0.5^{\prime}<12^{\prime}$	C6.5	$\geq 0.5^{\prime}<3^{\prime}$	C6.5
$12^{\prime}<26^{\prime}$	D7	$3^{\prime}<9^{\prime}$	B5.5
$26^{\prime}-40^{\prime}$	E5	$9^{\prime}<23^{\prime}$	C3.5
		$23^{\prime}<35^{\prime}$	D4.5
		35'-40'	E5
SIZE: $5^{\prime} \times 7^{\prime}$			
$\geq 0.5^{\prime}<10^{\prime}$	C6.5	$\geq 0.5^{\prime}<10^{\prime}$	B5.5
$10^{\prime}<20^{\prime}$	D7	$10^{\prime}<31^{\prime}$	C3.5
$20^{\circ}<34^{\prime}$	E5	$31^{1}-40^{\prime}$	D4.5
34'-40'	F5		
SIZE: $5^{\text { }} \times 8^{\text {8 }}$			
$\geq 0.5^{\prime}<7^{\prime}$	C6.5	$\geq 0.5^{\prime}<8^{\prime}$	B10
$7^{\prime}<13^{\prime}$	D7	$8^{\prime}<17^{\prime}$	B5.5
$13^{\prime}<24^{\prime}$	E5	$17^{\prime}<25^{\prime}$	C6.5
$24^{4}-40^{\prime}$	F5	$25^{\prime}-40^{\prime}$	C3.5
SIZE: $5^{\prime} \times 9^{\prime}$			
$\geq 0.5^{\prime}<8^{\prime}$	C6.5	$\geq 0.5^{\prime}<14^{\prime}$	B10
$8^{\prime}<14^{\prime}$	D7	$14^{\prime}<24^{\prime}$	B5.5
$14^{\prime}<25^{\prime}$	E5	$24^{\prime}<34^{\prime}$	C6.5
$25^{\prime}-40^{\prime}$	F5	34'-40'	C3.5
SIZE: 5' x UNLIMITED			
$\geq 0.5^{\prime}<8^{\prime}$	C6. 5	$\geq 0.5^{\prime}<14^{\prime}$	B10
$8^{\prime}<14^{\prime}$	D7	$14^{\prime}<24^{\prime}$	B5.5
$14^{\prime}<25^{\prime}$	E5	$24^{\prime}<34^{\prime}$	C6.5
$25^{\prime}-40^{\prime}$	F5	$34^{\prime}-40^{\prime}$	C3.5

SHORT-WAY		LONG-WAY	
$\begin{gathered} \text { SLAB } \\ \text { DEPTH } \end{gathered}$	SCHEDULE (Bars A)	$\begin{gathered} \text { SLAB } \\ \text { DEPTH } \end{gathered}$	schedule (Bars B)
SIZE: $6^{\prime} \times 6^{\prime}$			
$\geq 0.5^{\prime}<13^{\prime}$	C6.5	$\geq 0.5^{\prime}<10$	C3.5
$13^{\prime}<23^{\prime}$	D7	$10^{\prime}<18^{\prime}$	D4.5
$23^{\prime}-40^{\prime}$	E5	$18^{\prime}<27^{\prime}$	E5
		$27^{\prime}<33^{\prime}$	E3
		33'-40'	F5
SIZE: $6^{\prime} \times{ }^{7}$			
$\geq 0.5{ }^{\prime}<8^{\prime}$	C6.5	$\geq 0.5^{\prime}<8^{\prime}$	C6.5
$8^{\prime}<16^{\prime}$	D7	$8^{\prime}<12^{\prime}$	C3.5
$16^{\prime}<28^{\prime}$	E5	$12^{\prime}<21^{\prime}$	D4.5
$28^{\prime}-40^{\prime}$	F5	$21^{\prime}<28^{\prime}$	E5
		$28^{\prime}<35^{\prime}$	E3
		35'-40'	F5
SIZE: $6^{6} \times 8^{1}$			
$\geq 0.5^{\prime}<6^{\prime}$	C6.5	$\geq 0.5^{\prime}<6^{\prime}$	B5.5
$6^{\prime}<13^{\prime}$	D7	$6^{\prime}<11^{\prime}$	C6.5
$13^{\prime}<22^{\prime}$	E5	$11^{\prime}<17^{\prime}$	C3.5
22'<35'	F5	$17^{\prime}<22^{\prime}$	D4.5
35'-40'	65	$22^{\prime}<32^{\prime}$	E5
		32'-40'	E3
SIZE: $6^{\prime} \times 9^{\prime}$			
$\geq 0.5{ }^{\prime}<8^{\prime}$	D7	$\geq 0.5^{\prime}<8^{\prime}$	B5.5
$8^{\prime}<14^{\prime}$	E5	$8^{\prime}<14^{\prime}$	C6.5
$14^{\prime}<24^{\prime}$	F5	$14^{\prime}<21^{\prime}$	C3.5
24'-34'	65	$21^{\prime}<25^{\prime}$	D4.5
		25'-34'	E5
SIZE: $6^{\prime} \times$ UNLIMITED			
$\geq 0.5^{\prime}<8^{\prime}$	D7	$\geq 0.5^{\prime}<8^{\prime}$	B5.5
$8^{\prime}<14^{\prime}$	E5	$8^{\prime}<14^{\prime}$	C6.5
$14^{<}<24^{\prime}$	F5	$14^{\prime}<21^{\prime}$	C3.5
24'-34'	65	$21^{\prime}<25^{\prime}$	D4.5
		25'-34'	E5
SIZE: $7^{\prime} \times{ }^{\prime}$			
$\geq 0.5^{\prime}<8^{\prime}$	C6.5	$\geq 0.5^{\prime}<4^{\prime}$	C6.5
$8^{\prime}<15^{\prime}$	D7	$4^{\prime}<7^{\prime}$	C3.5
$15^{\prime}<26^{\prime}$	E5	$7^{\prime}<11^{\prime}$	D4.5
$26^{\prime}-40^{\prime}$	F5	$11^{\prime}<22^{\prime}$	E3
		$22^{\prime}<32^{\prime}$	F3.5
		32'-40'	63.5
SIZE: $7^{7} \times 8{ }^{\prime}$			
$\geq 0.5^{\prime}<5^{\prime}$	C6.5	$\geq 0.5^{\prime}<5^{\prime}$	C6.5
$5^{\prime}<11^{\prime}$	D7	$5^{\prime}<8^{\prime}$	C3.5
11' < $19{ }^{\prime}$	E5	$8^{\prime}<13^{\prime}$	D4.5
$19^{\prime}<30^{\prime}$	F5	$13^{\prime}<22^{\prime}$	E3
30'-40'	65	$22^{\prime}<30^{\prime}$	F3.5
		30'-40'	63.5
SIZE: $7^{\prime \prime} \times 9^{\prime}$			
$\geq 0.5{ }^{\prime}<9^{\prime}$	D7	$\geq 0.5^{\prime}<7^{\prime}$	C6.5
$9^{\prime}<15^{\prime}$	E5	$7^{\prime}<10^{\prime}$	C3.5
$15^{\prime}<25^{\prime}$	F5	$10^{\circ}<14{ }^{\prime}$	D4.5
25' ${ }^{\prime}$ - 4^{\prime}	65	$14^{\prime}<21^{\prime}$	E5
		$21^{\prime}<29^{\prime}$	F5
		29'-34'	F3.5

1. Size is the inside dimension(s) of a structure.
2. Slab reinforcement is appropriate for to
intermediate, and bottom slabs.
3. Bottom Slabs for precast $3^{\prime \prime}-6^{\prime \prime} \times 3^{\prime}-6^{\prime \prime}$ rectangular
structures at $15^{\prime \prime}$ depth or less, may be $6^{\prime \prime}$ thick.
4. Slab depth is measured from finished grade to top of slab.
5. Reinforcing schedules with larger areas of steel
may be substituted for schedules with smaller bar may be substituted for schedules with smaller bar be substituted for Schedule A6. See Index 425-001 for allowable bar spacing adjustments when larger
areas of reinforcing are substituted.

TABLES 5 AND 6

GENERAL NOTES:

1. Work this Index with Index 425-001 and Index 425-010
2. Conform finished grade and slope of the Inlet Tops to the finished cross slope and grade of the adjacent sidewalk and/or border
3. Provide $1 \frac{11}{} \|^{\prime \prime}$ minimum cover for steel in the Inlet Top.
4. Construction of Inlet Tops are either precast or cast-in-place
5. For precast units, the rear wall and apron may be precas as a separate piece from the top slab. Provide a minimu of 7 ~ \#4 dowels, otherwise install in accordance
Index $425-001$ "OPTIONAL CONSTRUCTION
6. These inlets are designed for use with standard curb and gutter Type E and Type F.
7. Use only round concrete support posts.

NIET TYPES 2 AND
\qquad

NOTE:
For transverse section reinforcement, see Sheet 3.

PLAN
TYPE 2 AND 4

TOP REINFORCING DETAILS

TOP DIMENSIONAL AND TOP REINFORCING DETAILS

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{array}$	\|	$\begin{gathered} \text { FDOT } \\ \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	$\mathbb{C U R B}$ INLET TOP TYPES 1, 2, 3, AND 4	$\begin{gathered} \text { INDEX } \\ 425-020 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 3 \end{aligned}$

InLet section with type e curb and gutter

3'-6" DIA. STRUCTURE BOTTOM

4'-0" DIA. STRUCTURE BOTTOM
InLet section with type f curb and gutter

3'-6" DIA. Structure bottom

4'-0" DIA. STRUCTURE BOTTOM
inlet section with type e curb and gutter

GENERAL NOTES:

1. Work this Index with Index 425-001 and Index 425-010
2. Conform the finished grade and slope of the inlet tops with the finished cross slope and grade of the proposed sidewalk and/or border.
3. For inlets constructed on a curve, refer to the plans to determine the radius. Bend steel when necessary
4. Use Grade 60 reinforcing bars with $1 \frac{11 / 4}{}$ minimum cover unless otherwise shown, see Sheet 6 for equivalent area Welded Wire Reinforcement details.
5. Inlet tops may be either cast-in-place or precast concrete. Conform precast units to the dimensions shown or in accordance with approved shop drawings.
6. Corner fillets are required at inlet opening for precast units or C-I-P units used in conjunction with circular inlet bottoms or skewed rectangular inlet boxes. Finish top of fillets flush with drain throat bottom and match slope.
7. For Type E curb and gutter, transition the shape of the curb over the gutter transition length to match the face of the inlet (Type Ft)
8. Meet the requirements of ASTM A36/A36M with steel used for frames and grates.
9. Use either cast iron grates or steel grates.

=TYPE 6 DIMENSIONAL DETAILS
TYPE 5 AND 6 DIMENSIONAL DETAILS

LAST
REVISION
12

RE/01/20
DESCRIPTION:
FY 2022-23
FDOT̄\} $\begin{gathered}\text { FY 2022-23 } \\ \text { STANDARD PLANS }\end{gathered}$

OPTION A

Field Cut Bars to

$2^{1 / 4} 4^{\prime \prime}$ (Above Soil) \vdots OPTION A

option B

section g-g

SECTION G-G

NOTES:

1. For location of Sections D-D thru $H-H$ see Sheet 2
2. Match slope of adjacent curb with $2^{\prime \prime}$ top radius and $3 / 4$ " bottom chamfer or $1 \frac{1}{4}$ " radius.
3. See Plans for bottom and riser type.

DIMENSIONAL DETAILS
FDOT 2022-23
STANDARD PLANS

GENERAL NOTES:

1. Work this Index with Index 425-001 and Index 425-010
2. Use Grade 60 reinforcing bars with $2^{\prime \prime}$ minimum cover unless otherwise shown. See Index 425-001 for equivalent area of welded wire fabric. Cut or bend bars out of way of pipe when necessary. Bars to clear pipe by $11 / 2$. .
3. Recommended maximum pipe sizes are $24^{\prime \prime}$ Iongitudinal and $30^{\prime \prime}$ transverse. For larger pipe, inlets with Alt. B bottoms, Index 425-010 is recommended.
4. All dimensions are for both precast and cast-in-place inlets unless otherwise shown.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Dimensional and Reinforcing Details

 Manhole Frame and Cover
(See Index 425-001) General Notes and Contents
Dimensional and Reinforcing Details
$\underset{\text { (Bottom Not Shown) }}{\text { CURB INLET TYPE }}$

GENERAL NOTES:

1. Work this Index with Index 425-001 and Index 425-010
2. Use Grade 60 reinforcing bars with $2^{\prime \prime}$ minimum cover unless otherwise shown. See Index 425-001 for equivalent area of welded wire fabric. Cut or bend bars out of way of pipe when necessary. Bars to clear pipe by $11 / 2$.
3. Recommended maximum pipe sizes are $24^{\prime \prime}$ Iongitudinal and $30^{\prime \prime}$ transverse. For larger pipe, inlets with Alt. B bottoms, Index 425-010 is recommended.
4. All dimensions are for both precast and cast-in-place inlets unless otherwise shown.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Dimensional and Reinforcing Details

CURB INLET TYPE
(Bottom Not Shown)

LAST REVISION $11 / 01 / 20$		$\begin{gathered} \text { FY 2022-23 } \\ \text { FDOTANDARD PLANS } \end{gathered}$	$\mathbb{C U R B}$ INLET TYPE 8	$\begin{gathered} \text { INDEX } \\ 425-023 \end{gathered}$	SHEET 1 of 2

GENERAL NOTES:

Work this Index with Index 425-001 and Index 425-010.
2. Orient grate with vanes directed toward predominant flow
3. Provide $1 \frac{11}{4}$ minimum cover for steel in slab tops unless otherwise shown. Tops may be either cast-in-place or precast concrete.
4. Place top slab openings such that 2 edges of inlet frame will be located directly above bottom wall or riser wall for Alternate B applications.
5. When used on a structure with dimensions larger than those detailed on Sheet 3 and risers are not applied, construct the top slab using Index $425-010$ with the slab opening ad justed to 24 " $\times 36$ ". The "Special Top Slab" on Index $425-010$ is not permitted.
6. Frame may be adjusted with one to six courses of brick.
7. Vaned grates with approximately equal openings that satisfy AASHTO HL-93 loading are permitted. Provide reversible (right or left) grates.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Frame and Grate Details
3	Top Slab Details

CURB INLET TOP TYPE 9

GENERAL NOTES:

1. Work this Index with Index 425-001 and Index 425-010.
2. Orient grate with vanes directed toward predominant flow.
3. Provide $1 \frac{1}{4}$ minimum cover for steel in slab tops unless otherwise shown. Tops may be either cast-in-place or precast concrete.
4. Place top slab openings such that 2 edges of inlet frame will be located directly above bottom or riser walls, for Alternate B applications.
5. When used on a structure with dimensions larger than those detailed on Sheet 3 and risers are not applied, Construct the top slab
using Index $425-010$ with the slab opening ad justed to 22"x24". The "Special Top Slab" on Index $425-010$ is not permitted.
6. Frame may be adjusted with one to six courses of brick
7. Vaned grates with approximately equal openings that satisfy AASHTO HL-93 loading are permitted. Provide reversible (right or left) grates.
```
TABLE OF CONTENTS:
Sheet Description
c/l
*2 Frame and Grate Details
3 Top Slab Details
```


CURB INLET TOP TYPE 10

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$	\|ras	$\begin{array}{cc} \text { FDOT } & \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{array}$	$\mathbb{C U R B}$ INLET TOP TYPE 10	$\begin{gathered} \text { INDEX } \\ 425-025 \end{gathered}$	SHEET 1 of 3

SECTION A-A

SECTION B-B

GENERAL NOTES

2. Work this Index with Index 425-001 and Index 425-010.
3. Where called for in the Plans, use this inlet in conjunction with Median Barrier per Index 521-001
4. Inlet Descriptions:

Type 1: Inlet on one side of Median Barrier
4. See Index 425-040 for grate details. Use the parallel bar grate unless reticuline grate is called for in the Plans.
5. Chamfer all edges to $3 / 4$ " or tool to $1 / 4 / 1$ radius
6. Use Grade 60 \#4 bars for inlet wall reinforcing. Position horizontal wall reinforcing $3^{\prime \prime}$ from the inside face unless otherwise shown. Equivalent areas of welded wire per Index 425-001 are permitted.
7. Use Grade 60 \#4 or \#5 bars for barrier reinforcing as required to match the stirrups and longitudinal steel of the adjacent Median Barrier per Index 521-001. Provide $2^{\prime \prime}$ or $21 / 2$ "reinforcing steel cover to match the adjacent barrier reinforcing cover unless otherwise shown. Match the stirrup spacing of the adjacent barrier.
Run longitudinal steel bars over the full length of the Concrete Barrier Transition Run longitudinal steel bars over tonitudinal steel of the ad jacent barriers. Use lap splices as required
8. Dimensions are for both precast and cast-in-place inlets unless otherwise noted
9. Install one layer of ASTM D6380 Class S, Type III organic felt bond breake between inlet and barrier, including footings.

TABLE OF CONTENTS:

1 General Notes and Contents
2

Type 1 and 2 Dimensional and Reinforcing Details
Type 1 Collar Dimensional and Reinforcing Details
Type 2 Collar Dimensional and Reinforceing Details

¿ DESCRIPTION:

GENERAL NOTES
. Work this Index with Index 425-001 and Index 425-010,
2. When called for in the Plans, use this inlet in conjunction with median or shoulder barrier per Index 521-001 or a barrier with
3. Reinforce the upper $2^{\prime}-3^{\prime \prime}$ of the inlet in accordance with sections CC, DD, and EE regardless of construction method.
4. Chamfer exposed edges and corners to $3 / 4{ }^{\prime \prime}$ or tool to $1 / 4{ }^{1 / 1}$ radius.
5. Field installation of a roller bar will not be permitted. Adjust tolerance during fabrication or casting, or, match grate to structure prior to galvanizing.
6. Use Grade 60, \#4 bars for reinforcing steel. See Index 425-001 for equivalent area of welded wire fabric.
7. Dimensions are for both precast and cast-in-place inlets unless otherwise noted.
8. Anchor bolts: Use either ASTM A307 hex head bolts cast-in-place, or ASTM A36 or F 1554 (Grade 36) galvanized fully threaded rod, adhesive bonded
anchors installed in accordance with Specification 416. Rods must be a minimum of $6^{\prime \prime}$ long with $4^{\prime \prime}$ minimum embedment with one ASTM 194 or A563 heavy hex head nut and one ASTM F436 flat washer each. Hot-dip galvanize anchor bolts, nuts, and washers.
9. Reduce Cross Slope: Use a flatter cross slope as required to match adjacent grading per the Plans. Reduce vertical dimensions and bar spacing as needed to maintain concrete cover as shown.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Dimensional, Reinforcing, and Steel Grate Details
3	Inlet Collar Dimensional, Reinforcing, and Backwall Plate Details
4	Shoulder Pavement Wrap, Barrier Type Examples, and Structure Bottoms

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$	\|ra	DESCRIPTION:	FDOTY	FY 2022-23 STANDARD PLANS		INDEX 425-031	$1 \text { of } 4$

GENERAL NOTES

. Work this Index with Index 425-001 and Index 425-010.
2. Where called for in the Plans, use this inlet in conjunction with Curb and Gutter Barrier per Index 521-001. Construct Barrier segments shown herein in accordance with requirements
of Index 521-001, including connections to ad jacent barrier segments using the Doweled Joint.
3. Reinforcing shown is grade 60 steel bars. For the equivalent area of welded wire reinforcement for the inlet, see Index 425-001. Reinforcing shall have $2^{\prime \prime}$ minimum cover unless otherwise shown. Trim or bend bars to provide $1 \frac{1}{2}$ "clearance around pipe openings.
For Bar Bending Details of Bars $5 \mathrm{~V} 2 \& 544$, see Index 521-001. For all others, see Sheet 2.
4. Apply a $3 / 4$ " chamfer or $1 / 4$ " radius to all exposed concrete edges.
5. Grates may be fabricated with reticuline bars or with either $1 / 2=8$ welded or $3 / 8^{\prime \prime} \varnothing$ electroforged cross bars and bearing bars as detailed on Sheet 3 .
6. All dimensions are for both precast and cast in place ($C-I-P$) inlets unless otherwise indicated

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Dimensional, Reinforcing, and Bar Bending
3	Transitional Dimensional, Reinforcing, and Grate Details
4	Inlet Top Dimensional and Reinforcing Details

3 Transitional Dimensional, Reinforcing, and Gr
CURB AND GUTTER BARRIER INLET

TRANSITIONAL DIMENSIONAL, REINFORCING AND GRATE DETAILS

GENERAL NOTES:

Work this Index with Index 425-001 and Index 425-010.
2. Use Grade 60 reinforcing bars with $2^{\prime \prime}$ minimum cover unless otherwise noted. See Index 425-001 for equivalent area of welded wire fabric. Cut or bend bars to provide 11/2 minimum clearance around pipe.
3. Chamfer all exposed edges and corners $3 / 4$ or tool to $1 / 4 /$ radius.
4. Dimensions are for both precast and cast-in-place inlets unless otherwise noted

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Dimensional and Reinforcing Details
3	Transition and Apron Details
4	Steel Grate Details
5	Alternate A Structure Bottom - Top Slab Details

GUTTER INLET TYPE

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$	\|ra	DESCRIPTION:	FDOTY	FY 2022-23 STANDARD PLANS	GUTTER INLET TYPE S	$\begin{gathered} \text { INDEX } \\ 425-040 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 5 \end{aligned}$

PLAN

NOTES:

1. Main Bars are $5^{\prime \prime} x^{1} y^{\prime \prime}$, notched for

Cross Bars, and spaced equally apart.
2. Cross Bars are $13 / 4^{\prime \prime} x^{1 / 4 "}$ and
continuously welded at Main Bar Notches.
3. Main Bars and Cross Bars are flush on top

SECTION I-I

\qquad

LAST REVISION $11 / 01 / 20$	\|rater	$\begin{array}{cc} \text { FY 2022-23 } \\ \text { FDTANDARD PLANS } \end{array}$	GUTTTER INLETT TYPE S	$\begin{gathered} \text { INDEX } \\ 425-040 \end{gathered}$	SHEET 4 of 5

1. Work this Index with Index 425-001 and Index 425-010
2. All reinforcing is Grade 60 bars with $2^{\prime \prime}$ min. cover unless otherwise noted See Index 425-001 for equivalent area of welded wire fabric. Cut or bend bars out of way of pipe to clear pipe $1 \frac{1}{2}$ ".
3. Chamfer all exposed edges and corners $3 / 4$ " or tool to $1 / 4$ radius.
4. Dimensions are for both precast and cast-in-place inlets unless otherwise noted

TABLE OF CONTENTS:

Sheet	Description

1 General Notes and Contents
2 Dimensional and Reinforcing Details
3 Steel Grate Details

4	Alternate A Structure Bottom - Top Slab Details

GUTTER INLET TYPE
(Pipe Opening Not Shown)

| $\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$ | \|l|l | $\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$ | GUTTTER INLET TYPE V | index 425-041 | $\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 4 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

optional bar spacing

PLAN

SECTION D-D
RETICULINE GRATE DETAIL
(Two Grates Required per Inlet)

GENERAL NOTES:

Work this Index with Index 425-001 and Index 425-010
2. All reinforcing is Grade 60 bars with $2^{\prime \prime}$ minimum cover unless otherwise noted. Cut or bend bars out of way of pipe to clear pipe by $11 /{ }^{\prime \prime}$ See Index 425-001 for equivalent area of welded wire fabric.
2. Chamfer all exposed edges and corners $3 / 4$ " or tooled to $1 / 4$ " radius.
4. All dimensions are for both precast and cast-in-place inlets unles otherwise noted.
5. Quantities are for informational and estimating purposes only.

table of contents:

Sheet Description
1 General Notes and Contents
Dimensional, Reinforcing, and Steel Grate Details
Concrete Apron and Sodded Area DetailsAlternate A Structure Bottom - Top Slab Details

\qquad
(Pipe Opening Not Shown)

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$		$\begin{gathered} \text { FDO 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	DITCH BOTTOM INLET TYPE A	$\begin{gathered} \text { INDEX } \\ 425-050 \end{gathered}$	SHEET 3 of 4

GENERAL NOTES:

Work this Index with Index 425-001 and Index 425-010.
2. All reinforcing is Grade 60 bars with $2^{\prime \prime}$ minimum cover unless otherwise noted. See Index 425-001 for equivalent area of welded wire fabric. Bars to be cut or bent for min. 1½ clearance around pipe.
3. Chamfer all exposed edges and corners $3 / 4$ " or tooled to $1 / 4$ " radius.
4. Dimensions are for both precast and cast-in-place inlets unless otherwise noted.
5. Quantities are for informational and estimating purposes only.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Dimensional, Reinforcing, and Grate Details
3	Traversable Top Details
4	Concrete Apron and Sodded Area Details
5	Alternate A Structure Bottom - Top Slab Details

DOUBLE SLOT INLE
(Pipe Connection Not Shown)

Z DESCRIPTION:

$\sqrt{6}$

16

E

SINGLE SLOT

NOTES:

1. These traversable tops are for new or existing Type B Inlets and for conversion of existing Type X Inlets.
2. Inlet box (line type indicates existing box to facilitate depiction of partial construction on existing inlets)
3. On new boxes the traversable top may be cast as a monolithic unit or cast in segments, and the location of this line may be lower to facilitate handling and placement; however, the slot depth is to remain at 9 inches. See Index 425-001 for top to wall connection. For converting to traver sable tops on existing inlets remove concrete o this line and expose the existing reinforcement. Reshape or splice in reinforcement to penetrate the rim and
4. See Sheet 2 for Precast and C-I-P dimensions.

TRAVERSABLE TOP DETAILS

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$		$\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	DITCH BOTTOM INLET TYPE B	$\begin{gathered} \text { INDEX } \\ 425-051 \end{gathered}$	SHEET 3 of 5

PLAN

TABLE 2			
ESTIMATED QUANTITIES			
SLOT TYPE	Concrete Apron	SOD	
	SY	$C Y$	SY
Single	6.2	0.9	14
Double	8.1	1.1	19

CONCRETE APRON AND SODDED AREA DETAILS

LAST REVISION $11 / 01 / 20$		$\begin{gathered} \text { FDO 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	DITCH BOTTOM INLET TYPE B	$\begin{gathered} \text { INDEX } \\ 425-051 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 4 \text { of } 5 \end{aligned}$

GENERAL NOTES:

Work this Index with Index 425-001 and Index 425-010.
2. Chamfer all exposed edges and corners $3 / 4$ " chamfer or tooled to $\frac{1}{4} / 4^{\prime \prime}$ radius.
3. All reinforcing is Grade 60 bars with 2" minimum. cover unless otherwise noted. Cut or bend bars for $1 \frac{1}{2} /{ }^{\prime \prime}$ clearance around pipe opening. Provide one additiona \#4 bar above and at each side of pipe opening.

Use concrete Apron on inets whors. slots only when called for in the Plans.
5. Quantities are for informational and estimating purposes only

——ITCH BOTTOM INLET TYPE C TRAVERSABLE
(without Slot - Type D, E, and H Similar. Pipe Connection Not Shown)

— DITCH BOTTOM INLET TYPE $C=$ NON-TRAVERSABLE

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Type C - Dimensional, Reinforcing, and Grate Details
3	Type D - Dimensional, Reinforcing, and Grate Details
4	Type E - Dimensional, Reinforcing, and Grate Details
5	Type H (2 \& 3 Grate) - Dimensional, Reinforcing, and Steel Grate Details
6	Type H (4 Grate) - Dimensional, Reinforcing, and Steel Grate Details
7	Cast Iron Grate Details
8	Non-Traversable Inlet Details
9	Traversable Inlet Without Slot Details
10	Traversable Inlet With Slot Details
11	Case 1 - Add Traversable Slots to Existing Inlets
12	Case 2 - Add Traversable Slots (Partial) to Existing Inlets
13	Case 3 - Add Traversable Slots (Partial) to Existing Inlets and Ditch Block
14	Alternate A Structure Bottom - Top Slab Details

- DITCH BOTTOM INLET TYPE C

TRAVERSABLE
TRAVERSABLE
(Single Slot <
7" Shown, Double Slot, Type D, and E Similar, Pipe Connection Not Shown)

$\stackrel{\text { R }}{\text { LAN }}$

TABLE 5				
HORIZONTAL WALL REINFORCING SCHEDULE				
WALL DEPTH	SCHEDULE	AREA (in.//ft.)	MAX. SPACING	
$0^{\prime}-5^{\prime}$	$C 3.5$	0.37	WWR	
$5^{\prime}-10^{\prime}$	$D 4.5$	0.53	$41^{\prime \prime}$	$3^{\prime \prime}$

NOTES:

1. Grate, Concrete Apron, and Sod not
shown on structure details.
2. See Sheet 8, 9 , and 10 for Concrete
Apron and Sodded Area details.
3. Pipe Spacing $S=4^{\prime}-3^{\prime \prime}$

TYPE H (4 GRATE) - DIMENSIONAL, REINFORCEMENT, AND STEEL GRATE DETAILS

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{array}$	\|	DESCRIPTION:	FDOTY	$\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	$\mathbb{D T T C H ~ B O T T O M ~ I N L E T ~ T Y P E ~} \mathbb{C}, \mathbb{D}, \mathbb{E}, ~ A \mathbb{N D} \mathbb{H}$	$\begin{gathered} \text { INDEX } \\ 425-052 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 6 \text { of } 14 \end{aligned}$

NOTES

1. Steel Grates are required on inlets with traversable
slots and on Inlets where bicycle traffic is anticipated
2. Cast Iron Grates are not permitted on Inlet Type D.

NOTES

1. Concrete Apron installed only where called for in the Plans.
2. Sod a/ways required
3. Slots are not permitted on sides with grate seats.

NON-TRAVERSABLE INLET DETAILS

Sodded Area (See TABLE 8) \quad| $B B$ |
| :---: |

$\stackrel{B B}{ }$

SECTION AA-AA

TABLE CONCRETE APRON AND SOD QUANTITIES		
SOD AND PAVEMENT		
Inlet Type	Sod SY	Conc. $C Y$
C	8	0.30
D	9	0.36
E	9	0.37
H	11	0.45

NOTES:

1. Concrete Apron to be installed only
where called for in the Plans.

Sod always required.

TRAVERSABLE INLET WITHOUT SLOT DETAILS

= WITHOUT SLOT

WITH SLOT $=$

NOTES

1. Existing cast iron grate to be replaced with steel grate. Existing steel reticuline grate to be replaced when called for in the Plans or as directed by the Engineer
2. Remove existing wall to this line (exposed rebar in pavement
zone may be either removed or embedded)
3. Install extra apron when existing slot exceeds $12^{\prime \prime}$ in depth.

4. Inlet details (With or Without Slots) similar to details on Sheet 11

GENERAL NOTES

1. Work this Index with Index 425-001 and Index 425-010
2. When inlet is placed in areas subject to bicycle traffic, install filler bar when clearance or gap is greater than $\$_{8}^{\prime \prime}$ as shown in Index 425-031.
3. These inlets may be used with Alternate B structure bottoms, Index 425-010.
4. Chamfer all exposed edges and corners $3 / 4$ " chamfer or tooled to $1 / 4$ " radius.
5. See Index for supplemental details.
6. Reinforcing bars are Grade 60 with $2^{\prime \prime}$ minimum cover unless otherwise noted. Cut or bend bars to provide $1^{11 / 2 "}$ clearance around pipe opening. Provid one additional \#4 bar above and at each side of pipe opening as shown,
7. Dimensions are for both precast and cast-in-place inlets unless otherwise noted
8. Quantities are for informational and estimating purposes only.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Type F - Dimensional, Reinforcing, and Grate Details
3	Type G - Dimensional, Reinforcing, and Grate Details
4	Concrete Apron and Sodded Area Details

TABLE OF CONTENTS:
1
3 Type G-Dimensional, Reinforcing, and Grate Details
Concrete Apron and Sodded Area Details

, Concrete Apron, and Sod not shown in Plan view
2. See Sheet 4 for Concrete Apron and Sodded Area details.
3. Construction joints permitted between these limits. See
Index $425-001$ for minimum dimensions.

TABLE 2 horizontal wall reinforcing schedule				
WALL DEPTH	SChedule	$\begin{gathered} \text { AREA } \\ \text { (in.//ft.) } \end{gathered}$	max. SPACING	
			BARS	WWR
0^{\prime} - 3^{\prime}	A12	0.20	$12^{\prime \prime}$	$8{ }^{\prime \prime}$
$3^{\prime}-7^{\prime}$	A6	0.20	$6^{\prime \prime}$	$5^{\prime \prime}$
$7^{\prime \prime}-10^{\prime}$	B5.5	0.24	5/2"	$5 "$
10'-15'	C6.5	0.37	61/2"	$6^{\prime \prime}$

TYPE G - DIMENSIONAL, REINFORCING, AND GRATE DETAILS

TABLE CONCRETE APRON AND SOD QUANTITIES			
INLET	CONCRETE (CY)	SOD W/CONCRETE (SY)	SOD ONLY (SY)
F	0.43	10	6
6	0.34	9	7

NOTES:

1. Concrete Apron to be installed only
where called for in the Plans.
2. Sod always required.

TJ

SECTION J-J

GENERAL NOTES:

1. Work this Index with Index 425-001 and Index 425-010
2. Reinforcing bars are Grade 60 bars with $2^{\prime \prime}$ minimum cover unless otherwise noted end bars 425-00 for equivalent area of welded wire fabric. Cut or
3. Chamfer all exposed edges and corners $3 / 4$ or tooled to $1 / 4$ radius.
4. Dimensions are for both precast and cast-in-place inlets unless otherwise noted
5. Quantities are for informational and estimating purposes only.

TABLE OF CONTENTS

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Dimensional and Reinforcing Details
3	Grate, Concrete Apron, and Sodded Area Details
4	Alternate A Structure Bottom - Top Slab Details

DITCH BOTTOM INLET TYPE J (Pipe Connection Not Shown)

DETAIL "A"

DETAIL "B"

GENERAL NOTES:

1. Work this Index with Index 425-001 and Index 550-002.
2. Chamfer all exposed edges and corners $3 / 4^{\prime \prime}$ or tooled to $1 / 4^{\prime \prime}$ radius.
3. Use Class II concrete for inlet and anti-vortex wall
4. Use Grade 60 reinforcing bars with $2^{\prime \prime}$ minimum cover unless otherwise noted. See Index 425-001 for equivalent area of welded wire reinforcing top and corner bars to clear anchor holes.
5. Channel section $\mathrm{C} 3 \times 6$ at $14^{\prime \prime}$ max. bar spacing may be used as an alternate for the C 4×5.4 channel at $15^{\prime \prime}$ bar spacing.
6. Channels and bars for grate are ASTM A242/A242M, A572/A572M or A588/A588M, Grade 50 steel, and galvanized in accordance with Specification 975.
7. Use Fence Type B for fence enclosure (Index 550-002). Install all posts in concrete. A minimum of 10 posts required. Use $3^{\prime \prime}$ nominal diameter posts
for corner and approach side posts.
8. Anchor Bolts are ASTM F1554 Grade 36 fully threaded headless bolts, installed in accordance with Specifications 416 and 937 . Nuts are ASTM A563 or A194 and washers are ASTM F436 or Type A plain washers. Galvanize all nuts, bolts and washers.
9. Quantities are for informational and estimating purposes only

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Inlet Lengths (L) Less Than or Equal to 9^{\prime}
3	Inlet Lengths (L) Greater Than or Equal to 9^{\prime}
4	Steel Grate Details

Anti-Vortex Wall

PLAN

NOTE

1. See Sheet 2 for dimension details
2. Use $6^{\prime \prime} \times 6^{\prime \prime} 10 / 10$ welded wire reinforcing
3. Grate not shown.
4. See Index 425-001 for construction joint details.
5. Pipe Opening not shown

SIDE ELEVATION

INLET LENGTHS (L) GREATER THAN OR EQUAL TO 9'

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{array}$	全唿\| DESCRIPTION:	FDOTT	$\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$

NOTES:

1. See Sheet 2 for dimension "L" location.
2. See Section B-B for dimension "S" location

DETAIL "A"

PLAN

TABLE 3								
				bill of	TEEL		Steel weight	
PIPE SIZE	$\left\|\begin{array}{c} L \\ \text { See Note } 1 \end{array}\right\|$	s	BAR	No. REQD.	LENGTH	$\begin{aligned} & \text { CHANNEL } \\ & 4^{\prime \prime} \times 5.4 \mathrm{lb} \end{aligned}$	$\begin{gathered} \text { ANGLE } \\ 3^{\prime \prime} \times 21 / 2 \times 1 /{ }^{1 / \prime \prime} \\ (4.5 \mathrm{lb} / \mathrm{ft}) \end{gathered}$	$\begin{gathered} F L A T \\ 2^{2} \times 1 /{ }^{\prime \prime \prime} \\ (3.416 / f t) \end{gathered}$
$30^{\prime \prime} \& 36^{\prime \prime}$	$5^{\prime}-0^{\prime \prime}$	123/4"	$\begin{aligned} & \hline A \\ & B \\ & C \end{aligned}$	$\begin{aligned} & 5 \\ & 2 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 4^{\prime}-111^{\prime \prime} \\ & 4^{\prime \prime}-111^{\prime \prime \prime} \\ & 4^{\prime}-111_{2 \prime \prime}^{\prime \prime} \end{aligned}$	111	45	51
$42^{\prime \prime} \& 48^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	111/4"	$\begin{aligned} & A \\ & B \\ & B \\ & C \end{aligned}$	$\begin{aligned} & 6 \\ & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 4^{\prime}-11^{\prime \prime} \\ & 5^{\prime}-111^{\prime \prime \prime} \\ & 5^{\prime}-111_{2 \prime \prime}^{\prime \prime \prime} \end{aligned}$	134	54	61
$54^{\prime \prime} 860^{\prime \prime}$	$7^{\prime}-0^{\prime \prime}$	93/4"	$\begin{aligned} & A \\ & B \\ & C \\ & C \end{aligned}$	$\begin{aligned} & 7 \\ & 2 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 4^{\prime}-11^{\prime \prime \prime} \\ & \sigma^{\prime}-111^{\prime \prime \prime} \\ & 6^{\prime}-111_{2 \prime \prime}^{\prime \prime \prime} \end{aligned}$	156	63	71
$66^{\prime \prime} \& 72^{\prime \prime}$	$8^{\prime \prime}-0^{\prime \prime}$	81/4"	$\begin{aligned} & A \\ & B \\ & B \\ & C \end{aligned}$	$\begin{aligned} & 8 \\ & 2 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 4^{\prime}-11^{1 / 2} \prime^{\prime \prime} 7^{\prime}-11^{\prime \prime} \\ & 7^{\prime}-111^{\prime \prime \prime} \end{aligned}$	178	72	81
$84^{\prime \prime}$	$9^{\prime}-0^{\prime \prime}$	141/4"	$\begin{aligned} & A \\ & B \\ & B \\ & C \end{aligned}$	$\begin{aligned} & \hline 8 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 4^{\prime}-11^{\prime \prime \prime} \\ & 8^{\prime}-111^{\prime \prime \prime} \\ & 8^{\prime}-111_{2 \prime \prime} \end{aligned}$	178	81	91
SPECIAL	$10^{\prime}-0^{\prime \prime}$	123/4"	$\begin{aligned} & A \\ & B \\ & B \\ & C \end{aligned}$	$\begin{aligned} & 9 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 4^{\prime \prime}-1 / /^{\prime \prime \prime} \\ & 9^{\prime}-111^{\prime \prime \prime} \\ & 9^{\prime}-111_{2 \prime \prime}^{\prime} \end{aligned}$	201	90	102
SPECIAL	$12^{\prime \prime}-0^{\prime \prime}$	93/4"	$\begin{aligned} & A \\ & B \\ & B \\ & C \end{aligned}$	$\begin{aligned} & 11 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	$\begin{gathered} 4^{\prime}-11^{1 / 2} \\ 11^{\prime}-11^{\prime \prime} /^{\prime \prime} \\ 11^{\prime}-11^{1 / 2} \end{gathered}$	245	108	122
SPECIAL	14^{-01}	141/4"	$\begin{aligned} & A \\ & B \\ & B \\ & C \end{aligned}$	$\begin{gathered} 12 \\ 2 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 4^{\prime}-11 / 1^{\prime \prime} \\ 13^{\prime}-1111^{\prime \prime} \\ 13^{\prime}-1111^{\prime \prime} \end{gathered}$	267	126	142
SPECIAL	$16^{\prime}-0^{\prime \prime}$	111/4"	$\begin{aligned} & A \\ & B \\ & B \\ & C \end{aligned}$	$\begin{gathered} 14 \\ 2 \\ 3 \end{gathered}$		312	144	163
SPECIAL	$18^{\prime}-0^{\prime \prime}$	81/4"	$\begin{aligned} & A \\ & B \\ & C \\ & \hline \end{aligned}$	$\begin{gathered} 16 \\ 2 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} 4^{\prime}-11^{1 / 2} \\ 177^{\prime \prime}-11 / 1^{\prime \prime} \\ 177^{\prime}-11 / 1_{2}^{\prime \prime} \end{gathered}$	356	162	183

$\begin{gathered} \hline \text { LAST } \\ \text { REVIIION } \\ 11 / 01 / 20 \end{gathered}$		$\begin{gathered} \text { FY 2022-23 } \\ \text { FTANDARD PLANS } \end{gathered}$	$\mathbb{D I T C H ~ B O T T O M ~ I N L E T T ~ T Y P E ~ K ~}$	$\begin{gathered} \text { INDEX } \\ 425-055 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 4 \text { of } 4 \end{aligned}$

GENERAL NOTES

1. Work this Index with Index 425-052
2. Quantities are for informational and estimating purposes only.

TABLE OF CONTENTS:

Sheet	Description

1 General Notes and Contents
2 Inlet Type C (Modified)
3 Special Concrete Endwal
4 Shallow Ditches and Yard Drains
Sidewalk (5'-0" Shown)

TYPE C (MODIFIED) INLET
(Pipe Connection Not Shown)

LAST REVISION $11 / 01 / 20$		$\begin{array}{cc} \text { FY 2022-23 } \\ \text { FTANDARD PLANS } \end{array}$	BACK OF S IDEWALK	$\begin{gathered} \text { INDEX } \\ 425-060 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 4 \end{aligned}$

5'-0" SIDEWALK WITH BUFFER SECTION A-A

$\geq 6^{\prime}$-0" SIDEWALK WITHOUT BUFFER SECTION A-A

LAST REVIIION $11 / 01 / 20$		$\begin{array}{cc} \text { FDY 2022-23 } \\ \text { STANDARD PLANS } \end{array}$	BACK OF SIDEW ALK $\operatorname{DRA} \mathbb{N} A(\mathbb{E} E$	$\begin{gathered} \text { INDEX } \\ 425-060 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 4 \end{aligned}$

NOTES:

. Grading back of sidewalk as directed in the Plans.
2. Concrete quantities shown are for maximum wall
3. Riprap quantities are for informational and estimating purposes only.

TABLE - 1			
Pipe Size Dia. (in)	C	Concrete Class II (CY)	
15	$4^{\prime}-$ Sand-Cement Riprap $^{\prime \prime}$	(CY)	
18	$5^{\prime}-3^{\prime \prime}$	2.3	
24	$6^{\prime}-3^{\prime \prime}$	3.3	

sPECIAL CONCRETE ENDW ALL

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$		$\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	BACK OF SIDEWALK	$\begin{gathered} \text { INDEX } \\ 425-060 \end{gathered}$	SHEET 3 of 4

NOTES:

1. Construct at locations as directed by the Engineer.
2. Use either cast iron pipe or PVC rigid conduit, U.L. listed for direct sunlight exposure, Schedule 40.

SHALLOW DITCHES \qquad

NOTES:

1. Tee will be either concrete or PVC, $15^{\prime \prime} \times 15^{\prime \prime} \times 12^{\prime \prime}$
2. Grate will have diameter of $141 / 4 / 21 / 2{ }^{\prime \prime}$ thick, minimum

45 square inches flow area, and be light duty cast iron in accordance Specification 962.

SHALLOW DITCHES AND YARD DRAINS

GENERAL NOTES
The finished grade and slope of the inlet top are to conform with the finished cross slope and grade of the proposed sidewalk and/or border.
2. When inlets are to be constructed on a curve, refer to the plans to determine the radius. Bend steel when necessary.
3. Inlets can be either cast-in-place or precast concrete. Chamfer all exposed edges $3 / 4$.
4. All reinforcement is ASTM A615/A615M Grade 60 steel, either smooth or deformed with a $2^{\prime \prime}$ minimum cover, unless otherwise shown. Equivalent area grade 40 steel or 65 ksi welded wire fabric may be substituted.

TYPE I CLOSED FLUME INLET WITH SIDEWALK ingle Barrel Flume Shown

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Type-I Dimensional Details
3	Reinforcice Details
4	Type-II Dimensional Details
5	Multiple Barrel Flumes

TYPE II CLOSED FLUME INLET WITHOUT SIDEWALK Single Barrel Flume Shown

DESCRIPTION:

NOTES:

1. Use sloped section with sidewalk applications only.
2. Use Toe Walls with Sidewalk application only. For
3. Slope to match ad jacent curb with $2^{\prime \prime}$ top radius and $1^{11 /}$ bottom radius.
4. See Sheet 5 for multiple barrel flumes span variation

SIDE ELEVATION

FRONT ELEVATION

$\begin{aligned} & \text { LAST } \\ & \text { REVISION } \\ & 11 / 01 / 21 \end{aligned}$	\|re	DESCRIPTION:		$\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	CLOSED FLUME INLET	INDEX 425-061	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 5 \end{aligned}$

NOTE:
Type I Closed Flume Inlet shown, Type II Closed Flume Inlet Similar.

SECTION C-C

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$	\|	$\begin{array}{cc} F Y \text { 2022-23 } \\ \text { FDOTANDARD PLANS } \end{array}$	CLOSED FLUME INLET	INDEX 425-061	$\begin{gathered} \text { SHEET } \\ 3 \text { of } 5 \end{gathered}$

PLAN

DETAIL "A"

SECTION D-D

SIDE ELEVATION

FRONT ELEVATION
NOTE:
When called for in the Plans, install bricks to dissipate energy.
TYPE II DIMENSIONAL DETAILS

GENERAL NOTES

. The side panels are dimensionally symmetric, and may be used on either side of the structure.
2. Two (2) skimmers may be installed on a single structure provided they are constructed on opposite ends.
3. The width of the front panel (dimension W) is equal to the same as the outside dimension across the front of the structure.
4. Hot dip galvanize the front panel, side panels, and flat bars after fabrication.
5. The location of the reinforcing steel in these structures must conform to the Index $425-052$ to avoid conflict with the expansion anchors used to attach the skimmer.
6. Use grates on the inlets unless otherwise specified in the Plans.
7. A skimmer consists of two (2) side panels, one front panel, two (2) flat bars, and accessory hardware.

DIMENSIONS				
Skimmer Height as Specified in the Plans				$\begin{gathered} \text { Bolt } \\ \text { Spacing } \end{gathered}$
H (in.)	D (in.)	E (in.)	L (in.)	s (in.)
12	3 3/6	3	28	3
14	$33 / 6$	3	28	4
16	$33 / 6$	3	28	5
18	$33 / 6$	3	28	6
20	$43 / 6$	4	31	6
22	$43 / 6$	4	31	7
24	$43 / 16$	4	31	8
26	$43 / 16$	4	31	9
28	$43 / 6$	4	31	10
30	$53 / 16$	5	31	10
32	5 3/16	5	31	11
34	$53 / 16$	5	31	12
36	$6{ }^{3 / 16}$	6	31	12
38	$63 / 6$	6	31	13
40	$63 / 16$	6	31	14

front View

SIDE VIEW

$\overline{=} F L A T B A R=$

fRONT VIEW
SIDE VIEW

PANEL AND FLAT BAR DETAILS

DETAIL "B"

PLAN

SIDE ELEVATION

NOTES:

1. Hex Bolt, Flat Washer, Fender Washer, And Lock Nut, all Stainless Steel. (6 Required Per Skimmer)
2. Install a stainless steel stud type expansion anchor with nut and washer. Embedment depth $=2^{1 / 2}{ }^{\prime \prime}$,
Anchors to be installed according to the manufacturer's recommendations (12 required per skimmer). Anchors to be installed according to the manufacturer's recommendations (12 required per skimmer).
3. Install the skimmer so that the distance between the pond bottom at the structure and the skimmer
is not less than 1 foot.

GENERAL NOTES:

1. Work with Index 425-001 and Index 425-010.
2. Use Class II Concrete.
3. Maximum opening for pipe shall be the pipe $O D$ plus $6^{\prime \prime}$. Mortar used to seal the pipe into the opening will be of such mix that shrinkage will not cause leakage into or out of the structure.
4. If a conflict with a potable water supply line is discovered during construction ubmit the following to Florida Department of Environmental Protection (FDEP)
a. Plans Revision(s)
b. Justification describing inordinate cost and practical avoidance
c. Upon request, Utility Agency Owner (UAO) supporting documentation
for cost of rilocation ar ajustre
Potable water supply lines passing through a drainage structure must be in compliance with Chapter 62-555.314(3) F.A.C. This Index and rule citation provide accepted methods
adassing conficts when they cannot be reasonably avoided.
Website for District FDEP Drinking Water Contacts:
https://floridadep.gov/water/source-drinking-water/content/organization-drinking-water-program

table of Contents

Sheet Description

1	General Notes and Contents

U Utility Conflict Condition I and II Details

Condtion I shown Condition II simiar

NOTES:

. Fill or excavate variable slopes during normal grading operations.
2. Minimum distance as required to comply with safety criteria.
3. Use Larger Value of Either

L=10xH (No Maximum)
$L=10 \times$ Ditch offset (Maximum $L=100^{\prime}$)
4. Slope to normal slope if possible. Slope not to be steeper than 1:2. See side elevation (extended) below if 1:2 slope must go beyond toe of normal slope.
5. 1:2 slope if necessary to go beyond normal toe of slope and maintain ditch width by moving out back slope.

PLAN

SIDE ELEVATION (TYPICAL)
=front slopes at drainage structures

TABLE OF CONTENTS:	
Sheet	Description
1	Limits of Variable Front Slopes at Drainage Structures
2	Round and Elliptical Concrete Pipe Joint
3	Filter Fabric Jacket, Concrete Jacket, and Pipe Plug
4	Concrete Collars
5	Single Pipe End Guard
6	Double Pipe End Guard
7	Retaining Wall Concrete Gutter and Drains

\qquad

LAST REVIIION 11/01/20	全䆩\|DESCRIPTION:	$\begin{gathered} \text { FY 2022-23 } \\ \text { FTANDARD PLANS } \end{gathered}$	MIS CELLANEOUS DRAINAGE DETAILS	$\begin{gathered} \text { INDEX } \\ 430-001 \end{gathered}$	SHEET 1 of 7

TABLE 1 SCHEDULE OF BELL REINFORCEMENT Classes II,III,IV,V; Wall A,B,C		
NominalPipe Diameter	Design Reinforcement	Maximum Reinforcement Under Toleranc
	in ${ }^{2}$ per foot	in ${ }^{2}$ per foot
$15^{\prime \prime}$	0.07	0.010
$18^{\prime \prime}$	0.07	0.010
$24^{\prime \prime}$	0.09	0.010
$30^{\prime \prime}$	0.12	0.010
$36^{\prime \prime}$	0.14	0.010
$42^{\prime \prime}$	0.16	0.010
$48^{\prime \prime}$	0.19	0.011
$54^{\prime \prime}$	0.21	0.012
$60^{\prime \prime}$	0.23	0.0135
$66^{\prime \prime}$	0.26	0.015
$72^{\prime \prime}$	0.28	0.0165
$78^{\prime \prime}$	0.30	0.018
$84^{\prime \prime}$	0.33	0.0195
$90^{\prime \prime}$	0.35	0.021
$96^{\prime \prime}$	0.37	0.0225
$102^{\prime \prime}$	0.40	0.024
$108^{\prime \prime}$	0.42	0.0255

NOTES:

1. Allowable Tolerance for the last full wrap of reinforcing when using single elliptical cage
2. Extend the last full wrap of reinforcing to the shoulder point and meet ASTM C-76 requirements.
3. All circumferential steel located above this line and within the 175 L is defined as bell reinforcement

PREFORMED PLASTIC JOINT

PRofile rubber gasket

NOTES:

1. Filter Fabric Jacket is required on both type of joints.
2. Details shown before pull-up.

end elevation

SIDE ELEVATION
= extension of existing pipe culverts

NOTES:

1. The collar may be formed by any method approved by the Engineer
2. Install $1 / 2^{\prime \prime} \times 16^{\prime \prime}$ dowels in adhesive bond materia

ISOMETRIC VIEW
\qquad
\longrightarrow

end elevation

SIDe elevation
$=$ SINGLE GUARD

ISOMETRIC VIEW

end elevation

SIDE ELEVATION

DOUBLE GUARD

NOTES:

1. Construct guards only at locations specifically called for in Plans.
2. Anchor Bolts (Ga/vanized): Use C-I-P Hex Head bolts or fully threaded
adhesive anchors, installed in accordance with Specification 416 .

table 3-Double guard										
$\begin{aligned} & \text { Pipe } \\ & \text { Diaj } \\ & \text { (in } \end{aligned}$	$\begin{gathered} \text { Top Steel } \\ \text { Bracket } \\ \text { Grate } 1 \end{gathered}$	$\begin{array}{\|l\|l\|} \text { Top Steel } \\ \text { Bracket } \\ \text { Grate } 2 \end{array}$	$\begin{gathered} \text { Bottom } \\ \text { Steel } \\ \text { Plate } \end{gathered}$	Number of Total Hole	Number of Vert. Bars Grate 1	Number of Vert. Bars Grate	$\begin{aligned} & \text { Vertical } \\ & \text { Bars Size } \end{aligned}$	Number of Horiz. Bars (each grate)	Horizontal Bars Size	Weight
48	$2^{\prime}-4^{\prime \prime}$	$2^{\prime}-4^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	8	4	4	5/8"	5	\%/8'	127
54	$2^{\prime \prime}-4^{\prime \prime}$	$2^{\prime}-4^{\prime \prime}$	$6^{\prime}-6^{\prime \prime}$	8	4	4	$3 / 4 / 4$	6	5/8"	157
60	$2^{\prime}-4{ }^{\prime \prime}$	$2^{\prime}-4^{\prime \prime}$	$7^{\prime}-0^{\prime \prime}$	8	4	4	$3 / 4 /$	7	58/	172

DOUBLE PIPE END GUARD

| $\begin{array}{\|c\|} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{array}$ | \|l|l | | FY 2022-23
 STANDARD PLANS | MIS CELLANEOUS DRAINAGE DETAILS | $\begin{gathered} \text { INDEX } \\ 430-001 \end{gathered}$ | SHEET 6 of 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

elevation

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$		$\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	MIS CELLANEOUS DRAINAGE DETAILS

GENERAL NOTES:

1. Use Class II concrete.
2. Reinforcing steel: All bars are size \#4. Spacings shown are center to center. Laps to be $1^{1-5 " ~ m i n i m u m . ~ C o v e r ~ i s ~} 2^{\prime \prime}$ except as noted. Square welded wire fabric (two cages max.) In
an equivalent cross sectional area (0.20 sq. in.) may be an equivalent cross sectional area
substituted for bar reinforcement.
3. Endwall may be cast in place or precast concrete. Construct precast units to dimensions shown, or as shown in approved
shop drawings. Use Index $425-001$ for opening and grouting shop ar
details.
4. Quantities shown are for estimating purposes only.

TABLE OF CONTENTS:	
t	Description
	General Notes and Contents
	Dimensional and Reinforcing Details

U-TYPE CONCRETE ENDWALLS 15" TO 30" PIPES WITH GRATES
(24" Pipe Shown)

- FRONT SLOPE TRANSITION AT ENDWALL

\qquad REINFORCING DETAIL \qquad

			ABLE		
	DIM	SION	AND	QUANTITI	
	$\begin{aligned} & \text { Pipe } \\ & \text { io } \end{aligned}$	$\begin{gathered} A \\ (F t .) \end{gathered}$	$\begin{gathered} B \\ (F t) \end{gathered}$	Class II Conc. (CY)	Reinf. Steel (lbs.)
Slope	$15^{\prime \prime}$	5.67	2.38	0.85	56
1:4	$18^{\prime \prime}$	6.67	1.875	1.01	73
	$24^{\prime \prime}$	8.67	1.875	1.65	97
	$30^{\prime \prime}$	10.67	1.875	2.33	129

ELEVATION END VIEW

SIDE VIEW

TOP VIEW
TYPE 1

TYPE 2

- TYPE 1 AND TYPE 2 GRATE DETAILS

TYPE 1 AND TYPE 2 GRATE DETAILS
LAST
REVISION

REVISION
11/01/19
FDE气̄ $\begin{gathered}\text { FY 2022-23 } \\ \text { STANDARD PLANS }\end{gathered}$

INDEX	SHEET
$430-010$	3 of 3

general notes:

1. Use Class II concrete.
2. Construct Baffles only when called for in Plans.
3. See Sheet 5 when steel grating is required on endwall.
4. All reinforcing \#4 bars with 2" clearance except as noted

Channel section C 3×6 may be substituted for C 4×5.4 channel
6. Endwall may be cast in place or precast concrete Construct precast units to dimensions shown, or as shown in approved shop drawings. Submit requests for shop drawing approvals to the Engineer. Use Index 425-001 for opening and grouting etails.
7. Quantities shown are for estimating purposes only.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Endwalls for 1:2 Slopes With Baffles
3	Endwalls for 1:2 Sopes without Baffles and Bending Bar Diagram
4	Endwalls for 1:3, 1:4, and 1:6 Slopes
5	Steel Grate Option

U-TYPE CONCRETE ENDWALLS $\overline{ }$

PLAN

PLAN

front View

elevation

NOTE.
See Sheet 3 for Bar Bending Diagram.
LEGEND:
$H=$ Horizontal Bars
$V=$ Vertical Bars
$B=$ Bent Bars
D $=$ Dowels or Diagonal Bars

BACK VIEW

DIMENSIONS AND QUANTITIES FOR ONE U-ENDWALL														
Pipe		L	Ht	w	s	B	c	x Baffle			Y Baffle Reinf. Stee		Class IIConc. Conc.Cu. Yd.	$\begin{aligned} & \text { Reinf. } \\ & \text { Steei } \\ & \text { lbs. } \end{aligned}$
Dia.	$\begin{gathered} \text { Area } \\ \text { Sq. Ft. } \end{gathered}$							P	Q	R	Bars V_{1}	Bars H_{5}		
15"	1.23	5'-9"	$2^{\prime}-3^{3} / 2^{\prime \prime}$	$3^{\prime \prime}-7{ }^{\prime \prime}$	$2^{\prime}-3^{\prime \prime}$	$1^{1}-3^{\prime \prime}$	$2^{\prime}-3^{\prime \prime}$	$4^{\prime \prime}$	$4^{\prime \prime}$	$4^{\prime \prime}$	2 \#4	1 \#4	1.61	72
$18^{\prime \prime}$	1.77	6^{\prime}-6"	2'-5"	$3^{\prime \prime}-10^{\prime \prime}$	$2^{\prime}-6^{\prime \prime}$	$1^{\prime}-6^{\prime \prime}$	$2^{\prime \prime}-6^{\prime \prime}$	$4^{\prime \prime}$	$4^{\prime \prime}$	$5^{\prime \prime}$	3 \#	2 \#4	1.89	86
$24^{\prime \prime}$	3.14	$8^{\prime}-0^{\prime \prime}$	$2^{\prime}-8^{\prime \prime}$	$4^{\prime \prime}-4^{\prime \prime}$	$3^{3}-0^{\prime \prime}$	2'00'	$3^{\prime}-0^{\prime \prime}$	$5^{\prime \prime}$	$5^{\prime \prime}$	$6^{\prime \prime}$	4 \#4	3 \#4	2.52	108
$30^{\prime \prime}$	4.91	$9^{9}-6^{\prime \prime}$	$2^{\prime}-11^{\prime \prime}$	$4^{\prime}-10^{\prime \prime}$	$3^{3}-6^{\prime \prime}$	$2^{\prime}-6^{\prime \prime}$	$3^{\prime}-66^{\prime \prime}$	$5^{\prime \prime}$	$5^{\prime \prime}$	$7{ }^{\prime \prime}$	4 \#4	4 \#4	3.34	131

ENDW ALLS FOR 1:2 SLOPES WITH BAFFLES

front view

PLAN

SIDE VIEW

LEGEND:
H = Horizontal Bars
$v=$ vertical Bars
$B=$ Bent Bars
D $=$ Dowels or Diagonal Bars

BACKWALL SECTION

TABLE-2						WALI
					Class II	
Dia.	$\begin{gathered} \text { Area } \\ \text { sq. Ft. } \end{gathered}$	\llcorner	Ht	w	$\begin{aligned} & \text { conc. } \\ & \text { cu. Yd. } \end{aligned}$	$\begin{aligned} & \text { Steel } \\ & \text { lbs. } \end{aligned}$
$15^{\prime \prime}$	1.23	$3^{\prime}-3^{\prime \prime}$	$1^{\prime}-7 \frac{1}{2}{ }^{\prime \prime}$	$3^{3}-7{ }^{\prime \prime}$	0.89	39
$18^{\prime \prime}$	1.77	$3^{\prime \prime}-9^{\prime \prime}$	$1^{\prime}-10{ }^{\prime} / 2^{\prime \prime}$	$3^{\prime \prime}-10^{\prime \prime}$	1.0	43
$24^{\prime \prime}$	3.14	$4^{\prime \prime}-9^{\prime \prime}$	2'-4/2"	$4^{\prime \prime}-4{ }^{\prime \prime}$	1.40	55
$30^{\prime \prime}$	4.91	$5^{\prime \prime-9 \prime}$	$2^{\prime}-10^{\prime \prime} / 2^{\prime \prime}$	$4^{\prime \prime}-10^{\prime \prime}$	1.88	64

ENDWALL WITHOUT BAFFLES

BENDING DIAGRAM
ENDW ALLS FOR 1:2 SLOPES WITHOUT BAFFLES AND BAR BENDING DIAGRAM

$\begin{aligned} & \text { LAST } \\ & \text { REVISION } \\ & 11 / 01 / 21 \end{aligned}$		$\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	U-TYPE CONCRETE ENDWALLS BAFFLES \& GRATE OPTIONAL 15 " TO 30 " PIPE	index 430-011	SHEET 3 of 5

NOTE:

1. Reinforcing similar to Sheets 2 and 3 .
2. See Sheet 3 for Bar Bending Diagran.

24" AND 30" PIPE
1:4 SLOPES

24" AND $30^{\prime \prime}$ PIPE
1:6 SLOPES
(side
REINFOR A And Backwall Sections Shown)
$\overline{\text { Show }}$ DETAIS

DIMENSIONAL DETAILS

ENDW ALLS WITH AND WITHOUT BAFFLES FOR 1:3, 1:4, AND 1:6 SLOPES

U-IYPE CONCRETE ENDWALLS BAFFLES
\& GRATE OPTIONAL 1 " ${ }^{\prime}$ TO 30" PIPE
430-011 4 of 5

GENERAL NOTES:

1. Use Class II concrete
2. Chamfer all exposed edges $3 / "$.
3. See Index 550-002 for details of Type B fencing
4. Quantities shown are for estimating purposes only

ELEVATION
FRONT VIEW
DIMENSIONAL DETAILS

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$		$\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	U-TYPE CONCRETE ENDWALL ENERGY DISSIPATOR $30^{\prime \prime}$ TO 72" PIPE	$\begin{gathered} \text { INDEX } \\ 430-012 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 3 \end{aligned}$

NOTES

1. All bar dimensions are measured out to out
2. All Bars are size \#4 unless otherwise noted
3. Install reinforcing steel with a minimum of $2^{\prime \prime}$ cover.
4. Bars B6 and B7 (N.S. and F.S.) equivalent in size to
5. Bars $V_{4} V_{2}, V_{3}, V_{4}, V_{5}, H_{4}, H_{2}, H_{3}, H_{4}$, and H_{5} are straight bars.

BENT BARS TABLE												
Pipe	B_{1}		B_{2}		B_{3}		B_{4}		B_{5}		B_{10}	
	$\begin{aligned} & \text { Size } \\ & \text { (No.) } \end{aligned}$	$\left(\begin{array}{c} \text { Spacing } \\ \text { (Ft.-In.) } \end{array}\right.$	$\begin{array}{\|c\|} \hline \text { Size } \\ \text { (No.) } \end{array}$	Spacing (Ft.-In.)	$\begin{array}{\|c\|} \hline \text { Size } \\ \text { (No.) } \end{array}$	$\begin{array}{\|l\|} \hline \text { Spacing } \\ \text { (Ft.-In.) } \end{array}$	$\begin{array}{\|c\|} \hline \text { Size } \\ \text { (No.) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Spacing } \\ (F t .-I n .) \end{array}$	$\begin{array}{\|c\|} \hline \text { Size } \\ \text { (No.) } \end{array}$	$\begin{aligned} & \text { Spacing } \\ & \text { (Ft.-In.) } \end{aligned}$	$\begin{aligned} & \text { Size } \\ & \text { (No.) } \end{aligned}$	$\begin{array}{\|c} \text { Spacing } \\ \text { (Ft.-In.) } \end{array}$
$30^{\prime \prime}$	4	0-91/2	4	1-6	5	0-11	4	0-91/2	5	0-51/2	4	0-91/2
$36^{\prime \prime}$	5	1-0	4	1-6	5	0-1	5	1-0	5	0-5	5	1-0
$42^{\prime \prime}$	5	0-11	4	1-6	6	1-1	5	0-11	6	0-61/2	5	0-11
$48^{\prime \prime}$	5	0-91/2	4	1-0	6	1-0	5	0-91/2	6	0-6	5	0-91/2
$54^{\prime \prime}$	5	0-81/2	4	0-10	7	1-1	5	0-81/2	7	0-61/2	5	0-81/2
$60^{\prime \prime}$	6	0-10	5	1-1	7	1-0	6	0-10	7	0-6	6	0-10
66"	6	0-81/2	5	0-111/2	7	0-11	6	0-81/2	7	0-51/2	6	$0-81 / 2$
$72^{\prime \prime}$	6	$0-71 / 2$	5	0-10	7	0-10	6	$0-71 / 2$	7	0-5	6	0-71/2

$B A R B_{4}$

BENDING DIAGRAM \qquad

ELEVATION

REINFORCING DETAILS AND BENDING DIAGRAM

GENERAL NOTES:

1. Provide flared end sections meeting the requirements of ASTM C76 with the exception that dimensions and reinforcement meet the criteria in the table on sheet 2. Circumferential reinforcement may consist of either one cage or two cages of steel. Use concrete compressive strength of 4000 psi
2. Connections between the flared end section and the pipe culvert may be any of the following types unless otherwise shown on the plans.
a. Joints meeting the requirements of Section 449 of the Standard Specifications (0-Ring Gasket). Flare end section joint dimensions and tolerances shall be identical or compatible to those used in the pipe culvert joint. When pipe culvert and flared end section manufacturers are
of the flared end sections must certify the compatibility of joint designs.
b. Joints sealed with preformed plastic gaskets. Use gaskets that meet the requirements Specification 942-2 of the Standard Specifications and the minimum sizes for gaskets as specified for equivalent sizes of elliptical pipe.
r. Reinforced concrete jackets, as detailed on sheet 2. When non-coated corrugated metal pipe is called for in the Plans, use bituminous coated pipe in the jacketed area as specified on Index 430-001 Construct concrete jacket as specified in Index 430-001.
3. Cast Toe Walls in place using Class II Concrete.
. on skewed pipe culverts place the flared end sections in line with the pipe culvert. Warp the side slopes as required to fit the flared end sections.
4. Quantities shown are for estimating purposes only.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Straight Flare, Optional Shape Details, and Reinforced Concrete Jacket Detail

FLARED END SECTION

$\begin{gathered} \text { Pipe } \\ \text { Dia. } \end{gathered}$	T	$\begin{gathered} \text { Reinf. } \\ \text { seq. in. } \\ \text { Per Fooot } \end{gathered}$	$\begin{gathered} \hline \text { Bell } \\ \text { or } \\ \text { Spigot } \end{gathered}$	A	в	c	D	E	P	R 1	R 2	FLAT	h	$\begin{gathered} \text { Toe Wall } \\ \text { Class II } \\ \text { Conc. (CY.) } \end{gathered}$
$12^{\prime \prime}$	$2^{\prime \prime}$	0.07	$1^{1 / 2}$	$4^{\prime \prime}$	$2^{\prime \prime}-0^{\prime \prime}$	$4^{1}-0^{7} 8^{\prime \prime}$	$6^{\prime}-078^{\prime \prime}$	$2^{\prime \prime}-0^{\prime \prime}$	1915/16 ${ }^{10}$	$10^{1 / 81}$	$9^{\prime \prime}$	31/2"	$12^{\prime \prime}$. 06
$15^{\prime \prime}$	21/4"	0.07	$2^{\prime \prime}$	$6^{\prime \prime}$	$2^{\prime}-3^{\prime \prime}$	$3^{\prime}-10^{\prime \prime}$	$6^{\prime}-1{ }^{\prime \prime}$	$2^{\prime}-6^{\prime \prime}$	$24^{5} 16^{\prime \prime}$	$121 / 2^{\prime \prime}$	11^{11}	$3^{1 / 2}{ }^{1 \prime}$	$12^{\prime \prime}$. 07
$18^{\prime \prime}$	$21 / 2^{\prime \prime}$	0.07	21/210	$9^{\prime \prime}$	$2^{\prime \prime}-3^{\prime \prime}$	$3^{\prime \prime}-10^{\prime \prime}$	$6^{\prime}-1^{\prime \prime}$	$3^{\prime \prime}-0^{\prime \prime}$	29"	151/2"	$12^{\prime \prime}$	$4^{\prime \prime}$	$15^{\prime \prime}$	11
$21^{\prime \prime}$	23/4"	0.07	21/4"	$9^{\prime \prime}$	$2^{\prime \prime}-11^{\prime \prime}$	$3^{\prime \prime}-2^{\prime \prime}$	$6^{\prime}-11^{\prime \prime}$	$3^{\prime \prime}-6^{\prime \prime}$	31/8/8	$16{ }^{1 / 8}$	$13^{\prime \prime}$	$4{ }^{\prime \prime}$	$15^{\prime \prime}$	12
$24^{\prime \prime}$	$3^{\prime \prime}$	0.07	21/2"	91/2"	$3^{\prime}-71 / 2^{\prime \prime}$	$2^{\prime \prime}-6^{\prime \prime}$	$6^{\prime}-1{ }^{1 / 2}$	$4^{\prime \prime}-0^{\prime \prime}$	$33^{3} / 6^{\prime \prime}$	$16^{13 / 166^{\prime \prime}}$	$14^{\prime \prime}$	$4^{1 / 2}{ }^{\prime \prime}$	$18^{\prime \prime}$	17
$27^{\prime \prime}$	$31 / 4^{\prime \prime}$	0.148	21/2"	$10^{1 / 2} 1$	$4^{\prime}-0^{\prime \prime}$	$2^{\prime \prime}-1 \frac{1}{2 / \prime \prime}$	$6^{\prime}-11 / 2^{\prime \prime}$	$4^{\prime}-6^{\prime \prime}$	$36^{\prime \prime}$	$18 \% 1{ }^{\prime \prime}$	141/2"	$4^{1 / 2}{ }^{\prime \prime}$	$18^{\prime \prime}$. 19
$30^{\prime \prime}$	$31 / 2^{\prime \prime}$	0.148	$3^{\prime \prime}$	$1^{\prime}-0^{\prime \prime}$	$4^{\prime}-6^{\prime \prime}$	$1^{1}-73 / 4{ }^{1 /}$	$6^{\prime}-1{ }^{3 / 4} 4^{\prime \prime}$	$5^{\prime}-0^{\prime \prime}$	$37^{\prime \prime}$	$181 / 2^{\prime \prime}$	$15^{\prime \prime}$	$5^{\prime \prime}$	$21^{\prime \prime}$. 24
$36^{\prime \prime}$	$4^{\prime \prime}$	0.148	$3^{1 / 2} 2^{\prime \prime}$	1^{1}-3"	5'-3"	$2^{\prime}-10^{3} /^{\prime \prime}$	$8^{-1}-1 / 4^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	47 ${ }^{13 / 1 / 6^{*}}$	$244^{5} / 1^{\prime \prime}$	$20^{\prime \prime}$	51/2"	$21^{\prime \prime}$	29
$42^{\prime \prime}$	$41 / 2^{\prime \prime}$	0.148	33/4"	$1^{\prime}-9{ }^{\prime \prime}$	$5^{\prime}-3^{\prime \prime}$	$2^{\prime}-11^{\prime \prime}$	$8^{\prime}-2^{\prime \prime}$	6^{\prime} '6"	$537 / 8^{\prime \prime}$	$27^{1 / 2}{ }^{\prime \prime}$	$22^{\prime \prime}$	51/2"	$24^{\prime \prime}$. 36
$48^{\prime \prime}$	$5^{\prime \prime}$	0.148	$41 / 4^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$2^{\prime}-2^{\prime \prime}$	$8^{\prime}-2^{\prime \prime}$	$7^{\prime}-0^{\prime \prime}$	561/2"	$28^{1 / 21}$	$22^{\prime \prime}$	53/4"	$24^{\prime \prime}$. 39
$54^{\prime \prime}$	5 ${ }^{1 / 2}$	0.174	$4 \frac{3}{4}{ }^{4}$	$2^{\prime}-3^{\prime \prime}$	5'-5"	$2^{2-11^{\prime \prime}}$	$8^{\prime}-4^{\prime \prime}$	7^{\prime}-6"	$651 / 2^{\prime \prime}$	331/8"	$24^{\prime \prime}$	$6^{1 / 4} 4^{\prime \prime}$	$24^{\prime \prime}$. 42
$60^{\prime \prime}$	$6^{\prime \prime}$	0.174	$5^{\prime \prime}$	$2^{\prime \prime}-6^{\prime \prime}$	$5^{\prime}-0^{\prime \prime}$	$3^{\prime \prime}-3^{\prime \prime}$	$8^{\prime}-3^{\prime \prime}$	$8^{\prime}-0^{\prime \prime}$	721/2"	$36^{11 / 16^{\prime \prime}}$	$24^{\prime \prime}$	$6{ }^{3 / 4}$	$24^{\prime \prime}$	44
$66^{\prime \prime}$	$61 / 2^{\prime \prime}$	0.174	51/2"	$2^{\prime}-0^{\prime \prime}$	$6^{\prime}-6^{\prime \prime}$	$1^{\prime}-9^{\prime \prime}$	$8^{\prime}-3^{\prime \prime}$	$8^{\prime}-6^{\prime \prime}$	72"	361/8"	$24^{\prime \prime}$	71/4 ${ }^{\prime \prime}$	$24^{\prime \prime}$	47
$72^{\prime \prime}$	$7{ }^{\prime \prime}$	0.17	$6^{\prime \prime}$	$2^{\prime \prime}-0^{\prime \prime}$	$6^{\prime}-6^{\prime \prime}$	$1{ }^{1}$ -	$8{ }^{\prime}$	$0^{\prime \prime}$	$77^{13 / 166^{6}}$	$388^{15 / 6}{ }^{\prime \prime}$	$24^{\prime \prime}$	7\%/4"	$24^{\prime \prime}$. 50

SECTION A-A

SECTION B-B

$\overrightarrow{\text { Pipe (See Note 2) }}$ 2-~ Flared End
SECTION E-E

END VIEW

SECTION C-C

SECTION D-D

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$		$\begin{gathered} \text { FY 2022-23 } \\ \text { FDOTXD } \end{gathered}$	$\mathbb{F L A R E D} \mathbb{E} \mathbb{N} \mathrm{SECTII}$	$\begin{array}{c\|} \hline \text { Index } \\ 430-020 \end{array}$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 2 \end{aligned}$

GENERAL NOTES

1. Unless otherwise designated in the plans, concrete pipe mitered end sections may be used with any type of cross drain pipe; corrugated steel pipe mitered end sections may be used with any type of cross dra of cross drain pipe except steel pipe. When bituminous coated metal pipe is specified for cross drain pipe, construct the mitered end sections with like pipe or concrete pipe. When the mitered end section pipe is dissimilar to the cross drain pipe, construct a concrete jacket in accordance with Index 430-001
2. Use either corrugated metal or concrete mitered end sections for corrugated polyethylene pipe (HDPE), polyvinyl-chloride pipe (PVC), steel reinforced polvethylene pipe (SRPE), and polypropylene pipe (PP) When used in conjunction with corrugated mitered end sections, make connection using either a formed metal band specifically designated to join HDPE, PVC, SRPE, or PP pipe, with metal pipe. When used in conjunction with a concrete mitered end sections, construct concrete jacket in accordance with Index 430-001.
3. Class NS concrete cast-in-place reinforced slabs are required for all sizes of cross drain pipes. Construct slabs at $5 \frac{1}{2}$ " thick, unless $3^{\prime \prime}$ thickness is called for in the Plans.
4. Select lengths of concrete pipe that avoid excessive connections in the assembly of the mitered end section.
5. Repair corrugated metal pipe galvanizing that is damaged during beveling and perforating.
6. When existing multiple cross drain pipes are spaced other than the dimensions shown in this Index, ections separately as single pipe or collectively as multiple pipe end sections as directed by the Engineer
7. Saddle Slope:

Saddle Slope:
1:4 Miter - Slope to \mathbb{q} of pipe for round pipes less than or equal to $18^{\prime \prime}$ diameter and 1:1 for round pipes greater than or equal to $24^{\prime \prime}$ diameter. Slope to the span line for pipe arch
1.2 Miter - Slope to $\&$ of pipe for round pipes less than or equal to 18 "1iameter and 1:2 for round pipes greater than or equal to 24" diameter.
(Tal pipes $29^{\prime \prime} \times 45^{\prime \prime}$ or smaller and 1:1 for pipes $34^{4 \prime} \times 53^{\prime \prime}$ or larger Slope 1:1 for all pipe arch sizes.
8. Quantities shown are for estimating purposes only.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Single and Multitile Concrete Pipe
3	Concrete Pipe Dimensions and Quantities
4	Single and Multiple Corrugated Metal Pipe
5	Corrugated Metal Pipe Dimensions and Quantities
6	Concrete Pipe Connections and Corrugated Metal Pipe (CMP) Anchor Detail

SLOPE AND DITCH TRANSITIONS

TABLE 1
Single and multiple concrete pipe dimensions and quantities

		Dia.	Rise	Span	x	A	B	c	E	F	G	H	M				N	5 ${ }^{2} /{ }^{\prime \prime}$ CONC. SLAB (CY) (See General Note 3)				$3^{\prime \prime}$ CONC. SLAB (CY) (See General Note 3)				SOdDING (SY)			
													Single	be	Triple	Quad.		Single	Double	Triple	Quad.	Single	Double	Triple	Quad.	Single	Double	Triple	d.
\div		15"			$2^{2-7{ }^{\prime \prime}}$	${ }^{1.92^{\prime}}$	$2.18{ }^{\prime}$	4.10^{\prime}	2.06^{\prime}	5	1.22'	$2.9{ }^{\prime}$	4.63^{\prime}	7.21^{\prime}	${ }^{9.79}$	12.37'	1.19'	0.38	0.58	0.77	${ }^{0.96}$	0.27	0.41	0.54	${ }^{\text {Prebe }}$	Pipe	Pipe	$\frac{\text { Pipe }}{} 27$	Pipe
		$18^{\prime \prime}$			$2^{\prime \prime}-10^{\prime \prime}$	${ }^{1.97}$	$2.74{ }^{\prime}$	4.71^{1}	2.56^{\prime}	6^{\prime}	1.41^{\prime}	3.4 ${ }^{\text {+ }}$	4.92^{\prime}	$7.75{ }^{\prime}$	10.58'	13.42^{\prime}	1.21^{1}	0.44	0.65	0.87	1.09	0.31	0.45	0.60	0.75	22	25	28	31
		$24^{\prime \prime}$			$3^{\prime \prime}-5^{\prime \prime}$	$2.06{ }^{\prime}$	3.85'	$5.91{ }^{1}$	3.56	$7{ }^{\prime}$	$1.73{ }^{\prime}$	3.4 ${ }^{\text {+ }}$	5.50^{\prime}	$8.92{ }^{\prime}$	12.33'	$15.75{ }^{\prime}$	1.25'	0.54	0.83	1.12	1.42	0.39	0.59	0.79	1.00	24	28	32	35
		$30^{\prime \prime}$			$4^{\prime \prime}-3^{\prime \prime}$	$2.15{ }^{\prime}$	4.95'	7.10^{\prime}	4.56'	$8^{\prime \prime}$	2.00^{\prime}	3.4 ${ }^{\text {+ }}$	$6.08{ }^{\prime}$	10.33'	14.58^{\prime}	18.83^{\prime}	${ }^{1.29^{\prime}}$	0.66	1.09	1.50	1.91	0.46	0.76	1.04	1.32	26	31	35	40
		$36^{\prime \prime}$			5'-1"	2.25	$6.08{ }^{\prime}$	8.33	5.56'		$2.24{ }^{\prime}$	3.4 ${ }^{\text {+ }}$	$6.67{ }^{\prime}$	11.75^{\prime}	16.83'	21.92'	1.33'	0.81	1.38	1.95	2.51	0.55	0.94	1.33	1.71	28	34	39	45
		$42^{\prime \prime}$			$6^{\prime}-0^{\prime \prime}$	$2.34{ }^{4}$	$7.21{ }^{1}$	9.55^{\prime}	6.56'	10^{\prime}	$2.45{ }^{\prime}$	3.4 ${ }^{4}$	7.25^{\prime}	13.25'	19.25^{\prime}	25.25'	$1.38{ }^{\text {b }}$	0.97	1.70	2.45	3.19	0.66	1.15	1.66	2.15	30	37	43	50
		$48^{\prime \prime}$			$6^{\prime}-9^{\prime \prime}$	2.43^{\prime}	8.33'	10.76 ${ }^{\prime}$	7.56^{\prime}	11^{\prime}	2.65^{\prime}	3.4'	7.83'	14.58^{\prime}	21.33'	28.08^{\prime}	1.42'	1.13	2.04	2.93	3.84	0.76	1.37	1.96	2.57	32	39	47	54
		$54^{\prime \prime}$			$7^{\prime}-8^{\prime \prime}$	2.52^{\prime}	${ }^{\text {9.44' }}$	11.96'	8.56'	12'	$2.83{ }^{\prime}$	3.4'	8.42'	$16.08{ }^{\prime}$	23.75'	31.42'	1.46^{\prime}	1.31	2.44	3.58	4.72	0.87	1.62	2.38	3.14	34	42	51	59
		$60^{\prime \prime}$			$8^{\prime \prime-6^{\prime \prime}}$	2.62^{\prime}	10.56	13.18'	9.56'	14	3.00^{\prime}	4.4'	9.00^{\prime}	17.50^{\prime}	26.00'	34.50^{\prime}	1.50^{\prime}	1.51	2.89	4.28	5.68	0.99	1.90	$\stackrel{1}{2.81}$	3.73	36	45	55	64
		$66^{\prime \prime}$			$9^{\prime}-2^{\prime \prime}$	2.71^{\prime}	${ }^{11.68}{ }^{\prime}$	14.39'	10.56'	15'	$3.18{ }^{\prime}$	4.4'	$9.58{ }^{\prime}$	18.75'	27.92'	37.08'	1.54'	1.68	3.25	4.84	6.43	1.11	2.15	3.21	4.27	38	48	58	68
		$72^{\prime \prime}$			10'0 $0^{\prime \prime}$	2.80^{\prime}	12.80°	15.60°	11.56'	16^{\prime}	3.30'	4.4'	10.16'	20.16^{\prime}	30.16'	40.16'	1.58'	1.89	3.74	5.59	7.45	1.24	2.46	3.68	4.90	40	51	62	73
	$\begin{array}{\|c\|c} 1: 4 \\ \text { Slope } \end{array}$	$15^{\prime \prime}$			$2^{\prime \prime-7^{\prime \prime}}$	2.27^{\prime}	${ }^{4.09}$	$6.36{ }^{\prime}$	4.03'	8^{\prime}	1.22^{\prime}	4.0^{\prime}	$4.63^{\prime \prime}$	7.21^{\prime}	${ }^{9.79^{\prime}}$	12.37^{\prime}	${ }^{1.19}$	0.57	0.87	1.15	1.44	0.40	0.61	0.80	1.00	23	26	29	32
		$18^{\prime \prime}$			$2^{\prime \prime}-10^{\prime \prime}$	2.36	5.12'	$7.48{ }^{\prime}$	5.03'	9^{\prime}	1.41^{\prime}	4.0'	4.92^{\prime}	$7.75{ }^{\prime}$	10.58^{\prime}	13.42'	1.21^{1}	0.66	0.99	1.31	1.65	0.47	0.69	0.91	1.14	25	28	31	35
$\stackrel{\circ}{\ddagger}$		24"			$3^{\prime \prime}-5^{\prime \prime}$	2.53'	$7.18{ }^{\prime} \triangle$	9.71^{1}	7.03' \triangle	11^{\prime}	$1.73{ }^{\text { }}$	4.0	5.50^{\prime}	8.92'	12.33'	$15.75{ }^{\prime}$	1.25'	0.85	1.30	1.75	2.20	0.60	0.90	1.21	1.52	28	32	36	
5		$30^{\prime \prime}$			$4^{\prime}-3^{\prime \prime}$	2.70^{\prime}	9.25'	11.95'	9.03'	13^{\prime}	2.00^{\prime}	4.0^{\prime}	$6.08{ }^{\prime}$	10.33^{\prime}	$14.58{ }^{\prime}$	18.83^{\prime}	1.29^{\prime}	1.10	1.74	2.39	3.05	0.76	1.19	1.63	2.07	31	36	41	46
		36"			$5^{\prime \prime}-1^{\prime \prime}$	2.87^{\prime}	11.31°	14.18^{\prime}	11.03 ${ }^{\prime}$	15	$2.24{ }^{\prime}$	4.0'	6.67^{\prime}	11.75^{\prime}	16.83'	21.92'	1.33^{\prime}	1.32	2.21	3.08	3.96	0.89	1.48	2.05	2.63	34	40	46	52
		$42^{\prime \prime}$			$6^{\prime}-0^{\prime \prime}$	$3.05{ }^{\prime}$	$13.37{ }^{\prime}$	16.42^{\prime}	13.03'	17^{\prime}	$2.45{ }^{\prime}$	4.0 ${ }^{\prime}$	7.25^{\prime}	13.25'	19.25'	25.25'	$1.38{ }^{\prime}$	1.58	2.76	3.91	5.09	1.05	1.82	2.57	3.34	38	44	51	58
		$48^{\prime \prime}$			$6^{\prime}-9^{\prime \prime}$	3.22'	15.43^{\prime}	18.65'	15.03^{\prime}	19'	$2.65{ }^{\text {2 }}$	4.0^{\prime}	$7.83{ }^{\prime}$	14.58'	21.33'	28.08'	1.42^{\prime}	1.85	3.30	4.73	6.17	1.21	2.15	3.07	4.00	41	48	56	63
		$54^{\prime \prime}$			$7^{\prime \prime}-8^{\prime \prime}$	3.39^{\prime}	17.49'	20.88'	17.03'	27^{\prime}	$2.83{ }^{\prime}$	4.0 ${ }^{\prime}$	8.42^{\prime}	16.08^{\prime}	23.75'	31.42'	1.46^{\prime}	2.14	3.95	5.77	7.58	1.39	2.55	3.72	4.88	44	52	61	69
		$60^{\prime \prime}$			$8^{\prime \prime}-6^{\prime \prime}$	3.56'	19.55'	23.111	19.03'	23^{\prime}	3.00^{\prime}	4.0 ${ }^{\prime}$	9.00^{\prime}	17.50'	26.00^{\prime}	34.50'	1.50^{\prime}	2.45	4.66	6.87	9.07	1.59	3.02	4.44	5.86	47	56	66	75
		$66^{\prime \prime}$			$9^{\prime \prime}-2^{\prime \prime}$	3.73'	21.62'	25.35'	21.03'	25'	$3.18{ }^{\prime}$	4.0'	$9.58{ }^{\prime}$	18.75'	27.92'	37.08'	1.54'	2.88	5.54	8.18	10.84	1.91	3.66	5.40	7.15	49	59	69	80
		$72^{\prime \prime}$			$10^{\prime \prime}-0^{\prime \prime}$	$3.91{ }^{\prime}$	23.68'	27.59'	23.03'	27	3.30'	4.0 ${ }^{\prime}$	10.16	20.16^{\prime}	30.16^{\prime}	40.16'	1.58'	3.54	6.61	9.87	13.13	2.12	4.18	6.24	8.30	52	63	74	85
	Slope		$12^{\prime \prime}$	$18^{\prime \prime}$	$2^{\prime}-10^{\prime \prime}$	${ }^{1.97}{ }^{\prime}$	1.62^{\prime}	3.59^{\prime}	${ }^{1.566^{\prime}}$	4^{\prime}	1.50'	$2.4{ }^{4}$	4.92'	7.75'	$10.58{ }^{\prime}$	13.42^{\prime}	1.21^{1}	0.30	0.49	0.67	0.85	0.19	0.33	0.45	0.57	21	24	27	
			$14^{\prime \prime}$	$23^{\prime \prime}$	$3^{\prime \prime}-4^{\prime \prime}$	$2.01{ }^{\prime}$	1.99^{\prime}	4.00^{\prime}	${ }^{1.89}{ }^{\prime}$	5	$1.90{ }^{\prime}$	$3.1{ }^{1}$	$5.38{ }^{\prime}$	$8.71{ }^{1}$	12.04	$15.38{ }^{\prime}$	$1.23{ }^{\text { }}$	0.37	0.59	0.81	1.02	0.25	0.40	0.55	0.69	22	26	29	33
			$19^{\prime \prime}$	30"	$4^{\prime}-0^{\prime \prime}$	2.11^{1}	$2.92{ }^{\prime}$	5.03'	2.73'	6^{\prime}	2.37^{\prime}	3.3'	$6.04{ }^{\prime}$	10.04'	14.04'	18.04'	1.27^{\prime}	0.50	0.80	1.09	1.39	0.34	0.55	0.75	0.95	24	28	33	
			$24^{\prime \prime}$	$38^{\prime \prime}$	5'-0"	2.20^{\prime}	3.85'	6.05^{\prime}	3.56'	7	$2.85{ }^{\prime}$	3.4'	$6.79{ }^{\prime}$	${ }^{11.79}$	16.79'	21.79'	$1.31{ }^{1}$	0.62	1.03	1.45	1.86	0.43	0.71	1.00	1.28	26	31	37	42
			$29^{\prime \prime}$	$45^{\prime \prime}$	5'-11"	$2.34{ }^{\prime}$	4.79^{\prime}	7.13^{\prime}		8^{\prime}	3.19'	3.6'	7.50^{\prime}	13.42'	19.33'	25.25'	$1.38{ }^{\prime}$	0.75	1.30	1.84	2.39	0.52	0.90	1.27	1.65	28	34	41	47
			34"	53"	$7^{\prime} 7^{\prime \prime}$	2.43^{\prime}	5.72'	${ }^{8.15}$	5.23'	9^{\prime}	3.57'	3.8 ${ }^{\text {b }}$	8.25'	15.25'	22.25'	29.25'	1.42'	0.90	1.61	2.32	3.03	0.62	1.11	1.60	2.09	30	37	45	53
			$38^{\prime \prime}$	60"	$7^{\prime}-10^{\prime \prime}$	2.52^{\prime}	${ }^{6.46{ }^{\prime}}$	8.98'	5.89^{\prime}	9^{\prime}	3.95'	3.11	$8.92{ }^{\text {' }}$	16.75^{\prime}	24.58'	32.42'	1.46^{\prime}	1.03	1.89	2.74	3.60	0.70	1.29	1.87	2.46	31	40	49	
			$4{ }^{\prime}$	$68^{\prime \prime}$	$8^{8}-11^{\prime \prime}$	2.62^{\prime}	7.39'	10.01^{1}	6.73'	10^{\prime}	4.28 ${ }^{\text {' }}$	3.3'	9.67 ${ }^{\text { }}$	18.58^{\prime}	27.50'	36.42'	1.50^{\prime}	1.19	2.26	3.33	4.40	0.81	1.54	2.26	2.99	33	43	53	63
			$48^{\prime \prime}$	$76^{\prime \prime}$	$9^{\prime}-11^{\prime \prime}$	$2.71{ }^{1}$	8.33'	11.04'	7.56'	11^{\prime}	4.59	3.4 ${ }^{4}$	10.42'	20.33'	30.25'	40.17	1.54'	1.38	2.65	3.93	5.21	0.93	1.79	2.66	3.53	35	46	57	68
			53"1	83"	10'10 ${ }^{\prime \prime}$	${ }^{2.80}{ }^{\prime}$	${ }^{9.26^{\prime}}$	${ }^{12.060^{\prime}}$	8.39'	${ }^{12^{\prime}}$	${ }^{4.77^{\prime}}$	3.6'	${ }^{11.088^{\prime}}$	${ }^{21.755^{\prime}}$	${ }^{32.422^{\prime}}$	43.08 ${ }^{\text {d }}$	${ }^{1.588^{\prime}}$	1.55	3.03	4.50	5.96	1.04	2.04	3.03	4.02	37	49	61	73
			58" ${ }^{12^{\prime \prime}}$	${ }^{91^{\prime \prime}}$	${ }^{11^{1}-8^{\prime \prime}}$	2.90^{\prime}	${ }^{10.199^{\prime}}$	${ }^{13.099^{\prime}}$	$\frac{9.233^{\prime \prime}}{303^{\prime \prime}}$	${ }^{13} 5^{\prime}$	$\frac{5.01^{\prime}}{1.50^{\prime}}$	${ }^{3.8}{ }^{\prime}$	11.83'	23.55^{\prime}	${ }^{35.177^{\prime}}$	46.83 ${ }^{13}$	1.63'	1.75	3.47	5.20	${ }^{6.93}$	$\frac{1.17}{1.30}$	2.33	3.49	4.66	39	52	65	78
	$\begin{array}{\|c\|c} 1: 4 \\ \text { Slope } \end{array}$		$14^{\prime \prime}$	$23^{\prime \prime}$	$3^{\prime \prime} 4^{\prime \prime}$	$2.44{ }^{\text {2 }}$	${ }^{3.755^{\prime}}$	${ }^{6.19}$	${ }_{3.70^{\prime}}^{3 .}$	6^{\prime}	1.90^{\prime}	$2.3{ }^{\text {2 }}$	${ }^{5.38}$	${ }^{8.71^{\prime}}$	12.04	15.38'	${ }^{1.233^{\prime}}$	0.53	0.83	1.13	1.42	0.36	0.56	0.76	${ }_{0} 0.95$	24	28	32	35
			$19^{\prime \prime}$	30"	$4^{\prime}-0^{\prime \prime}$	${ }^{2.62}$	$5.47{ }^{\prime}$	${ }^{8.09}{ }^{\text { }}$	5.36'	8^{\prime}	2.37^{\prime}	$2.6{ }^{\text {a }}$	$6.04{ }^{\prime}$	10.04 ${ }^{\text { }}$	14.04	18.04'	${ }^{1.27^{\prime}}$	0.74	1.15	1.57	1.98	0.51	0.79	1.08	1.36	27	32	36	
总			$24^{\prime \prime}$	38"	$5^{\prime}-0^{\prime \prime}$	2.79^{\prime}	$7.18{ }^{\prime}$	${ }^{9.97}{ }^{\text { }}$	7.03^{\prime}	10^{\prime}	$2.85{ }^{\prime}$	$3.0{ }^{\circ}$	$6.79{ }^{\prime}$	${ }^{11.79}{ }^{\text { }}$	16.79'	21.79^{\prime}	1.31^{1}	0.97	1.57	2.19	2.81	0.68	1.10	1.53	1.96	30	36	41	47
会			$29^{\prime \prime}$	$45^{\prime \prime}$	5'-11"	$3.05{ }^{\prime}$	8.90^{\prime}	${ }^{11.95}$	8.70^{\prime}	12^{\prime}	3.19^{\prime}	3.3'	7.50^{\prime}	13.42'	19.33^{\prime}	25.25'	$1.38{ }^{\prime}$	1.22	2.07	2.92	3.77	0.86	1.45	2.04	2.63	33	40	46	53
			$34^{\prime \prime}$	53"	$7^{\prime \prime}-0^{\prime \prime}$	3.22'	10.62'	13.84'	10.36^{\prime}	13'	3.57^{\prime}	2.6	8.25'	15.25^{\prime}	22.25'	29.25'	1.42'	1.48	2.62	3.77	4.92	1.02	1.81	2.60	3.39	36	44	52	
			38"	60"	$7^{\text {P }}$-10"	${ }^{3.39}{ }^{\prime}$	${ }^{11.99}$	15.38 ${ }^{1}$	${ }^{11.70}$	${ }^{15^{\prime}}$	3.95'	3.3'	8.92'	$16.75{ }^{\prime}$	24.58'	32.42'	1.46^{\prime}	1.72	3.12	4.53	5.92	1.18	2.14	3.10	4.05	38	47	56	65
			$43^{\prime \prime}$	$68^{\prime \prime}$	$8^{\prime}-11^{\prime \prime}$	3.56'	13.71	17.27	13.36^{\prime}	17^{\prime}	4.28 ${ }^{\prime}$	$3.6{ }^{\prime}$	$9.67{ }^{\prime}$	18.58'	27.50^{\prime}	36.42'	1.50^{\prime}	2.02	3.78	5.56	7.32	1.38	2.58	3.79	4.99	41	51	61	71
			$48^{\prime \prime}$	$76^{\prime \prime}$	$9^{\prime}-11^{\prime \prime}$	3.73'	15.43'	19.16'	15.03'	19'	4.59'	4.0'	10.42'	20.33'	30.25'	40.17	$1.54{ }^{\text {' }}$	2.34	4.49	6.64	8.79	1.59	3.05	4.51	5.97	44	55	66	77
			53"	83"	10' $1^{\prime \prime} 8^{\prime \prime}$	3.99^{\prime}	17.15'	${ }^{21.06{ }^{\prime}}$	${ }^{16.70^{\prime}}$	20^{\prime}	4.771	3.3'	${ }^{11.088^{\prime}}$	${ }^{21.755^{\prime}}$	${ }^{32.422^{\prime}}$	43.08 ${ }^{\text {P }}$	${ }^{1.583^{\prime}}$	2.66	5.17	7.66	10.16	1.80	3.50	5.19	6.88	47	59	71	83
																										50	63	76	

B $\quad E$
Dimensions permitted to allow
use of 8^{\prime} standard pipe lengths

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$			$\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	CROSS DRAIN MITERED END SECTION	$\begin{gathered} \text { INDEX } \\ 430-021 \end{gathered}$	SHEET 3 of 6

TABLE 2

SINGLE AND MULTIPLE CORRUGATED METAL PIPE DIMENSIONS AND QUANTITIES

															M				CONC	$\text { SLAB }(C)$		$\begin{aligned} & 3^{\prime \prime \prime} \mathrm{c} \\ & \text { (See } \end{aligned}$	CONC. SL e General	$\overline{L A B ~(C Y}$			SOD	(SY)	
		Dia.	${ }_{\text {span }}^{\text {s }}$	Rise	x	A	B	c	E	F	G	H	Single	Double	$\begin{array}{\|c\|c\|c\|c\|c\|} \hline \text { Triple } \\ \text { Pine } \end{array}$	Quad.	N	$\begin{aligned} & \text { Single } \\ & \hline \end{aligned}$	Doubla	$\begin{aligned} & \text { If Note } \\ & \text { Triple } \\ & \text { Pine } \end{aligned}$	Quad.	$\begin{array}{\|l\|} \hline \text { Single } \end{array}$	Double	Triple	Quad.	$\begin{array}{\|l\|l} \hline \text { Single } \end{array}$	$\left\lvert\, \begin{array}{c\|} \hline \text { Double } \\ \text { Pipe } \end{array}\right.$	Triple	Quad.
		$15^{\prime \prime}$			$2^{2^{\prime}-7^{\prime \prime}}$	$2.5{ }^{\prime}$	${ }^{1.68{ }^{\prime}}$	$4.18{ }^{\text {b }}$	1.5	5.0^{\prime}	1.23^{\prime}	${ }^{3.5}$	4.33^{\prime}	$6.92{ }^{\prime}$	9.50'	12.08^{\prime}	$1.04{ }^{\text {+ }}$	0.35	0.54	0.74	0.94	0.24	0.37	0.51	0.64	21	24	27	29
					$2^{\prime \prime}-10^{\prime \prime}$	$2.5{ }^{\prime}$	$2.24{ }^{\prime}$	$4.74{ }^{+}$	2.0^{\prime}	6.0^{\prime}	1.41^{\prime}	4.0'	4.58'	7.42^{\prime}	10.25'	${ }^{13.08}$	1.04	0.38	0.62	0.87	1.12	0.26	0.43	0.6	0.78	22	25	28	31
		$24^{\prime \prime}$			$3^{\prime \prime}-5^{\prime \prime}$	$2.5{ }^{\prime}$	3.35'	5.85'	3.0^{\prime}	7.0'	$1.73{ }^{\prime}$	4.0'	$5.08{ }^{\prime}$	8.50°	11.92'	15.33'	$1.04{ }^{\text {+ }}$	0.47	0.76	1.05	1.34	0.32	0.52	0.72	0.91	23	27	31	35
\cdots	$1: 2$	$30^{\prime \prime}$			$4^{\prime \prime}-3^{\prime \prime}$	$2.5{ }^{\prime}$	4.47'	6.97^{\prime}	4.0^{+}	8.0°	2.00^{\prime}	4.0^{\prime}	$5.58{ }^{\prime}$	9.83'	14.08^{\prime}	18.33^{\prime}	1.04	0.57	0.96	1.37	1.77	0.38	0.64	0.91	1.18	25	30	35	39
	Slope				$5^{\prime}-1^{\prime \prime}$	2.5'	5.59	8.09	5.0	9.0	2.24	4.0°	$6.08{ }^{\prime}$	11.17^{\prime}	16.25	21.33	1.04	0.67	1.19	1.72	2.26	0.44	0.78	1.13	${ }^{.48}$	27	33	38	44
\pm		4			$6^{\prime \prime}$	2.5	$6.73{ }^{\prime}$	9.23	6.0	10.0	2.45	4.0	6.58	2.38	18.5	27	1.04	. 8	1.48	2.17	2.87	0.51	. 1.9	${ }_{1}^{1.43}$	${ }^{1.8185}$	29	36	46	49
		${ }_{54}$			${ }^{7^{\prime \prime}-8^{\prime \prime}}$	$\stackrel{\text { 2.5 }}{ }$	${ }^{7.84}{ }^{\text {a }}$	11.34^{\prime}	8.0 ${ }^{\text {a }}$	${ }^{12.0}{ }^{\prime}$	${ }^{2.63}$	4.0	$7.08{ }^{7}$	${ }^{15.85}$	22.92^{\prime}	${ }^{27.35}$	1.04	${ }_{1}^{0.89} 1$	$\frac{1.71}{2.06}$	3.10	3.36 4.14	0.65	1.09 1.32	199	2.15 2.66	31	38 41	$\stackrel{46}{50}$	58
		$60^{\prime \prime}$			$8^{\prime \prime} 6^{\prime \prime}$	$2.5{ }^{\prime}$	${ }^{10.06}$	12.56'	9.0^{\prime}	13.0^{\prime}	3.00°	4.0^{\prime}	8.08'	16.58^{\prime}	$25.08{ }^{\prime}$	33.58^{\prime}	1.04	1.14	2.38	3.63	4.89	0.71	1.49	2.28	3.07	34	44	53	63
		15				$2.5{ }^{\prime}$	3.09^{\prime}	5.59'	3.0^{\prime}	7.0^{\prime}	$1.23{ }^{\prime}$	4.0^{\prime}	4.33'	$6.92{ }^{\prime}$	9.50^{\prime}	$12.08{ }^{\prime}$	$1.04{ }^{\text {+ }}$	0.44	0.68	0.91	1.15	0.31	0.47	0.63	0.79	22	25	28	31
		18			$2^{\prime \prime} 10^{\prime \prime}$	2.5	$4.12{ }^{\prime}$	6.62'	4.0^{\prime}	8.0°	1.41^{\prime}	4.0^{\prime}	4.58'	7.42^{\prime}	10.25^{\prime}	${ }^{13.08}$	$1.04{ }^{\text {+ }}$	0.49	0.77	1.03	1.31	0.34	0.53	0.71	0.90	24	27	30	
¢		$24^{\prime \prime}$			$3^{\prime \prime}-5^{\prime \prime}$	$2.5{ }^{\prime}$	$6.18{ }^{\prime}$	8.68'	6.0^{+}	10.0^{\prime}	$1.73{ }^{\prime \prime}$	4.0'	$5.08{ }^{\prime}$	8.50^{\prime}	11.92'	15.33'	1.04	0.65	1.09	1.38	1.77	0.44	0.69	0.92	1.18	27	30	34	38
		$30^{\prime \prime}$			$4^{\prime}-3^{\prime \prime}$	$2.5{ }^{\prime}$	8.25'	10.75'	8.0^{\prime}	12.0^{\prime}	2.00	4.0^{\prime}	$5.58{ }^{\prime}$	9.83'	14.08^{\prime}	18.33'	1.04	0.81	1.34	1.90	2.44	0.53	0.88	1.25	1.60	29	34	39	44
\%	Slope	$36^{\prime \prime}$			5'-1"	2.5	${ }^{10.33^{\prime}}$	$12.81{ }^{\prime}$	10.0^{\prime}	14.0^{\prime}	$2.24{ }^{\text {a }}$	4.0^{\prime}	$6.08{ }^{\prime}$	11.17^{\prime}	16.25'	21.33^{\prime}	1.04	0.97	1.68	2.41	3.14	0.62	1.07	1.53	2.00	32	38	44	49
¢		$42^{\prime \prime}$			$6^{\prime}-0^{\prime \prime}$	$2.5{ }^{\prime}$	12.37^{\prime}	14.87^{\prime}	12.0^{\prime}	16.0^{\prime}	$2.45{ }^{\prime}$	4.0^{\prime}	$6.58{ }^{\prime}$	12.58'	18.58'	24.58'	1.04	1.13	2.08	3.06	4.02	0.71	1.30	1.92	2.52	35	42	48	55
		$48^{\prime \prime}$			$6^{\prime \prime-9{ }^{\prime \prime}}$	$2.5{ }^{\prime}$	14.43'	16.93'	14.0^{\prime}	18.0^{\prime}	2.65	4.0^{\prime}	$7.08{ }^{\prime}$	13.83'	20.58^{\prime}	27.33'	$1.04{ }^{4}$	1.29	2.49	3.69	4.88	0.80	1.54	2.29	3.02	38	46	53	60
		$54^{\prime \prime}$			$7^{\prime \prime}-8^{\prime \prime}$	$2.5{ }^{\prime}$	16.49'	18.99'	16.0^{\prime}	20.0'	2.83^{\prime}	4.0^{\prime}	$7.58{ }^{\prime}$	15.25'	22.92^{\prime}	30.58'	1.04	1.48	2.98	4.47	5.98	0.91	1.83	2.74	3.67	41	49	58	66
		$60^{\prime \prime}$			$8^{\prime \prime} 6^{\prime \prime}$	$2.5{ }^{\text {2 }}$	18.55^{\prime}	$21.05{ }^{\prime}$	18.0^{\prime}	22.0^{\prime}	3.00^{\prime}	4.0^{\prime}	$8.08{ }^{\prime}$	16.58^{\prime}	25.08^{\prime}	33.58'	$1.04{ }^{4}$	1.66	3.49	5.31	7.13	1.02	2.15	3.27	4.39	44	53	63	72
			$17^{\prime \prime}$	$13^{\prime \prime}$	$2^{\prime \prime}-6^{\prime \prime}$	$2.5{ }^{\prime}$	1.30^{\prime}	3.80^{\prime}	1.17^{\prime}	4^{\prime}	1.39^{\prime}	$2.8{ }^{\text {a }}$	4.50^{\prime}	7.00^{\prime}	9.50^{\prime}	12.00^{\prime}	1.04	0.41	0.61	0.81	1.02	0.33	0.49	0.65	0.81	21	23	26	29
			21^{11}	$15^{\prime \prime}$	$2^{\prime \prime} 10^{\prime \prime}$	$2.5{ }^{\prime}$	$1.68{ }^{\prime}$	4.17^{\prime}	${ }^{1.50}{ }^{\prime}$	5^{\prime}	1.76	3.5	4.83'	7.67^{\prime}	10.50^{\prime}	13.33'	1.04	0.43	0.66	0.88	1.10	0.33	0.50	0.67	0.83	22	25	28	31
			$28^{\prime \prime}$	$20^{\prime \prime}$	$3^{\prime \prime}-5^{\prime \prime}$	$2.5{ }^{\prime}$	$2.61{ }^{\prime}$	$5.11{ }^{1}$	2.33'	6^{\prime}	2.22	3.7 ${ }^{\prime}$	5.42'	8.83'	$12.25{ }^{\prime}$	15.67'	1.04	0.51	0.78	1.06	1.33	0.37	0.56	0.76	0.95	23	27	30	
		-	35"	$24^{\prime \prime}$	$4^{\prime \prime}-0^{\prime \prime}$	$2.5{ }^{\text {2 }}$	3.35'	5.85'	3.00^{\prime}	$7{ }^{\prime}$	$2.55{ }^{\prime}$	4.0	$6.00{ }^{\prime}$	10.00^{\prime}	14.00^{\prime}	18.00^{\prime}	1.04	0.57	0.90	1.22	1.55	0.40	0.62	0.84	1.07	24	29	33	38
	Slope		$42^{\prime \prime}$		$4^{\prime \prime}-9^{\prime \prime}$	2.5	4.29^{\prime}	6.79'	3.83'	8^{\prime}	2.97	4.2	6.58	11.33'	16.08	20.83	1.04	0.64	1.04	1.46	1.87	0.43	0.70	0.98	1.25	26	31	37	
			${ }^{49^{\prime \prime}}$	${ }^{33^{\prime \prime}}$	年-6" ${ }^{\prime \prime}$	2.5	${ }^{5.03}$	${ }^{7.53}$	${ }^{4.50^{\prime}}$	${ }^{9} 10^{\prime}$	3.34 365	$4 .{ }^{\prime}$	7.17^{\prime}	$\frac{12.67^{\prime}}{1417}$	${ }^{18.177^{\prime}}$	${ }^{23.67^{\prime}}$	${ }^{1.04}$	0.73	1.23	1.72	2.22	0.49	0.82	1.15	1.48	$\begin{array}{r}28 \\ 29 \\ \hline\end{array}$	34 36 3	$\stackrel{40}{44}$	46
			$64^{\prime \prime}$	$43^{\prime \prime}$	$7^{7}-1{ }^{\prime \prime}$	2.5	${ }^{5.89}{ }^{\text {c }}$	${ }^{\text {9.39 }}$ - ${ }^{\text {a }}$	${ }^{5.17^{\prime}}$	${ }^{11^{\prime}}$	${ }^{3.89}{ }^{\text {3 }}$	$4.8{ }^{\text {f }}$	${ }^{7.42^{\prime}}$	15.50'	22.58^{\prime}	29.67'	1.04	0.95	1.67	2.39	3.11	0.62	1.10	1.57	$\stackrel{1.05}{ }$	31	39	47	55
			$71^{\prime \prime}$	$47^{\prime \prime}$	$7^{\prime \prime}-10^{\prime \prime}$	$2.5{ }^{\prime}$	7.64'	10.14	6.83'	12^{\prime}	4.14'	5.2 ${ }^{\circ}$	9.00^{\prime}	16.83'	24.67^{\prime}	32.50'	1.04	1.05	1.89	2.74	3.57	0.69	1.24	1.80	2.35	33	41	50	59
			${ }^{17{ }^{\prime \prime}}$	$13^{\prime \prime}$	$2^{\prime \prime}-6^{\prime \prime}$	2.5	$2.41{ }^{\prime}$	4.91'	2.33^{\prime}	7^{\prime}	1.39^{\prime}	${ }^{5.7}{ }^{\text {P }}$	4.50^{\prime}	7.00^{\prime}	${ }^{9.50^{\prime}}$	12.00^{\prime}	1.04	0.48	0.71	0.95	1.18	0.38	0.56	0.74	0.92	22	25	27	30
			$21^{\prime \prime}$	$15^{\prime \prime}$	$2^{\prime \prime} 10^{\prime \prime}$	$2.5{ }^{\text {2 }}$	3.09^{\prime}	5.59'	3.00^{\prime}	8^{\prime}	1.76	5.0'	$4.83{ }^{\text {b }}$	7.67^{\prime}	10.50^{\prime}	13.33^{\prime}	1.04	0.52	0.80	1.09	1.31	0.39	0.59	0.80	0.95	23	26	29	
			$28^{\prime \prime}$	$20^{\prime \prime}$	3'-5"	$2.5{ }^{\prime}$	$4.81{ }^{1}$	$7.31{ }^{1}$	4.67'	$9{ }^{\prime}$	2.22^{\prime}	4.3'	5.42'	8.83'	12.25'	15.67^{\prime}	1.04	0.61	0.92	1.27	1.59	0.43	0.64	0.88	1.10	25	29	33	
			$35^{\prime \prime}$	$24^{\prime \prime}$	$4^{\prime}-0^{\prime \prime}$	$2.5{ }^{\prime}$	$6.18{ }^{\prime}$	8.68'	6.00^{\prime}	11^{\prime}	$2.55{ }^{\prime}$	5.0'	6.00^{\prime}	10.00^{\prime}	14.00^{\prime}	18.00^{\prime}	1.04	0.73	1.14	1.55	1.97	0.49	0.77	1.05	1.33	28	32	37	41
言	slope		${ }_{42^{\prime \prime}}$	${ }^{29^{\prime \prime}}$	${ }^{4}{ }^{\prime}-9^{\prime \prime}$	$\frac{2.51}{2 .}$	7.90^{\prime} 9.281 1	${ }^{10.40^{\prime}} 117$	${ }^{7.67^{\prime}}$	$12^{11^{\prime}}$	${ }^{2.977^{\prime}}$	4.3'	${ }^{6.588^{\prime}}$	${ }^{11.333^{\prime}}$	${ }^{16.08^{\prime}}$	${ }^{20.833^{\prime}}$	${ }^{1.044^{4}}$	0.87	1.39	1.92	2.45	0.57	0.92	1.27	1.62	30	35	41	46
			49"	$33^{\prime \prime}$	$5^{\prime \prime}-6^{\prime \prime}$	${ }^{2.51}$	9.28'	$11.78{ }^{\text { }}$	${ }^{9.00^{\prime}}$	14^{\prime}	3.34'	5.0	${ }^{7.177^{\prime}}$	$12.67{ }^{\prime}$	18.17°	23.67'	1.04	1.00	1.66	2.30	2.96	0.65	1.08	1.50	1.93	32	38	45	51
			$64^{\prime \prime}$	$43^{\prime \prime}$		2.5 ${ }^{\text {2 }}$	11.71^{1}	${ }^{13.50}{ }^{\text {121 }}$	${ }_{10.67}^{12.33}$	${ }_{17}^{17^{\prime}}$	${ }^{3.65}$	4.7 ${ }^{5}$	${ }^{7.843^{\prime}}$	14.50°	22.58^{\prime}	${ }^{26.837^{\prime}}$	1.04	1.18	2.39	2.82 3.38	${ }^{3.64} 4$	0.76	1.50	1.18	${ }_{2}^{2.83}$	38	45	53	56
		-	71"	$47^{\prime \prime}$	$7^{\prime \prime}-10^{\prime \prime}$	$2.5{ }^{\prime}$	14.09'	16.59^{\prime}	13.67	19'	$4.14{ }^{\text {4 }}$	5.3	9.00^{\prime}	16.83'	24.67'	32.50'	1.04	1.50	2.65	3.81	4.97	0.95	1.68	2.43	3.17	40	48	57	66

tongue and groove connector detail

BELL AND SPIGOT CONNECTOR DETAIL

NOTES:

1. Use galvanized steel for all bars, bolts, nuts, and washers.
2. Two connectors required per joint, located 60° right and left
 of bottom center of pipe.
3. Bolt holes in pipe shell are to be drilled
concrete pipe connection detail
\qquad

NOTES:

1. Anchors required for CMP only.
2. Use galvanized steel for all anchors, nuts, and washers.
3. Bend anchor where required to center in concrete slab.
4. Repair damaged surfaces after bending.
5. Space anchors a distance equal to four (4) corrugations.
6. Place the anchors in the outside crest of corrugation.
7. Place flat washers on inside wall of pipe.
8. Drill or punch holes in the mitered end pipe; burning not permitted
9. $A 6^{\prime \prime} \times 1 / 2$ bolt substitution is permitted.

CORRUGATED METAL PIPE (CMP) ANCHOR DETAIL

CONCRETE PIPE CONNECTION AND CORRUGATED PIPE ANCHOR DETAILS

GENERAL NOTES

1. Unless otherwise designated in the plans, concrete pipe mitered end sections may be used with any type fipe drain pipe; corrugated steel pipe mitered end sections may be used with any type of side drain pipe except aluminum pipe; and, corrugated aluminum mitered end sections may be used with any type
of side drain pipe except steel pipe. When bituminous coated metal pipe is specified for side drain pipe, of side drain pipe except steel pipe. When bituminous coated metal pipe is specified for side drain pipe,
construct the mitered end sections with like pipe or concrete pipe. When the mitered end section pipe is dissimilar to the side drain pipe, construct a concrete jacket in accordance with Index 430-001.
2. Use either corrugated metal or concrete mitered end sections for corrugated polyethylene pipe (HDPE), polyvinyl-chloride pipe (PVC), steel reinforced polyethylene pipe (SRPE), and polypropylene pipe (PP). When used in conjunction with corrugated mitered end sections, make connection using either a forme with a concrete mitered end sections, construct concrete jacket in accordance with Index 430-001.
3. Use class NS concrete cast-in-place reinforced slabs for all cross drain pipes.
4. Select lengths of concrete pipe that avoid excessive connections in the assembly of the mitered end section,
5. Repair corrugated metal pipe galvanizing that is damaged during beveling and perforating.
6. When existing multiple side drain pipes are spaced other than the dimensions shown in this Index, have nonparallel axes, or non-uniform sections, either construct the mitered end sections separately as single pipe or collectively as muttiple pipe end sections as directed by the Engineer.
7. Saddle Slope:

1:4 Miter - Slope to $\&$ of pipe for round pipes less than or equal to $18^{\prime \prime}$ diameter and 1:1 for round pipes greater than or equal to 24 diameter Slope to the major axis for elliptical pipes $24^{\prime \prime} \times 38^{\prime \prime}$ or smaller and 1:2 for pipes $29^{\prime \prime} \times 45^{\prime \prime}$ or larger. Slope to the span line for pipe arch $28^{\prime \prime} \times 20^{\prime \prime}$ or smaller and 1:2 for pipe arch $35^{\prime \prime} \times 24^{\prime \prime}$ or larger.

1:2 Miter - Slope to $\&$ of pipe for round pipes less than or equal to $18^{\prime \prime}$ diameter and 1:2 for round pipes Slope to the major axis for elliptical pipes $29^{\prime \prime} \times 45^{\prime \prime}$ or smaller and 1:1 for pipes $34^{\prime \prime} \times 3^{\prime \prime}$ or larger. Slope 1:1 for all pipe arch sizes.
8. Quantities shown are for estimating purposes only.

Concrete Pipe Shown Corrugated MD SECTION=

- DITCH TRANSITION \qquad

PERMISSIBLE PAVEMENT MODIFICATION

plan - Single pipe

elevation

Concrete Slab, 3" Thick Reinforced

DETAIL "B"

Single and multiple Corrugated metal pipe

Single and multiple Corrugated metal pipe dimensions and quantities																										
	Dia.	Rise	Span									M					GRATE SIZES		$3^{\prime \prime}$ CONC. SLAB (CY)				SODDING (SY)			
2	D	R	5	x	A	B	c	E	F	G	H	Single	Double Pipe	Triple	$\begin{aligned} & \text { Quad. } \\ & \text { Pipe } \\ & \hline \end{aligned}$	N	STANDARD WEIGHT PIPE	STRONG PIPE	Single Pipe	Double	Triple Pipe	$\begin{array}{\|l} \text { Quad. } \\ \text { Pipe } \end{array}$	Single Pipe	$\left\|\begin{array}{c}\text { Double } \\ \text { Pipe }\end{array}\right\|$	$\begin{gathered} \text { Triple } \\ \text { Pipe } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Quad. } \\ & \text { Pipe } \end{aligned}$
-	$8^{\prime \prime}$			$2^{\prime \prime} 0^{\prime \prime}$	${ }^{2.5}{ }^{\prime}$	0.73^{\prime}	3.22^{\prime}	0.7^{\prime}	4.0^{\prime}	0.58'	3.3'	$3.75{ }^{\text {d }}$	5.75'	7.75'	9.75'	$1.04{ }^{\text { }}$			0.52	0.90	1.22	1.54		8	${ }^{\text {a }}$	9
	$10^{\prime \prime}$			$2^{\prime \prime}-2^{\prime \prime}$	2.5'	$1.34{ }^{\prime}$	$3.84{ }^{\prime}$	1.3' ${ }^{\text {' }}$	5.0^{\prime}	$0.81{ }^{1}$	$3.7{ }^{\prime}$	$3.92{ }^{\prime}$	$6.08{ }^{\prime}$	8.25'	10.41^{\prime}	$1.04{ }^{+}$			0.64	0.99	1.34	1.70	7	8	9	10
	$12^{\prime \prime}$			$2^{\prime \prime} 4^{\prime \prime}$	2.5'	$2.06{ }^{\prime}$	4.56'	2.0^{\prime}	6.0^{\prime}	1.00^{\prime}	4.0^{\prime}	$4.08{ }^{\prime}$	6.42^{\prime}	8.75'	11.08	1.04			0.68	1.09	1.48	1.88	7	8	10	11
	15"			$2^{\prime \prime-7{ }^{\prime \prime}}$	2.5'	3.09^{\prime}	5.59'	3.0'	$7.0{ }^{\prime}$	1.23^{\prime}	$4.0{ }^{\prime}$	4.33'	$6.92{ }^{\prime}$	9.50^{\prime}	$12.08{ }^{\prime}$	1.04			0.64	1.00	1.35	1.71	8	9	10	11
	$18^{\prime \prime}$			$2^{\prime \prime} 10^{\prime \prime}$	2.5	4.12	6.62^{\prime}	4.0'	8.0°	1.41^{\prime}	$4.0{ }^{\circ}$	$4.58{ }^{\text { }}$	7.42^{\prime}	10.25^{\prime}	$13.08{ }^{1}$	1.04			0.69	1.09	1.49	1.89	9	10	11	12
	$24^{\prime \prime}$			$3^{\prime \prime-5^{\prime \prime}}$	2.5'	$6.18{ }^{\prime}$	8.68'	6.0'	10.0	1.73'	$4.0{ }^{\prime}$	$5.08{ }^{\text {b }}$	8.50^{\prime}	11.92'	15.33^{\prime}	1.04			0.83	1.34	1.82	2.34	10	11	13	14
	$30^{\prime \prime}$			$4^{\prime}-3^{\prime \prime}$	2.5'	8.25'	10.75'	8.0^{\prime}	12.0^{\prime}	2.00°	$4.0{ }^{\prime}$	$5.58{ }^{\prime}$	9.83'	$14.08{ }^{\prime}$	18.33'	$1.04{ }^{\prime}$	21/2"	$3^{\prime \prime}$	0.96	1.63	2.32	2.99	11	13	15	17
	$36^{\prime \prime}$			5'-1"	2.5	10.33^{1}	12.81^{\prime}	$10.0{ }^{\prime}$	14.0	2.24	$4.0{ }^{\circ}$	$6.08{ }^{\circ}$	11.17^{\prime}	16.25'	21.33'	1.04	21/2"	$3^{\prime \prime}$	1.08	1.92	2.77	3.62	12	14	17	19
	$42^{\prime \prime}$			6'-0'0	2.5'	12.37^{\prime}	14.87^{\prime}	12.0^{\prime}	16.0	2.45^{\prime}	$4.0{ }^{\prime}$	6.58	12.58 ${ }^{\prime}$	18.58'	24.58	$1.04{ }^{\prime}$	21/2"	$31 / 2{ }^{\prime \prime}$	1.20	2.26	3.34	4.61	13	16	18	21
	$48^{\prime \prime}$			$6^{\prime}-9^{\prime \prime}$	2.5'	14.43^{\prime}	16.93'	$14.0{ }^{\prime}$	18.0^{\prime}	2.65^{\prime}	4.0^{\prime}	$7.08{ }^{\text { }}$	13.83'	20.58^{\prime}	27.33'	$1.04{ }^{\text { }}$	$2^{1 / 2}{ }^{\prime \prime}$	31/2"	1.60	3.11	4.62	6.12	14	17	20	23
	54"			$7^{\prime}-8^{\prime \prime}$	$2.5{ }^{\prime}$	$16.49{ }^{\prime}$	18.99'	16.0^{\prime}	20.0^{\prime}	2.83^{\prime}	$4.0{ }^{\prime}$	$7.58{ }^{\prime}$	15.25'	22.92^{\prime}	30.58'	$1.04{ }^{\text { }}$	$3^{\prime \prime}$	"	1.76	3.56	5.34	7.14	15	19	22	26
	$60^{\prime \prime}$			$8^{\prime}-6^{\prime \prime}$	$2.5{ }^{\prime}$	18.55'	21.05'	18.0^{\prime}	22.0^{\prime}	3.00^{\prime}	$4.0{ }^{\prime}$	$8.08{ }^{\text { }}$	16.58'	$25.08{ }^{\prime}$	33.58'	$1.04{ }^{\text {+ }}$	$3^{\prime \prime}$	$4^{\prime \prime}$	1.94	4.03	6.12	8.20	17	20	24	28
		${ }^{177^{\prime \prime}}$	$13^{\prime \prime}$	${ }^{2 \prime}{ }^{\prime \prime-6^{\prime \prime}}$	2.5'	$2.41{ }^{\prime}$	4.91'	2.33'	7^{\prime}	1.39^{\prime}	4.7^{\prime}	4.50'	${ }^{7.00{ }^{\prime}}$	${ }^{9.50^{\prime}}$	${ }^{12.000^{\prime}}$	1.04'			0.62	0.95	1.27	1.60	8	9	10	11
		$21^{\prime \prime}$	$15^{\prime \prime}$	$2^{\prime}-10^{\prime \prime}$	$2.5{ }^{\prime}$	$3.09{ }^{\prime}$	5.59'	3.00	8^{\prime}	1.76^{\prime}	$5.0{ }^{\prime}$	4.83'	7.67^{\prime}	10.50^{\prime}	$13.33{ }^{\prime}$	1.04			0.69	1.06	1.44	1.77	8	9	11	12
		$28^{\prime \prime}$	$20^{\prime \prime}$	$3^{\prime \prime} 5^{\prime \prime}$	2.5'	$4.81{ }^{1}$	7.31	4.67^{\prime}	9	2.22^{\prime}	$4.3{ }^{\prime}$	$5.42{ }^{\circ}$	8.83'	12.25'	15.67^{\prime}	$1.04{ }^{\text { }}$			0.81	1.26	1.73	2.19	9	11	12	14
		$35^{\prime \prime}$	$24^{\prime \prime}$	4'-0"	2.5'	$6.18{ }^{\prime}$	8.68'	6.00'	11^{\prime}	2.55^{\prime}	5.0'	$6.00{ }^{\prime}$	10.00^{\prime}	14.00^{\prime}	18.00^{\prime}	$1.04{ }^{\text { }}$	21/2"	$3^{\prime \prime}$	0.94	1.51	2.09	2.66	10	12	14	15
		$42^{\prime \prime}$	$29^{\prime \prime}$	$4^{4}-9^{\prime \prime}$	$2.5{ }^{\prime}$	7.90^{\prime}	10.40^{\prime}	7.67	12^{\prime}	$2.97{ }^{\prime}$	$4.3{ }^{\text { }}$	$6.58{ }^{\circ}$	11.33'	16.08^{\prime}	20.83'	1.04	21/2"	$31 / 2{ }^{1 /}$	1.06	1.76	2.46	3.16	11	13	15	17
		$49^{\prime \prime}$	33"	5'-6"	2.5'	$9.28{ }^{\prime}$	$11.78{ }^{\prime}$	9.00'	14^{\prime}	3.34'	5.0^{\prime}	$7.17^{\text { }}$	12.67^{\prime}	${ }^{18.177^{\prime}}$	23.67^{\prime}	1.04	$2^{1 / 2}{ }^{\prime \prime}$	$3^{1 / 2}{ }^{\prime \prime}$	1.19	2.02	2.84	3.68	12	14	17	19
		57"1*	$38^{\prime \prime}$	$6^{6}{ }^{\prime} 4^{\prime \prime}$	2.5'	${ }^{11.00^{\prime}}$	13.50 ${ }^{1}$	10.67^{7}	16^{\prime}	3.65'	5.3'	7.83'	14.17^{\prime}	20.50'	26.83	$1.04{ }^{\text {+ }}$	$3^{\prime \prime}$	$4^{\prime \prime}$	1.35	2.35	3.35	4.36	13	16	19	22
		64"1	$43^{\prime \prime}$	$7^{\prime \prime}-1^{\prime \prime}$	2.5' ${ }^{\prime}$	${ }^{12.777^{\prime}}$	15.21^{\prime}	${ }^{12.333^{\prime}}$	${ }^{17}{ }^{17}$	$3.81{ }^{\prime}$	${ }^{4.7}{ }^{\text {3 }}$	8.42 ${ }^{\text {a }}$	${ }^{15.50^{\prime}}$	${ }^{22.588^{\prime}}$	${ }^{29.67}$	$1.04{ }^{4}$	$3^{3 \prime \prime}$	$4^{\prime \prime \prime}$	1.50	2.70		5.03 5 5	14	17	20	24
		$71^{\prime \prime}$	$47^{\prime \prime}$	$7^{\prime}-10^{\prime \prime}$	2.5'	14.09^{\prime}	16.59	${ }^{13.67^{\prime}}$	19^{\prime}	$4.14{ }^{\prime}$	5.3'	9.00^{\prime}	16.83^{\prime}	24.67^{\prime}	32.50^{\prime}	$1.04{ }^{+}$	$3^{\prime \prime}$	$4^{\prime \prime}$	1.62	2.94	4.27	5.59	15	18	22	25

tongue and groove connector detail

BELL AND SPIGOT CONNECTOR DETAIL

NOTES:

1. Use galvanized steel for all bars, bolts, nuts, and washers.
2. Two connectors required per joint, located 60° right and left
 of bottom center of pipe.
3. Bolt holes in pipe shell are to be drilled.

concrete pipe connection detail

\qquad

NOTES:

1. Anchors required for CMP only.
2. Use galvanized steel for all anchors, nuts, and washers.
3. Bend anchor where required to center in concrete slab.
4. Repair damaged surfaces after bending
5. Space anchors a distance equal to four (4) corrugations.
6. Place the anchors in the outside crest of corrugation.
7. Place flat washers on inside wall of pipe.
8. Drill or punch holes in the mitered end pipe; burning not permitted 9. $A 6^{\prime \prime} \times 1 /{ }^{\prime \prime}$ bolt substitution is permitted.

CORRUGATED METAL PIPE (CMP) ANCHOR DETAIL

CONCRETE PIPE CONNECTION AND CORRUGATED PIPE ANCHOR DETAILS

NOTES
$\xi_{8} \times 3^{\prime \prime}$ bolts are standard for all grate fasteners, except when the contractor elects to use the slotted upper holes
for the interm
2.5/8" galvanized bolt hex head bolt shown; either hex head or square head bolt may be used. Use onlv hex nuts.
3. Make the specified weld when the fabricated unit is subject to hazardous hauls and repeated handling. Tack welds are
permitted for focal or job site fabrication. Galvanizing over welded surface not required.
. Omit on trailing downstream ends on divided roadways.
5. Use grates on all round pipes $30^{\prime \prime}$ or greater, Pipe arches $35^{\prime \prime} \times 24^{\prime \prime}$ or greater, and elliptical pipe $19^{\prime \prime} \times 30^{\prime \prime}$ or greater,
unless excluded in the Plans. Use grates on smaller pipes only when called for in the Plans.

CONCRETE PIPE									
Round PIPE					ELLIPTICAL PIPE				
$\begin{aligned} & \text { pipe } \\ & \text { Dia. } \end{aligned}$	s	n	\llcorner	La	$\begin{aligned} & \text { Drain } \\ & \text { Size } \end{aligned}$	5	n	\llcorner	La
*15"	3	4	4'-0'10	$4^{\prime}-11^{\prime \prime}$	*12"x18"	2	3	$2^{\prime \prime}-10^{\prime \prime}$	$3^{\prime}-9^{\prime \prime}$
*18"	4	5	$5^{\prime}-2^{\prime \prime}$	$6^{\prime}-1{ }^{\prime \prime}$	*14"×23"	3	4	$4^{\prime}-0^{\prime}$	$4^{\prime \prime-11^{\prime \prime}}$
*24"	6	7	$7^{\prime \prime}-6^{\prime \prime}$	$8^{\prime \prime}-5^{\prime \prime}$	$19^{\prime \prime} \times 30^{\prime \prime}$	4	5	$5^{\prime}-2^{\prime \prime}$	$6^{\prime}-1^{\prime \prime}$
$30^{\prime \prime}$	7	8	$8^{\prime}-8^{\prime \prime}$	9'-7"	$24^{\prime \prime} \times 38^{\prime \prime}$	5	6	$6^{\prime}-4^{\prime \prime}$	$7^{\prime \prime}-3^{\prime \prime}$
$36^{\prime \prime}$	9	10	$11^{\prime}-0^{\prime \prime}$	11'-11"	$29^{\prime \prime} \times 45^{\prime \prime}$	7	8	$8^{\prime}-8^{\prime \prime}$	$9^{\prime}-7^{\prime \prime}$
$42^{\prime \prime}$	11	12	$13^{\prime \prime} 4^{\prime \prime}$	14-3"	$34^{\prime \prime} \times 53^{\prime \prime}$	8	9	$9^{\prime \prime}-10^{\prime \prime}$	$0^{\prime}-9^{\prime \prime}$
$48^{\prime \prime}$	13	14	$15^{-}-8^{\prime \prime}$	16'-7"	$38^{\prime \prime} \times 60^{\prime \prime}$	10	11	$12^{\prime \prime}-2^{\prime \prime}$	$13^{\prime}-1^{\prime \prime}$
$54^{\prime \prime}$	14	15	$16^{\prime}-10^{\prime \prime}$	17'-9"	$43^{\prime \prime} \times 68^{\prime \prime}$	11	12	$13^{\prime}-4^{\prime \prime}$	$14^{\prime}-3^{\prime \prime}$
$60^{\prime \prime}$	16	17	$19^{-22^{\prime \prime}}$	$20^{\prime}-1^{\prime \prime}$	$48^{\prime \prime} \times 76^{\prime \prime}$	13	14	$15^{\prime}-8^{\prime \prime}$	$16^{\prime} 7^{\prime \prime}$
					$53^{\prime \prime} \times 83^{\prime \prime}$	14	15	$16^{\prime \prime} 10^{\prime \prime}$	${ }^{17^{\prime}-9{ }^{\prime \prime}}$
					588"991"	15	16	$18^{\prime}-0^{\prime \prime}$	$18^{\prime}-11^{\prime \prime}$

CORRUGATED METAL PIPE									
ROUND PIPE					ARCHED PIPE				
$\begin{aligned} & \text { Pipe } \\ & \text { Dia. } \end{aligned}$	s	n	\llcorner	La	$\begin{aligned} & \text { Drain } \\ & \text { Size } \end{aligned}$	s	n	\llcorner	La
*15"	2	3	$2^{\prime}-10^{\prime \prime}$	3'-9"	*17"x13"	1	2	${ }^{1}-8^{\prime \prime}$	$2^{2}-77^{\prime \prime}$
*18"	3	4	$4^{\prime \prime}-0^{\prime \prime}$	$4^{\prime}-11^{\prime \prime}$	*21"×15"	2	3	$2^{\prime \prime}-10^{\prime \prime}$	$3^{\prime}-9{ }^{\prime \prime}$
*24"	5	6	$6^{\prime \prime}-4^{\prime \prime}$	$7^{\prime}-3^{\prime \prime}$	*28" $\times 20^{\prime \prime}$	4	5	$5^{\prime}-2^{\prime \prime}$	6
$30^{\prime \prime}$	7	8	$8^{\prime}-8^{\prime \prime}$	9'-7"	$35^{\prime \prime} \times 24^{\prime \prime}$	5	6	$6^{\prime}-4^{\prime \prime}$	$7^{\prime \prime}-3^{\prime \prime}$
$36^{\prime \prime}$	8	9	$9^{\prime}-10^{\prime \prime}$	$10^{\prime \prime} 9^{\prime \prime}$	$42^{\prime \prime} \times 29^{\prime \prime}$	6	7	$7^{7}-6^{\prime \prime}$	$8^{\prime}-5^{\prime \prime}$
$42^{\prime \prime}$	10	11	$12^{\prime \prime} 2^{\prime \prime}$	$13^{-1} 1^{\prime \prime}$	$49^{\prime \prime} \times 33^{\prime \prime}$	7	8	$8^{\prime}-8^{\prime \prime}$	9'-7"
$48^{\prime \prime}$	12	13	$14^{\prime}-6^{\prime \prime}$	15'-5"	$57^{\prime \prime} \times 38^{\prime \prime}$	9	10	$11^{\prime}-0^{\prime \prime}$	11'-11"
$54^{\prime \prime}$	14	15	$16^{\prime}-10^{\prime \prime}$	17'-9"	$64^{\prime \prime} \times 43^{\prime \prime}$	10	11	$12^{1}-2^{\prime \prime}$	$13^{\prime \prime}-^{\prime \prime}$
$60^{\prime \prime}$	15	16	$18^{\prime}-0^{\prime \prime}$	$18^{\prime}-11^{\prime \prime}$	$71^{\prime \prime} \times 47^{\prime \prime}$	12	13	14'-6"	15'-5"

* See Note 5

Bolt and Grate Spacing 14

GENERAL NOTES

1. Use Class II concrete
2. Reinforcing steel is either Grade 40 or 60 .
3. Endwalls may be cast in place or precast concrete. (Additional reinforcement necessary for handling precast units will be determined by the Contractor or the supplier).
4. Chamfer all exposed edges and corners to $3 / 4$
5. Endwall dimensions, locations and positions are for round and elliptical concrete pipe and for round and pipe-arch corrugated metal pipe. Round concrete pipe shown.
6. On outfall ditches with side slopes flatter than 1:1.5 provide 20 transtions from the endwall to the frater side slopes, fight of way permitting.
7. Construct front slope and ditch transitions in accordance with Index 430-001.
8. Quantities shown are for estimating purposes only

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Concrete Endwall Details
3	Concrete and Metal Pipe Tables
4	Spacing For Multiple Pipes

\qquad

PLAN

FRONT ELEVATION

NOTE: Keyway and Dowels are required for optional construction joint. DETAIL "A"

SIDE ELEVATION

Round concrete and corrugated metal pipe																														
\bigcirc	$\begin{gathered} \text { Dia. } \\ D \end{gathered}$	Opening Area (SF)				Dimensions											Class II Concrete (CY)f Pipe And Skew Angle Of Pipe (α)													Dia.
		Number of Pipes				A	B	c	E	F		Y					$\begin{gathered} \text { Single } \\ \hline 0^{\circ} \\ \hline \end{gathered}$	Double				Triple								
		1	2		4								${ }^{0}{ }^{\circ}$	${ }^{15^{\circ}}$	30°	45°		0°	15°	30°	45°						\%			
	${ }^{155^{\prime \prime}}$	1.23 1.77	2.46 3.54	3.69 5.31	4.92 7.08	$\frac{1^{\prime}-11^{\prime \prime}}{2^{\prime \prime}-2^{\prime \prime}}$	$\frac{1^{\prime}-2^{\prime \prime}}{1^{\prime \prime}-3^{\prime \prime}}$	$4^{4}+0^{\prime \prime}$		$\frac{1^{\prime}-2^{\prime \prime}}{1^{\prime \prime}-3^{\prime \prime}}$		${ }^{2}{ }^{\prime \prime}$	${ }^{2^{\prime}-77^{\prime \prime}}$	${ }^{2}{ }^{\text {' }}$ - $8^{\prime \prime}$	$3^{3^{\prime}-0^{\prime \prime}} 3^{\prime \prime}-3^{\prime \prime}$	$\frac{3^{\prime}+8^{\prime \prime}}{4^{\prime \prime}-0^{\prime \prime}}$		$\begin{aligned} & \frac{1.59}{1.99} \end{aligned}$	$\frac{1.60}{\frac{1.60}{2.01}}$	${ }_{2}^{1.65}$	1.74 2.17	$\frac{1.94}{\frac{1.43}{2.43}}$	1.96 2.46	$\begin{aligned} & 2.05 \\ & \frac{2.56}{2.56} \end{aligned}$	$\frac{2.23}{2.79}$	$\frac{2.30}{2.86}$	2.34	2.47 3.06	2.74 3.40	$15^{\prime \prime}$ $18^{\prime \prime}$
	$21^{\prime \prime}$	2.41	4.82	7.23	9.64	${ }^{2}$ '-5"	$1^{\prime}-4^{\prime \prime}$	$5^{\prime}-0^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$1^{1}-4^{\prime \prime}$	$1^{1}-6^{\prime \prime}$	$3^{\prime \prime}-2^{\prime \prime}$	$3^{\prime}-2^{\prime \prime}$	3'-3'	$3^{\prime}-8^{\prime \prime}$	$4^{\prime \prime}-6^{\prime \prime}$	1.97													${ }^{211^{\prime \prime}}$
	$24^{\prime \prime}$	3.14	6.28	9.42	12.56	$2^{\prime \prime}-8^{\prime \prime}$	$1^{1}-4^{\prime \prime}$	$5^{\prime}-6^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$1^{1}-4^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$3^{\prime \prime}-5^{\prime \prime}$	3^{\prime}-5"	$3^{\prime \prime-6 "}$	$3^{\prime \prime-11^{\prime \prime}}$	$4^{\prime}-10^{\prime \prime}$	2.24	2.82	2.84	2.91	3.06	3.39	3.43	3.5	3.87	3.97	4.03	4.2	4.69	$24^{\prime \prime}$
	$27^{\prime \prime}$	3.98	7.96	11.94	15.92	$2^{\prime}-11^{\prime \prime}$	$1^{\prime}-5{ }^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$2^{\prime \prime} 1^{\prime \prime}$	$1^{\prime}-5^{\prime \prime}$	$2^{\prime \prime}-6^{\prime \prime}$	$3^{\prime \prime}-10^{\prime \prime}$	$3^{\prime \prime}-10^{\prime \prime}$	$4^{4}-0^{\prime \prime}$	$4^{\prime \prime} 5^{\prime \prime}$	5'-5"	2.73													$27^{\prime \prime}$
	$30^{\prime \prime}$	4.91	9.82	14.73	19.64	$3^{\prime \prime}-2^{\prime \prime}$	$1^{1}-6^{\prime \prime}$	$6^{\prime}-6^{\prime \prime}$	$2^{\prime \prime}-2^{\prime \prime}$	$1^{1}-6^{\prime \prime}$	$3^{\prime}-0^{\prime \prime}$	$4^{\prime}-3^{\prime \prime}$	$4^{\prime}-3^{\prime \prime}$	$4^{4}-5^{\prime \prime}$	$4^{\prime}-11^{\prime \prime}$	$6^{6}-0^{\prime \prime}$	3.26	4.13	4.16	4.26	4.49	4.98	5.04	5.25	5.69	5.84	5.93	6.24	6.91	$30^{\prime \prime}$
-	$36^{\prime \prime}$	7.07	14.14	21.21	28.28	$3^{\prime}-8^{\prime \prime}$	$1^{1}-8^{\prime \prime}$	$7^{\prime \prime}-6^{\prime \prime}$	$2^{\prime \prime} 4^{\prime \prime}$	$1^{1}-8^{\prime \prime}$	$4^{4}-0^{\prime \prime}$	$5^{\prime}-1^{\prime \prime}$	$5^{\prime}-1^{\prime \prime}$	5'-3"	$5^{\prime}-10^{\prime \prime}$	$7{ }^{\prime \prime}-2^{\prime \prime}$	4.53	5.73	5.77	5.92	6.23	6.92	7.00	7.29	7.91	8.13	8.26	8.69	9.62	$36^{\prime \prime}$
	$42^{\prime \prime}$	9.62	19.24	28.86	38.48	$4^{\prime \prime}-2^{\prime \prime}$	$1^{1}-10^{\prime \prime}$	$8^{\prime \prime}-6^{\prime \prime}$	$2^{\prime}-6^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$5^{\prime}-0^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	6'-3"	$6^{\prime}-11^{\prime \prime}$	$8^{8}-6^{\prime \prime}$	6.33	8.11	8.17	8.39	8.85	9.90	10.02	10.45	11.38	11.68	11.87	12.51	13.89	42"
	$48^{\prime \prime}$	12.57	25.14	37.71	50.28	$4^{\prime}-8^{\prime \prime}$	$2^{\prime \prime}-1^{\prime \prime}$	$9^{9}-6^{\prime \prime}$	$2^{\prime}-9^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$6^{\prime}-9^{\prime \prime}$	$6^{\prime}-9^{\prime \prime}$	$7^{\prime}{ }^{\prime \prime} 0^{\prime \prime}$	$7^{\prime}-10^{\prime \prime}$	$9^{\text {9 }}$ - ${ }^{\text {¹ }}$	8.15	10.40	10.48	10.75	11.33	12.64	12.80	13.34	14.50	14.89	15.13	15.93	17.68	48"
	$54^{\prime \prime}$	15.90	31.80	47.70	63.60	5'-2'	$2^{\prime \prime}-6^{\prime \prime}$	$10^{\prime \prime}-6^{\prime \prime}$	$3^{\prime \prime}-2^{\prime \prime}$	$2^{\prime}-3^{\prime \prime}$	$7^{\prime \prime}-0^{\prime \prime}$	$7^{\prime \prime}-8^{\prime \prime}$	$7^{\prime}-8^{\prime \prime}$	$7^{\prime \prime}-11^{\prime \prime}$	$8^{\prime}-10^{\prime \prime}$	$10^{\prime}-10^{\circ}$	11.71	15.23	15.35	15.78	16.69	18.77	19.02	19.86	21.69	22.29	22.66	23.93	26.67	$54^{\prime \prime}$
	$15^{\prime \prime}$	1.23	2.46	3.69	4.92	$1^{\prime}-11^{\prime \prime}$	$1^{\prime}-2^{\prime \prime}$	$4^{4}-0^{\prime \prime}$	$1^{\prime \prime}-10^{\prime \prime}$	$1^{\prime}-2^{\prime \prime}$	$0^{\prime}-6^{\prime \prime}$	$2^{\prime}-7^{\prime \prime}$	$2^{\prime}-7^{\prime \prime}$	$2^{\prime}-8^{\prime \prime}$	$3^{\prime}-0^{\prime \prime}$	$3^{\prime}-8^{\prime \prime}$	1.24	1.62	1.63	1.68	1.78	1.99	2.02	2.11	2.30	2.37	2.41	2.75	2.84	$15^{\prime \prime}$
	$18^{\prime \prime}$	1.77	3.54	5.31	7.08	$2^{\prime}-2^{\prime \prime}$	$1^{\prime}-3^{\prime \prime}$	$4^{4}-6^{\prime \prime}$	$1^{\prime}-11^{\prime \prime}$	$1^{\prime}-3^{\prime \prime}$	$1^{\prime}-0^{\prime \prime}$	$2^{\prime \prime}-10^{\prime \prime}$	$2^{\prime}-10^{\prime \prime}$	$2^{\prime}-11^{\prime \prime}$	$3^{\prime \prime}-3^{\prime \prime}$	$4^{\prime}-0^{\prime \prime}$	1.59	2.04	2.06	2.11	2.23	2.51	2.54	2.65	2.89	2.96	3.01	3.17	3.53	$18^{\prime \prime}$
	$21^{\prime \prime}$	2.41	4.82	7.23	9.64	$2^{\prime \prime} 5^{\prime \prime}$	$1^{\prime \prime}-4^{\prime \prime}$	$5^{\prime}-0^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$1^{\prime}-4^{\prime \prime}$	$1^{\prime}-6^{\prime \prime}$	$3^{\prime \prime}-2^{\prime \prime}$	$3^{\prime}-2^{\prime \prime}$	$3^{\prime}-3^{\prime \prime}$	$3^{\prime}-8^{\prime \prime}$	$4^{4}-6^{\prime \prime}$														21
	$24^{\prime \prime}$	3.14	6.28	9.42	12.56	$2^{\prime \prime}-8^{\prime \prime}$	$1^{1}-4^{\prime \prime}$	$5^{\prime}-6^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$1^{1}-4^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$3^{\prime \prime}-5^{\prime \prime}$	3^{\prime}-5"	$3^{\prime}-6^{\prime \prime}$	$3^{\prime}-11^{\prime \prime}$	$4^{4}-10^{\prime \prime}$	2.29	2.91	2.93	3.01	3.17	3.52	3.56	3.71	4.03	4.14	4.20	4.43	4.91	$24^{\prime \prime}$
	$27^{\prime \prime}$	3.98	7.96	11.94	15.92	$2^{\prime}-11^{\prime \prime}$	$1^{\prime}-5^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$2^{\prime \prime}-1^{\prime \prime}$	1'-5"	$2^{\prime \prime}-6^{\prime \prime}$	$3^{\prime \prime}-10^{\prime \prime}$	$3^{\prime \prime}-10^{\prime \prime}$	$4^{\prime}-0^{\prime \prime}$	$4^{\prime}-5^{\prime \prime}$	5'-5"														
	$30^{\prime \prime}$	4.91	9.82	14.73	19.64	$3^{\prime \prime}-2^{\prime \prime}$	$1^{1}-6^{\prime \prime}$	$6^{\prime}-6^{\prime \prime}$	$2^{\prime \prime}-2^{\prime \prime}$	$1^{1}-6^{\prime \prime}$	$3^{\prime}-0^{\prime \prime}$	$4^{\prime}-3^{\prime \prime}$	$4^{\prime}-3^{\prime \prime}$	$4^{4}-5^{\prime \prime}$	$4^{\prime}-11^{\prime \prime}$	$6^{6}-0^{\prime \prime}$	3.34	4.28	4.31	4.43	4.67	5.20	5.27	5.49	5.97	6.13	6.23	6.56	7.29	$30^{\prime \prime}$
	$36^{\prime \prime}$	7.07	14.14	21.21	28.28	$3^{\prime \prime}-8^{\prime \prime}$	$1^{1}-8^{\prime \prime}$	$7^{\prime \prime}-6^{\prime \prime}$	$2^{\prime \prime} 4^{\prime \prime}$	$1^{\prime}-8^{\prime \prime}$	$4^{\prime}-0^{\prime \prime}$	$5^{\prime}-1^{\prime \prime}$	$5^{\prime}-1^{\prime \prime}$	5'-3"	5'-10"	$7^{\prime}-2^{\prime \prime}$	4.64	5.95	6.00	6.15	6.49	7.25	7.34	7.65	8.33	8.57	8.71	9.18	10.20	$36^{\prime \prime}$
¢	$42^{\prime \prime}$	9.62	19.24	28.86	38.48	$4^{\prime \prime}-2^{\prime \prime}$	$1^{1}-10^{\prime \prime}$	$8^{\prime \prime}-6^{\prime \prime}$	$2^{\prime}-6^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$5^{\prime}-0^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$6^{\prime}-3^{\prime \prime}$	$6^{\prime}-11^{\prime \prime}$	$8^{8}-6^{\prime \prime}$	6.49	8.43	8.50	8.73	9.23	10.38	10.52	10.98	11.99	12.32	12.52	13.22	14.73	
\bigcirc	$48^{\prime \prime}$	12.57	25.14	37.71	50.28	4'-8"	$2^{\prime \prime}-1^{\prime \prime}$	$9{ }^{\prime \prime-6 "}$	2'-9"	$2^{\prime}-0^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$6^{\prime}-9^{\prime \prime}$	6'-9"	$7^{\prime \prime}-0^{\prime \prime}$	$7{ }^{\prime \prime}-10^{\prime \prime}$	$9^{\prime \prime} 7^{\prime \prime}$	8.38	10.85	10.94	11.23	11.87	13.34	13.51	14.11	15.39	15.82	16.08	16.97	18.90	48"
	$54^{\prime \prime}$	15.90	31.80	47.70	63.60	$5^{\prime}-2^{\prime \prime}$	$2^{2}-6^{\prime \prime}$	$10^{\prime}-6^{\prime \prime}$	$3^{\prime}-2^{\prime \prime}$	$2^{\prime \prime}-3^{\prime \prime}$	$7^{\prime}-0^{\prime \prime}$	$7^{\prime \prime}-8^{\prime \prime}$	$7^{\prime}-8^{\prime \prime}$	$7^{\prime \prime-11^{\prime \prime}}$	$8^{\prime}-10^{\prime \prime}$	$10^{\prime}-10^{\prime \prime}$	11.77	15.35	15.48	15.90	16.83	18.93	19.18	20.04	21.89	22.51	22.89	24.17	26.96	54"

NOTES:

1. Dimension x is calculated as: $x=S * S E C \alpha$.
2. Select tabular quantities using skew values as follows

End Skew to Pipe Use Tabulated Value
0° to 5°
6° to 15°
16° to 30°
31° or Over
0°
155°
30°
45°
CONCRETE AND METAL PIPE TABLES

PLAN

front elevation
\qquad

PLAN

$\overline{\overline{-}}$ SKEWED PIPE
(Multiple Pipe Shown, Single Pipe Similar)

LEGEND:
a Pipe Skew Angle
5 Center to Center between pipes
Center to Center along front of Headwall

GENERAL NOTES

1. Use Class II concrete
2. Reinforcing steel is either Grade 40 or 60 ,
3. Endwalls may be cast in place or precast concrete. The Contractor or the Supplier will determine the additional reinforcement necessary for handling precast units.
4. Chamfer all exposed edges and corners $3 / 4$ " unless otherwise shown. 5. Quantities shown are for estimating purposes only.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Single $60^{\prime \prime}$ Pipe Endwall Details
3	Double $60^{\prime \prime}$ Pipe Endwall Details

\qquad

NOTES:

1. 2" clearance on all reinforcement
unless otherwise shown.
2. Cut and bend B_{s} Bars as shown.
3. All bar dimensions are out to out

LEGEND:

H = Horizontal Bars
$V=$ Vertical Bars
$B=$ Bent Bars
$D=$ Dowels or Diagonal Bars
\qquad

(Showing Bars In Footing)

DOUBLE 60" PIPE ENDW ALL DETAILS

GENERAL NOTES

1. Use Class II concrete.
2. Reinforcing steel is either Grade 40 or 60
3. Endwalls may be cast in place or precast concrete. The Contractor or the Supplier will determine the additional reinforcement necessary for handling precast units.
4. Chamfer all exposed edges and corners $3 / 4$ " unless otherwise shown. 5. Quantities shown are for estimating purposes only

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Single 66" Pipe Endwall Details
3	Double 66" Pipe Endwall Details

Corrugated Metal Pipe
Concrete Pipe

NOTES:

1. $2^{\prime \prime}$ clearance on all reinforcement,
unless otherwise shown.
2. Cut and bend B_{2} Bars as shown.
3. All bar dimensions are out to out.

LEGEND:
$H=$ Horizontal Bars $B=$ Bent Bars
$V=$ Vertical Bars $\quad D=$ Dowels or Diagonal Bars

SINGLE 66" PIPE ENDWALL ESTIMATED QUANTITIES					
ITEM			UNIT	RCP	CMP
Class II Concrete			Cu. Yd.	13.2	13.3
			Lb.	1,170	1,170
BILL OF REINFORCING STEEL					
MARK	SIZE	NO. REQD.			
H_{1}	4		9	$33^{\prime \prime}-8^{\prime \prime}$	
H_{2}	5		63	$4^{\prime \prime-11^{\prime \prime}}$	
V_{1}	4		20	$8^{\prime}-11^{\prime \prime}$	
B_{1}	5		34	$9^{\prime \prime-11^{\prime \prime}}$	
B_{2}	4		8	${ }^{33^{\prime}-8{ }^{\prime \prime}}{ }^{1}-8{ }^{\prime \prime}$	
D_{1}	4		4		

 BENDING DIAGRAM

SECTION C-C
SINGLE 66" PIPE ENDW ALL DETAILS

Index	sheet
$430-032$	2 of 3

on all reinforcement
less otherwise shown.
Cut and bend B_{3} Bars as shown.
3. All bar dimensions are out to out.

EGEND:

H Horizontal Bars
= Vertical Bars
$B=$ Bent Bars
$=$ Dowels or Diagonal Bars

Sta./Off set Location
(Showing Bars In Footing)

DOUBLE 66" PIPE ENDWALL DETAILS

GENERAL NOTES

1. Use Class II concrete
2. Reinforcing steel is either Grade 40 or 60 .
3. Endwalls may be cast in place or precast concrete. The Contractor or the Supplier will determine the additional reinforcement necessar
4. Chamfer all exposed edges and corners $3 / 4$ " unless otherwise shown.
5. Quantities shown are for estimating purposes only

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Single $72^{\prime \prime}$ Pipe Endwall Details
3	Double $72^{\prime \prime}$ Pipe Endwall Details

GENERAL NOTES

1. Use Class II concrete
2. Reinforcing steel is either Grade 40 or 60
3. Endwalls may be cast in place or precast concrete. The Contractor or the Supplier will determine the additional reinforcement necessary for handling precast units.
4. Chamfer all exposed edges and corners $3 / 4$ " unless otherwise shown.
5. Quantities shown are for estimating purposes only

GENERAL NOTES:

1. Use Class II concrete.
2. Chamfer all exposed edges and corners $3 / 4$ unless otherwise shown.
3. Quantities shown are for estimating purposes onl

TABLE OF CONTENTS:
General Notes and Contents
U-Type and 45° Endwalls

WINGED CONCRETE ENDWALLS \qquad

PLAN

FRONT ELEVATION

PLAN

front elevation

SIDE ELEVATION

DIMENSIONS AND ESTIMATED QUANTITIES PIPE CULVERT ENDWALLS WITH U-TYPE WINGS													
DIMENSIONS							QUANTITIES IN ONE ENDWALL						
Pipe		Wall			Footing		Concrete, Class II, Total (CY)						$\begin{aligned} & \text { Steel } \\ & \text { Tie Bars } \end{aligned}$
Dia.	Area	G	Ht	K	F			CP		MP		IP	
							Inlet	Outlet	Inlet	Outlet	Inle	Outlet	
15"	1.2	$3^{\prime \prime}-11^{\prime \prime}$	$2^{\prime \prime}$-3"	1'-5"	1^{\prime}-3"	2'-7"	0.59	0.67	0.62	0.70	0.61	0.70	none
$18^{\prime \prime}$	1.8	$4^{\prime}-2^{\prime \prime}$	$2^{\prime \prime}-6^{\prime \prime}$	1'-9"	$1^{\prime}-3^{\prime \prime}$	$2^{\prime}-11^{\prime \prime}$	0.70	0.79	0.74	0.82	0.74	0.82	none
$24^{\prime \prime}$	3.1	$4^{\prime \prime}-8^{\prime \prime}$	$3^{\prime \prime}-0^{\prime \prime}$	$2^{\prime}-6^{\prime \prime}$	$1^{\prime}-6^{\prime \prime}$	$3^{\prime \prime-} 8^{\prime \prime}$	1.01	1.11	1.06	1.16	1.06	1.16	2-\#6 Bars $\times 2^{2}-0^{\prime \prime}$
$30^{\prime \prime}$	4.9	$5^{\prime}-2^{\prime \prime}$	$3^{\prime \prime}-6^{\prime \prime}$	$3^{\prime}-3^{\prime \prime}$	$1^{1}-6^{\prime \prime}$	$4^{\prime \prime}-5^{\prime \prime}$	1.33	1.44	1.41	1.51	1.40	1.51	$2-\# 6$ Bars $\times 2{ }^{2}-0^{\prime \prime}$
$36^{\prime \prime}$	7.1	$5^{\prime}-8^{\prime \prime}$	$4^{4}-0^{\prime \prime}$	$4^{\prime}-0^{\prime \prime}$	$1^{\prime}-9^{\prime \prime}$	$5{ }^{\prime}$	1.73	1.85	1.8	1.96	1.82	1.94	2-\#6 Bars $\times 2{ }^{2}-6^{\prime \prime}$
$42^{\prime \prime}$	9.6	$6^{\prime}-2^{\prime \prime}$	$4^{4}-6^{\prime \prime}$	4'-9"	$2^{\prime}-0^{\prime \prime}$	$5^{\prime \prime}-11^{\prime \prime}$	2.19	2.32	2.32	2.45			2-\#6 Bars $\times 2^{2}-6^{\prime \prime}$
$48^{\prime \prime}$	12.6	$6^{\prime}-8^{\prime \prime}$	$5^{\prime}-0^{\prime \prime}$	5'-6"	$2^{\prime}-0^{\prime \prime}$	$6^{\prime}-8^{\prime \prime}$	2.64	2.78	2.81	2.95			2-\#6 Bars $\times 3^{3}-0^{\prime \prime}$

dimensions							Quantities in one endwall			
Pipe		Wall				Footing	Concrete, Class II			Steel Tie Bars
Dia.	Are							(CY)		
D	(ft ${ }^{2}$)		σ	L	M	F	RCP	CMP	CIP	
$15^{\prime \prime}$	1.2	$2^{\prime \prime}-3^{\prime \prime}$	$3^{\prime \prime}-7^{\prime \prime}$	$1^{\prime}-0^{\prime \prime}$	$1^{\prime \prime}-3^{\prime \prime}$	$l^{\prime}-3^{\prime \prime}$	0.56	0.59	0.59	none
$18^{\prime \prime}$	1.8	$2^{\prime \prime}$-6"	$3^{\prime}-10^{\prime \prime}$	1^{\prime}-2"	1^{1}-7"	$1^{1}-3^{\prime \prime}$	0.74	0.77	0.77	none
$24^{\prime \prime}$	3.1	$3^{\prime}-0^{\prime \prime}$	$4^{\prime \prime}-4^{\prime \prime}$	$1^{\prime \prime}$-5"	2'-1	$1^{\prime \prime}-4^{\prime \prime}$	1.01	1.06	1.06	2-\#6 Bars $\times 22^{\prime}-0^{\prime \prime}$
$30^{\prime \prime}$	4.9	$3^{\prime}-6^{\prime \prime}$	$4^{\prime}-10^{\prime \prime}$	$1^{\prime}-9^{\prime \prime}$	$2^{\prime \prime}-5^{\prime \prime}$	$1^{\prime}-6^{\prime \prime}$	1.32	1.40	1.39	$2-\# 6$ Bars $\times 2^{\prime \prime}-0^{\prime \prime}$
$36^{\prime \prime}$	7.1	$4^{\prime}-0^{\prime \prime}$	5'-4"	$2^{\prime}-0^{\prime \prime}$	$2^{\prime \prime}-11^{\prime \prime}$	${ }^{1}$ '-8'8	1.72	1.83	1.82	$2-\# 6$ Bars $\times 2^{\prime}-6^{\prime \prime}$
$42^{\prime \prime}$	9.6	$4^{\prime}-6{ }^{\prime \prime}$	5'-10'	$2^{\prime}-3^{\prime \prime}$	$3^{\prime \prime}-6^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	2.34	2.47		$2-\# 6$ Bars $\times 2^{\prime}-6^{\prime \prime}$
$48^{\prime \prime}$	12.6	$5^{\prime}-0^{\prime \prime}$	$6^{\prime}-4^{\prime \prime}$	$2^{\prime}-6^{\prime \prime}$	$4^{\prime \prime}-0^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	2.74	2.90		$2-\# 6$ Bars $\times 2^{2}-6^{\prime \prime}$

e ENDWALL WITH U-TYPE WINGS
U-TYPE AND 45° ENDW ALLS

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$	\|rin	$\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	WINGED CONCRETE ENDWALLS

GENERAL NOTES:

1. Use Class II Concrete.
2. Channel section C3 $\times 6.0$ may be substituted for the $C 4 \times 5.4$ channel.
3. All steel reinforcing bars are \#4 with $2^{\prime \prime}$ cover except as noted Spacing shown are center to center. Lap bars $1^{\prime \prime}-5^{\prime \prime}$ minimum. Welded wire fabric (two cages max.) with an equivalent cross section . 20 sq in) may be substituted for bar reinforcement.
4. Drill $11 / 4 "$ holes $8^{\prime \prime}$ deep with a rotary drill in existing endwall for dowel bars. Thoroughly clean holes prior to installing Adhesive-Bond Dowels.
5. Quantities shown are for estimating purposes only.
6. For supplemental details, see Index 425-001.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Endwalls for $1: 4$ and $1: 6$ Slopes
3	Steel Grate

SAFETY MODIFICATIONS

$\begin{array}{\|c\|} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{array}$	\| \mid	DESCRIPTION:	FDOTY	$\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	SAFETY MODIFICATIONS FOR ENDWALLS	$\begin{gathered} \text { Index } \\ 430-090 \end{gathered}$	SHEET 1 of 3

LEGEND:
H = Horizontal Bars
$B=$ Bent Bars

PLAN

ELEVATION
BACK VIEW

= REINFORCING DETAILS

ENDW ALLS FOR 1:4 AND 1:6 SLOPES

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$		$\begin{array}{cc} F Y \text { 2022-23 } \\ \text { FDOTANDARD PLANS } \end{array}$	SAFETY MODIFICATIONS FOR ENDWALLS	$\begin{gathered} \text { INDEX } \\ 430-090 \end{gathered}$	SHEET 2 of 3

TABLE 2 GRATE DIMENSIONS AND QUANTITIES									
Slope	$\begin{gathered} \text { Pipe } \\ \text { Dia. } \end{gathered}$	Channels @ 5.4 Lbs./LF			Bars @ $3.4 \mathrm{lbs} / \mathrm{LF}$ (2 ea.)			Angles @ 3.2 Lbs./LF	
		Quantity	F	Ibs.	L	M-4"	lbs.	P	lbs.
1:6	15"	10	$2^{\prime}-6^{7} 8^{\prime \prime}$	139	$11^{\prime}-3^{\prime \prime}$	$3^{\prime \prime} 3^{\prime \prime}$	99	$9^{\prime \prime}-4^{\prime \prime}$	60
	$18^{\prime \prime}$	12	$2^{\prime}-97 z^{\prime \prime}$	183	$13^{\prime \prime}-3^{\prime \prime}$	$3^{\prime \prime}-6^{\prime \prime}$	114	11'-4"	73
	$24^{\prime \prime}$	15	$3^{\prime}-3^{77} 8^{\prime \prime}$	269	$16^{\prime}-3^{\prime \prime}$	$4^{\prime}-0^{\prime \prime}$	138	$14^{\prime \prime}-4^{\prime \prime}$	92
	$30^{\prime \prime}$	18	$3{ }^{3}-978^{\prime \prime}$	372	$19^{\prime}-3^{\prime \prime}$	$4^{4}-6^{\prime \prime}$	162	$17^{\prime \prime}-4^{\prime \prime}$	111
1:4	$15^{\prime \prime}$	6	$2^{2}-678^{\prime \prime}$	83	$7^{\prime \prime}-3^{\prime \prime}$	$3^{\prime}-3^{\prime \prime}$	71	$5^{\prime}-4^{\prime \prime}$	34
	$18^{\prime \prime}$	7	$2^{1}-97 / z^{\prime \prime}$	107	$8^{\prime \prime}-3^{\prime \prime}$	$3^{\prime}-6^{\prime \prime}$	80	$6^{\prime}-4^{\prime \prime}$	41
	$24^{\prime \prime}$	9	$3^{-}-378^{\prime \prime}$	161	$10^{\prime}-3^{\prime \prime}$	$4^{4}-0^{\prime \prime}$	97	$8^{\prime}-4^{\prime \prime}$	53
	$30^{\prime \prime}$	11	$3^{-}-978^{\prime \prime}$	227	$12^{\prime \prime}-3^{\prime \prime}$	$4^{4}-6^{\prime \prime}$	114	$10^{\prime}-4^{\prime \prime}$	66

PLAN

ELEVATION

Anchor Bolt Detail
DETAIL "B"

SECTION A-A

$$
\angle 21 / 2 \times 11 / 2 \times 1 / 4
$$

- STEEL GRATE DETAILS

GENERAL NOTES:

Install outlet pipes and preformed channel inverts with a slope of 0.6% or steeper toward the outlet regardless of the surface slope, unless shown different in the Plans.
2. Stub trench drain directly into drainage structures or install outlet pipes to connect trench .
3. Provide a cleanout port compatible with the manufactured system for Type I drains at the upstream end and at intervals of 50 feet maximum. Provide a cleanout port with an opening of $6^{\prime \prime}$ to $10^{\prime \prime}$ wide (transverse to the trench drain length) and $18^{\prime \prime}$ to $24^{\prime \prime}$ long. Form curbs or searators around the cleanout when cleanouts are placed adjacent to raised curb or

Excavate trench to allow for a minimum of $6^{\prime \prime}$ of concrete to be placed under and alongside the trench drain channel system. Install concrete backfill in accordance with Specification 347. Install concrete backfill extending a minimum of $6^{\prime \prime}$ past the end of the drain opening at the end of all Type I or II units.
5. Install transverse bars spaced $4^{\prime \prime}$ to $6^{\prime \prime}$ on center for Type I Trench Drain.

$\begin{aligned} & \text { LAST } \\ & \text { REVISION } \\ & 11 / 01 / 19 \end{aligned}$	\|r	DESCRIPTION:	FDOT	FY 2022-23 STANDARD PLANS	$T R E \mathbb{N} C H \mathbb{D R A} \mathbb{N}$	$\begin{gathered} \text { INDEX } \\ 436-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 3 \end{aligned}$

PREFORMED POLYETHYLENE CHANNEL

ROUND PIPE CHANNEL

WITHIN DROP CURB
adjacent to traffic separator

WITHIN TYPE E CURB

WITHIN TYPE F CURB

NOTES:

(Round Channel Shown, Preformed Polyethylene Similar)

1. Opening for fixed height grates. Opening at the pipe can be $3^{\prime \prime}$.
2. The Round Pipe Channel is $15^{\prime \prime}$ in diameter, unless otherwise shown in the Plans.
3. Provide a minimum $6^{\prime \prime}$ concrete on this side of the drain.
4. Install grates on preformed polyethylene channel at driveways.

PREFORMED CHANNEL WITH REMOVABLE GRATE

NOTES:

1. Provide minimum $6^{\prime \prime}$ of concrete on this side of the drain.
2. $4^{\prime \prime}$ Minimum unless otherwise shown in Plans.

TYPE II - REMOVABLE GRATE

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$	\|	$\begin{array}{cc} \text { FDY 2022-23 } \\ \text { STANDARD PLANS } \end{array}$	$T R E \mathbb{N} C H \mathbb{D R A I N}$	$\begin{gathered} \text { INDEX } \\ 436-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 3 \end{aligned}$

GENERAL NOTES

1. Install underdrain pipe that is either $4^{4 \prime}$ smooth or $5^{\prime \prime}$ corrugated tubing unless otherwise hown in the Plans. The size to be furnished will be based on the nominal internal special provisions or this standard, pipe with a corrugated interior wall may be provided based on the following size equivalency.
$4^{\prime \prime}$ smooth interior equivalent to $5^{\prime \prime}$ corrugated interior
$5^{\prime \prime}$ smooth interior equivalent to $6^{\prime \prime}$ corrugated interior
${ }_{8 "}^{6 "}$ smooth interior equivalent to $8^{\prime \prime}$ corrugated interior
2. Fine aggregate is quartz sand meeting the requirements of Specifications 902-4.
3. Coarse aggregate is gravel or stone meeting the requirements of Specification 901-2 or 901-3. The gradation is in accordance with Specifications 901, Grades 4, 467, 5, 56 or stone unless otherwise shown restricted in the Plans.
4. Install Underdrain Type I, II, III and V in accordance with Specification 440
5. Install filter fabric Type D-3 in accordance with Specifications 985. The internal filter fabric of Type V underdrain has a permittivity of $0.7 / \mathrm{sec}$. and an AOS of \#40 sieve.

6. When Type I is used, use a filter fabric sock in accordance with Specification 948 .
7. See Index 120-002 for the standard location of Type I, II, and III underdrain. The location of Type V underdrain and nonstandard locations of Type I, II, and III underdrain will be as detailed in the plans.
8. Install filter fabric joints with a overlap a minimum of 1^{\prime}. Install the internal filter fabric of Type V underdrain with an overlap into the coarse aggregate or the a minimum of $1^{\prime \prime}$.
9. Use nonperforated pipes for underdrain outlet and make all bends using $1 / 1$ (45 deg.) elbows. Construct 90 deg. bends with two $1 / 8$ elbows separated by at least 1' of straight pipe. Outlet pipes stubbed into inlets or other drainage structures must be a minimum $6^{\prime \prime}$ above the structure flow line. Install concrete aprons, hardware cloth, and sod for outlet pipes discharging to grassed areas as shown in Index 446-001 for Edgedrain Outlets.

TABLE OF CONTENTS:		
Sheet	Description	
1	General Notes and Contents	
2	Type I, II, and III Underdrains	
3	Type Va, Vb, and Cleanout	

:

TYPE \qquad [

\qquad

TYPE III \qquad

TYPE I, II, AND III

general notes:

1. Install light duty cast iron cover and frame in accordance with Specification 962
2. Use Class II concrete. Use No. 3 bars (Grade 60) on $8^{\prime \prime}$ centers both ways, sides and botton
3. Furnish covers with pick holes Do not use fitted lifts or handles.
4. Manhole Type P Alternate A, Index 425-010, Type I Frame and Cover, Index 425-001, may be used in lieu of the box detailed in this Index.

table of Contents:	
Sheet	Description
1	General Notes and Contents
2	Typical Inspection Box Instalatation
3	Ther

NOTES:

1. Cast or field cut $2 \sim 4^{\prime \prime}$ wide slots for hinges. Grout around hinge covers.
2. One or more sides may have an opening, see Plans for required openings. Grout around opening to sea between underdrain pipe and inspection box.

TYPICAL INSPECTION BOX INSTALLATION

LAST
REVISION
$11 / 01 / 19$

FDOT $\begin{gathered}\text { FY 2022-23 } \\ \text { STANDARD PLANS }\end{gathered}$

GENERAL NOTES:

1. Place concrete pipe with the slots positioned on sides
2. Alignment joints are standard (gaskets not required). Recorrugation of metal pipe ends not required.
3. Install Type D-3 filter fabric in accordance with Specification 985 Lap all filter fabric joints a minimum of one (1) foot.
4. Construct the standard cross section unless other section(s) described detailed in the plans.
5. See Index 430-001 for supplemental details.
6. Take the necessary precautions to prevent contamination of the trenc ith sand, silt and foreign materials.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	French Drain System
3	Concrete Slotted Pipe Options

\qquad —

NOTES

1. Construct sumps unless excluded in the Plans.
2. For additional sump bottom information see Index 425-001.
3. Construct weep holes only where called for in the Plans.
4. Only cast and ductile iron sanitary sewer, or cast iron ductile and steel water mains will be allowed to pass
directly through french drain (without sleeve).

Use oly steel cast or ductive iron sleaves.
6. No slots or perforations.

SECTION A-A

FRENCH DRAIN SYSTEM

SIDE VIEW

SECTION A-A

SECTION B-B
$15^{\prime \prime}$ to $30^{\prime \prime}$

SECTION C-C

side view

NOTES

1. $2^{2}-0^{\prime \prime}$ for $8^{\prime}-0^{\prime \prime}$ joints of pipe;
$2^{\prime}-6^{\prime \prime}$ for $12^{\prime}-0^{\prime \prime}$ joints of pipe
2. A curved cut is acceptable provided the control dimension is maintained.

ROUND PIPE		
$\begin{aligned} & \begin{array}{l} \text { ipe } \\ \text { Size } \end{array} \end{aligned}$	Slot Cut	
	$\begin{aligned} & \text { Opening } \\ & \text { (C) } \end{aligned}$	
	Min.	Max.
15"	12"	14"
$18^{\prime \prime}$	12"	$14^{\prime \prime}$
$24^{\prime \prime}$	$16^{\prime \prime}$	18"
$30^{\prime \prime}$	$16^{\prime \prime}$	$18^{\prime \prime}$
36"	$22^{\prime \prime}$	$24^{\prime \prime}$
$42^{\prime \prime}$	$22^{\prime \prime}$	$24^{\prime \prime}$
$48^{\prime \prime}$	22"	24"
$54 "$	24"	26"
$60^{\prime \prime}$	$24^{\prime \prime}$	$26^{\prime \prime}$
66"	24"	$26^{\prime \prime}$
72"	24"	$26^{\prime \prime}$
ELLIPTICAL PIPE		
$\begin{gathered} \text { Pipe } \\ \text { Size } \end{gathered}$	Slot Cut	
	Opening(C)	
	Min.	Max
$14^{\prime \prime} \times 23^{\prime \prime}$	$10^{\prime \prime}$	12"
$19^{\prime \prime} \times 30^{\prime \prime}$	$14^{\prime \prime}$	$16^{\prime \prime}$
$24^{\prime \prime} \times 38^{\prime \prime}$	$14^{\prime \prime}$	$16^{\prime \prime}$
$29^{\prime \prime} \times 45^{\prime \prime}$	$20^{\prime \prime}$	$22^{\prime \prime}$
$34^{\prime \prime} \times 53^{\prime \prime}$	$20^{\prime \prime}$	$22^{\prime \prime}$
$38^{\prime \prime} \times 60^{\prime \prime}$	$20^{\prime \prime}$	$22^{\prime \prime}$

GENERAL NOTES

1. The french Drain Skimmer is a hooded cover, mounted over an outlet in a catchbasin, that prevents oil and floating debris from exiting the basin.
2. Place neoprene gasket material between the skimmer and the catchbasin at all points of contact. Trim the gasket to extend $1 / 2$ inch beyond the joint on all sides.
3. Provide skimmer baffle, cleanout pipe and angles constructed of either galvanized steel, aluminum, polyvinyl chloride, polyethylene. fiberglass or acrylonitrite butadiene styrene. Provide hot-dip galvanized steel components, unless stainless.
4. Use Mounting hardware, hinges and latches made of stainless steel. Loss prevention device can use either stainless steel chain or riveted nylon strap.
5. Provide skimmer bodies (baffles) and cleanout pipe meeting Specificatio 943 for steel, 945 for aluminum or 948 for plastics.
6. Work this Index in accordance with Specification 425.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Type I Skimmers
3	Type II Skimmers

NOTES:

1. Conform the backs of skimmers to the shape
of the basin walls on which they are mounted
2. "R" is the radii required for curved back skimmers.
3. Weld Angles at all points of contact with skimmer.

DIMENSION TABLE			
OUTLET PIPE	A	B	C
$18^{\prime \prime}$	$12^{\prime \prime}$	$42^{\prime \prime}$	$24^{\prime \prime}$
$24^{\prime \prime}$	$15^{\prime \prime}$	$48^{\prime \prime}$	$30^{\prime \prime}$
$30^{\prime \prime}$	$18^{\prime \prime}$	$54^{\prime \prime}$	$36^{\prime \prime}$
$36^{\prime \prime}$	$21^{\prime \prime}$	$60^{\prime \prime}$	$42^{\prime \prime}$

side elevation

SIDE ELEVATION

NOTE:

1. Install a gasket for the cleanout with either a threaded screw-in lid or a lid secured by
four stainless steel quick-release latches.

front elevation
Side elevation

24" STEEL WELL GRATE
Heavy duty "bee hive" grate
Openings: 1-1/2" maximum
Total Opening: 1.7 sq ft minimum
For $24^{\prime \prime}$ well, outer diameter $=29^{\prime \prime}$
Steel well grate to be installed over 24" deep well.
Steel grate to be hot dipped galvanized after
fabrication, see Specification Section 962.

TOP SLAB PLAN

SECTION A-A
structure with no outflow

special manhole structure

DETAIL WITH OUTFALL

DESIGN NOTES

1. Depth of Casing Varies, $60^{\circ} \mathrm{min}$.
2. Depth of Open Hole, $10^{\prime}-20$
3. Actual Size of The Inflow And Outflow Chambers will Be Determined By The Size of The Pipes (Refer To Table 3 of Index $425-010$). The Width of The Box Shall Be Constant Based On The Largest Pipe. The
Length Is To Be Adjusted Based On Size and Orientation of The Pipes.

D DESCRIPTION:
FDOT\} $\begin{gathered}\text { FY 2022-23 } \\ \text { STANDARD PLANS }\end{gathered}$

Index	Sheet
444-T01	1 of 1

GENERAL NOTES:

1. Do not leave trench greater than 2^{\prime} in depth overnight. Barricade trenches at all times
2. Construct concrete pavement subdrainage adjacent to the low edge of the roadway pavement and under travel lanes, auxiliary pavement and shoulders, as called for in the plans. Extend the concrete pavement subdrainage 50^{\prime} beyond and begin 50^{\prime} before the flat poi overiap) when the low eage shifts between outside and inside edges of pavement
3. Install concrete pavement subdrainage on a grade parallel with the edge of pavement profile, except on profiles flatter than one-tenth percent (0.10%) install the concrete pavement subdrainage on a minimum grade of one-tenth percent (0.10%).
4. Remove adhering base material and soil from the vertical face of the concrete immediately prior to placing the filter fabric
5. Submit a procedure for holding the filter fabric in position on the vertical face of the trench for approval by the Engineer prior to placing draincrete.
6. Cap the upper end of each separate run of the concrete pavement subdrainage pipe.
7. Install outlet pipes at 500^{\prime} maximum intervals. Use elbows or $1 / 8$ bends to connect the outlet pipe to the concrete pavement subdrain pipe. Use elbows or bends of the same material as the outlet pipe.
Stub outlet pipes into existing inlets or into existing ditch pavements at an elevation above the inlet flowline or ditch bottom when directed by the Engineer. Concrete apron required for stubbed outlets, but replacement sodding will be

Install a single outlet apron for separate outlet pipes of concrete pavement subdrainaga rom opposite directions in sag vertical curves.
Install backfill consisting of cohesive soils around outlet pipes.
. Replace existing paved shoulder removed for the construction of outlet pipes with Type SP asphaltic concrete at the rate of 500 LB per Sr:

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Edgedrain and Outlet
3	New Construction
4	Rehabilitation

NOTES:

1. The edgedrain sections for DRAINCRETE SUBDRAINAGE are applicable to pavement construction identified as RIGID PAVEMENT on Index 120-001.
2. Confine the construction of draincrete edgedrain to an area in which the entire operation can be carried out in five (5) work days, unless another
construction period is called for in the plans, with sufficient time allowed for the draincrete to set before placement of pavement.
3. Install the filter fabric in accordance with Specification 514
4. Install only noncorrugated or smooth lined corrugated pipe.
5. At the Contractor's option this area may be constructed of Optional Base material (Specification 285) or special stabilized subbase.

EXISting shoulders

NOTES

1. The edgedrain sections for DRAINCRETE SUBDRAINAGE are applicable to pavement construction identified as RIGID PAVEMENT on Index 120-001,
2. Confine the construction of draincrete edgedrain to an area in which the entire operation can be carried out in five (5) work days, unless another
3. Install the filter fabric in accordance with Specification 514
4. Install only noncorrugated or smooth lined corrugated pipe.
5. Install Filter Fabric $2^{\prime \prime}$ below bottom of pavement for cement stabilized, soil cement and econocrete subbases and $2^{\prime \prime}$ above bottom of pavement for other subbases.

BAR BENDING DIAGRAMS

STIRRUP DIMENSIONS ($T=10^{\prime \prime}$)										STIRRUP DIMENSIONS ($T=12^{\prime \prime}$)									
\varnothing	bar mark	R1	R2	R3	R4	R5	R6	R7	R8	\varnothing	bar mark	R1	R2	R3	R4	R5	R6	R7	R8
30°	S1	111/4"	93/41	${ }^{\prime}-61 /{ }^{\prime \prime}$	21/2"	$5^{\prime \prime}$	43/41	51/2"	4/41	30°	S1	111/2"	10"	$1^{\prime}-6^{\prime \prime}$	$31 / 2$	$7{ }^{\prime \prime}$	43/41	53/4"	$6^{\prime \prime}$
	52	$1^{\prime}-1 /{ }^{1 / \prime \prime}$	93/41	$1^{\prime}-8 \frac{3}{4 \prime \prime}$	21/2"	41/2"	51/2"	53/4"	41/4		52	$1^{\prime}-1 / 3 / /^{\prime \prime}$	10"	$1^{1}-8 \frac{1 / 4}{}{ }^{1 \prime}$	$31 / 2^{\prime \prime}$	6/2/21	51/4"	53/4"	$6^{\prime \prime}$
	53	111/4"	$8^{\prime \prime}$	$1^{\prime}-6^{\prime \prime}$	1/1/1	$5^{\prime \prime}$	41/2"	41/2"	$5^{\prime \prime}$		53	111/2"	81/4"	$1^{\prime}-53 /{ }^{\prime \prime}$	$2^{\prime \prime}$	$7{ }^{\prime \prime}$	43/4"	4/2"	71/41
	54	111/4"	41/4"	$1^{\prime}-1{ }^{3 / 1 /}$	13/4"	$5^{\prime \prime}$	33/41	21/2"	61/4		54	111/2"	$4^{\prime \prime}$	$1^{1}-1 /{ }^{1 / 1 /}$	21/71	$7{ }^{\prime \prime}$	33/4'	2/21/	81/4"
45°	51	111/2"	$8^{\prime \prime}$	$1^{\prime}-4^{\prime \prime}$	$4^{\prime \prime}$	51/21	$61 / 2^{\prime \prime}$	$8^{\prime \prime}$	$4{ }^{\prime \prime}$	45°	S1	$1^{1}-0^{\prime \prime}$	8/21	$1^{1}-3 / 1 /{ }^{1 / 1}$	51/4"	7/21	$61 / 41$	81/21	51/4"
	S2	$1^{\prime}-1 / 3 / 4$	$8^{\prime \prime}$	1'-53/4	$4^{\prime \prime}$	41/2"	71/21	$8^{\prime \prime}$	$4{ }^{\prime \prime}$		52	$1^{\prime}-2^{1 / 1 / 4}$	8/211	$1^{\prime}-51 /{ }^{1 / 2}$	51/4"	67/21	71/4"	8/21	51/4"
	S3	111/2"	$63 / 41$	$1^{\prime}-4^{\prime \prime}$	21/4"	51/211	$6{ }^{3} /{ }^{\prime \prime}$	$63 / 41$	51/2		53	$1^{2}-0^{\prime \prime}$	$7{ }^{\prime \prime}$	$1^{\prime}-4^{\prime \prime}$	$3^{\prime \prime}$	71/21	63/4"	$7{ }^{\prime \prime}$	71/410
	54	11/2/2'	31/2"	$1^{\prime}-0^{\prime \prime}$	3"	51/2"	$5^{\prime \prime}$	31/2"	$7{ }^{\prime \prime}$		54	$1^{1}-0^{\prime \prime}$	31/2"	113/4"	33/4"	7/21	$5^{\prime \prime}$	$31 / 2^{\prime \prime}$	$9{ }^{\prime \prime}$
60°	S1	$1^{\prime}-0^{\prime \prime}$	$6^{\prime \prime}$	1'-03/4'	51/4"	$6^{\prime \prime}$	71/4"	101/4"	$3{ }^{\prime \prime}$	60°	S1	$1^{\prime}-0 \frac{1}{2 \prime \prime}$	6/4/4	113/4	$7{ }^{\prime \prime}$	$8^{\prime \prime}$	63/4"	103/4"	$4{ }^{\prime \prime}$
	S2	${ }^{1}-2^{\prime \prime}$	$6^{\prime \prime}$	$1^{\prime}-2^{3 / 4}$	51/4"	43/4"	83/41	101/2"	$3^{\prime \prime}$		52	$1^{\prime}-2^{3 / 4} /^{\prime \prime}$	61/4"	${ }^{\prime}$ '-2 ${ }^{\prime \prime}$	$7{ }^{7}$	63/41	$8^{\prime \prime}$	103/4"	$4^{\prime \prime}$
	53	$1^{\prime}-0^{\prime \prime}$	43/4"	$1^{\prime}-1 \frac{1 / 2 \prime}{}$	$31 / 4{ }^{\prime \prime}$	$6^{\prime \prime}$	$8^{\prime \prime}$	83/4"	51/4		53	$1^{\prime}-0 \frac{1}{2 \prime \prime}$	$5^{\prime \prime}$	$1^{\prime}-1 \frac{1}{1 / \prime \prime}$	$4^{\prime \prime}$	$8^{\prime \prime}$	$8^{\prime \prime}$	$9^{\prime \prime}$	$7{ }^{\prime \prime}$
	54	$1^{\prime}-0^{\prime \prime}$	$21 / 2^{\prime \prime}$	10"	4/2"	$6^{\prime \prime}$	$53 / 4$	$4^{\prime \prime}$	71/2'		S4	$1^{1}-0^{1 / 2} /{ }^{\prime \prime}$	21/2"	91/2"	$51 / 21$	$8^{\prime \prime}$	51/2"	4/4/1	91/4"

1-PIECE
BARS S1 \& S2

BARS S3 \& S4

DETAIL" "
(TYPE "B1" PILE SHOWN, TYPE "B2" PILE OPPOSITE HAND) NOTES:

1. This drawing includes details for precast concrete corner piles for $10^{\prime \prime}$ 2and $12^{\prime \prime}$ thick sheet pile systems. The details apply equally to both thicknesses.
2. The bar configurations shown in Sections $A-A$ and $B-B$ shall be used for

0 angles between 15° and 75°. For \varnothing angles not shown, the reinforcing bar
dimensions may be interpolated or extrapolated from the stirrup dimensions shown.
3. All bar dimensions are out-to-out.
4. Bars A are $\# 8$ and Bars 5 are $\# 4$.
5. Values for Stirrup Dimensions are shown for alal to 30,4560 only
6. At the Contractor's option Bars S may be fabricated as a 2 piece bar with
a minimum lap length of $1^{\prime}-4^{\prime \prime}$, as shown in Bar Bending Diagrams.
7. If Type "B1" or "B2" pile is used as a Starter Pile show tongue on both sides of pile
from Dim. X down. Show dimensions for Bars S2, S3 \& S4 in shop drawings.
. If tongue must be on the opposite side from that shown all dimensions and Bars A
S2, S3 and S4 will be the same but opposite hand
9. For Dimensions L, X and Angle Ø, see Sheet Pile Data Table in Structures Plans.

TYPE "B1" AND "B2" - VARIABLE aNGLE CORNER PILE
LAST
REVISION

RE/01/16

FDOTS	FY 2022-23 STANDARD PLANS	PRECAST CONCRETE SHEET PILE WALL (CONVE NTIONAL)	$\begin{gathered} \text { INDEX } \\ 455-400 \end{gathered}$	SHEET 3 of 4

BAR BENDI									
STIRRUP DIMENSIONS ($T=10^{\prime \prime}$)									
\varnothing	BAR MARK	R1	R2	R3	R4	R5	R6	R7	R8
30°	S1	11/4/4	93/41	${ }^{1}$-61/2'	21/2"	$5^{\prime \prime}$	$43 / 41$	51/2"	41/4"
	52	$1^{1}-1 /{ }^{1 / 1 / \prime}$	93/4'	$1^{-1} 88 /{ }^{\prime \prime}$	21/2"	4/2/21	51/2/1	53/4'	41/4"
	53	111/4"	$8{ }^{\prime \prime}$	1'-6"	11/4"	$5^{\prime \prime}$	41/2"	41/2"	$5^{\prime \prime}$
	54	11/1/4	41/410	$1^{1}-13 / /^{\prime \prime}$	13/4 ${ }^{1 /}$	$5^{\prime \prime}$	33/4	$21 /{ }^{\prime \prime}$	61/4"
45°	51	111/2"	$8^{\prime \prime}$	$1^{\prime \prime-4 "}$	$4^{\prime \prime}$	51/210	61/21	$8^{\prime \prime}$	$4{ }^{\prime \prime}$
	S2	$1^{1}-1 / 3 / 1 /$	$8^{\prime \prime}$	1'-53/4	$4^{\prime \prime}$	41/2"	71/2"	$8^{\prime \prime}$	$4{ }^{\prime \prime}$
	S3	111/2"	$63 / 4$	1'-4"	21/4"	51/21	63/4	63/4'	51/2"
	54	111/2"	31/2"	$1^{1}-0^{\prime \prime}$	$3^{\prime \prime}$	51/2"	$5^{\prime \prime}$	3/2"	$7{ }^{\prime \prime}$
60°	S1	$1^{\prime}-0^{\prime \prime}$	$6^{\prime \prime}$	1'-03/4'	51/4"	$6^{\prime \prime}$	71/41	101/7"	3"
	S2	1'-2"	$6^{\prime \prime}$	$1^{\prime}-23 /{ }^{\prime \prime}$	51/4"	43/4 ${ }^{11}$	83/41	101/2"	$3{ }^{\prime \prime}$
	53	$1^{1}-0^{\prime \prime}$	$43 / 41$	$1^{2}-1 \frac{1 / 2 \prime}{}$	$31 / 4{ }^{11}$	$6^{\prime \prime}$	$8^{\prime \prime}$	83/41	51/4"
	54	$1^{1}-0^{\prime \prime}$	$2{ }^{1 / 2}$	10"	41/2"	$6^{\prime \prime}$	53/4	$4^{\prime \prime}$	71/2'1

STIRRUP DIMENSIONS ($T=12^{\prime \prime}$)									
\varnothing	bar mark	R1	R2	R3	R4	R5	R6	R7	R8
30°	S1	111/2"	10"	1'-6" $^{\prime \prime}$	31/2"	$7{ }^{\prime \prime}$	43/4	53/4"	$6^{\prime \prime}$
	52	$1^{\prime}-1 / 3 / /^{\prime \prime}$	$10^{\prime \prime}$	$1^{1}-8 / 1 /{ }^{1 \prime}$	3/2"	61/2"	51/4 ${ }^{11}$	53/4"	$6^{\prime \prime}$
	S3	111/2"	81/4"	$1^{\prime}-53 / 4$	$2^{\prime \prime}$	$7{ }^{\prime \prime}$	43/4	4/2/2'	71/4 ${ }^{10}$
	54	111/2"	$4^{\prime \prime}$	$1^{1}-1 /{ }^{1 / 1}$	21/4"	$7{ }^{\prime \prime}$	33/4	$22^{1 / 1}$	81/4"
45°	S1	$1^{\prime}-0^{\prime \prime}$	$81 /{ }^{1 / 1}$	$1^{1}-3 / 1 /{ }^{11}$	51/7"	71/21	61/41	81/2"	5/4"
	S2	${ }^{1}-2{ }^{1 / 1 / 1}$	$81 /{ }^{1 / 1}$	$1^{\prime}-5 /{ }^{1 / 1}$	51/4"	61/2"	71/4	$81 / 2^{\prime \prime}$	5//411
	53	$1^{\prime}-0^{\prime \prime}$	$7{ }^{\prime \prime}$	$1^{\prime}-4^{\prime \prime}$	$3^{\prime \prime}$	71/2/1	$63 / 411$	$7{ }^{7}$	71/4 ${ }^{10}$
	54	$1^{\prime}-0^{\prime \prime}$	$31 / 2^{\prime \prime}$	113/4"	33/4"	71/211	$5^{\prime \prime}$	$31 / 2^{11}$	$9^{\prime \prime}$
60°	S1	$1^{\prime}-0{ }^{1 / 2 / \prime}$	61/4"	113/4"	$7{ }^{7}$	$8^{\prime \prime}$	$6^{3 / 41}$	103/4"	$4^{\prime \prime}$
	S2	$1^{\prime}-2^{3 / 4}{ }^{\prime \prime}$	61/4"	$1^{\prime \prime}-2^{\prime \prime}$	$7{ }^{7 \prime}$	$63 / 411$	$8^{\prime \prime}$	$10^{3 / 4}{ }^{1 /}$	$4^{\prime \prime}$
	53	$1^{1}-0 \frac{1}{2} /{ }^{\prime \prime}$	$5^{\prime \prime}$	$1^{\prime}-1 /{ }^{1 / 1 \prime}$	$4^{\prime \prime}$	$8^{\prime \prime}$	$8^{\prime \prime}$	$9^{\prime \prime}$	$7{ }^{\prime \prime}$
	54	$1^{-1} 00^{1 / 2}$	$21 / 2^{\prime \prime}$	91/2"	51/21	$8^{\prime \prime}$	51/2"	4/4/4	91/4"

\section*{| SHEET PILE DIMENSIONS | | |
| :---: | :---: | :---: |
| T (in.) | 10 | 12 |
| y (in.) | $3^{3} / 16$ | $4^{3} / 16$ |
| z (in.) | 3 | 4 |}

DETAIL "D"
(TYPE "B1" PILE SHOWN, TYPE "B2" PILE OPPOSITE HAND)
NOTES:

1. This drawing includes details for precast concrete corner piles for $10^{\prime \prime}$
and $12^{\prime \prime}$ thick sheet pile systems. The details apply equally to both thicknesses.
2. The bar configurations shown in Sections $A-A$ and $B-B$ shall be used for
dimensions may be interpolated or extrapolated from the stirrup dimensions shown.
3. All bar dimensions are out-to-out.
4. Bars A are GFRP \#8 and Bars 5 are GFRP \#4.
5. Vales
6. Values for Stirrup Dimensions are shown for \varnothing equal to $30^{\circ}, 45^{\circ} \& 60^{\circ}$ only.
7. Bars 5 are fabricated as a 2 piece stirrup with a minimum

Bars S are fabricated as a 2 piece stirrup with a minimum lap length of 8
as shown in Bar Bending Diagrams, or a single closed bar approved by the Engineer.
7. If Type "B1" or "B2" piler. is used as a Starter Pile show tongue on both sides of pile 8. If tonque must be on the opposite side from that shown \& in shop drawings.
. If tongue must be on the opposite side from that shown all dimensions and Bars A,
. For Dimensions will be the same but opposite hand.
TYPE "B1" AND "B2" - VARIABLE ANGLE CORNER PILE

| $\begin{aligned} & \text { LAST } \\ & \text { REVISION } \\ & 11 / 01 / 16 \end{aligned}$ | \|c|cher | $\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$ | PRECAST CONCRETE SHEET PILE WALL (CFRP/GFRP \& HSSS/GFRP) |
| :---: | :---: | :---: | :---: |

TYPICAL BRIDGE MOUNTS

LEGEND
(1) traffic signals $\}$ Mast Arm Mounted (off Bridge)
(2) DRawbridge sign Monotube Support Mounted (On Bridge)
3) DRAWbridge ahead sign with yellow flashing beacon

- stop here on red sign with red flashing beacons

5) Entrance gate
© Exit gate
(7) 24" thermoplastic stop bar

SLIPPERY WHEN WET SIG

NOTES:

1. A bypass switch shall be installed to override each timing interval in case of a malfunction.
2. "STOP HERE ON RED" is omitted in Type I operation and "TRAFFIC SIGNALS" are omitted in Type II operation.
3. The time between beginning of flashing yellow on "Drawbridge Ahead" sign and the clearance of traffic signal to red, or beginning of flashing red should not be less than the travel time
of a passenger car from the sign location to the stop line traveling at the 85 percentile of a passenger
approach speed.
4. Beginning of operation of drawbridge gates shall not be less than 15 seconds after steady
red or 20 seconds after flashing red (Actual time may be determined by the bridge tender.)
5. Time of gate lowering and raising is dependent upon gate type.
6. Time of bridge opening is determined by the bridge tender
7. Each gate shall be operated by a separate switch.
8. On each approach (Type II), all four red signals shall be on the same two circuit flashers,
with the two top signals on one circuit, and the two bottom signals on the alternately flashing with th
circuit.
9. A Drawbridge Ahead sign is required for both types of signal operation. However a flashing A Drawbridge Ahead sign is required for both types of signal operation, However a flashing
beacon shall be added to the sign when physical conditions pr event a driver traveling at the
850 aproach sped from having 85\% approach speed from
approximately 10 seconds.
10. Requirements on gate installation are contained in Section 4I of the "Manual on Uniform
11. "In accordance with Traffic Engineering Manual (Topic Number 750-000-005) Section 2.1 ,
SIP
STEERY WHEN WET BRI WET SIINNS shall be placed in advance of all MOVABLE and NONMOVABLE SLIPPERY WHEN WET S'
STEEL DECK BRIDGES."

Field conditions may
require ad justment of
this standard distance

Railroad Gate or
Signal And Gate

acute angle (and right angle)

Signal placement at railroad crossing
(2 LANES, CURB \& GUTTER)

obtuse angle
signal placement at railroad crossing
(2 LANES, CURB \& GUTTER)

NOTES:
The location of flashing warning devices and stop lines shall be
established based on future (or present) installation of gate with appropriate track clearances.
2. Where plans call for railroad traffic control devices to be
installed in curbed medians, the minimum median width shall be 12'-6"
3. Location of railroad traffic control device is based on the
distance available between face of curb $\&$ sidewalk. 0^{\prime} to distance available between face of curb \& sidewalk. 0^{\prime} to 6^{\prime} -
Locate device outsid sidewalk. Over 6^{\prime} - Locate device between ace of curb and sidewal.
4. Stop line to be perpendicular to edge of roadway, approx. 15'
from nearest rail; or 8^{\prime} from and parallel to gate when present.
5. When a cantilevered-arm flashing warning device is used, the
minimum vertical clearance shall be $17^{\prime \prime}$ - $6^{\prime \prime}$ from above the Crow minimum vertical clearance shall be $17^{\prime \prime}$ " from above the cro
of Roadway to the Lowest Point of the Overhead Signal Unit.

TYPE I
TYPE II
TYPE III
TYPE IV
TYPE V

TRAFFIC CONTROL DEVICES FOR CURBED ROADWAY

LAST REVISION $02 / 05 / 21$	年気DESCRIPTION:		FY 2022-23 STANDARD PLANS	RAILROAD GRADE CROSSING TRAFFIC CONTROL DEVICES	$\begin{gathered} \text { INDEX } \\ 509-070 \end{gathered}$	SHEET 2 of 3

PLAN

RAILROAD GATE ARM LIGHT SPACING			
Specified Length Of Gate Arm	$\begin{gathered} \text { Dimension } \\ \text { "A" } \end{gathered}$	$\underset{" B "}{\text { Dimension }^{\prime}}$	$\begin{gathered} \text { Dimension } \\ \text { "C" } \end{gathered}$
14 Ft .	$6^{\prime \prime}$	$36^{\prime \prime}$	5
15 Ft .	$18^{\prime \prime}$	$36^{\prime \prime}$	5
16-17 Ft.	$24^{\prime \prime}$	$36^{\prime \prime}$	5
18-19 Ft.	$28^{\prime \prime}$	$41^{\prime \prime}$	5^{\prime}
20-23 Ft.	$28^{\prime \prime}$	$4{ }^{\prime}$	5
24-28 Ft.	$28^{\prime \prime}$	5	5
29-31 Ft.	$36^{\prime \prime}$	6^{\prime}	6^{\prime}
32-34 Ft.	$36^{\prime \prime}$	$7{ }^{\prime}$	$7{ }^{7}$
35-37 Ft.	$36^{\prime \prime}$	9	${ }^{\prime \prime}$
38 And Over	$36^{\prime \prime}$	10^{\prime}	10^{\prime}

NOTE:
For additional information see the "Manual On Uniform Traffic Control Devices", Part 8; The "Traffic Control Handbook", Part VIII; and AASHTO 'A Policy on Geometric Design of Streets And Highways'.

median section at signal gates
$\bar{\Longrightarrow}$ MEDIAN SIGNAL GATES FOR MULTILANE UNDIVIDED URBAN SECTIONS = (Three or More Driving Lanes in one Direction, 45 mph or less)

= RELATIVE LOCATION OF CROSSING $=$ TRAFFIC CONTROL DEVICES

Notes:
Notes: Shop Drawings are required; see Specification Section 515
2. For bridge mounted railings work this Index with Index 515-051 Bridge Bicycle/Pedestrian Railing

3D VIEW OF RAILING WITH TYPE 1 - PICKET INFILL PANEL (42" Height shown, 48" Height Similar)

table 1-RAILING MEMBERS			
MEMBER	designation	OUTSIDE DIMENSION	WALL THICKNESS
Post "A"	HSS $21 / 2 \times 1 \frac{1}{2} \times 1 / 8$	$2.50^{\prime \prime} \times 1.50^{\prime \prime}$	$0.125^{\prime \prime}$
Post "B"	HSS $21 / 2 \times 1 \frac{1}{2} \times 3 / 16$	$2.50^{\prime \prime} \times 1.50^{\prime \prime}$	$0.188^{\prime \prime}$
Top Rail	21/2" NPS (Sch. 10)	$2.875^{\prime \prime}$	$0.120^{\prime \prime}$
End Hoops	21/2" NPS (Sch. 10)	$2.875^{\prime \prime}$	$0.120^{\prime \prime}$
	HSS 3.000×0.120	$3.000^{\prime \prime}$	$0.120^{\prime \prime}$
Top Rail Joint/Splice Sleeves	HSS 2.500×0.125	$2.500^{\prime \prime}$	$0.125^{\prime \prime}$
Intermediate \& Bottom Rail	HSS $2 \times 2 \times 3 / 16$	$2.00^{\prime \prime} \times 2.00^{\prime \prime}$	$0.188^{\prime \prime}(1)$
Int. \& Bottom Rail Post Connection Sleeve	HSS 1.500×0.125	$1.500^{\prime \prime}$	$0.125^{\prime \prime}$ (1)
Handrail Joint/Splice Sleeves	1" NPS (Sch. 40)	1.315"	$0.133^{\prime \prime}$
	HSS 1.500×0.125	1.500"	$0.125^{\prime \prime}$
Handrails	11/2" NPS (Sch. 40)	1.900"	$0.145^{\prime \prime}$
Handrail Support Bar	3/4" \varnothing Round Bar	$0.750^{\prime \prime}$	N/A
Pickets (Type 1 Infill Panel)	3/4" \varnothing Round Bar	0.750"	N/A
Infill Panel Members (Types 2-5)	Varies (See Details)	Varies	Varies

table 1 NOTES
(1) $0.125^{\prime \prime}$ wall thickness permitted for rails with post spacings less than $5^{\prime \prime}-8^{\prime \prime}$ except that Post Connection Sleeve must be $1 \frac{11 / 4}{}$ NPS (Sch. 40).
A. Pipe Rails and Pickets: ASTM A500 Grade B, C or D, or ASTM A53 Grade B for standard weight pipe (Schedule 40 , Structural Tube: ASTM
Structural tube: ASTM A500 Grade A, B, C, or D or ASTM A50
Steel Plate: ASTM A36 or ASTM A709 Grade 36
D. U-Channels and filler plates: ASTM A36 or ASTM A1011 (Grade 36).
E. Stainless steel (SS) screws: Type 316 or $18-8$ All
E. Stainless steel (SS) screws: Type 316 or 18 -8 Alloy
F. Galvanized Steel Fastener: coated in accordance with
F. Galvanized Steel Fasteners: coated in accordance with Specification Section 962

$$
\begin{aligned}
& \text { Head Bolts: ASTM A } 307 \\
& \text { 1. } / 7 /{ }^{\prime \prime} \text { diameter single bolt opti } \\
& \text { 2. } / 6^{\prime \prime} \text { four bolt option, Grade }
\end{aligned}
$$

2. "/i"" four bolt option, Grade 55 . Adhesive Anchors: ASTM F1554 fully threaded rods, Grade 55
b. Adhesive Anchors: ASTM
c. Hex Nuts: ASTM A563
d Flat washers: ASM
c. Flat Washers: ASTM F436
e. Plate Washers: ASTM A36 or ASTM A706 Grade 36.
G. Shims: ASTM B209 Alloy 6061

Bearing Pads: $1 / 8$ " Plain, Fabric Reinforced or Fabric Laminated pads that meet the
4. Fabricate pickets and vertical panel elements parallel to the posts; except Type 2,3 and 5 panel infills may be fabricated parallel to the longitudinal grade. Maintain a maximum clear opening of $57 /{ }^{\prime \prime}$ " for standard installations and $37 /{ }^{\prime \prime}$ when a 4" sphere requirement is indicated in the Data Tables
5. Maximum spacing between expansion joints is $40^{\prime}-0^{\prime \prime}$. Locate an Expansion Joint between the posts on either side of the Deck
6. Field splices are similar to the Expansion Joint Detail and may be approved by the Engineer to facilitate handling; but the top rail must be continuous across a minimum of two posts.
7. For intermediate and bottom horizontal rails, the screwed joints shown may be substituted with alternate joints shown in 8. Make corners and changes in tangential longitudinal alignment with a $9^{\prime \prime}$ bend radius or terminate adjoining sections with 8. Make corners and changes in tangential longitudinal alignment with a $9^{\prime \prime}$ bend radius or terminate adjoining sections
9. For changes in tangential longitudinal alignment greate
corner but not at the corner apex.
10. For curved longitudinal alignments, shop bend the top and bottom rails and handrails to match the alignment radius.
11. Handrails are required and must be continuous at landings for:
A. Grades Steeper than 5\%,
12. Installation: Cutting of reinforcing steel is permitted for post installed anchors

FDOT	FY 2022-23 STANDARD PLANS	$\mathbb{P E D E S T R I A N / B I C Y C L E ~ R A I L I N G ~ (S T E E L) ~}$	INDEX $515-052$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 8 \end{aligned}$

TYPE 1 - PICKET INFILL PANEL
PICKET NOTES:

* Picket Spacin
When shown in the Contract Plans a 4//2" picket spacing may be required. See Note 4 (Sheet 1).

TYPE 2-CHAIN-LINK (Continuous Infill Panel)
NOTES:
See Plans for Infill Panel option required

DETAIL "1A"

(Top of Picket Connection)

TABLE 2 - CHAIN-LINK PANEL COMPONENT MATERIALS		
COMPONENT	ASTM	COMPONENT INFORMATION
Chain-Link Fence Fabric (2" mesh with knuckled top and bottom selvage)	A 392	Zinc-Coated Steel - No. 9 gage (coated wire diameter), Class 2 Coating
	A 491	$\begin{aligned} & \text { Aluminum-Coated Steel - No. } 9 \text { gage } \\ & \text { (coated wire diameter) } \\ & \hline \end{aligned}$
	F 668	Polyvinyl Chloride (PVC) Coated Steel - No 9 gage Zinc-Coated Wire (metallic-coated core wire diameter) ~ See Plans for specified color of PVC.
Tie Wires	F 626	Zinc-Coated Steel Wire - No. 9 gage with coating to match Chain-Link Fence Fabric.
Tension Bars	F 626	3/16" (Min. thickness) x 3/4" (Min. width) x 2'-3' (Min. height) Steel Bars
Miscellaneous Fence Components	F 626	Zinc-Coated Steel

CHAIN-LINK PANEL NOTE:
Chain-Link Fence Fabric shall be continuous along limits of railing.
Splicing of Chain-Link panels using Tension Bars at $20^{\prime}-0^{\prime \prime}$ minimum Chain-Link Fence Fabric shall be continuous along limits of ralling.
Splicing of Chain-Link panels using Tension Bars at $20^{\prime}-0^{\prime \prime}$ minimum
increments is permitted.

type 3-sUNShine infill panel
Arc, Rays and Sun Segment may be formed in a single panel from $1 \times 1 \times 1 / 3$ Angle Border or the $3 / 4 \times 3 / 4 \times 1 / 8$ Channel Border shown.
 CONNECTION

BOTTOM RAIL/RAY CONNECTION

DETAIL "3C" RAY/ARC CONNECTION

S

$$
\begin{aligned}
& \text { Lengthen border and trim } \\
& \text { top \& bottom of panels to }
\end{aligned}
$$

$$
\text { top \& bottom } \text { match grade. }
$$

NOTES

1. See Plans for Infill Panel Option required D DESCRIPTION:

SECTION A-A

PANEL ADJUSTMENT FOR RAILINGS ON GRADES

DETAIL "4A"
PANEL/RAIL CONNECTION
(Top Shown, Bottom Similar)

[^0]

TYPICAL SECTION ON CONCRETE SIDEWALK
typical section on retaining wall
(Case II)

- \& Post \& Anchor Bolts

11/2" (Min.) wide bed of Adhesive
Bonding Materia

DETAIL "D" (OPTIONAL SHIMMING DETAIL FOR CROSS SLOPE CORRECTION)
(Used in lieu of Beveled Shim Plates)

DETAIL "C"
(Cast-In-Place Anchor Bolts shown, Adhesive Anchors similar)

$\begin{aligned} & \text { LAST } \\ & \text { REVISION } \\ & 11 / 01 / 20 \end{aligned}$	䢒気DESCRIPTION:

FDOT	FY 2022-23
STANDARD PLANS	

Index	SHeet
$515-052$	8 of 8

3D VIEW OF RaILING WITH TYPE 1 - PICKET INFILL PANEL
(42" Height shown, 48" Height Similar)

table 1-RAILING MEMbers				
MEMBER	Alloy ${ }^{(1)}$	designation	OUTSIDE	$\begin{gathered} \text { WALL } \\ \text { THICKNESS } \end{gathered}$
Posts (Type "A" \& "B")	6061-T6	RT $2 \times 2 \times 0.250$	$2.00^{11} \times 2.00^{11}$	$0.250^{\prime \prime}$
Posts (Type "C")	6061-T6	Extrusion $1 \frac{1}{2} \times 2 \frac{1}{2} \times 0.125$	$1.50^{\prime \prime} \times 2.50^{\prime \prime}$	$0.125^{\prime \prime}$
Top Plate (Type "C")	6061-T6	Extrusion (See Details)	$23 / 4^{\prime \prime} \times 7^{\prime \prime}$	Varies
Top Rail	6061-T6	$\begin{aligned} & 2^{1 / 2 / \prime \prime} \text { NPS (Sch. 10) } \\ & 3^{\prime \prime} \text { Round Top Cap Rail } \end{aligned}$	$\begin{aligned} & 2.875^{\prime \prime \prime} \\ & 3.000^{\prime \prime} \end{aligned}$	$\begin{aligned} & 0.120^{\prime \prime} \\ & 0.125^{\prime \prime} \end{aligned}$
End Hoops	6063-T5	$\begin{aligned} & 21 / 1^{\prime \prime} \text { NPS (Sch. 10) } \\ & 3.00 \text { OD } \times 0.125 \text { Wall } \end{aligned}$	$\begin{aligned} & 2.875^{\prime \prime} \\ & 3.000^{\prime \prime} \end{aligned}$	$\begin{aligned} & 0.120^{\prime \prime} \\ & 0.125^{\prime \prime} \end{aligned}$
Top Rail Joint/Splice Sleeves	6063-T5	2.50 OD $\times 0.125$ Wall Top Cap Rail Inner Sleeve	$\begin{aligned} & 2.500^{\prime \prime} \\ & 2.800^{\prime \prime} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.125^{\prime \prime} \\ & 0.090^{\prime \prime} \end{aligned}$
Intermediate \& Bottom Rail	6061-T6	RT $2 \times 2 \times 0.250$	$2.00^{\prime \prime} \times 2.00^{\prime \prime}$	$0.250^{\prime \prime}$ (2)
Int. \& Bottom Rail Post Connection Sleeve	6063-T5	1.50 OD $\times 0.125 \mathrm{Wall}^{(3)}$	$1.500^{\prime \prime}$	$0.125^{\prime \prime}$
Handrail Joint/Splice Sleeves	6063-T5	$1^{\prime \prime}$ NPS (Sch. 40)	$1.315^{\prime \prime}$	$0.133{ }^{\prime \prime}$
	6063-T5	1.50 OD $\times 0.125$ Wall	$1.500^{\prime \prime}$	$0.125^{\prime \prime}$
Handrails	6061-T6	11/2" NPS (Sch. 40)	1.900"	$0.145^{\prime \prime}$
Handrail Support Bar	6061-T6	$3 / 4 "$ ¢ Round Bar	$0.750^{\prime \prime}$	N/A
Pickets (Type 11 Infill Panel)	6061-T6	$3 / 4 \prime \varnothing$ Round Bar	$0.750^{\prime \prime}$	N/A
Infill Panel Members (Types 2-5)	6063-T5	Varies (See Details)	Varies	Varies

1. Shop Drawings are required, see Specification Section 515
2. For bridge mounted railings, work this Index with Index 515-061 Bridge Bicycle/Pedestrian Railing (Aluminum) 2. For bridg
3. Materials:
A. Structural Extrusions, Tube, Pipe and bars and intermediate rail corner bends with maximum 4'-0" post spacing may be Alloy 6063 -T6 B. Base Plates and Rail Caps: ASTM B209 Alloy 6061-T6
C. Perforated panels (Type 5) Alloy 3003-H14
D. Stainless steel (SS) screws: Type 316 or 18-8 Alloy
E. Aluminum screws: Alloy 2024-T4 or 7075-T73
F. Galvanized Steel Fasteners: coated in accordance with Specification Section 962.
a. Hex Head Bolts: ASTM A 307
a. Hex Head Bolts: ASTM A 307

$$
\begin{aligned}
& \text { 1. } / / 又 土_{\prime \prime} \text { diameter single bolt option, Grade } 36 \\
& \text { 2. } / 16^{\prime \prime} \text { diameter four bolt option, Grade } 55
\end{aligned}
$$

b. Adhesive Anchors: ASTM F1554 fully threaded rods, Grade 55
c. Hex Nuts: ASTM A563
d. Flat Washers: ASTM F436
d. Flat Washers: ASTM F436
e. Plate Washers: ASTM
G. Shims: ASTM B209 Alloy 6061 or 6063 ASTM A706 Grade 36.
H. Bearing Pads: Provide $1 / / 3$ thick Plain, Fabric Reinforced or Fabric Laminated Bearing Pads meeting the requirements of Specification Section 932 for Ancillary Structures.
4. Fabricate pickets and vertical panel elements parallel to the posts: except Type 2,3 and 5 panel infills may pe fabricated parallel to the longitudinal grade. Maintain a maximum clear opening of $5 / /^{\prime \prime}$ for standard installations and $37 / /^{\prime \prime}$ when a 4 sphere requirement is indicated in the Data Tables.
2. Locate ralling expansion Joints between the posts on either side of
the deck expansion joint. Maximum spacing between expansion joints is $35^{\prime}-0^{\prime \prime}$
6. Field splices are similar to the Expansion Joint Detail and may be approved by the Engineer to facilitate handling; but the top rail must be continuous across a minimum of two posts.
7. For intermediate and bottom horizontal rails, the screwed joints shown may be substituted with alternate joints shown 8. Make corners for Post Type "A" \& "B",
 9. For chad end sections when handrails are not required.
corner but not at the corner apex.
10. For curved longitudinal alignments, shop bend the top and bottom rails and handrails to match the alignment radius 11. Handrails are required and must be continuous at landings for
A. Grades Steeper than 5\%
B. Three or more steps
B. Three or more steps
12. Installation: Cutting of reinforcing steel is permitted for post installed anchors.

ABLE 1 NOTES:
(1) Alloy 6061-T6 or 6063-T52 \& T6 may be substituted for Alloy 6063-T5.
(2) $0.188^{\prime \prime}$ wall thickness permitted for rails with post spacings less than $5^{\prime}-9^{\prime \prime}$
3) 1 " NPS (Sch. 40) non-slit rail sle
connection Detail "K" is utilized.

" ROUND TOP CAP RAIL TOP CAP RAIL INNER
alternate top rail section $\overline{ }$ DESCRIPTION:

SPLICE SLEEVE

alternative bottom \& INTERMEDIATE RAIL SECTION FOR TYPE 3, $4 \& 5$ RAILINGS

CROSS REFERENCES:
Detail "A", Sheet 4
Detail "B", Sheet 4
Detail " K ", Sheet 3

See Screw

POST TYPE "C" SCREW SLOT SECTION

SCREW SLOT DETAIL

OPTIONAL TOP PLATE extrusion section (post type "C")
$515-062$

TYPE 1 - PICKET INFILL PANEL
PICKET NOTES:
When shown in the Contract Plans a 4//2" picket spacing may be required. See Note 4 (Sheet 1).

DETAIL "1A"

TYPE 2-CHAIN-LINK (Continuous Infill Panel)
NOTES.

1. See Plans for Infill Panel option required.

TABLE 2 - CHAIN-LINK PANEL COMPONENT MATERIALS		
COMPONENT	ASTM	COMPONENT INFORMATION
Chain-Link Fence Fabric (2" mesh with knuckled top and bottom selvage)	A392	Zinc-Coated Steel - No. 9 gage (coated wire diameter), Class 2 Coating
	A491	$\begin{aligned} & \text { Aluminum-Coated Steel - No. } 9 \text { gage } \\ & \text { (coated wire diameter) } \\ & \hline \end{aligned}$
	F668	Polyvinyl Chloride (PVC) Coated Steel - No 9 gage Zinc-Coated Wire (metallic-coated core wire diameter) ~ See Plans for specified color of PVC.
Tie Wires	F626	Zinc-Coated Steel Wire - No. 9 gage with coating to match Chain-Link Fence Fabric
Tension Bars	F626	3/16" (min. thickness) x 3/4" (min. width) \times 2'-3' $^{\prime}$ (min. height) Steel Bars
Miscellaneous Fence Components	F626	Zinc-Coated Steel

Chain-LINK PANEL NOTE:
Chain-Link Fence Fabric shall be continuous along limits of railing.
Splicing of Chain-Link panels using Tension Bars at $20^{\prime}-0^{\prime \prime}$ minimum Chain-Link Fence Fabric shall be continuous along limits of ralling.
Splicing of Chain-Link panels using Tension Bars at $20^{\prime}-0^{\prime \prime}$ minimum
increments is permitted.

TYPE 3-SUNSHINE INFILL PANEL
Arc, Rays and Sun Segment may be formed in a single panel from $1 / 2 /$ plate (ASTM B209 Alloy 6061 -T6 or T651) pattern cut with laser or
pasma CNC welded to a $1 \times 1 \times 1 / 3$ Angle Border or the $3 / 4^{3} / 4 \times 1 / 8$ Channel Border shown.

Chan
(Arc)*

SECTION A-A 1/2" Square
Bar (Rays)

DETAIL "3C" RAY/ARC CONNECTION

Notes:

1. See Plans for Infill Panel Option required Z DESCRIPTION:

PANEL ADJUSTMENT FOR RAILINGS ON GRADES
$1 / 2 "$ Square
Bar (Rays)
DETAIL "3B" BOTTOM RAIL/RAY CONNECTION
Bun Squar

PANEL END CONNECTION at Post with expansion Joint
ARCIPOST CONNECTION

DETAIL "4A"
PANEL/RAIL CONNECTION
(Top Shown, Bottom Similar)

SECTION B-B PANEL END CAP

FDOTS	FY 2022-23 STANDARD PLANS	$\mathbb{P E D E S T R I A N} / \mathrm{BICYCLE} \mathrm{RAILING}(\mathbb{A L U M I N U M})$	$\begin{gathered} \text { INDEX } \\ 515-062 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 7 \text { of } 9 \end{aligned}$

TYPE 5-PERFORATED INFILL PANEL
 SECTION A-A
corners is permitted

typical section on concrete sidewalk

TYPICAL SECTION ON RETAINING WALL

ANCHOR BOLT TABLE							
CASE	$\underset{\substack{\text { STRUCTURE }}}{\text { TYPE }}$	dimensions			ANCHOR LENGTH		$\begin{aligned} & \text { ANCHOR } \\ & \text { SIZE } \end{aligned}$
		$\begin{gathered} \text { "A" } \\ \text { Edge Dist. } \end{gathered}$	$\begin{gathered} \text { "B" } \\ \text { Edge Dist. } \end{gathered}$	"C" Embedment	C.I.P Hex Head Bolt	Adhesive	
I	Unreinforced Concrete	$6^{\prime \prime}$	$1^{\prime}-2^{\prime \prime}$	$6^{\prime \prime}$	71/2"	$8^{\prime \prime}$	7/" 0
IIa	Reinforced Concrete	$4{ }^{\prime \prime}$	$4^{\prime \prime}$	$9{ }^{\prime \prime}$	101/2"	11"	7/in \varnothing
IIb	Gravity Wall Index 400-011	41/2"	$\begin{aligned} & 3 / 1 / 20 \\ & @ \text { top } \end{aligned}$	$9^{\prime \prime}$	101/2"	11"	7/" \varnothing
III	Step Cheekwall	41/2 ${ }^{11}$	41/2"	$9^{\prime \prime}$	101/2"	$11^{\prime \prime}$	7/3' \varnothing
IV	Varies	$5^{\prime \prime}$	$5^{\prime \prime}$	$5^{\prime \prime}$	61/2"	$7{ }^{\prime \prime}$	$7 / 160$

** When required; measured from top of sidewalk (Typ.)

DETAIL "D" (OPTIONAL SHIMMING DETAIL FOR CROSS SLOPE CORRECTION)
(Used in lieu of Beveled Shim Plates)
(Cast-In-Place Anchor Bolts shown Adhesive Anchors similar)

NOTES:

1. Shop Drawings are require
2. Work with Specification 515 .
3. Materials:
A. Pan Head Set Screws: Aluminum Alloy 2024-74 or 7075-T73 or Stainless Steel (SS) Type 316 or 18-8 Alloy
B. Base Plates and Cap Plates: ASTM B209, Alloy 6061-T6
C. Structural Pipe Tube and Bars: ASTM B221 or ASTM B429, Alloy 6061 -T6
D. End Rails 90° bends and corner bends with a maximum 4 foot spacing: Alloy 6063 -T5 is permitted.

railing member dimensions table			
MEMBER	designation	OUTSIDE DIMENSION	WALL THICKNESS
Posts	2" NPS (Sch. 40)	$2.375^{\prime \prime}$	$0.154^{\prime \prime}$
Rails	2" NPS (Sch. 40)	$2.375^{\prime \prime}$	$0.154^{\prime \prime}$
Rail Joint/Splice Sleeves	11/2" NPS (Sch. 40)	1.900"	$0.145^{\prime \prime}$
Handrails Joint/Splice Sleeves	$\begin{aligned} & 1^{1 " N P S}(\text { Sch. } 40) \\ & 1.50 \text { ODx0.125 Wall } \\ & \hline \end{aligned}$	$\begin{aligned} & 1.315^{\prime \prime} \\ & 1.500^{\prime \prime} \end{aligned}$	$\begin{aligned} & 0.133^{\prime \prime} \\ & 0.125^{\prime \prime} \\ & \hline \end{aligned}$
Handrails	11/2" NPS (Sch. 40)	1.900"	$0.145^{\prime \prime}$
Handrail Support Bar	$1^{\prime \prime} \varnothing$ Round Bar	$1.000^{\prime \prime}$	N/A

E. Galvanized Steel Fasteners:
a. Hex Head Bolts: ATM A 307 Type 1 or ASTM F1554 Grade 36
ar a. Hex Head Bolts: ASTM A
b. Ad hesive Anchors: ASTM
C. Hex Nuts: ASTM A563
d. Flat Washers: ASTM F436
F. Aluminum Shims: ASTM B209, Alloy 6061
G. Bearing Pads: Plain, Fabric Reinforced, or Fabric Laminated meeting requirements of Specifications $515 \& 932$.
4. Fabrication:
A. Place expansion joints at a maximum of $30^{\circ}-0^{\prime \prime}$ spacing
handling; but top rail must to continuous across a dininimum of two approved by the Engineer to facilitate
handling; but top rail must be continuous across a minimum of two posts
c. Continuity field splice (Detail "E"); only use to make the railing continuous
C. Corners and changes in tangential onng use to make the railing continuous for unforeseen field adjustments
Diligment may be made continuous with a 9 " bend radius or

Handrails are required
A. Grades Steeper than 5%
B. Three or more steps
6. Cutting of reinforcing steel is permitted for post installed anchor bolts.


```
Continuity Field Splice "E
    Cas required), se
```

NOTES: \quad NPS $\stackrel{\text { Nominal Pipe Size }}{ }$
structures expansion joints note: Keyed construction joints in Index $400-011$ Gravity
Wall are not considered to be expansion joints.

CROSS REFERENCE:
For Details "C", "D" and "E", see Sheet 4.
elevation
TYPICAL RAILING DETAILS \& RAILINGS ON GRADES 0\% TO 5\% \qquad
 Bottom Landing

See Plans for
See plans for
continuation or
mination limits continuation or
termination limits
of railing
$\square=$

| $\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$ | \|c|cher | $\begin{gathered} \text { FY 2022-23 } \\ \text { FTANDARD PLANS } \end{gathered}$ | PIPE GUIDE RAIL (ALUMINUM) | index $515-070$ | $\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 5 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

TYPICAL SECTION ON CONCRETE SIDEWALK

DETAIL "F" (OPTIONAL SHIMMING DETAIL FOR CROSS SLOPE CORRECTION) (Used in lieu of Beveled Shim Plates)

TYPICAL SECTION ON GRAVITY WALL (Other Retaining Walls Similar)

TYPICAL SECTION ON STEPS \& STAIRS

SIDEWALK ANCHORAGE DETAIL OPTION 1
foundation embedment
permitted (Option
SIDEWALK ANCHORAGE DETAIL OPTION 2 \& 3
 Galvanized Steel Bolts (As Shown) (CI-I) : Galvanized U-Bolts
Permitted (C-I-P); Galvanized Adhesive Anchors Permitted
$* * * \begin{aligned} & \text { The minimum embedment for Adhesive Anchors is } \\ & 2 \sim B o l t \\ & \text { Anchorage or for } \\ & 4^{\prime \prime} \text { for } \\ & 4 \sim B o l t \\ & \text { Anchorage. }\end{aligned}$

| $\begin{array}{c\|} \hline \text { LAST } \\ \text { REVIIION } \\ 11 / 01 / 20 \\ \hline \end{array}$ | \|l|l | $\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$ | PIPE GUIDERAIL (ALUMINUM) | INDEX 515-070 | $\begin{aligned} & \text { SHEET } \\ & 5 \text { of } 5 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

NOTES:

1. Shop Drawings are required, refer to Specification 515
2. Materials:
A. Pan Head Set Screws: Stainless Steel (SS) Type 316 or 18-8 Alloy.
B. Base Plates and Cap Plates: ASTM A36 or ASTM A709 Grade 36

Handrail Support Bars: ASTM A36

railing member dimensions table			
member	designation	OUTSIDE DIMENSION	WALL THICKNESS
Posts	2" NPS (Sch. 40)	$2.375^{\prime \prime}$	$0.154^{\prime \prime}$
Rails	$2^{\prime \prime}$ NPS (Sch. 40)	$2.375^{\prime \prime}$	$0.154^{\prime \prime}$
Rail Joint/Splice Sleeves	11/2" NPS (Sch. 40)	$1.900^{\prime \prime}$	$0.145^{\prime \prime}$
Handrails Joint/Splice Sleeves	1" NPS (Sch. 40) HSS1.500×0.125	$\begin{aligned} & 1.315^{\prime \prime} \\ & 1.500^{\prime \prime} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.133^{\prime \prime \prime} \\ & 0.125^{\prime \prime} \end{aligned}$
Handrails	11/2" NPS (Sch. 40)	$1.900^{\prime \prime}$	$0.145^{\prime \prime}$
Handrail Support Bar	$1^{\prime \prime} \varnothing$ Round Bar	$1.000{ }^{\prime \prime}$	N/A

D. Galvanized Steel Fasteners:

Ars:
Adhesive Anchors: ASTM
Hex Nuts: ASTM A563
d. Flat Washer s: ASTM F436
Aluminum Shims: ASTM B209, Alloy 6061
E. Aluminum Shims: ASTM B209, Alloy 6061
F. Bearing Pads: Plain, Fabric Reinforced, or Fabric Laminated meeting requirements of Specifications 515 and 932.
3. Fabrication:
A. Place expansion joints at a maximum of $30^{\prime}-0^{\prime \prime}$ spacing,
B. Field splices are similar to the expansion joint deta

Field splices are similar to the the expansion joint detail and may be approved by the Engineer to facilitate handling:
C. Continuity field splice (Detail "E") only use to make the railing continuous for unforeseen field ad justments
C. Continuity field splice (Detail "E") only use to make the railing continuous for unforesen field ad justments
D. Corners and changes in tangential ongitudinal alignment may be made continuous with a 9 "bend radius or terminated
at ad oining sections with a standard end hoop when hand rails are not required.
For curved longitudinal alignments. shop bend the top and bottom rails and hand
E. For curved loongitudinal alignments, shop bend the top and bottom rails and handrails to match
the alignment radius.
F. For changes in tangential longitudinal alignment greater than 45°, positioned posts a maximum

A. Grades Steeper than 5\%,
5. Cutting of reinforcing steel is permitted for adhesive anchor bolt installations.


```
Continuity Field Splice ( "E" (as required) \({ }^{\text {see }} 4\) (Typ.)
Sheet
```

NOTES:
STRUCTURES EXPANSION JOINTS NOTE:

* Keyed construction joints in Index Wall are not considered to be expansion joints.

CROSS REFERENCE:
For Details "C", "D" and "E", see Sheet 4.
eLEVATION
TYPICAL RAILING DETAILS \& RAILINGS ON GRADES 0% TO $5 \%=$

RAILINGS ON GRADES STEEPER THAN 5\% TO 8.33\%

TYPICAL SECTION ON GRAVITY WALL (Other Retaining Walls Similar)

TYPICAL SECTION ON STEPS \& STAIRS
typical section on concrete sidewalk

DETAIL "F" (OPTIONAL SHIMMING DETAIL FOR CROSS SLOPE CORRECTION) (Used in lieu of Beveled Shim Plates)

optional sidewalk anchorage detail

SIDEWALK ANCHORAGE DETAIL OPTION $2 \& 3$
 Galvanited Steel Bolts (As Shown) (C-I-P); Galvanized U-Bolts
Permitted (C-I-P). Galvanized Adhesive Anchors Permitted
ermitted (C-I-P); Galvanized Adhesive A
$* * * *)$ Expansion Anchors Not Permitted.
*** The minimum embedment for adhesive anchors is $6^{\prime \prime}$ for
$2 \sim$ Bolt Anchorage or 4^{4} for $4 \sim$ Bolt Anchorage.

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \\ \hline \end{gathered}$			FY 2022-23 STANDARD PLANS	PIPE GUIDERAIL (STEEL)	Index 515-080	SHEET 5 of 5

GENERAL NOTES:

1. For curb, gutter and curb \& gutter provide $1 / /^{\prime \prime}-1 / /^{\prime \prime}$ contraction joints at 10^{\prime} centers (max.). Contraction joints adjacent to concreta pavement on tangents and flat curves are to match the pavement
joints, with intermediate
,
2. Locate expansion joints for curb, gutter and curb \& gutter in accordance with Specification 520

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Concrete Curb and Gutter
3	Curb and Gutter Joints and Endings, Concrete Bumper Guard, and Asphaltic Concrete Curb

type I - concrete traffic separator

- option II
=TYPE IV - CONCRETE TRAFFIC SEPARATOR

\qquad

TYPE V - CONCRETE TRAFFIC SEPARATOR=

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	\|r	DESCRIPTION:	FDOTY	FY 2022-23 STANDARD PLANS	TRAFFIC SEPARATORS	$\begin{gathered} \text { INDEX } \\ 520-020 \end{gathered}$	SHEET 2 of 5

Pitch:
lin For

Pitch:
$1 / 4 \mathrm{Fo}$

OPTION I

transverse section

NOTES:

1. Traffic Separator transverse reinforcement adjacent to deck expansion joints shall be field ad justed to maintain bars may be rotated to maintain clearance.
2. Traffic Separator ends at deck expansion joints shall follow the deck joint limits. Drainage joints and $b^{\prime \prime}$ V-Grooves shall be placed perpendicular or radial to
the q of the Traffic Separator. See Structures Plans, Superstructure and Approach Slab Sheets for details.
3. See Structures Plans, Superstructure Sheets for actual dimensions and joint orientation.
4. Option II is not permitted on bridge decks with prestressing steel
5. Bar Spacing:
$4^{4}-0^{\prime \prime} @ 3$ equal spaces (continuous) $6^{\prime}-0^{\prime \prime} @ 5$ equal spaces (continuous)
$8-6^{\prime \prime}$ @ 7 equal spaces (continuous)
6. At the Contractor's option, a one piece bar my be substituted for Bars $4 B$ and $4 E$.
7. Field bend and cut rebar as required to maintain cover.
—DETAIL AT POURED JOINT WITH $=$ BACKER ROD EXPANSION JOINTS

\qquad
$R=$

(Deck Expansion Joint at Begin or End Bridge Shown, Expansion Joint at $\&$ Pier or Intermediate Bents Similar)
$\overline{\overline{I S}}$ DETAIL AT EXPANSION JOINTS $\bar{\square}$ (Strip Seal Shown, Other Armored Joint Types Similar)

Longitudinal section (NOSE)

NOTES:

1. Treatment of separators on straight bridges shown For additional notes and treatment of separators on skewed bridges, see sheet 2 .
2. Option II is not permitted on bridge decks with prestressing steel.
3. Bar Spacing:
$4^{\prime}-0^{\prime \prime} @ 3$ equal spaces (continuous)

6^{-0} @
$8^{\prime}-6^{\prime \prime} @ 7$ equal spaces (continuous)
equal spaces (continuous)

4. At the Contractor's option, a one piece bar my be substituted for Bars $4 B$ and $4 E$.
OPTION I
5. Field bend and cut rebar as required to maintain cover

\qquad (Bridge Deck Shown, Approach Slab Similar)

च DETAIL AT EXPANSION JOINTS $\bar{\square}$ (Strip Seal Shown, Other Armored Joint Types Similar)

=DETAIL AT POURED JOINT WITH $\overline{=}$ BACKER ROD EXPANSION JOINTS

Bars $4 A \& 4 E$
NOTE:
Length of Bars $4 E$ is $2^{\prime}-5^{\prime \prime}$ for $4^{\prime}-0^{\prime \prime}$ Separator Length of Bars $4 E$ is $4^{\prime}-5^{\prime \prime}$ for $6^{\prime}-0^{\prime \prime}$ Separator. Length of Bars $4 E$ is $6^{\prime}-11^{\prime \prime}$ for $8^{\prime}-6^{\prime \prime}$ Separator.

Bars $4 A \& 4 C$

Bar 4B

- option I \qquad

Bar 4D

Length of Bars $4 C$ is $2^{\prime \prime}-41^{\prime \prime \prime}$ for $4^{\prime}-0^{\prime \prime}$ Separator Length of Bars $4 C$ is $4^{\prime}-41^{\prime \prime \prime}$ " for $6^{\prime}-0^{\prime \prime}$ Separator. Length of Bars 4 C is $6^{\prime}-10^{\prime \prime} z^{\prime \prime}$ for $8^{\prime \prime}-6^{\prime \prime}$ Separator.
option II \qquad
reinforcing steel notes:

1. All dimensions are out to out.
2. The $8^{\prime \prime}$ vertical dimension shown for Bars 4 B and 4 D are based on a 81 a $81 / 2$ thick
or greater without a wearing surface. If slab thickness is less than $8 / 2^{\prime \prime}$, decrease this dimension by an amount equal to the difference in thickness. If a wearing surface is to be provided, increase this dimension by an amount equal to the wearing surface thickness.
= CONVENTIONAL REINFORCING STEEL BENDING DIAGRAMS =

See Structures Plans, Superstructure Sheets for location(s) of drainage joints. Locations for drainage joints
limited to the constant width section of separator

DRAINAGE JOINT DETAIL (For 5" Opening Or Less)
w5.0 (Lap Splice Each
Longitudinal Wire) $\quad 1^{1-00^{\prime \prime} \text { Min. La }}$
w5.0

$4{ }^{4 \prime \prime}($ Typ.) \quad.
SPLICE DETAIL
Between WWR $3 \times 4-$ W5.0 \times W6.7 Sections)
Ption A: Use Welded Wire Reinforcement $3 \times 4-$ W5.0 \times w 6.7 as required by plans in place of Bars $4 A, 4 B$ and $4 E$. Bend
the Welded Wire Reinforcement to the dimensions of Bar $4 B$ shown in the Bending Diagram for Reinforcing Steel
Option I.

OPTION B: Use Welded Wire Reinforcement $3 \times 4-$ W5.0 \times W6. 7 as required by plans in place of Bars 4A and $4 C$ shown i Reinforcing Steel Option II.

NOTE: Welded Wire Reinforcement to consist of smooth wire meeting he requirements of Specification 931.
=ALTERNATE REINFORCING STEEL DETAILS=
(Welded Wire Reinforcement)

DOWEL NOTES:

1. Shift Dowel Holes to clear if existing reinforcement is encountered.
2. Provide and install an adhesive bonding material system in accordance with Specifications 416 and 937
3. The dowel hole diameter is to meet adhesive bonding material system manufacturer's requirements.

ESTIMATED TRAFFIC SEPARATOR QUANTITIES

$$
\begin{aligned}
& \text { CONCRET } \\
& \text { CONSTANT WIDTH OF SEPARAT } \\
& \text { TYPE "E" } \\
& \mathrm{C}^{4}-\mathrm{C}^{\prime \prime} \text {. Width }=0.089 \mathrm{CY} \text { per Ft }-0.072 \mathrm{CY} \text { per Ft } \\
& 8^{\prime}-6^{\prime \prime} \text { Width }=0.132 \mathrm{CY} \text { per Ft. } \quad-0.164 \mathrm{CY} \text { per Ft. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4'-0" Width }=0.080 \mathrm{CY} \quad \mathrm{CY} \quad \text { TYPE " } \mathrm{F} \text { " } \\
& 6^{\prime}-0^{\prime \prime} \text { width }=0.193 \mathrm{CY}-0.257 \mathrm{cr} \\
& 8^{\prime}-6^{\prime \prime} \text { width }=0.403 \mathrm{CY}-0.536 \mathrm{CY}
\end{aligned}
$$

reinforcing stele
(All quantities are based on an 8 /2" slab.)

$4^{\prime}-0^{\prime \prime}$ Width -6.37 Lbs. per Ft.
6-0" Width -8.60 Lbs. per Ft.
option II:
4-0" Width - 4.77 Lbs. per
$6^{\prime}-0^{\prime \prime}$ Width -7.00 Lbs. per Ft.
$8^{\prime}-6^{\prime \prime}$ Width - 9.45 Lbs. per Ft.

SHEET	CONTENTS
1	Index Contents; General Notes
2	Median Barrier
3	Median Barrier - Reinforcing Details
4	Median Barrier - Sloped End Treatment
5	Median Barrier - Grade Separated
6	Median Barrier - 56" Height Section for Barrier-Mounted Sign Support Shielding - Symmetrical
7	Median Barrier - 56" Height Section for Barrier-Mounted Sign Support Shielding - Asymmetrical
8	Median Barrier - 56" Height Section for Barrier-Mounted Dual Sign Support Shielding - Min. Width
9	Median Barrier - 38" Height Split Section for Stand-Alone Sign Support Shielding
10	Median Barrier - 44" Height Split Section for Pier Shielding
11	Median Barrier - 44" Height Split Section for Pier Shielding - Details
12	Median Barrier - Connection to F-Shape
13	Shoulder Barrier
14	Shoulder Barrier - Reinforcing Details
15	Shoulder Barrier - Section Options
16	Shoulder Barrier - Section Options (Continued), Drainage Slot Option
17	Shoulder Barrier - 38" Height Rear-Flush Section for Reduced Setback Pier Shielding (Low-Speed)
18	Shoulder Barrier - 44" Height Rear-Flush Section for Reduced Setback Pier Shielding
19	Shoulder Barrier - Connection to F-Shape
20	Curb and Gutter Barrier
21	Curb and Gutter Barrier - Reinforcing Details
22	Curb and Gutter Barrier - Sloped End Treatment
23	Wall Shielding Barrier - 38" Height Section - Approach and Trailing Transition
24	Wall Shielding Barrier - 38" Height Section - Guardrail Connection
25	Wall Shielding Barrier - 56" Height Section for Barrier-Mounted Sign Support Shielding
26	Reinforcing Bar Bending Diagrams

GENERAL NOTES:

1. BARRIER CONCRETE: Use Class II concrete for all barriers constructed in slightly aggressive environments, and use Class IV Concrete for all barriers constructed in moderately or extremely aggressive environments. On all exposed surfaces, apply a Class 3 surface finish in accordance with Specification 400.
2. STEEL BAR REINFORCEMENT: Where required to maintain continuity, provide lap splices of at least 18 inches for No. 4 bar and 20 inches for No. 5 bars, unless otherwise shown herein (including shorter splices as provided by the default bar bending diagrams).

The default reinforcing details shown herein, including bar shapes and lap splice positions, are intended to show required steel locations and provide for a constructible design. However, with the approval of the Engineer, alternate stee) configurations may be used in the same locations shown herein, given that the equivalent strength reinforcing is provided and the cover, maximum spacing, and continuity requirements are maintained
3. OPTIONAL WELDED WIRE REINFORCEMENT: With the approval of the Engineer, steel welded wire reinforcement in accordance with Specification 415 may be substituted for the steel bars shown herein. Place the welded wire in the same locations

GENERAL NOTES (CONTINUED):

4. TOP FACE LONGITUDINAL REINFORCEMENT: Unless otherwise specified, the longitudinal reinforcement shown closest to the 4. TOP FACE LONGITUDINAL REINFORCEMENT: Unless Otherwise Speciffed, the Iongitudinal reinforce
top face of the barrier has a maximum cover of $41 / 2^{\prime \prime}$, measured from the top face of the barrier
5. MINIMUM BARRIER LENGTH: Unless otherwise shown in the Plans, the minimum Concrete Barrier length is 40 feet.
6. CONSTRUCTION JOINTS: Install Construction Joints only as needed for discontinuous concrete casting or cold joints. Maintain continuity of steel reinforcement across Construction Joints. Construction Joints are classified herein as Transverse Joints or Longitudinal Joints.

Transverse Joints are permitted at 20 -foot or greater intervals along the barrier. For Tall Grade-Separated Sections, see Sheet 5 for additional Transverse Joint requirements.

Longitudinal Joints are only permitted where indicated in the following details and notes, with a vertical position tolerance of $\pm 1 \frac{1}{2}$ " from the locations shown.
7. DOWELED Joints: As shown in the Dowel Details on Sheets $2 \& 13$, install $3 / 4$ " Doweled Joints for Concrete Barrier connections to Pier Protection Barrier and Traffic Railings. Doweled Joints are also required for expansion mitigation in Median Barrier as defined per Sheets $2 \& 5$. Doweled Joints are not permitted within Grade-Separated Median Barrier.
8. CRACK CONTROL V-GROOVES: At 20-foot intervals, place $3 /^{\prime \prime}$ depth V-grooves that run vertically and/or transversely in the ront, top, and back faces of barriers. The V-grooves can be either molded or scored while the concrete is still plastic.
9. SUBGRADE: Compact the top layer of subgrade with Type B Stabilization, LBR 40 (12 in.).
10. FOOTING BOTTOM CONCRETE COVER: At the bottom of barrier footings shown throughout this Index, up to 2 inches of additional concrete cover is permitted beyond what is shown herein to accommodate soil grade irregularities.

1. FINISH GRADE ELLUATIN. At the barrier face location, the finish grade pavement has a vertical position tolerance of $\pm 1 / 2^{\prime \prime}$ from the locations shown herein, relative to the barrier elevation. Maintain visually smooth and even pavement at the barrier face, per the approval of the Engineer
2. DRAINAGE INLETS: Where called for in the Plans, install corresponding inlets per Indexes 425-030 thru 425-032.
3. LIGHT POLE MOUNTING: Where called for in the Plans, install aluminum light poles per Index 715-002.
4. OPAQUE VISUAL BARRIER: Where called for in the Plans, install Opaque Visual Barrier per Index 521-010
5. BARRIER END MARKERS: For all free ends of concrete barriers that are not shielded with an end treatment or connection to another barrier or traffic railing type, install a Type 3 Object Marker on the end face per Specification 705.
6. BARRIER DELINEATORS: Install Barrier Delineators in accordance with Specification 705. For median barriers, mount the delineator on the top of the barrier, at the centerline of barrier, with reflective sheeting facing traffic on both approaches .
7. TOLL SITES: Where called for in the Plans, substitute the steel reinforcing bars shown herein with GFRP reinforcing bars of the same size. Construct GFRP reinforcing bars in accordance with Specification 932, and use a maximum 41/" inner diameter for bar bends. Alternative bar bending details and shapes may be used so long as the final location of the Where required to fit pull boxes while maintaining bar spacing and concrete cover, trim GFRP bars as defined in the Plans. At toll site locations, the use of Median Barriers on outside shoulders is permitted where called for in the Plans. Shoulder Pavement shown herein may be substituted with material for an alternate usage where defined in the Plans.

8. BARRIER RUN SEGMENT: Within the Barrier Run Segment, either the $38^{\prime \prime}$ Height Median Barrier or the
differing Median Barrier sections shown throughout the Index may be placed as required per the Plans. 2. SECTION VIEWS: For additional Views $A-A$ and $B-B$, see Sheet 3 .
9. DOWELLED JOINTS: See the General Notes on Sheet 1 for usage of joint types. Space Doweled Joints at face(s) in the barrier. Use ASTM A36 smooth round bars with hot-dip galvanization.
For the dowel connection into the first casting, the dowel may be cast-in-place for new concrete or

For the dowel connection into the second casting, use a $1^{11 / 4}$ NPS Schedule 80 PVC pipe with a sealed cap, cast-in-place as shown.
10. OPTIONAL LONGITUDINAL JOINT: When a longitudinal joint is placed above the footing, use the Optional $1 / 2^{\prime \prime} \times 51^{\prime \prime}$
be raked to proar Key shown. As a substitute for the Shear Key, the concrete footing's top surface may be raked to provide additional shear friction. Rake the fresh concrete surface so that about half approved by the Engineer.
11. TRAFFIC RAILING CONNECTIONS: Align the barrier and Traffic Railing faces and connect with the $3 / 4$ Doweled Joint.
12. GUARDRAIL CONNECTIONS: Connect Guardrail using the Transition Connections to Rigid Barrier per
Index $536-001$ in conjunction with the $16^{\prime}-0^{\prime \prime}$ End Segment for Guardrail shown herein.
13. CRASH CUSHION CONNECTIONS: Connect Crash Cushions per Index 544-001 in conjunction with the $3^{\prime}-0$. 7. CRASH CUSHION CONNECTIONS: Connect Crash
End Transition for Guardrail as shown herein.
14. FREE ENDS: When the barrier end does not terminate with a Traffic Railing Connection, Guardrail
Connection Crash Cushion Co Connection, Crash Cushion Connection, or Sloped End Treatment as called for in the Plans, terminate in
accordance with the Free End Reinforcing detail on Sheet 3 .

| $\begin{array}{c\|} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{array}$ | \|c|cose | $\begin{gathered} \text { FY 2022-23 } \\ \text { FTANDARD PLANS } \end{gathered}$ | $\mathbb{C O N C R E T E ~ B A R R I E R}$ | index 521-001 | $\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 26 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

PLAN VIEW - 38" HEIGHT MEDIAN BARRIER FREE END REINFORCING (See Note 3)

PLAN VIEW - END SEGMENT FOR GUARDRAIL CONNECTION (See Note 3)

NOTES:

1. GENERAL: Work with the Plan and Elevation Views
on Sheet 2. on Sheet 2 .
2. BAR BENDING DIAGRAMS: For additional
information on Bars $4 V 1$ and $4 U 1$, see the details information on
on Sheet 26 .
3. PLAN VIEWS: Only top and bottom longitudinal reinforcing is shown for clarity. For all
longitudinal steel locations, see the section views.

SECTION A-A
$38^{\prime \prime}$ HEIGHT 38" HEIGHT MEDIAN BARRIER Concrete aty. $=0.20$ cY/FT
Steel aty. $=11.8 \angle B / \mathrm{FT}$

VIEW B-B REDUCED SECTION
of END TRANSITION FOR GUARDRAIL (End of Barrier)

MEDIAN BARRIER - REINFORCING DETAILS

PLAN - SLOPED END TREATMENT
(Only Top \& Bottom Longitudinal Bars Shown for Clarity
See Section Views for All Longitudinal Steel Locations)

SECTION C-C BEGIN TRANSITION REINFORCING
Height Varies Linearly per Elevation View)

SECTION D-D INTERMEDIATE TRANSITION REINFORCING
(Height Varies Linearly per Elevation View)

NOTES:

1. GENERAL: Install Sloped End Treatment only
where called for in the plans.
2. JoINTS: Construction or Doweled Joints are not
permitted within the Sloped End Treatment permitted. within the Sloped End Treatment
segment.

VIEW E-E END TRANSITION

MEDIAN BARRIER SLOPED END TREATMENT

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 18 \end{gathered}$		$\begin{array}{cc} \text { FDOT 2022-23 } \\ \text { STANDARD PLANS } \end{array}$	CONCRETE BARRIER	$\begin{gathered} \text { INDEX } \\ 521-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 4 \text { of } 26 \end{aligned}$

SHORT GRADE-SEPARATED SECTION FOR $Y \leq 9^{\prime \prime}$

NOTES:

1. GENERAL: Install the Grade-Separated sections where shown in the Plans and as required to
accommodate vertical offsets in pavement of Height Y. Doweled Joints are not permitted within Grade-Separated sections.
2. CONNECTIONS BETWEEN DIFFERENT SECTIONS: Connect Short Grade-Separated sections and Tal Grade-Separated sections using a continuous pour or Tranverse Joint, where Iongitudinal steel
trat aligns within the adjacent section is oraintained continuously betwen sections or has a full
lap splice with the adjacent section's longitudinal steel. Connect Short Grade-Separated sections lap splice with the adjacent section's longitudinal steel. Connect Short Grade-s
and $38^{\prime \prime}$ Height Median Barrier sections of Sheet 2 using a $3 / 4$ Doweled Joint.
3. SHORT GRADE-SEPARATED SECTIONS: Bars $4 C 1$ and the two uppermost longitudinal bars may be
omitted for segments where $Y<2$ 2".

4. TALL GRADE-SEPARATED SECTIONS: For the vertical and transverse steel reinforcement shown in dimalionade-separated Sections, bar bending diagrams are not provided due to varying section
dimensions and Longitudinal Joint locations. Use any combination of spliced reinforcing steel to dimensions and Longitudinal woint locations. Use any combination of spliced reinf orcing steel to
position the reinforcement with the same cover, spacing, continuity, and equivalent strength shown

Longitudinal Joints are permitted between the vertical limits shown, and must remain level and at
and a consistent height per each continuous casting of concrete. Longitudinal Joints may change
elevations at Transverse Joint locations. Field bending of bars is permitted at Longitudinal Joint locations.
Transverse Joints between Tall Grade-Separated Sections do not require continuous steel across i. The barrier length on both sides is at least 40 feet where each segment has continuous steel reinforcement
ii. The barrier's vertical steel spacing is reduced to 4" o.c. for a total of 12 spaces on both
sides of the joint.

Grade separation Heights of $Y \leq 9^{\prime \prime}$ are permitted on a limited basis using the Tall
Grade separation Heights of $Y \leq 9^{\prime \prime}$ are permitted on a limited basis using the Tall
Grade-Separated sectiont this is to accommodate asses where maintaining the spread footing
through lower height segments is more practical than changing to the Short Grade-Separated
section lon
through
section.

TALL GRADE-SEPARATED
toe footing section
FOR $Y \leq 4-0$

ALL GRADE-SEPARATED HEEL FOOTING SECTION $F O R Y \leq 4^{\prime}-0^{\prime \prime}$

MEDIAN BARRIER - GRADE-SEPARATED

PLAN
(See Note 3)
 BEGIN TRANSITION

SECTION C-C END TRANSITION (56" Height Section)

SECTION D-D
(Reinforcing Steel Not
Shown for Clarity)

NOTES:

1. PROJECT-SPECIFIC DESIGN: For the base plate, anchor bolts, foundation design, and additional reinforcing required
barrier, see the project-specific design in the Plans.
2. BARRIER REINFORCING: Maintain the 38 " Height Median Barrier
longitudinal steel reinforcing continuously through the barrier height transition and pedestal. Provide the Additional No. 4 Bars and taper as required to maintain a $4 \frac{4}{2} /{ }^{\prime \prime}$ maximum cover from the
top of the barrier.

For the vertical and transverse reinforcement requirements show in Sections A-A through C-C, bar bending diagrams are not
provided due to varying section dimensions. Use any combination provided due to varying section dimensions. Use any combination
soliced reinforcing steel toos tion then teinforcment with the
same cover spacing continuity and equivalent strength shown same cover, spacing, continuity, and
herein, as approved by the Engineer.
3. PLAN VIEW: Only top and bottom longitudinal reinforcing is shown
for clarity. For all longitudinal reinforcing locations, see the Section Views.

MEDIAN BARRIER - 56" HEIGHT SECTION
FOR BARRIER-MOUNTED DUAL SIGN SUPPORT SHIELDING - MINIMUM WIDTH

| $\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 18 \end{gathered}$ | \|l|l | $\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$ | $\mathbb{C O N C R E T E ~ B A R R I E R}$ | INDEX 521-001 | $\begin{aligned} & \text { SHEET } \\ & 8 \text { of } 26 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

44" HEIGHT SPLIT SECTION (Opposite Side of Median Similar by Opposite Hand)

Concrete aty. $=0.30 \mathrm{CY} / \mathrm{FT}$
Steel Qty.

NOTES:

1. GENERAL: Work with the Plan and Elevation views on Sheet 10 .
2. LONGITUDINAL REINFORCING CONTINUITY: Maintain all longitudinal steel reinforcing shown in Section C-C continuously into Section D-D (spliced where required). The additional longitudinal reinforcing shown in Section D-D does not
require continuity into Section C-C, and it starts $3^{3 \prime}$ from the construction joint or edge of concrete per the details
3. STIRRUP BARS: For the vertical and transverse reinforcement requirement shown, bar bending diagrams are not provided due to varying section dimensions. Use any combination of spliced reinforcing steel to position the reinf
the same cover, spacing, continuity, and equivalent strength shown herein, as approved by the Engineer.

MEDIAN BARRIER - 44" HEIGHT SPLIT SECTION FOR PIER SHIELDING - DETAILS

SECTION A-A
begin transition - option 'A' MATCH SINGLE-SLOPE 38" HEIGHT MEDIAN BARRIER

SECTION A-A
begin transition - OPTION 'B' MATCH SINGLE-SLOPE
36" HEIGHT TRAFFIC RAILING (Bridge Applications)

SECTION B-B INTERMEDIATE SECTION of LINEAR TRANSITION

SECTION C-C END TRANSITION MATCH 32" HEIGHT F-SHAPE SECTION

ELEVATION
(Reverse Direction Similar
by Opposite Hand)

DOWEL PLACEMENT (See Note 2)

NOTES: Constuct Conetion sertas reaired

1. GENERAL: Construct the Connection Segment as required per the Plans to connect existing
F-Shape sections to Single-Slope Median Barrier or Traftic Railing sections. Construt ' A ' or ' B ' as required to match the heights of the connecting sections.
2. DOWELED JOINT: Install Dowel Bars per the Dowel Details on Sheet 2
3. TRAFFIC RAILING CONNECTION: For the Option 'B' connection, use a Doweled Joint per Sheet 2
and the additional Free End Reinforcing with reduced bar spacing per Sheet 3 .
4. STIRRUP BARS: For the vertical and transverse reinforcement requirements shown, bar
bending diagrams are not provided due to varying section dimensions. Use any combination of spliced reinforcing steel to position the reinforcement with the same cover, spacing,

MEDIAN BARRIER - CONNECTION TO F-SHAPE

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 18 \end{gathered}$	\|res	DESCRIPTION:	FDOTT	FY 2022-23 STANDARD PLANS	$\mathbb{C O N C R E T E ~ B A R R I E R}$	$\begin{aligned} & \text { INDEX } \\ & 521-001 \end{aligned}$	$\begin{gathered} \text { SHEET } \\ 12 \text { of } 26 \end{gathered}$

SECTION A-A

38" HEIGHT SHOULDER BARRIER (See Sheet 14 for
Reinforcing Steel Details)

NOTES:

1. BARRIER RUN SEGMENT: Either the 38" Height Shoulder Barrier or the differing Shoulder Barrier sections shown throughout the Index may be placed within this segment as required per the Plans.
2. SECTION VIEWS: For additional Views A-A and B-B, see Sheet 1
3. DOWELED JOINTS: See the General Notes on Sheet 1 for usage of joint types. Place steel reinforcing with a longitudinal $3^{\prime \prime}$ cover adjacent to the joint
face in the barrier. Use ASTM A36 smooth round bars with hot-dip galvanization.

For the dowel connection into the first casting, the dowel may be cast-in-place for new concrete or placed into a $11 /^{\prime \prime} \otimes 13^{\prime \prime}\left(\pm 1 /{ }^{\prime \prime}\right)$ drilled hole for cured concrete. For drilled holes larger than $1 \frac{1}{8} \|$, secure the dowel with adhesive in accordance with Specification 416. No load testing is required.
For the dowel connection into the second casting, use a $1 \frac{1}{4} \|^{n}$ NPS Schedule 80 PVC pipe with a sealed cap, cast-in-place as shown.
4. TRAFFIC RAILING CONNECTIONS: Align the barrier and Traffic Railing faces and connect with the $3 /{ }^{3}$ " Doweled Joint.
5. GUARDRAIL CONNECTIONS: Connect Guardrail using the Transition Connections to Rigid Barrier per Index 536-001.
6. CRASH CUSHION CONNECTIONS: Connect Crash Cushions per Index 544-001 in conjunction with the $3^{\prime \prime}-0^{\prime \prime}$ End Transition for Guardrail as shown herein.
7. FREE ENDS: When the barrier end does not terminate with a Traffic Railing Connection, Guardrail Connection, or Crash Cushion Connection as called for in
the Plans, terminate in accordance with the Free End Reinforcing Note on Sheet 14.

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$		$\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	CONCRETE BARRIER	$\begin{aligned} & { }^{\text {INDEX }} \\ & 521-001 \end{aligned}$	SHEET $13 \text { of } 26$

NOTES:

1. GENERAL: Work with the Plan and Elevation Views
on Sheet 13 . The Section Option footings shown on on Sheet 13. The Section option footings shown on
Sheet 15 may be substituted where called for in the Plans.
2. FREE END REINFORCING: Where shown in the wans, terminate the $38{ }^{\prime \prime}$ Height Barrier section
with a transverse vertical end face. Reduce the spacing of Bars 5 V2 and 54 to $6^{\prime \prime}$ for 5 Spaces,
placed with 3 " cover from the barrier's end face.
3. BAR BENDING DIAGRAMS: For additional details for bars 5 V 2 and $5 \mathrm{J3}$,
Diagrams on Sheet 26

PLAN VIEW - END SEGMENT FOR GUARDRAIL CONNECTION (Longitudinal Steel Not Shown for Clarity)

SHOULDER BARRIER - REINFORCING DETAILS

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 18 \end{gathered}$	\|ra	DESCRIPTION:	FDOTY	$\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	CONCRETE BARRIER	$\begin{gathered} \text { INDEX } \\ 521-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 14 \text { of } 26 \end{aligned}$

FRONT-FLUSH SECTION - PLAN VIEW (Not Applicable for Trench Footing Sections)

NOTES:

1. GENERAL: Install the differing Section Options as required
2. CONNECTIONS

CONNECTIONS BETWEEN DIFFERENT SECTIONS: Connect
differing Shoulder Barrier sections using a continuous pour or Transverse Joint, were tongitud anal steel that
aligns within the adjacent section is maintained continuously betteeen sections. Alternatively, a Doweled
Joint may be used as shown on Sheet 13 .
,
3. FLUSH RETAINING SECTION COMBINATION: Where Barrier
Inlets are required in retaining segments, install the
 the $2^{\prime}-0^{\prime \prime}$ Extended Heel as shown in the Retaining Sectio
Use longer lateral reinforcing bars of $2^{\prime}-10^{\prime \prime}$ length to Use longer lateral reinfor
maintain the cover shown.

TRENCH FOOTING SECTION
Concrete aty $=0.35 \mathrm{cY} / \mathrm{FT}$
Steel aty. $=46.2 \mathrm{LB/FT}$

PLAN - ROUND PIER EXAMPLE
REAR-FLUSH SECTION
(See Section View for All
ongitudinal Steel Locations)
PLAN - SQUARE PIER EXAMPLE
REAR-FLUSH SECTION
(See Section View for All

38" HEIGHT
REAR-FLUSH SECTION
ABOVE-GROUND HAZARD EMBEDDED IN FOOTING

PLAN - ROUND PIER EXAMPLE REAR-FLUSH SECTION
WITH 3" WIDTH REDUCTION
(See Section View for All
Longitudinal Steel Locations)

Longitudinal Steel Locations)

SECTION B-B ABOVE-GROUND HAZARD EMBEDDED IN FOOTING
\& BARRIER

NOTE:

1. PIERS: The piers shown herein are example shapes only; see
the Plans for the project-specific dimensions. The details the Plans for the project-specific dimensions. The details
shown herein are only for use when piers do not require
protert Shown herein are onn for use when piers do not require
protection per the ASHYT LRFD requirements For piers
requiring protection, see Index 521-002.

SHOULDER BARRIER - 38" HEIGHT REAR-FLUSH SECTION FOR REDUCED SETBACK PIER SHIELDING
(DESIGN SPEED $\leq 45 \mathrm{MPH}$)

NOTES:

1. GENERAL: Work with the Plan and Elevation Views
on Sheet 20
2. FREE END REINFORCING: Where Shown in the
Plans, terminate the $38^{\prime \prime}$ Curb \& Gutter Barrier section with a transverse vertical end face. Reduce the spacing of Bars $5 V 2$ and 5 Su to to $6^{\prime \prime}$ for
5 Spaces, placed with $3^{\prime \prime}$ cover from the barrier's 5 Spaces,
end face.
3. BAR BENDING DIAGRAMS: For additional details 3. BAR bars $5 V 2$ and 5 at, see the Bar Bending
fiagrams on Sheet 26 .

PLAN VIEW - END SEGMENT FOR GUARDRAIL CONNECTION (Longitudinal Steel Not Shown for Clarity)

CURB AND GUTTER BARRIER
REINFORCING DETAILS

SECTION E-E INTERMEDIATE TRANSITION Footing (Height Varies Linearly Per Elevation View)

End Similar by Opposite Hand)

NOTES:

1. GENERAL: Install a Sloped End Treatment only where called for in the Plans, using either a $10{ }^{\prime}-0^{\prime \prime}$ length or $25^{\prime}-0^{\prime \prime}$ length
treatment as specified in the Plans. The 10^{\prime} '0" length option is shown herein, while the $25^{\prime}-0^{\prime \prime}$ length option requires treatment as specified in the Plans. The 10^{\prime}-0" length option is shown
additional trimmed Bars 504 \& 5 V at the same $9^{\prime \prime}$ longitudinal spacing.
2. BAR BENDING DIAGRAMS: For additional details on Bars $5 V 2 \& 504$, see the Bar Bending Diagrams on Sheet 26

PLAN
See Section A-A for Barrier Reinforcing)

SECTION B-B FLUSH SEGMENT

NOTES:

1. TAPER SEGMENTS AND OFFSET SEGMENT: The plan view shown is an example only, showing general geometry for the taper segments and offset segment. For the actual
segment lengths and corresponding taper rates required, see the barrier placement segment lengths and corr
information in the Plans.
2. OVERHEAD SIGN SUPPORT: The overhead sign support shown is an example only; see
the Plans for the project-specificic dimensions and requirements if applicable.
3. CONNECTION TO SHOULDER BARRIER SECTIONS: Connect to Shoulder Barrier sections using a continuous pour or Transverse Joint, where longitudi inal steel that aligns
within the ad acent section is maintained continuously between sections or within the adjacent section is maintained continuously between sections or has a full
lap splice with the adjacent section's longitudinal steel.
4. FREE ENDS: Where shown in the Plans, terminate the Single-Faced Section with a
and transverse end face. Place a stirrup bar with a $3^{\prime \prime}$
Iongitudinal bars with a $3^{\prime \prime}$ cover from the end face.
5. CONCRETE OR FLOWABLE FILL: Use Class NS Concrete in accordance with
Specification 347 or Non-EXcavatable Flowable Fill in accordance with Specification

WALL SHIELDING BARRIER 38" HEIGHT SECTION -

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 18 \end{gathered}$			$\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	$\mathbb{C O N C R E T E ~ B A R R I E R}$	$\begin{gathered} \text { INDEX } \\ 521-001 \end{gathered}$	$\begin{gathered} \text { SHEET } \\ 23 \text { of } 26 \end{gathered}$

BILL OF REINFORCING STEEL		
MARK	SIZE	LENGTH
$C 1$	4	$3^{\prime}-8^{\prime \prime}$
$C 2$	5	$3^{\prime \prime}-0^{\prime \prime}$
$U 1$	4	$5^{\prime}-1^{\prime \prime}$
$U 2$	4	$7^{\prime}-8^{\prime \prime}$
$U 3$	5	$9^{\prime}-7^{\prime \prime}$
$U 4$	5	$5^{\prime}-9^{\prime \prime}$
$V 1$	4	$6^{\prime}-4^{\prime \prime}$
$V 2$	5	$6^{\prime}-3^{\prime \prime}$
$V 3$	4	$5^{\prime}-10^{\prime \prime}$

NOTES:

1. Work with the Standard Bar Bending Details
2. All bar dimensions in the bending diagrams
are out to out.
3. Use standard inner diameters for bar bending
unless otherwise shown.

BAR 504

BAR 5V2

BAR 4C1

BAR 5U3

BAR 4U2

BAR 4V1

BAR 4V3

1	Index Contents; General Notes
2	Example Layouts - Footing Placement and Connections
3	Barrier Plan and Elevation - Connection to Concrete Barrier - Connection to Guardrail
4	Barrier Details - Connection to Concrete Barrier
5	Barrier Details - Connection to Guardrail
6	Barrier Footing Options
7	Crash Wall Details
8	Reinforcing Bar Bending Diagrams

GENERAL NOTES:

1. CONCRETE: Use Class III or IV concrete unless otherwise called for in the Plans.
2. CONSTRUCTION JOINTS: Maintain continuity of reinforcement steel across Construction Joints; reinforcement lap splices are permitted immediately adjacent to joints. Construct all Pier Protection Barrier continuously, with no expansion or contraction joints. Construction hase Classified herein as Transverse Joints or Longitudinal Joints.
Transverse Joints are permitted at 40 foot or greater intervals along the barrier.
Iongitudinal Joints may only be installed where indicated in the following details and notes, with a location tolerance of $\pm 1^{\prime \prime}$ from the locations shown
3. FOUNDATION: Compact the top 12 inches of the subgrade to at least 98% of the maximum density determined by FM 1-T 180, Method D.
4. DRAINAGE INLETS: See Index 425-031 for Adjacent Barrier Inlets, and isolate these structures from Pier Protection Barriers and Footings with 1" Preformed Joint Filler
5. BARRIER END MARKERS: For all free ends of barriers that are not connected to guardrail or concrete barrier, install a Type 3 object Marker on the end face per Specification 705.
6. BARRIER DELINEATORS: Instal/ Barrier Delineators in accordance with Specification 705. Mount the delineators on the top face of the barrier, with the roadway side of the delineator located $2^{\prime \prime}$ from the front face of the barrier and the reflective sheeting facing traffic of the nearest approach.
7. CRACK CONTROL: Provide $11^{\prime \prime}$ depth crack control V-Grooves at 15^{\prime} to 30^{\prime} spacing. Locate V-Grooves above any joint or discontinuity in the barrier footing. Align V-Grooves perpendicular to the longitudinal axis of the Pier Protection Barrier and make continuous across the to surface and both side faces. For slip formed barriers, score $1 / 2^{\prime \prime} V$-Grooves while the concrete is still plastic, otherwise pre-form the joints when stationary forms are utilized.

 See Sheet 6 for Footing and Stem Details) Only Top \& Bottom Longitudinal Steel Shown,
See Section Views for All Steel Locations) See Section Views for All Steel Locations)

END VIEW C-C (Connects to Adjacent Concrete Barrier, Aligned at Gutter Line)

BARRIER DETAILS - CONNECTION TO CONCRETE BARRIER
GENERAL: Construct either the 56" PPB or the 44" PPB height as called for in the Plans.
See Sheets $2 \& 3$ for additional plan and elevation details.
2. FOOTING OPTIONS: See Sheet 6 for the supporting stem and footing details.

| INDEX | SHEET |
| :--- | :--- | :--- |

NOTES:
GENERAL: Construct either the 56" PPB or the 44" PPB height as called for in the Plans.
andional plan and elevation details.
2. FOOTING OPTIONS: See Sheet 6 for the supporting stem and footing details.

END VIEW C-C

IEW C-C for Guardrail)

END VIEW D-D (End Tapered Toe for Guardrail)

BARRIER DETAILS - CONNECTION TO GUARDRAIL

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		$\begin{array}{cc} \text { FDOT 2022-23 } \\ \text { STANDARD PLANS } \end{array}$	$\mathbb{P I E} \mathbb{R}$ PROTECTION BARRIER	INDEX 521-002	SHEET 5 of 8

NOTES:

1. GENERAL: Install the footing options per project-specific requirements, as defined on specified per the Plans.
Work with the supported 44" PPB and 56" PPB as shown on Sheets 3, 4, \& 5
2. OPTIONAL SLIP FORMING SUPPORT: The 1^{1}-O" depth spread footing may be extended by
3' $^{\prime \prime}$ Iaterally beyond the face of the stem to provide support for a subsequent slip 3" laterally beyond the face of the stem to provide support for a subsequent slip
forming operation above. Do not ad just the steel reinforcement location for the forming operation abict
additional concrete.
3. GUARDRAIL CONNECTION TAPERED TOE: For tapering the barrier as shown on Sheet 5 , View D-D, bend Bars U away from the stem face as required. For this case, the cover
requirement is variable for one side of the stem (only at the tapered toe locations).

(Schematic View - See Note 3)

SECTION H-H CRASH WALL
Concrete aty. $=0.82$ CY/FT (44" Crash wall) or 0.93 CY/FT (56" Crash Wall)
Steel Qty. $=71.8$ LB/FT ($44^{\prime \prime}$ Crash Wall) or 76.0 LB/FT (56" Crash Walll

NOTES:

1. GENERAL: Only where called for in the Plans, install the Crash wall as a supplement for PPB. If app
Station and Offset required

For additional layout details, see Sheets $2 \& 3$
2. CRASH WALL HEIGHT: Install the Crash wall at a height which matches

Schematic views: Ony par 5ar
3. SCHEMATIC VIEWS: Only partial reinforcing is shown in the Schematic
Views to establish a trend while keeping clarity. For all reinforcing stee locations and spacing requirements, see Section H-H.
4. GUARDRAIL CONNECTIONS: To facilitate guardrail connections, shift the
Crash Wall 3 feet from the end of the PPB as shown on Sheets $2 \& 3$.
5. OPTIONAL SLIP FORMING SUPPORT: The $1^{\prime}-0$ " depth spread footing may be extended by $3^{\prime \prime}$ laterally beevond the face of the wall to provide support
for a subseauent slip forming operation above. Do not ad just the steel for a subsequent slip forming operation above Do not ad just the steel reinforcement location for the additional concrete.

BILL OF REINFORCING STEEL		
MARK	SIZE	LENGTH
V	5	$7^{\prime}-5^{\prime \prime}$
U	5	$8^{\prime}-1 I^{\prime \prime}$
R	5	$6^{\prime}-0^{\prime \prime}$
$F 1$	5	$13^{\prime}-9^{\prime \prime}$
$F 2$	5	Varies (Straight)
L	5	$6^{\prime}-5^{\prime \prime} / 7^{\prime \prime}-5^{\prime \prime}$
E	5	$4^{\prime \prime}-6^{\prime \prime}$
S1	8	Varies (Straight)
S2, S3	5	Varies (Straight)

NOTES:

1. Work with the Standard Bar Bending Details
per Index $415-001$
per Index 415-001.
2. All bar dimensions in the bending diagrams
are out to out.

BARS 5F1

BARS $5 U$

BARS SL

BARS 5R

BARS 5E

GENERAL NOTES:

1. GENERAL: Construct Opaque Visual Barrier (OVB) in accordance with Specification 521. Use either monolithically with the Concrete Barrier or Traffic Railing; use an ASTM D6380, Class S, Type III Organic monolithic ally with the Concre
Felt bond breaker as needed.
2. DOWEL BAR CONNECTION: For the embedment in Concrete Barrier or Traffic Railing concrete, dowel bars must be either cast in place for new concrete or grouted in place for existing concrete. Embed the dowwel bars to
the corresponding depths shown, and use the bar lengths provided in the Dowel Bar Length Table. At cast in place embedment locations, longitudinally shift the dowel bars only as required to avoid
reinforcing steel in the Concrete Barrier or Traffic Railing. At grouted embedment locations, drill $55^{\prime \prime}$ \& holes to a depth of $6 y_{4}$ ". Use only approved non-shrink grout on
3. TRANSVERSE JOINTS: Place $1 /{ }^{\prime \prime}$ Transverse Joints with a maximum spacing of $50^{\prime}-0^{\prime \prime}$ and a minimum spacing of
20'-0". Use a consistent spacing where practical.

Without violating the above spacing requirements, place Transverse Joints matching the location and width of
open joints in the supporting Concrete Barrier or Traffic Railing.
4. SLOPED END TREATMENTS: Regardless of the traffic direction, place Sloped End Treatments on all exposed
ends of OVB, excluding leave-outs for barrier-mounted signs and light poles. See Note 7 below.
5. BARRIER-MOUNTED SIGNS AND LIGHT POLES: Where signs and barrier-mounted light pole structures conflict
with placement of OVB, end and restart the OVB with a transverse vertical face located a longitudinal distance of $2^{2 \prime}\left(\pm 1 / 2^{\prime \prime}\right)$ from the base of the structure. Follow the same reinforcing scheme and concrete cover requirement for the Transverse Joint shown herein. See Note 7 below
6. LARGE BARRIER-MOUNTED SIGN SUPPORTS: See Sheet 2 for details. See Note 7 below
7. LEAVE-OUTS: OVB leave-outs are longitudinal gaps in oVB segments required to accommodate barrier-mounted
signs and light pole placement. Leave-outs up to 15 feet in length are included in OVB length measurement.
8. ASYMMETRICAL CONCRETE BARRIER SECTIONS: When mounting on top of an asymmetrical Concrete Barrier
section (not shown), align the centerline of the OVB with the centerline of the top face of the Concrete section (not show
Barrier section.
 top of the Concrete earrier section with the highest elevation. Lone itudinally overlapping ovB. runs are or
toermitted where called for in the Plans, which are designated with overlapping Begin and End Station ovB
per callouts.
10. VERTICAL REINFORCING: Place vertical No. 3 bars with the spacing shown, except that No. 3 bars at the
dowel bar locations may be shifted longitudinally to tit or they may be omitted at the contractor's option.
11. OPTIONAL WELDED WIRE REINFORCEMENT: With the approval of the Engineer, the No. 3 bars shown herein
may be replaced with welded wire reinforcement in accordance with Specification 415. Use welded wire reinforcement of equal or greater strength than the bars being replaced; maintain the same cover reinforcement of equal or greater strength than
requirements with equival ent or smaller spacing.
12. VARIABLE HEIGHT CONCRETE BARRIERS: See Sheet 2 for details.
13. CONCRETE BARRIER AND TRAFFIC RAILING TRANSITIONS BETWEEN DIFFERING SECTIONS:

elevation view - opaque visual barrier

SECTION VIEW
OPAQUE VISUAL BARRIER
FOR MEDIAN SINGLE-SLOPE
CONCRETE BARRIER or TRAFFIC RAILING

SECTION VIEW
OPAQUE VISUAL BARRIER FOR MEDIAN F-SHAPE CONCRETE BARRIER or traffic railing
LAST
REVISION
$11 / 01 / 20$

2 DESCRIPTION:
REVISION
FDOT $\} \begin{gathered}F Y \text { 2022-23 } \\ \text { STANDARD PLANS }\end{gathered}$

ELEVATION VIEW 'A' - OVB END SEGMENT AT CONCRETE BARRIER HEIGHT TRANSITION FROM 38" HEIGHT TO 56" HEIGHT SECTION (REVERSE DIRECTION SIMILAR BY OPPOSITE HAND)

NOTES:

1. LATERAL DIMENSIONS: Maintain the OVB section width and lateral placement
as defined on Sheet 1 .

ELEVATION VIEW 'B' - OVB SEGMENT FOR CONCRETE
BARRIER WITH 44" HEIGHT SECTION
IOVB LINEAR BOTTOM TRANSITION SHOWN
REVERSE DIRECTION SIMILAR BY OPPOSITE HAND)
. DOWEL BAR LENGTHS \& CONNECTIONS: For the differing OVB section heights, trim or adjust the dowel bar lengths as required to meet the clearances
shown while maintaining the dowel bar connection requirements of Sheet 1 .
Elevation View 'A' - For the two dowel bars closest to the OVB end location
use full dowel bar lengths and bend as shown to maintain clearances. use full dowel bar lengths and bend as shown to maintain clearances.
Overlapping dowel bars may deviate from the lateral centerline as required
3. DOWEL bar Spacing:

Elevation View ' B^{\prime} - The dowel locations shown in this detail are examples ady, and may shir to maintain the spacing pattern that is governed by place dowel bars within the oVB Linear Bottom Transition as required
4. SEGMENT Lengths

Elevation View 'A' - The length of the OVB End Segment is governed by the
length of linear width and height transition of the Concrete Barrier. Elevation View ' ${ }^{\prime}$ ' - The length of the reduced-section oVB segment is
governed by the length of Concrete Barrier with 44' Height Section.
5. VERTICAL REINFORCING: For the differing OVB section heights, trim or adjust 6. TRANSVERSE Joints:

Follow the requirements of Sheet
Elevation View 'A' - Do not place Transverse Joints within the End Segment. Elevation View 'B' - Maintain the Transverse Joint spacing scheme as defined
on Sheet 1; place dowel bars within the OVB Linear Bottom Transition as required.

FDOT 5 FY 2022-23

NOTES:

1. Work this Index with Indexes 521-512 through 521-515
(INSIDE FACE OF CONCRETE BARRIER/NOISE WALL WITH T-SHAPED FOOTING SHOWN,
2. The Concrete Barrier/Noise Wall and joints shall be constructed plumb.

$$
\begin{aligned}
& \text { A. Class II for slightly aggressive environments. } \\
& \text { B. Class IV for moderatelv or extremely agaress }
\end{aligned}
$$

B. Class IV for moderacel or extremery aggressive environments
4. Provide $3 / 4$ " Open Joints spaced between 30 feet minimum to 90 feet maximum. Align Open Joints with construction
5. Install in the Junction Slab or Footing. Provide additional reinforcing (see Sheet 2) at each open joint.
5. Barrier Darrier Delineators $2^{\prime \prime-4 "}$ above the riding surface in accordance with Specification Section 705. Match the

Barrier Delineators color (White or Yellow) to the near edgeline.
6. Slip forming of the barrier portion is permitted.
A. Stem walls may be widened, at no additional cost, to accommodate slip forming.

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$		$\begin{array}{cc} \text { FDOT 2022-23 } \\ \text { STANDARD PLANS } \end{array}$	$\mathbb{C O N C R E T E ~ B A R R I E R / N O I S E ~ W A L L ~ (8 ' - 0 ") ~}$	$\begin{aligned} & \text { INDEX } \\ & 521-510 \end{aligned}$	SHEET 1 of 5

elevation of barrier/noise wall reinforcing steel at open joint
(Bars $5 S 1$ in Barrier not shown for Clarity) (Footing or Junction Slab Details not shown)

ELEVATION OF BARRIER/NOISE WALL END TAPER (ADJACENT TO CONCRETE BARRIER SHOWN, GUARDRAIL ATTACHMENT SIMILAR SEE DETAIL "A", SHEET 5) (Bars 551 in Railing not shown for clarity)
(Footing or Junction Slab Details not shown)
NOTES:
$* ~ F i e l d ~ C u t ~ B a r s ~ 5 R ~ \& ~ 5 S 1 ~ t o ~ m a i n t a i n ~ c l e a r a n c e . ~$
$* *$
Terminate $3 / 4$-groove at construction joint $\&$ cast top of
railing with End Taper.
** Bar spacing shown for Bars 5 V only applies when Single-Slope Concrete Barrier continues. For transition to guardrail see Sheet 5 .
Work Traffic/ Railing Noise Wall reinforcing with Index $521-512$ (Junction Slab) or Index 521-513 through 521-515 (T, L or Trench Footings)

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 18 \end{gathered}$	\|	$\begin{gathered} \text { FY 2022-23 } \\ \text { FDOTY } \\ \text { STANDARD PLANS } \end{gathered}$	CONCRETE BARRIER/NOISE WALL (8'-0")

REINFORCING STEEL BENDING DIAGRAMS

BILL OF REINFORCING STEEL MARK SIZE LENGTH						
R2						
S1		As Reqd				
\checkmark (Wall)						
V (T-Footin				BARS 5S1 \& 5S2 STIRRUP BAR 5V END STIRRUP BAR 5V To Be Field Cut (Railing End Transition) agrams are out to out. ts shall have a $2^{\prime \prime}$ minimum cover. lap spliced bar. No mechanical couplers are permitted. ed at the construction joints. Lap splices for Bars 5R, 5S1 and 5W Reinforcement (WWR) when approved by the Engineer. WWR ing the requirements of Specification Section 931. L-shaped and Trench footing vertical reinforcing.		
BAR 5R1 $B A R 5 R 3$ (Field Cut and Bend for Railing End Transition) REINFORCING STEEL NOTES: STIRRUP BAR 5V END STIRRUP BAR 5V To Be Field Cut (Railing End Transition) 1. All bar dimensions in the bending diagrams are out to out. 2. All reinforcing steel at the open joints shall have a $2^{\prime \prime}$ minimum cover. 3. Bars $5 R$ shall be one continuous or lap spliced bar. No mechanical couplers are permitted. 4. Bars 5S1 may be continuous or spliced at the construction joints. Lap splices for Bars 5R, 5S1 and 5W shall be a minimum of $2^{\prime}-2^{\prime \prime}$. 5. The Contractor may use Welded Wire Reinforcement (WWR) when approved by the Engineer. WWR must consist of deformed wire meeting the requirements of Specification Section 931. 6. See Index 521-514 and 521-515 for L-shaped and Trench footing vertical reinforcing.						

DETAIL "A" NOTES:
Begin placing Railing Bars 5 V at the railing end and proceed toward the guardrail (thrie beam) terminal connector to ensure placement of guardrail bolt holes. Pair Bars $5 R$ with Bars 5 V as shown. Clearance
of Bars $5 R$ \& 5 V to drilled. Shift bars locally where conflicts occur.
2. For Guardrail connection details see Index 536-001.
3. Omit Railing End Transition if a Single-Slope Concrete Barrier/ Barrier continues beyond the End Taper. See the Plan Sheets.
Field cut Bars $5 R 2$ to maintain cover. Field cut Bars 5 V and lap as necessary to maintain cover; field cut

SECTION C-C
THRU NOISE WALL END TAPER

$$
\begin{gathered}
\text { PLAN - RAILING END TRANSITION } \\
\text { (Showing Bars 5V and Bars 5S1) } \\
\text { (Bars 5R not shown for Clarity) }
\end{gathered}
$$

DETAIL " A " \qquad

CROSS REFERENCE:
For location of Detail "A" see Sheet 1. For location of Section C-C see Sheet 1 . For View $B-B$ see Sheet 3.

NOTES:

1. Field Cut Bars $5 R \& 5 S 1$ in Noise Wall End Taper as required to maintain minimum cover
2. See Index 521-513, 521-514 and 521-515 for footing reinforcement,
3. ${ }^{3 / 4}$ " Open Joint may be omitted when $8^{\prime}-0^{\prime \prime}$ Railing/Noise Wall End Taper is adjacent to a
$14^{-0} \mathbf{D N}^{\prime \prime}$ Concrete Barrier /Noise Wall End Taper as shown on Sheet 1. See Index $521-510$ for
reinforcement details and spacing. Bars 552 are not required when $3 / 4$ " Open Joint is omitted.
4. Bar spacing shown is along the Gutter Line.
5. Bar spacing shown is along the Gutter Line.

LAST REVISION $11 / 01 / 18$	\|	$\begin{array}{cc} \text { FDOT } 2022-23 \\ \text { STANDARD PLANS } \end{array}$	CONCRETE BARRIER/NOISE WALL (14'-0")

REINFORCING STEEL BENDING DIAGRAMS (8'-0" Concrete Barrier/Noise Wall) (TYPE 1 and 2)

BILL OF REINFORCING STEEL			
MARK	SIZE	LENGTH	
		TYPE 1	TYPE 2
A	5	$8^{\prime}-0^{\prime \prime}$	$9^{\prime}-0^{\prime \prime}$
B1	5	AS REQD.	AS REQD.
B2	5	AS REQD.	AS REQD.
B3	5	$10^{\prime}-0^{\prime \prime}$	N/A
F	5	$4^{\prime}-8^{\prime \prime}$	$5^{\prime}-8^{\prime \prime}$
L	5	$4^{\prime}-5^{\prime \prime}$	$4^{\prime \prime}-5^{\prime \prime}$
S3	4	$3^{\prime}-1^{\prime \prime}$	$4^{\prime}-0^{\prime \prime}$
U1	5	$4^{\prime}-9^{\prime \prime}$	$4^{\prime}-9^{\prime \prime}$
U2	5	$12^{\prime}-10^{\prime \prime}$	$12^{\prime}-10^{\prime \prime}$
DOWEL	$1^{\prime \prime} \varnothing$ Smooth Bar	$2^{\prime}-0^{\prime \prime}$	$2^{\prime \prime}-0^{\prime \prime}$

1. All bar dimensions in the bending diagrams are out to out
2. All reinforcing steel at the open joints will have a $2^{\prime \prime}$ minimum cover.
3. Lap splices for Bars $5 B$ will be a minimum of $2^{\prime}-2^{\prime \prime}$.
4. The Contractor may use Deformed WWR when approved
The Contractor may use Deformed WWR when ap
by the Engineer. Deformed WWR must meet the
requirements of Specification Section 931 .

BAR 5B3 (TYPE 1 only)
BAR 4S3

BAR $5 U 1$

DETAIL "A"
(Showing Locations of $1 / 2 / 2$ V-Grooves
and $3 / 4$ " Preformed Expansion
and 3/4" Preformed Expansion Joint Filler)

PARTIAL END VIEW OF RAILING END TRANSITION FOR GUARDRAIL ATTACHMENT (Showing Bars 5V and Bars 5B1)
NOTE: See Index 521-510, Detail "A" for details.
SECTION B-B
TYPICAL SECTION THRU JUNCTION SLAB AND RETAINING WALL
($8^{\prime}-0^{\prime \prime}$ Concrete Barrier/Noise Wall)

ITEM	UNIT	QUANTITY	
		TYPE 1	TYPE 2
Concrete (Junction S/ab)	CY/FT	0.268	0.305
Reinforcing Steel (Typical)	LB/FT	31.72	34.85
Additional Reinf. @ Expansion Joint	LB	21.36	21.36

NOTES

1. Match Cross Slope of Travel Lane or Shoulder
2. Vary Junction Slab slope based on roadway cross slope to maintain
3. a minimum $6^{\prime \prime}$ asphalt depth at the edge of the slab as shown.
4. Actual width varies depending on type of Retaining Wall used.
5. See Index $521-510$ for Bars 5 V and Bars 551 .
6. See Index $521-510$ for Bars 5 V and Bars 551 .
7. For Rigid Pavement (Concrete) Junction Slab may
match finished grade. Vary the Junction Slab slope to maintain
minimum $1^{\prime}-6^{\prime \prime}$ thickness at the inside edge of the slab.
8. See Roadway Plans for asphalt shoulder, roadway pavement and overbuild.
9. If slip forming is used, submit shop drawings for approval
adjusted Typical Section dimensions.
10. Bars 5 L and 5 C are grouped together and placed with every other Bar 5 A
11. Bar 5 L to Iap Bar 5 C for minimum wall embedment. Minimum
12. Bar 5L to lap Bar 5C for minimum wall embedment. Minimum Lap splice length $2^{\prime \prime}-2^{\prime \prime}$.

CROSS REFERENCE

FDOT $\begin{gathered}\text { FY 2022-23 } \\ \text { STANDARD PLANS }\end{gathered}$
CONCRETE BARRIER/NOISE WALL
JUNCTION SLAB
index
521-512 2 of 2
SHEET
2 of 2

Reinforcing steel bending diagrams

BILL OF REINFORCING STEEL		
MARK	SIZE	LENGTH
A	5	$6^{\prime}-8^{\prime \prime}$
B	5	AS REQD.
U	5	$11^{\prime}-0^{\prime \prime}$
DOWEL	$1^{\prime \prime} \varnothing$ Smooth Bar	$2^{\prime}-0^{\prime \prime}$

BARS $5 A \& 5 B$
$\xrightarrow{2^{\prime}-0^{\prime \prime}}$

1" Ø DOWEL

BAR $5 U$

Reinforcing steel notes

1. All bar dimensions in the bending diagrams are out to out.
2. All reinforcing steel at the open joints will have a $2^{\prime \prime}$ minimum cover.
3. Lap splices for Bars $5 B$ will be a minimum of $2^{\prime}-2^{\prime \prime}$

The Contractor may use Welded Wire Reinforcement (WWR) when approved by the Engineer.
WWR WWR must consist of Deformed wire meeting the requirements of Specification Section 931

PARTIAL END VIEW OF RAILING END
TRANSITION FOR GUARDRAIL ATTACHMENT Showing Bars 5V2, and Bars 5 B inside
of Stirrup Bars 5V2)
NOTE: See Index 521-510, Detail "A" for details.

SECTION B-B
TYPICAL SECTION THRU SPREAD FOOTING
(Bars $5 R$ and $5 S 1$ in Concrete Barrier/Noise Wall not shown for clarity)
NOTES:

1. Match Cross Slope of Travel Lane or Shoulder
2. See Sheet 1, Notes $8 \& 9$.

DETAIL "A"
(Showing Locations of $1 / 2$ " V-Grooves and $3 / 44^{\prime \prime}$ Preformed Expansion Joint Filler)
estimated t-shaped spread footing quantities

ITEM	UNIT	QUANTITY
Concrete (Footing)	CY/FT	0.312
Reinforcing Steel (Typical)	LB/FT	25.90
Additional Reinf. @ Expansion Joint	LB	37.38

Note: The reinforcing steel quantity includes the difference between Index 521-510 or 521-511 and Bars 5V shown
Bars 5S1 are included in Index 521-510 or 521-511 quantities.
CROSS REFERENCE
For location of Section B-B, see Sheet 1

PLAN - OPTION B

Spread footing adjacent to skewed approach slab and with barrier wall inlet
NOTES (Option A Similar) (Bars S1 Not Shown)

1. Construct the Spread Footing level transversely; do not construct the spread footing perpendicular to the roadway surface.
2. Concrete will be in accordance with Specification Section 346 .
A. Class II concrete for slightly aggressive environments.
B. Class IV concrete for moderately or extremely aggressive environments.
3. Dowel Load Transfer Devices will be ASTM A 36 smooth round bar and hot-dip galvanized in
accordance with Specification Section 962. Install Dowel Load Transfer Devices in accordance with Specification
4. Construct $3 / /^{\prime \prime}$ Expansion Joints plumb and perpendicular or radial to Gutter Line. Provide at $90^{\prime}-0^{\prime \prime}$ maximum
intervals as shown.
Construct $/^{\prime 2}$-Grooves plumb and provide at $30^{\prime}-0^{\prime \prime}$ maximum intervals as shown. Space V-Grooves equally
between $3 / 4^{\prime \prime}$ Expansion Joints and/or Begin or End Spread Footing. V-Groove locations are to coincide with V-Groove locations in the Concrete Barrier/Noise Wall.
5. Provide and install Preformed Expansion Joint Filler in accordance with Specification Section 932

Shoulder or Roadway Pavement and Fill is required on the traffic side of the spread
footing for a distance of $4^{\prime}-0^{\prime \prime}$ and the full length of the spread footing ($3^{\prime}-0^{\prime \prime}$ minimum depth) on the backside of the spread footing for Option A. Fill is required for a distance of $4^{4}-0^{\prime \prime}$ on the backside of the spread footing and the full length of the spread footing ($3^{\prime}-0^{\prime \prime}$ minimum depth) on the traffic side of the spread
footing for Option B. See Typical Sections on Sheets 2 and 3 for details,
8. Spacing shown is along the Gutter Line
a.
a. Index 521-510 - Concrete Barrier/Noise Wall ($\left.8^{\prime}-0^{\prime \prime}\right)$.).
b. Index $521-511$ - Concrete Barrier/Noise Wall (14'-0

ROSS REFERENCE: For Detail "A", see Sheet 3. Quantities, see Sheet 4 mated Quantities, see Sheet 4.

TYPICAL SECTION THRU SPREAD FOOTING - OPTION B (Bars 5P, 5R and 5S1 in Concrete Barrier/Noise Wall not shown for clarity)

$$
\begin{aligned}
& \text { NOTES: } \\
& \text { 1. Match Cross Slope of Travel Lane or Shoulder. } \\
& \text { 2. Place } 10 \sim \text { Bars }(8 \sim \text { Bars } 5 B \text { and } 2 \sim \text { Bars } 5 \text { S1) inside } \\
& \text { Bars } 501 \text { as shown. } \\
& \text { 3. Provide } 3^{\prime \prime} \text { lip when optional construction joint is used. }
\end{aligned}
$$

£ Expansion Joint -

EXPANSION JOINT DETAIL

(Spread Footing expansion joints are required at /4" open joints in Concrete Barrier/Noise Wall)

DETAIL "A"

(Option A Shown, Option B Similar)
(Showing Locations of $1 / 2 / 2$ V-Grooves and 3/4" Preformed Expansion Joint Filler

| $\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$ | \|c|c | DESCRIPTION: | | FY 2022-23
 STANDARD PLANS | CONCRETE $\mathbb{B} A R R I E \mathbb{R} / \mathbb{N} O I S E$ WALL L-SHAPED SPREAD FOOTING | INDEX $521-514$ | $\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 4 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

REINFORCING STEEL BENDING DIAGRAMS

SECTION A-A
TYPICAL SECTION THRU SPREAD FOOTING AND BARRIER WALL INLET - OPTION B (Bars 5P, 5R and $5 S 1$ in Concrete Barrier/Noise Wall not shown for clarity)
notes

1. Place 8 ~Bars 5B and 2 Bars S1 inside Bars 501 as shown.
2. For Reinforcing Steel spacing, see Typical Section Thru
Spread Footing -Option B on Sheet 3 .
3. Provide $3^{\prime \prime}$ lip when optional construction joint is used.

ESTIMATED L-SHAPED SPREAD FOOTING QUANTITIES		
	UNIT	QUANTITY
Concrete (Footing)	CY/FT	0.398
Reinforcing Steel (Typical) *	LB/FT	68.84
Additional Reinf. @ Expansion Joint	LB	48.06

CROSS REFERENCE
For location of Section A-A, see Sheet 1

BILL OF REINFORCING STEEL		
MARK	SIZE	LENGTH
B	5	$A S$ REQD.
F	5	$5^{\prime}-6^{\prime \prime}$
$S 3$	5	$3^{\prime}-7^{\prime \prime}$
$S 4$	5	$3^{\prime}-10^{\prime \prime}$
$U 1$	5	$9^{\prime}-2^{\prime \prime}$
$U 2$	5	$13^{\prime}-10^{\prime \prime}$
$U 3$	5	$12^{\prime}-10^{\prime \prime}$
DOWEL	$1^{\prime \prime} \varnothing$ Smooth Bar	$2^{\prime}-0^{\prime \prime}$

BARS 5B \& 5F
\qquad
1" Ø DOWEL

BAR $5 U 3$

BAR $5 S 3$

BAR 5S4

BAR 5U1

Reinforcing steel notes:

1. All bar dimensions in the bending diagrams are out to out.
2. All reinforcing steel at the open joints will have a $2^{\prime \prime}$ minimum cover
3. Lap splices for Bars 5B will be a minimum of $2^{\prime}-2$
4. Lap splices Bars 5 T and 5 V with 501 will be a minimum of $2^{\prime}-2^{\prime \prime}$
5. The Consit of maformed wire meeting the must consist of Deformed wire meeting the requirements of Specification Section 93

PRECAST AND C-I-P COPING NOTES:

C-I-P COPING - PARTIAL ELEVATION VIEW

$\stackrel{\oplus}{\bullet}$
Retaining Wall
Panels (Typ.) Panels (Typ.)

1. Provide Class il concrete for slightly aggressive environments
2. Dowel Bars $4 D$ modend $11^{\prime \prime}$ above the top of retaining environments. wall panel. Field cut as necessary to maintain 2" minim cover. See Wall Company Drawings for number and spacing of Dowel Bars 4D.
3. Payment for Dowel Bars 4D, Buildup Concrete and Coping will
be made under Retaining Wall System (Permanent).

SECTION A-A C-I-P COPING

Drainage Ditch when equired (See Wall Contral required (see wall cont
Drawings for details)

Smooth or Textured Face of Panel

LAST
REVISION
11/01/19
REVITO1/19
FDOT\} $\begin{gathered}\text { FY 2022-23 } \\ \text { STANDARD PLANS }\end{gathered}$
521-600 1 of 2

Note: When precast coping units do not fit the entire length of the retaining wall, use this similar C-I-P coping for short portions between precast
coping units. This C-I-P coping may also be used for vertical copings. coping units. This C-I-P coping may also be used for vertical copings.

C-I-P COPING ENCLOSURE DETAIL

FDOT	FY 2022-23 STANDARD PLANS	MSE WALI COPING (PRECAST OR C-II-P)	$\begin{gathered} \text { INDEX } \\ 521-600 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 2 \end{aligned}$

TYPICAL SECTION THRU C-I-P CONCRETE BARRIER WITH C-I-P JUNCTION SLAB AND C-I-P COPING (PRECAST COPING SIMILAR WITH C-I-P BUILDUP)

OPTIONAL NOTCH AT TOP OF COPING
 AND C-I-P COPING

NOTES:

1. Match Cross Slope of Travel Lane or Shoulder.
2. Vary the Junction Slab slope based on the roadway cross slope to maintain a minimum
$6^{\prime \prime}$ asphalt depth at the inside edge of the slab.
3. For Rigid Pavement (Concrete), Junction Slab may
For Rigid Pavement (Concrete), Junction Slab may be thickened to match finish grade.
Vary the Junction Slab slope to maintain a minimum $1-6$ thickness at the inside edge of the slab.
or $60^{\prime}-0^{\prime \prime}$ for $42^{\prime \prime}$ Single-Slope.
. Contractor to maintain stability of precast coping prior to junction slab completion. In the
Shop Drawings, show reinforcement for optional extension required for stability, shipping
. $2^{\prime \prime}$ cover allows for $1 / 2$ " variance due to slip forming

ESTIMATED QUANTITIES FOR C-I-P			
ITEM	UNIT	QUANTITY $\left(36^{\prime \prime}\right)$	QUANTITY $\left(42^{\prime \prime}\right)$
Concrete	CY/LF	0.376	0.420
GFRP (excludes Bars $6 C ~ \& ~ 6 F) ~$	LF/LF	69.42	72.41
Additional Reinf. @ Expansion Joint (Dowels)	LF	8.00	8.00
(The above concrete quantities are based on a max. superelevation of 6.25\%)			

SINGLE-SLOPE CONCRETE BARRIERS

FDOTY	STANDARD PLANS	CONCRETE BARRIER/JUNCTION SLAB - WALL COPING (FRP)		
	STANDARD PLANS	- WALL COPING (FRP)		

FRP BENDING DIAGRAMS					
FRP REINFORCING					
MARK	SIZE	LENGTH			
		PRECAST COPING FOR SINGLE-SLOPE		$\begin{gathered} \text { C-I-P COPING } \\ \text { FOR SINGLE-SLOPE } \\ \hline \end{gathered}$	
		(36")	(42")	(36")	(42")
A	6	5'-3'	5'-5"	$7{ }^{\prime}-10^{\prime \prime}$	$8^{\prime}-0^{\prime \prime}$
B1	5	11'-6"	$9^{\prime}-6^{\prime \prime}$	AS REQD.	AS REQD.
B2	5	AS REQD.	AS REQD.	AS REQD.	AS REQD.
c	6	$4^{\prime}-10^{\prime \prime}$	$4^{\prime}-10^{\prime \prime}$	N/A	N/A
F	6	$4^{\prime}-10^{\prime \prime}$	$4^{\prime}-10^{\prime \prime}$	$4^{\prime}-10^{\prime \prime}$	$4^{\prime}-10^{\prime \prime}$
L	5	$4^{\prime \prime-5 "}$	$4^{\prime}-5{ }^{\prime \prime}$	$4^{\prime}-5^{\prime \prime}$	$4^{\prime \prime-5 "}$
P	4	$2{ }^{1}-7{ }^{\prime \prime}$	$2^{\prime \prime} 7^{\prime \prime}$	$2{ }^{\prime \prime} 7^{\prime \prime}$	$2^{\prime \prime} 7^{\prime \prime}$
5	5	$11^{\prime}-6^{\prime \prime}$	N/A	AS REQD.	N/A
5	6	N/A	$9^{\prime}-6{ }^{\prime \prime}$	N/A	AS REQD.
T1	5	$6^{\prime}-1^{\prime \prime}$	N/A	$6^{\prime}-1^{\prime \prime}$	N/A
T1	6	N/A	$9^{\prime \prime}$-6"	N/A	$9^{\prime}-6{ }^{\prime \prime}$
T2	5	$6^{\prime}-1{ }^{\prime \prime}$	N/A	$6^{\prime}-1{ }^{\prime \prime}$	N/A
T2	6	N/A	$6^{\prime}-1{ }^{\prime \prime}$	N/A	$6^{\prime}-1{ }^{\prime \prime}$
u	7	$4^{\prime}-4^{\prime \prime}$	$4^{\prime}-6^{\prime \prime}$	$4^{\prime}-4{ }^{\prime \prime}$	$4^{\prime}-6{ }^{\prime \prime}$
V1	5	$4^{\prime}-6{ }^{\prime \prime}$	5'-2'	$4^{\prime}-6{ }^{\prime \prime}$	$5^{\prime}-2^{\prime \prime}$
v2	5	$4^{\prime}-3^{\prime \prime}$	$4^{\prime}-8^{\prime \prime}$	$4^{\prime}-3{ }^{\prime \prime}$	$4^{\prime}-8{ }^{\prime \prime}$
v3	5	$4^{\prime}-2^{\prime \prime}$	$4^{\prime}-2^{\prime \prime}$	$4^{\prime}-2^{\prime \prime}$	$4^{\prime}-2^{\prime \prime}$
v4	5	$3^{\prime}-11^{\prime \prime}$	$3^{\prime}-11^{\prime \prime}$	$3^{\prime \prime}-11^{\prime \prime}$	$3^{\prime}-11^{\prime \prime}$
$\begin{aligned} & 1^{1 " ~} \varnothing \\ & \text { Dowel } \end{aligned}$	$\begin{gathered} \text { Smooth } \\ \text { Bar } \\ \hline \end{gathered}$	$2^{\prime}-0^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$

CONVENTIONAL REINFORCING STEEL BENDING DIAGRAMS

CONVENTING STEEL			
BILL OF REINFORCING		LENGTH	
MARK	SIZE	PRECAST COPING/ RAILING	C-I-P COPING
A	5	$5^{\prime}-11^{\prime \prime}$	$9^{\prime}-1^{\prime \prime}$
B1	5	$9^{\prime}-6^{\prime \prime} 11^{\prime}-6^{\prime \prime}$	N / A
B2	5	AS REQD.	AS REQD.
C	4	$5^{\prime}-5^{\prime \prime}$	N / A
F	5	$5^{\prime}-0^{\prime \prime}$	$5^{\prime}-0^{\prime \prime}$
L	5	$4^{\prime}-5^{\prime \prime}$	$4^{\prime}-5^{\prime \prime}$
$1^{\prime \prime} \varnothing$ Dowel	Smooth Bar	$2^{\prime}-0^{\prime \prime}$	$2^{\prime \prime}-0^{\prime \prime}$
		$32^{\prime \prime}$	$42^{\prime \prime}$
T	5	$7^{\prime}-4^{\prime \prime}$	$9^{\prime}-2^{\prime \prime}$
x	5	$5^{\prime}-1^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$

BAR $5 L$

END TRANSITION STIRRUP BARS 5 T FOR 42"

$$
\begin{aligned}
& \text { Be Field Cut (7 of each required } \\
& \text { per Railing End Transition) }
\end{aligned}
$$

STIRRUP BAR 5X

5B1	Precast Coping ~ 9'-6"
	Precast Concrete Barrier/Coping ~ 11'-6"
$5 B 2$	Length as Required
4 C	Precast Coping Option ~ 5'-5"
	(See Note 6)
5 F	$5^{\prime}-0^{\prime \prime}$
55	Precast Concrete Barrier ~ 11'-6"
	Length as Required

BARS 5B1, 5B2, 4C, 5F \& 5S

1" Ø DOWEL

END TRANSITION STIRRUP BARS $5 X$ FOR 42"
o Be Field Cut (7 of each required per Railing End Transition)

REINFORCING STEEL NOTES:
. All bar dimensions in the bending diagrams are out to out.
2. All reinforcing steel at expansion joints will have a $2^{\prime \prime}$ minimum cover
3. Lap splices for Bars $5 B$ and $5 S$ will be a minimum of $2^{\prime \prime}-2^{\prime \prime}$
4. Lap splice Bars 5 A with Bars 4 C will be a minimum of $2^{\prime \prime}-2^{\prime \prime}$.
5. Dimension shown is for lap splice option. For mechanical coupler option,
this dimension is $1^{\prime}-8^{\prime \prime}$.
. Dimension shown is for lap splice option. For mechanical coupler option bars (Bars 5C).
The Contractor may use deformed WWR when approved by the Engineer
WWR must meet the requirements of Specification Section WWR must meet the requirements of Specification Section 931

END TRANSITION ELEVATION FOR 32" VERTICAL SHAPE (Guardrail Not Shown For Clarity)

VERTICAL SHAPE
\square
21-620
21-620 4 of

1/2" V-Groove (Typ.)
Bars 5B2

Field cut reinforcing as required
cover (Typ.) 30'-0" Max. (See Note 3)
\qquad

Begin or End Retaining Wall Precast Coping Wall, Precast Coping/

 Parapet or C-I-P Coping$$
\begin{aligned}
& \text { 3/4" Open Joint } \\
& \text { in Precast Coping }
\end{aligned}
$$

PRECAST COPING

C-I-P COPING

DETAIL "C"

Showing Locations of $1 / 2 " V$-Grooves and
$3 / 4$ Preformed Expansion 3/4" Preformed Expansion Joint Filler)

1/2" V-Groove (See
Note 3 \& Detail Approach Slab
(See Note 8)

$$
\text { Spacing Bars 4P } 51 / 211
$$

1/2" V-Groove Spacing

Bars 5A @ 1'-0" sp.

tied to Bars 5L (Typ.)
$34^{\prime \prime}$ Expansion Joint Spacing $\sim 50^{\prime}-0^{\prime \prime}$ Min., $90^{\prime}-0^{\prime \prime}$ Max. (See Note 1)

PARTIAL PLAN VIEW

(Skewed Approach Slab Shown, Perpendicular Approach Slab Similar)
(Precast Coping Shown, C-I-P Coping Similar) (Concrete Parapet not Shown for Clarity)

1. Provide Class II concrete for slightly aggressive environments or

Class IV for moderately or extremely aggressive environments.
. Construct ${ }^{\text {a }}$ Expansior perpendicular or radial to the Gutter Line. Provide Expansion either perpendicular or radial to the Gutter
Joints at $90^{\prime}-0^{\prime \prime}$ maximum intervals as shown.
3. Provide and install Preformed Expansion Joint Filler in accordance with Specification Section 932.
Construct $1 / 2$ " V-Grooves in sidewalk and C-I-P coping. Space V-Grooves
at $30^{\prime}-0^{\prime \prime}$ Maximum intervals equally spaced between $3 / 4$ Expansion at $30^{\prime}-0^{\prime \prime}$ Maximum intervals equally spaced between $3 / 4 /$ Expansion Joints
and/or Begin or End Sidewalk. For C-I-P Coping only, V-Groove locations are to coincide with V-Groove locations in the Concrete Parapet.
5. Spacing shown is along the Gutter Line.
6. For Precast Coping only, provide Dowel Bars 4D embedded $1^{\prime}-0^{\prime \prime}$ and extend
$11^{\prime \prime}$ above the top of MSE wall panels. Field $2^{\prime \prime}$ minimum cover to the top of the buildup concrete. See Wall Company Drawings for number and spacing of Dowel Bars $4 D$.
7. Work this Index with Index 521 -001 - Concrete Barrier Wall
8. For C-I-P Coping only, work this Index with Index 521-820-Pedestrian/Bicycle Railing, or Index 521-825-42" Concrete Pedestrian/ Bicycle Railing.
9. Finish Sidewalks in accordance with Specifications Section 522.
10. The following Indexes contain details of the intersection of the retaining wall at approach slabs: Index 400-091 - Approach Slabs (Rigid Pavement Approaches)

PARTIAL ELEVATION VIEW
(Precast Coping and Sidewalk Reinforcing not Shown for Clarity)
(Precast Coping Shown, C-I-P Coping Similar)

$8^{\prime}-10^{\prime \prime}$ (Index 521-600 Series Type 1) and $8^{\prime}-11^{1 / 1 / 2}$ (Index 521-512 TYPE 1)

> TYPICAL SECTION AT LIGHT POLE PEDESTAL
Textured Face
of Retaining Wall
(Junction Slab Shown, Raised Sidewalk or Sidewalk Similar) (36" Single-Slope Concrete Barrier shown, other railings similar)
NOTES:

1. Provide Concrete Class to match adjacent coping.
2. For junction slabs, increase the $1^{\prime}-0^{\prime \prime}$ depth dimension to $1^{\prime}-9^{\prime \prime}$
3. For Parapet with sidewalk see Index $521-630$, but increase $6^{\prime \prime}$ sidewalk depth to $1^{\prime}-6^{\prime \prime}$
4. For raised sidewalk see Index $521-620$.
5. The minimum length of the Junction Slabs, raised sidewalks and sidewalks is $30^{\prime}-0^{\prime \prime}$,
6. Bars 4 J are only required when pedestals are behind a Concrete Barrier or Concrete Barrier
7. Noise Wall. Top of junction slab may be thickened to match finished grade of concrete pavement or
8. Top of junction slab may be thickened to match finished grade of
shoulder, or top of sidewalk or raised sidewalk (See Notes $3 \& 4$)
9. Actual width varies depending on type of retaining wall used.
10. Work with Index $521-512$ (Concrete Barrier/ Noise Wall), Index $521-610$ (Single-Slope), Index 521-620 (Vertical Shape), and Index 521-630 (Concrete Parapet).
REINFORCING STEEL BENDING DIAGRAMS - LIGHT POLE PEDESTAL

BILL OF REINFORCING STEEL				$\begin{gathered} 5 B 3 \\ 5 J \\ \hline \end{gathered}$	$\begin{aligned} & 7^{\prime}-2^{\prime \prime} \\ & 6^{\prime}-0^{\prime \prime} \end{aligned}$
MARK	SIZE	NO. REQD.	LENGTH		
B3	5	7	7'-2'		
61	4	16	$5^{\prime}-8{ }^{\prime \prime}$		

BARS $5 B 3 \& 5 J$

BAR 4H2
$B A R 5 M 1 \& 4 M 2$

Reinforcing steel notes:

1. All bar dimensions in the bending diagrams are out to out.
2. Lap splices for Bars $4 G 1,4 G 2,4 G 3,4 G 4 \& 4 G 5$ will be a minimum of $1^{\prime}-44^{\prime \prime}$.
3. Lap splices for Bars $4 G 1,4 G 2,4 G 3,4 G 4 \& 4 G 5$ will be a minim
4. The Contractor may use Welded Wire Reinforcement (WWR) whe
approved by the Engineer. WWR must consist of deformed wire meeting the requirements of Specification Section 931

ESTIMATED QUANTITIES		
ITEM	UNIT	QUANTITY
Concrete (Pedestal)	$C Y$	0.926
Concrete (Thickened Junction Slab)	$C Y$	1.222
Reinforcing Steel	LB	334.09

$$
\begin{aligned}
& \text { The quantities above are for one C-I-P Light Pole Pedestal. The } \\
& \text { concrete quantity for the thickened junction slab is based on a } 5^{\prime} \text {-o" } \\
& \text { length, } 9^{\prime \prime} \text { increase in thickness and a } 5^{\prime \prime} \text { wide retaining wall panel. }
\end{aligned}
$$

. Field Cut Bars 4 M 2 as required to maintain minimum cover. und top of pedesta will not exceed anchor bolt diameter
Adjust thickened concrete quantity as required.

FDOTY $\begin{gathered}\text { FY 2022-23 } \\ \text { STANDARD PLANS }\end{gathered}$
. Construct sidewalks in accordance with Specification 522. Use $6^{\prime \prime}$ concrete for Sidewalks and View). Install all other concrete with thickness as shown, unless otherwise detailed in the Plans.
2. Include detectable warnings on sidewalk curb ramps in accordance with Index 522-002
3. For Driveways see Index 522-003.
4. Bond breaker material can be any impermeable coated or sheet membrane or preformed material having a thickness of not less than 6 mils and not more than $1 / 2$.
5. Construct sidewalks with Edge Beam through the limits of any surface mounted Pedestrian/Bicycle Railing or Pipe Guiderail shown in the plans. (See RAILING DETAIL)

OPEN JOINTS

SAWED JOINTS

LONGITUDINAL SECTION

LEGEND:
A- $1 / 2$ ". Expansion Joints (Preformed Joint Filler) between the sidewalk and;
driveways, sidewalk-intersections, and all other fixed ob jects deiveways,
(e.g. drainage inlets and utility poles).
B- $1 /$ " $^{\prime \prime}$ Dummy Joints, Tooled
C- $1 / 8^{\prime \prime}$ Formed Open Joints
D- ${ }^{3} / 6^{\prime \prime}$ Saw Cut Joints, $1^{1 / 2 "}$ Deep (within 96 hours) Max. 5^{\prime} Centers
E- $3 / \mathrm{s}^{\prime \prime}$ Saw Cut Joints, $1^{1 / 2 "}$ Deep (within 12 hours) Max. 30^{\prime} Centers
Joint(s) Required When Length Exceeds $30^{\prime \prime}$
F- $1 /{ }^{\prime \prime}$ Expansion Joint When Run of Sidewalk Exceeds 120. Intermediate
Iocations when called for in the plans or at locations as directed by the Engineer.
G- Cold Joint with Bond Breaker, Tooled

PLAN
\qquad
LEGEND
\square 4" Thick Sidewalk [8] 6" Thick SidewalkUtility Strip

Railing (See Index 515-052,
$515-062,515-070$ or $515-080$)

Flexible Pavt. $=\underbrace{\text { - }}_{-}$

Rigid Pavt.

OPEN JOINTS

SAWED JOINTS

LONGITUDINAL SECTION

LEGEND:

A- $1 / 2{ }^{\prime \prime}$ Expansion Joints (Preformed Joint Filler) between the sidewalk and
driveways, sidewalk-intersections, and all other fixed objects
driveways, sidewalk-intersections, and all other fixed objects
(e.g. drainage inlets and utility poles).
B- I/a" Dummy Joints, Tooled
C- $1_{8 "}$ Formed Open Joints
D- $3 / 16^{\prime \prime}$ Saw Cut Joints, $1^{11 / 2 "}$ Deep (within 96 hours) Max. 5' Centers
E- $3 / h^{\prime \prime \prime}$ Saw Cut Joints, $11 /{ }^{\prime \prime}$ " Deep (within 12 hours) Max. $30^{\prime \prime}$ Centers Sint Required When Length Exceeds 30
F- $1 / 2 \prime \prime$ Expansion Joint When Run of Sidewalk Exceeds 120^{\prime}. Intermediate locations when called for in the plans or at locations as directed by

SIDEWALK JOINTS \qquad
$\bar{\square}$ CONTINUOUS SIDEWALK $=$
LEGEND:

PLAN
DISCONTINUOUS SIDEWALK

$\overline{=}$ SECTION C-C

CONCRETE SIDEWALK ON FLUSH SHOULDER ROADWAYS CONCRETE SIDEWALK

index	sheet
$522-001$	2 of 2

GENERAL NOTES

1. Cross Slopes and Grades:
A. Sidewalk, ramp, and landing slopes (i.e. 0.02, 0.05, and 1:12) shown in this Index are maximums. With approval of the Engineer, provide the minimum feasible slop
B. Landings must have cross-slopes less than or equal to 0.02 in any direction.
C. Maintain a single longitudinal slope along each side of the curb ramp.
Ramp slopes are not required to exceed 15 feet in length.
D.
D. Joints permitted at the location of Slope Breaks. Otherwise locate joints in accordance
with Index $522-001$. No joints are permitted within the ramp portion of the Curb Ramp. 2. Curb, Curb and Gutter and/or Sidewalk:
A. Refer to Index 522-001 for concrete thickness and sidewalk details.
B. Remove any existing curb, curb and gutter, or sidewalk to the nearest joint beyond the curb transition or to the extent that no remaining section is less than 5 feet long.
Width of Curb Ramp is $4^{\prime}-0^{\prime \prime}$ minimum. Match sidewalk or Shared Use Path width
Curb Ramp Alpha-
A. Sidewalk curb ramp alpha-identifications (e.g. CR-A) are provided for reference
B. Alpha-identifications CR-I and CR-J are intentionally omitted.
2. Detectable Warnings
A. Install detectable warnings in accordance with Specification 527
. Place detectabe warninas across the full width of the ramp or landing to a minimum depth of 2 feet measured perpendicular to th
5 feet from the back of the curb or edge of pavement.
C. If detectable warnings are shown in the Plans on slopes greater than 5\% align the not required to be aligned

CURB RAMP NOMENCLATURE \qquad

PLAN VIEW
CR-C

construction of sidewalk curb in cut sections

NOTE: For additional information on sidewalk curb construction, see SIDEWALK CURB OPTIONS details.

MONOLITHIC CAST CURB

SEPARATELY CAST CURB
\qquad
\qquad

SIDEW ALK CURB RAMPS CR-C AND SIDEW ALK CURB

NOTE: Remove Elevated Pavement By Spading And Rolling, Smooth Milling, or Grinding. SECTION C-C - PAVEMENT RELIEF DETAILS \qquad detectable warning on flush shoulder sidewalks \qquad

CURB RAMPS WITHOUT SIDEWALKS AND FLUSH SHOULDER SIDEWALKS

LAST
REVISION
11101/20

DESCRIPTION:
REVIT/20
FDOFT $\begin{gathered}\text { FY 2022-23 } \\ \text { STANDARD PLANS }\end{gathered}$
DE TE CTABLE WARNINGS AND SIDEWALK CURB RAMPS
11/01/20 |

1. Where crosswalk markings are used, ramps must fall within the crosswalk limits.
A clear space of $48^{\prime \prime}$ minimum is required at the bottom of the ramp within a marked crosswalk. If crosswalk markings are not present, a clear space of 48 marked crosswak. If crosswak marking are not present, a clear space of $4{ }^{\circ}$
minimum is required at the bottom of the ramp outside of active travel lanes.
2. Crosswalk widths and configurations vary; must conform to Index 711-001.
3. Flangeway Gap may be up to $3^{\prime \prime}$ for Freight-only Railways.

CURB RAMPS WITHIN RADIAL RETURN

CURB RAMPS OUTSIDE RADIAL RETURN
PLACEMENT OF SIDEWALK CURB RAMPS AT CURBED RETURNS (TYP.)

LINEAR SIDEWALK RAMPS

RAILROAD CROSSING AND CURB RAMPS AT CURBED RETURNS LAST
REVISION REVIT/20

FDOT\} FY 2022-23
$\mathbb{D E T E C T A B L E} W A R \mathbb{N} I G S$ AND SIDEWALK CURB RAMPS

GENERAL NOTES
Work this Index with Specification 522 .
2. Refer to Index 520-001 for drop curb details and Index 522-001 for joints between driveway, sidewalks, and curb.
3. $\frac{\text { Existing Curb and Gutter: }}{\text { Remove existing curb and }}$

解
4. Grades and cross slopes shown are maximums.
5. Longitudinal Joints:

Construct $1 / 8^{\prime \prime}$ open joints placed at equal (20' max.) intervals for driveways over 20^{\prime} wide. Match joints in curb and gutter to match joints in driveways.
6. Transverse Joints:

- Transverse Joints: Construct $1 / 8^{\prime \prime}$ open joints @ 10^{\prime} Centers and $1 / /^{\prime \prime}$ expansion joints with preformed joint filler every 5th joint.

7. Construct driveways ($6^{\prime \prime}$ thick concrete) to a uniform width (W) to the R/W line or the extent shown in the Plans.
8. Width of Sidewalk Thru Driveway is 4^{4}-0" minimum. Match sidewalk width when shown in Plans or when utility strip width is equal to or greater than the depth of the Driveway Apron
9. Alpha-Numeric Identification

Concrete Flared Driveway Alpha-Numeric Identifications (e.g. G4) are provided for reference purposes in the Plans.

LEGEND:

Flared Driveway ($6^{\prime \prime}$ Thick Concrete)Sidewalk Thru Driveway ($6^{\prime \prime}$ Thick Concrete)P77] utility Strip
G_{A} Grade of Apron
Go Grade of Driveway (Per Plans)

PLAN

CONCRETE FLARED DRIVEWAY NOMENCLATURE

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 18 \end{gathered}$		DESCRIPTION:	FDOTY	FY 2022-23 STANDARD PLANS	CONCRETE FLARED DRIVEWAYS	$\begin{gathered} \text { INDEX } \\ 522-003 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 4 \end{aligned}$

- SIDEWALK WITHOUT UTILITY STRIP \qquad

WITHOUT SIDEWALK OR UTILITY STRIP $\geq 10^{\prime}$ WIDE \qquad

LEGEND:

5... Sidewalk

Flared Driveway ($6^{\prime \prime}$ Thick Concrete)Sidewalk Thru Driveway ($6^{\prime \prime}$ Thick Concrete)λ utility Strip

TO REPLACE:	w	d	R	Rows Of Weep Holes	$\begin{gathered} \text { Arc } \\ \text { Length } \end{gathered}$
6' Median Swale	6^{\prime}	$0.24{ }^{\prime}$	19^{\prime}	0	$6.0{ }^{\prime}$
1:6 Front Slopes; 1:4 Back Slope					
5' Ditch Bottom Width	10^{\prime}	0.67	19	2	10.1'
4' Ditch Bottom Width	$9{ }^{\prime}$	0.54	19^{\prime}	2	$9.1{ }^{\prime}$
1:4 Front Slopes \& Back Slope					
5' Ditch Bottom Width	9	0.74	14	2	$9.2{ }^{\prime}$
4' Ditch Bottom Width	8^{\prime}	0.58'	14^{\prime}	$\begin{gathered} 1 \\ \text { (in center) } \end{gathered}$	$8.1{ }^{\prime}$

For use only where side slopes are 1:4 or flatter. Point "A" and "B" are to be
For use only where side slopes are 1:4 or flatter. Point "A" and
the same elevation and should be used to locate the paved section

Wo Geater Than 4',

One Row of Staples
Each Edge Of Overlaps, Each Side of Stops And On Outer Edges At Not (Typical)

MATTING FOR DITCH

 AND LATERAL DITCH
$1 / 2 \mathrm{cu} . \mathrm{ft} .\left(12^{\prime \prime} \times 12^{\prime \prime} \times 6^{\prime \prime}\right)$ of No. 6 aggregate to be placed under each hole. 1 sq. ft. of galv. wire mesh ($1 / 4$ " openings) shall be placed between the aggregate and the ditch pavement. Cost of holes,
aggregate and wire mesh to be included in the cost of ditch pavement.

WEEP HOLE ARRANGEMENT

alternate ditch pavement
 AND LATERAL DITCH

- Do Not Construct Weep Holes In

Ditch
This Area Or 5' Upstream

SECTION AA

> PROFILE OF DITCH PAVEMENT TYPICAL SECTION AT LOCATIONS OTHER THAN JUNCTION WITH LATERAL DITCH

TABLE 1: DITCH PAVEMENT								
Pavement Type	Dimension			$\begin{gathered} \text { Payment } \\ \text { Unit } \\ \hline \end{gathered}$	Basis Of Estimate	$\begin{array}{\|c} \text { Filter Fabric } \\ \hline \end{array}$	$\begin{gathered} \text { Velocity } \\ \text { Range } \end{gathered}$	References \& Remarks
Concrete	$24^{\prime \prime}$	$6^{\prime \prime}$	Varies	$5 Y$	SY	D-4	Low-High	Specification 52
Miscellaneous Asphalt	$24^{\prime \prime}$	12"	$4^{\prime \prime}$	TN	0.2 TN/SY	None	Low-Moderate	Specification 339
Riprap (Sand-Cement)	$24^{\prime \prime}$	$12^{\prime \prime}$	$4^{\prime \prime}$	Cr	$0.11 \mathrm{CY} / \mathrm{SY}$	D-4	Low-Moderate	Specification 530, Grouting of joints required
Riprap (Ditch Lining)				TN	TN	D-2	Moderate-High	Specification 530

PLAN

PAVED DITCH END TREATMENT

general notes

1. Type of ditch pavement shall be as shown on plans.
2. In concrete ditch pavement, contraction joints are to be spaced at 25^{\prime} maximum intervals, or as directed by the Engineer. Contraction joints may be either formed (construction joint) or tooled. No open joints will be permitted in concrete ditch pavement.

Expansion joints with $1 / z^{\prime \prime}$ preformed joint filler shall be
constructed at all inlets, endwalls, and at intervals of not more than 200°.
3. Lip at end of ditch pavement shall normally be located downstream of DPI or on flatter grades where there is a decrease in ditch velocity.
4. Toewalls are to be used with all ditch paving. A toewall is not required adjacent to drainage structures.
5. When directed by the Engineer, weep hole spacing may be reduced to 5^{\prime} minimum.
6. For junction of R/W ditch spillway and lateral ditch, sides of paving to be 1' high minimum
7. Filter fabric is required under all ditch pavement, except for miscellaneous asphalt, regardless of the pavement thickness
Place the filter fabric directly beneath the pavement for the entire length and width of the pavement. See Specification 985 for fabric requirements and application
8. When weep holes with aggregate are used, place filter fabric below the aggregate to form a mat continuous with the pavement filter fabric or underlapping the pavement filter fabric, if present.
9. Ditch pavement requiring reinforcement shall be detailed in the plans.
10. Cost of plastic filter fabric to be included in the contract unit price for ditch pavement.
11. Sodding to be paid for under contract unit price for Performance Turf, SY

BONDED OPTION

NAILED OPTION
Note: Either option may be used unless otherwise called for in the plans.
filter fabric placement at concrete structure

NOTES

Work this Index with the Noise Wall Data Tables, and Wall Control Drawings in the Plans. A. Prestressed concrete posts with equivalent strength resistance may be substituted for
conventionally reinforced precast posts shown in this index when approved as part of a Producer's Quality Control Plan
B. Producer shop drawings for prestressed concrete post designs must be approved by the State Structures Design Office prior to inclusion in the Quality Control Plan.
2. Construct Noise Walls in accordance with the requirements of Specification Section 534, and Augers Cast Piles in accordance with Specification Section 455.
3. Field verify the location of all overhead and underground services shown in the Wall Control Drawings.
4. Wall Height is the nominal height of the walls above finished grade. The Wall Embedment Depth for design is $1^{\prime}-0^{\prime \prime}$. The actual embedment depth may vary plus or minus $6^{\prime \prime}$ along the length of the wall.
5. Post Spacing in this Index are nominal, and are measured from centerline to centerline
of the auger cast piles. Actual post spacing may vary as shown in the Wall Control Drawings.
6. Panels: \quad A. The sum of the individual stacked panel heights is the Wall Height plus $1^{\prime}-0$
(embedment depth)
B. Where special graphics are required, locate the horizontal panel joints outside of tevation
constant elever
C. Side Installed Panels are only permitted when reduced overhead clearance between posts prohibits installing panels from the top.
face of the wall. Recessed panels may be installed from the back or front face of the wall.
2. After panels are installed and centered between posts, grout between
both panel ends and the adjoining posts (see Sheets 4 and 5 for details). Individual panel heights should be between $6^{\prime}-0^{\prime \prime}$ and $12^{\prime}-0^{\prime \prime}$ tall. The minimum panel height is $4^{\prime}-0^{\prime \prime}$ and may be used where overhead clearance is limited, or where graphic panels are required on shorter walls.
7. Concrete And Grout:
A. Concrete Class and Compressive Strenth for

1. Precast Panels, Posts, and Post
2. Cast-In-Place Collars: Class IV
B. Minimum Compressive Strength for form removal and handling of posts and panels:
3. 2,500 psi for horizontally cast post and panels

2,000 psi for vertically cast panels or when tilt-up tables are used for
c. Grout for Auger Cast Piles:

1. Maximum Working Compressive Strength $=2,000$ ps
2. Minimum 28 day strength $=5,000$ psi
3. Reinforcing Steel:
A. In addition to the requirements of Specification Section 415, tie post and pile In addition to the requirements of Specification
stirrups at the following locations as a minimum:
4. Post Stirrups Tie at all four corner bars and at every third interior bar
5. Pile Stirrups Tie to the main vertical reinforcing at alternate intersections for circular configurations and at the four corners and at every third
. Casting Tolerances for precast panels and posts:
A. Overall Height and Width: $+/-1 / 4$
B. Thickness: $+/-1 / 4$
B. Thickness: $+/-\frac{1 / 11}{\prime \prime}$
C. Plane of side mold:
C. Plane of side mon
E. Out of Square: $1 / 8^{\prime \prime}$ per 6 ft ., but not more than $3 / 8^{\prime \prime}$ total along any side
F. Warping: $1 / 16^{\prime}$
per foot distance to nearest
. Warping: 1/16" per foot distance to nearest corner
G. Bowing: 1/240 panel dimension
H. Surface Smoothness for Type "A" Smooth Surface Texture Option: +/- 1/16"
6. Provide Plain or Fiber Reinforced Bearing Pads meeting the requirements of Specification Section 932 for Ancillary Structures.
A. For Collar Bearing Points provide.
7. $4^{\prime \prime} \times 4^{\prime \prime} \times 1 / 2 /$ Fiber Reinforced Pads; sufficient bearing area is available Fiber Reinforced Pads when following:

B. At panel bearing points between stacked panels, use Plain or Fiber Reinforced Bearing Pads.

HALF ELEVATION
(Front Face Post and Panel Texture Type "H" shown)
(Graphic Type SE-2 shown)
(Two stacked panels shown, three stacked panels similar)

Back Face Panel Texture Formed, Rolled or Pressed into Plastic Concrete) -

TYPICAL FORMING DETAIL
(Front Face Panel Texture Type "H" shown)
(Back Face Panel Texture Type "D" shown) (Post Forming Details Similar)
notes
. Submit specific form liner samples for approval by the Engineer
2. Textures and graphics shown are for demonstration purposes only. See Noise Wall Data Tables in the plans for project specific texture and graphic requirements.

GRAPHICS \& TEXTURE DETAILS

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVISION } \\ 07 / 01 / 14 \end{array}$		$\begin{gathered} \text { FY 2022-23 } \\ \text { FDOTANDARD PLANS } \end{gathered}$	NOISE WALLS - (PRECAST)	$\begin{gathered} \text { INDEX } \\ 534-200 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 16 \end{aligned}$

TYPICAL PANEL ELEVATION

* In lieu of utilizing the standard pick up points below, panels may be cast vertically or cast horizontally then tilted upright using and transported maintaining the vertical orientation. If these criteria are met, the vertical steel may be reduced to \#4 Bars @ 1'-3" (As=0.16 in.2/ft.).

STANDARD PICK UP POINTS FOR PANELS (Panels shall be rotated about long axis only)
D

SECTION D-D (Showing Flush Type Panel)

See Detail "B" 7

SECTION D-D (Showing Recessed Type Panel)

exture
Non-Roadway
Face (Back Face)

1. See Sheet 3 for allowable methods
of applying textures.
2. See plans for panel type and
aesthetic requirements. ide-installed
panel length will be shorter than
top-installed Panel length.

SECTION C-C

-instal

(Typical both ends)

(Typical both ends)

CASE 1 (Interior Angle)

DETAIL "C"

Typical post
(EASE Angle)

DETAIL "D"

CASE 1 (Interior Angle)

CASE 2
(Exterior Angle)

DETAIL "E
(Back Face Chamfer Shown
Front Face Chamfer Similar)

NOTE
The shop drawings shall include specific pivoting details of panel ends at locations where the deflection angle ($2 \Delta^{\circ}$) between pane/s exceeds 7°.

NOTE:
The shop drawings shall include specific pivoting details of panel ends at locations where the deflection angle ($2 \Delta^{\circ}$) between panels exceeds 20°.

PIVOTING DETAILS
(Recessed Type Panel)

LAST REVISION $07 / 01 / 13$		$\begin{array}{cc} \text { FDOT 2022-23 } \\ \text { STANDARD PLANS } \end{array}$	NOISE WALLS - (PRECAST)	$\begin{gathered} \text { INDEX } \\ 534-200 \end{gathered}$	SHEET 6 of 16

(Front Face of Wall Shown)
(Two Holes Shown
One Hole Similar)

TYPICAL POST

LOW CLEARANCE OPTION

* Extend Post 2" above top of high side wall panel when post caps are shown in plans. See Sheet 4, "ELEVATION STEP
AT TOP OF WALL".

SECTION R-R

90° CORNER POST NOTES:

1. For Post Reinforcing, see Sheets 15 and 16.
2. For Pile Length Tables, see Sheets 15 and 16.
3. Match texture thickness with appropriate Panaling at each 90° Corner Post.
(Post 90 CORNER POST REINFORCMENT \qquad ity)
90° CORNER POST DETAILS

LAST
REVISION
11/01/16

11/01/16
$\begin{array}{cc}\text { FDOT } & \text { FY 2022-23 } \\ \text { STANDARD PLANS }\end{array}$

VIEW A-A SHOWN, VIEW B-B SIMILAR
(Type "A" Cap Shown, Type " $B^{\prime \prime} \&{ }^{\text {\& }} C^{\prime}$ Caps Similar)

SECTION C-C
PICTORIAL VIEW

TABLE NOTE:

1. Bars D and Bars E are for 45° Corner Posts only.
2. See Contract Plans for project wind spee

Soil $2=$ Medium Dense Granular Soil, $N=10$ to 40 .

PILE DEPTH \& REINFORCING SUMMARY

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 16 \end{gathered}$	\|cos	$\begin{array}{cc} F Y \text { 2022-23 } \\ \text { FDTANDARD PLANS } \end{array}$	$\mathbb{N O I S E}$ WALLS - (PRECAST)	$\begin{gathered} \text { INDEX } \\ 534-200 \end{gathered}$	$\begin{gathered} \text { SHEET } \\ 15 \text { of } 16 \end{gathered}$

	table 2A - table of post reinforcing steel														TABLE 2B - PILE LENGTHS (Feet) - Wind SPEED $=150 \mathrm{MPH}$																
$\begin{aligned} & \text { NOMINAL } \\ & \text { WALL } \\ & \text { HEIGHT } \\ & \text { (Feet) } \end{aligned}$	POST LENGTHS		WIND SPEED $=150 \mathrm{MPH}$													10'-0" POST SPACING								20'0" $0^{\prime \prime}$ POST SPACING							
	without CAP	$\underset{\text { CAP }}{\text { WITH }}$	$\begin{gathered} 10^{\prime}-0^{\prime \prime} \\ \text { POST SPACING } \end{gathered}$						$\begin{gathered} 20^{\prime}-0^{\prime \prime} \\ \text { POST SPACING } \end{gathered}$							H-POSTS				CORNER POSTS				H-POSTS				CORNER POSTS			
			$\begin{gathered} \text { BARS } \\ A \end{gathered}$		${ }_{8}^{\text {RS }}$	$\begin{gathered} \text { BARS } \\ D \end{gathered}$		${ }_{\text {E }}$	$\begin{gathered} \text { BARS } \\ A \end{gathered}$	BA		$\begin{array}{\|c} \hline \text { BARS } \\ D \end{array}$		ARS		SOIL 1		SOIL 2													
			SIZE	SIZE	$\underset{{ }^{D} A^{\prime}}{ }$	SIZE	SIZE	$\begin{gathered} \text { DIM } \\ { }^{\prime} A^{\prime} \end{gathered}$	SIZE	SIZE	$\begin{gathered} \text { DIM } \\ { }^{\prime} A^{\prime} \end{gathered}$	SIZE	SIZE	$\begin{gathered} \hline \text { DIM } \\ A^{\prime} \end{gathered}$		$\begin{gathered} 30^{\prime \prime} \\ 0 \end{gathered}$	$\begin{gathered} 36^{\prime \prime} \\ \varnothing \end{gathered}$	$\begin{gathered} 30^{\prime \prime} \\ \varnothing \end{gathered}$	$\begin{gathered} \hline 36^{\prime \prime} \\ \varnothing \end{gathered}$	$\begin{gathered} 30^{\prime \prime} \\ \varnothing \end{gathered}$	$\begin{gathered} \hline 36^{\prime \prime} \\ \varnothing \end{gathered}$	$\begin{gathered} 30^{\prime \prime} \\ \varnothing \end{gathered}$	$\begin{gathered} 36^{\prime \prime} \\ \varnothing \end{gathered}$	$\begin{gathered} \hline 30^{\prime \prime} \\ \varnothing \end{gathered}$	$\begin{gathered} 36^{\prime \prime} \\ \varnothing \end{gathered}$	$\begin{gathered} 30^{\prime \prime} \\ \varnothing \end{gathered}$	$\begin{gathered} \hline 36^{\prime \prime} \\ \varnothing \end{gathered}$	$\begin{gathered} 30^{\prime \prime} \\ \varnothing \end{gathered}$	$\begin{gathered} 36^{\prime \prime} \\ \varnothing \end{gathered}$	$\begin{gathered} 30^{\prime \prime} \\ \varnothing \end{gathered}$	$36^{\prime \prime}$ \varnothing
12	13'-01/2/1	$13^{\prime}-22^{1 / 11}$	\#4	\#4	$9^{\prime \prime-11^{\prime \prime}}$	\#5	\#5	$9^{\prime \prime}-8{ }^{\prime \prime}$	\#6	\#6	$9^{\prime}-4^{\prime \prime}$	\#6	\#6	$8^{\prime}-4^{\prime \prime}$	12	12	12	11	10	12	11	11	10	17	15	15	14	16	15	14	13
13	$14^{\prime}-0^{11 / 2 \prime}$	$14^{\prime}-21^{\prime \prime \prime}$	\#4	\#4	9'-11"	\#5	\#5	$10^{\prime}-8{ }^{\prime \prime}$	\#6	\#6	$9^{\prime}-4^{\prime \prime}$	\#7	\#7	$8^{\prime}-8^{\prime \prime}$	13	13	12	11	11	13	12	11	10	17	16	15	14	17	15	15	14
14	$15^{-}-0^{1 / 2 / 2}$	$15^{\prime}-22^{1 / 2}$	\#5	\#5	11'-8"	\#5	\#5	10'-8"	\#7	\#7	$10^{\prime}-8^{\prime \prime}$	\#7	\#7	$8^{\prime}-8^{\prime \prime}$	14	13	12	12	11	13	12	12	11	18	17	16	15	17	16	15	14
15	$16^{\prime}-01 / 2^{\prime \prime}$	$16^{\prime}-2{ }^{1 / 2}{ }^{\prime \prime}$	\#5	\#5	11'-8"	\#6	\#6	$12^{\prime \prime}-4^{\prime \prime}$	\#7	\#7	$10^{\prime}-8^{\prime \prime}$	\#8	\#7	$10^{\prime}-8^{\prime \prime}$	15	14	13	12	11	13	13	12	11	19	17	16	15	18	17	16	15
16	17'-01/2"	$17^{\prime}-2^{1 / 2}{ }^{\prime \prime}$	\#5	\#5	11-8"	\#6	\#6	12'-4"	\#7	\#7	$10^{\prime}-8^{\prime \prime}$	\#8	\#8	10'-0'	16	14	13	13	12	14	13	12	12	19	18	17	16	19	17	16	15
17	$18^{\prime}-0^{1 / 2 / 1}$	$18^{\prime}-22^{\prime \prime} /^{\prime \prime}$	\#6	\#6	14'-4"	\#6	\#6	$12^{\prime \prime} 4^{\prime \prime}$	\#7	\#8	10'-0"	\#9	\#8	11'-0"	17	15	14	13	12	14	13	13	12	20	18	17	16	19	18	17	16
18	$19^{\prime}-0{ }^{1 / 2}{ }^{\prime \prime}$	$19^{\prime}-2{ }^{1 / 2}{ }^{\prime \prime}$	\#6	\#6	14'-4"	\#7	\#7	$13^{\prime \prime}-8^{\prime \prime}$	\#8	\#8	12'-0"	\#9	\#10	$9^{\prime \prime}-4^{\prime \prime}$	18	15	14	14	13	15	14	13	12	20	19	18	17	20	18	17	16
19	$20^{\prime}-0^{1 / 2}{ }^{\prime \prime}$	20'-21/2"	\#6	\#6	14'4"	\#7	\#7	13'-8"	\#8	\#9	11'-3"	\#10	\#9	12'-3"	19	16	15	14	13	15	14	14	13	21	19	19	17	20	19	18	17
20	$21^{1}-0^{1 / 2} 2^{\prime \prime}$	$21^{\prime}-22^{\prime \prime} 2^{\prime \prime}$	\#6	\#6	14'-4"	\#7	\#8	$13^{\prime}-0^{\prime \prime}$	\#9	\#9	13'-3"	\#10	\#10	$11^{\prime}-4^{\prime \prime}$	20	16	15	14	13	16	15	14	13	22	20	19	18	21	19	18	17
21	$22^{\prime}-0^{1} / 2^{\prime \prime}$	$22^{\prime}-2{ }^{1 / 2}{ }^{\prime \prime}$	\#7	\#7	16'-8"	\#7	\#7	$13^{\prime \prime}-8^{\prime \prime}$	\#9	\#10	$12^{\prime}-4^{\prime \prime}$	\#11	\#10	$13^{\prime}-4^{\prime \prime}$	21	17	15	15	14	16	15	14	13	22	21	20	18	21	20	19	18
22	$23^{\prime}-0^{1 / 2}{ }^{\prime \prime}$	$23^{\prime}-21^{\prime \prime}$	\#7	\#7	$16^{\prime}-8^{\prime \prime}$	\#8	\#8	$16^{\prime}-0^{\prime \prime}$	\#10	\#9	$14^{1}-3^{\prime \prime}$	\#11	\#11	$12{ }^{\prime}-5^{\prime \prime}$	22	17	16	15	14	17	15	15	14	23	21	20	19	22	20	19	18

table 3A - table of post reinforcing steel															TABLE 3B-PILE LENGTHS (Feet) - Wind SPEED = 170 MPH																
$\begin{gathered} \text { NOMINAL } \\ \text { WALL } \\ \text { HEIGHT } \\ \text { (Feet) } \end{gathered}$	POSt LENGTHS		WIND SPEED $=170 \mathrm{MPH}$												$\begin{gathered} \text { NOMINAL } \\ \text { WALL } \\ \text { HEIGHT } \\ \text { (Feet) } \end{gathered}$	10'0" POST SPACING								20'0" POST SPACING							
	WITHOUT CAP	$\begin{gathered} \text { WITH } \\ \text { CAP } \end{gathered}$	$\begin{gathered} 10^{\prime}-0^{\prime \prime} \\ \text { POST SPACING } \end{gathered}$						$\begin{gathered} 20^{\prime}-0^{\prime \prime} \\ \text { POST SPACING } \end{gathered}$							H-POSTS				CORNER POSTS				H-POSTS				CORNER POSTS			
			$\begin{gathered} \text { BARS } \\ A \end{gathered}$			$\underset{D}{\text { BARS }}$			$\begin{gathered} \text { BARS } \\ A \end{gathered}$	BA		$\begin{gathered} \text { BARS } \\ D \end{gathered}$	$B A R$	E ${ }_{\text {E }}$		SOIL 1		SOIL 2													
			SIZE	SIZE	$\begin{aligned} & \text { DIM } \\ & { }^{\prime} A^{\prime} \end{aligned}$	SIZE	SIZE	$\begin{aligned} & \text { DIM } \\ & { }^{\prime} A^{\prime} \end{aligned}$	SIZE	SIZE	$\begin{gathered} \text { DIM } \\ A^{\prime} A^{\prime} \end{gathered}$	SIZE	SIZE	$\begin{aligned} & \text { DIM } \\ & \hline \end{aligned}$		$\begin{gathered} 30^{\prime \prime} \\ 0 \end{gathered}$	$\begin{gathered} 36^{\prime \prime} \\ 0 \end{gathered}$	$\begin{gathered} 30^{\prime \prime} \\ 0 \end{gathered}$	$\begin{gathered} \hline 36^{\prime \prime} \\ \varnothing \end{gathered}$	$\begin{gathered} \hline 30^{\prime \prime} \\ \varnothing \end{gathered}$	$\begin{gathered} 36^{\prime \prime} \\ \varnothing \end{gathered}$	$\begin{gathered} 30^{\prime \prime} \\ \hline \end{gathered}$	$\begin{gathered} 36^{\prime \prime} \\ \varnothing \end{gathered}$	$\begin{gathered} \hline 30^{\prime \prime} \\ \varnothing \end{gathered}$	$\begin{gathered} 36^{\prime \prime} \\ \varnothing \end{gathered}$	$\begin{gathered} \hline 30^{11} \\ \varnothing \\ \hline \end{gathered}$	$\begin{gathered} \hline 36^{\prime \prime} \\ \varnothing \end{gathered}$	$\begin{gathered} 30^{\prime \prime} \\ \varnothing \\ \hline \end{gathered}$	$\begin{gathered} 36^{\prime \prime} \\ \varnothing \end{gathered}$	$\begin{gathered} \hline 30^{\prime \prime} \\ \varnothing \end{gathered}$	36"1
12	$13^{1}-0^{1 / 21}$	$13^{\prime}-2^{1 / 2}{ }^{\prime \prime}$	\#5	\#5	$9^{\prime \prime} 8^{\prime \prime}$	\#5	\#5	$8^{\prime}-8^{\prime \prime}$	\#6	\#6	$8^{\prime \prime}-4^{\prime \prime}$	\#7	\#7	$7^{\prime}-8{ }^{\prime \prime}$	12	14	13	12	11	13	12	12	11	18	17	16	15	18	16	16	15
13	$14^{-1} 0^{1 / 2}{ }^{\prime \prime}$	$14^{\prime}-21^{\prime \prime}{ }^{\prime \prime}$	\#5	\#5	$10^{\prime}-8^{\prime \prime}$	\#6	\#6	$10^{\prime}-4^{\prime \prime}$	\#7	\#7	$8^{\prime}-8^{\prime \prime}$	\#8	\#7	$8^{\prime}-8^{\prime \prime}$	13	14	13	13	12	14	13	12	11	19	18	17	16	19	17	16	15
14	$15^{1}-0^{1 / 2} /^{\prime \prime}$	$15^{\prime}-22^{\prime \prime \prime}$	\#5	\#5	10'-8"	\#6	\#6	$10^{\prime}-4^{\prime \prime}$	\#7	\#7	$8^{\prime}-8^{\prime \prime}$	\#8	\#8	$8^{\prime}-0^{\prime \prime}$	14	15	14	13	12	14	13	13	12	20	18	18	16	19	18	17	16
15	$16^{\prime}-0^{1} / 2^{\prime \prime}$	$16^{\prime}-2{ }^{1 / 2 \prime \prime}$	\#6	\#6	$12^{\prime}-4^{\prime \prime}$	\#6	\#6	10'-4"	\#8	\#7	$10^{\prime}-8^{\prime \prime}$	\#9	\#8	$10^{\prime}-0^{\prime \prime}$	15	15	14	14	13	15	14	13	12	21	19	18	17	20	18	18	16
16	$17^{\prime}-0{ }^{1} / 2^{\prime \prime}$	$17^{\prime}-2{ }^{1 / 2 \prime \prime}$	\#6	\#6	12'-4"	\#7	\#7	11'-8"	\#8	\#8	$10^{\prime}-0^{\prime \prime}$	\#9	\#10	$8^{\prime}-4^{\prime \prime}$	16	16	15	14	13	15	14	14	13	21	20	19	17	21	19	18	17
17	$18^{-}-0{ }^{1 / 2 \prime}$	$18^{\prime}-2{ }^{1 / 2 \prime \prime}$	\#6	\#6	$12^{\prime}-4^{\prime \prime}$	\#7	\#7	11-8' ${ }^{\text {¢ }}$	\#9	\#8	$12^{\prime \prime}-0^{\prime \prime}$	\#10	\#9	$10^{\prime}-3^{\prime \prime}$	17	16	15	15	14	16	15	14	13	22	20	19	18	21	20	19	17
18	$19^{\prime}-0{ }^{1 / 2 \prime}$	$19^{\prime}-21^{1 / \prime \prime}$	\#7	\#7	13'-8'	\#7	\#8	11-0"	\#9	\#10	$10^{\prime}-4^{\prime \prime}$	\#10	\#11	8'-5"	18	17	16	15	14	16	15	15	14	23	21	20	19	22	20	19	18
19	$20^{\prime}-0^{1 / 2}{ }^{\prime \prime}$	20'-21/2"	\#7	\#7	13^{-81}	\#8	\#7	$13^{-8} 8^{\prime \prime}$	\#10	\#10	$11^{\prime}-4^{\prime \prime}$	\#11	\#11	$10^{\prime \prime} 5^{\prime \prime}$	19	17	16	15	14	17	16	15	14	23	22	21	19	23	21	20	18
20	$21^{1}-0^{1 / 21}$	21'-21/2"	\#7	\#7	13'-8"	\#8	\#8	$13^{\prime}-0^{\prime \prime}$	\#10	\#11	$10^{\prime}-5^{\prime \prime}$	\#11	\#14	$7^{\prime \prime}-0^{\prime \prime}$	20	18	17	16	15	17	16	15	14	24	22	21	20	23	21	20	19
21	$22^{-1}-0^{1 / 2 \prime}$	$22^{\prime}-22^{\prime \prime}{ }^{\prime \prime}$	\#7	\#8	13'-0"	\#9	\#8	$15^{\prime}-0^{\prime \prime}$	\#11	\#10	13'-4"	\#14	\#11	$12^{\prime \prime}-5^{\prime \prime}$	21	18	17	16	15	18	17	16	15	25	23	22	20	24	22	21	19
22	$23^{\prime}-0^{1} / 2^{\prime \prime}$	$23^{\prime}-21^{\prime \prime \prime}$	\#8	\#7	$16^{\prime}-8^{\prime \prime}$	\#9	\#9	$14^{\prime}-3^{\prime \prime}$	\#11	\#11	$12^{\prime}-5^{\prime \prime}$	\#14	\#14	$9^{\prime}-0^{\prime \prime}$	22	19	18	17	16	18	17	16	15	25	23	22	21	24	23	22	20

table note:
TABLE NOTE:

1. Bars D and Bars E are for 45° Corner Posts only
2. Bars D and Bars E are for 45° Corner Posts
3. Soil $1=$ Loose Granular Soil, $N=4$ to 9 ;

Soil $2=$ Medium Dense Granular Soil, $N=10$ to 40 .

PILE DEPTH \& REINFORCING SUMMARY
LAST
REVISION
11/01/16

DESCRIPTION:
11/01/16

GENERAL NOTES
2. Construct Perimeter Walls in accordance with Specification Section 534 Choice of either Precast Option or Masonry Option is at the discretion of the Contractor thase required for 3. Post spacing is measured from centerline to centerline of foundation element. For this Index, posts and foundation elements have been designed for 20 ft . spacings. Use post spacings less than 20 feet only at changes in horizontal alignment, wall terminations or to accommodate steep grades.
4. See "Perimeter Wall Data Tables" in the plans for project requirements.
5. Field verify the locations of all overhead and underground utities shown in the Wall Control Drawings.

PRECAST OPTION NOTES

6. WALL NOTES
A. Walls may consist of either a single height panel or two stacked panels. Minimum panel
B. Only when reduced overhead clearance between posts prohibits installation of panels from the top, side-installed panels are allowed. After panel is centered between posts, grout between panel ends and posts.
7. CONCRETE AND GROUT:
A. Cast-in-Place and Precast Concrete: Class IV
B. Grout for Auger Cast Piling: Minimum 28 Day Strength $=5000$ psi

Precast Sompressive Strength for Form Removal and Handling of Posts, Panels and
i. 2,500 psi for horizont
ii. 2,000 psi for vertically cast past post, panels and precast spread footings. horizontally cast panels.
8. REINFORCING STEEL:
A. Concrete Cover: $11 / 2$ " unless otherwise noted
B. In addition to the requirements of Specification Section 415, tie post and pile stirrups at the following locations as a minimum:
i. Post Stirrups - Tie at all four corner bars and at every third interior bar intersection.
ii. Pile Stirrups - Tie to the main vertical reinforcing at alternate intersections.
9. BEARING PADS: Bearing Pads for Collar or Pedestal Bearing Points and between stacked panels
may be either Plain or Fiber Reinforcea Neoprene Pads, in accordance with Specification
Section 932 for ancillary structures.
10. CASTING TOLERANCES:

C. Thickness: +1-- $1 / 4$
D. Openings: $+/-1 / 2^{\prime \prime}$
E. Out of Square: $1 / /^{\prime \prime}$ per 6 ft ., but not more than $3 / 8^{\prime \prime}$ total along any side
F. Warping: $1 / 1 /{ }^{\prime \prime}$ per foot distance to nearest corner
G. Bowing: $1 / 240$ panel dimension
11. PILING
construct Auger Cast Piling in accordance with the Plans and Specification Section 455

MASONRY OPTION NOTES:

12. WALL NOTES
A. Inspect construction in accordance with the International Building Code
B. Construct masonry walls with $8 \times 8 \times 16$ block using a running bond pattern and concave tooled joints.
C. Make all elevation changes (steps) in footing and top of wall using full height blocks. between pilasters steps at pilasters exclusively. Footing steps may be made between pilasters as necessary to maintain minimum soil cover.

MASONRY OPTION NOTES (CONT.):
D. Fully Grout all cells with horizontal or vertical reinforcing bars.
E. Use reinforcing bar positioners to maintain
F. Fully grout first three courses of the wall.
F. Fully grout first three courses of the wall.
G. Joint Reinforcement: Use W 1.7 (9mm) galvanized ladder reinforcing spaced at $16^{\prime \prime}$ vertically. Provide special accessories for corners, intersections, etc. Joint reinforcing shall be continuous except it shall not pass through vertical masonry
H. Construct expansion joints in the foundation at 90 foot maximum intervals, and directly below a wall control joint,
I. Dowel Load Transfer Devices will be ASTM A 36 smooth round bars hot-dip galvanized in accordance with Specification Section 962. Install Dowel Load Transfer Devices in accordance with Specification Section 350.

1. For spread footings, use a walk-behind compactor of at least 600 lbs. in weight. Obtain a minimum density of 95% of the
K. Protect walls during construction from soil, grout or mortar stains. Clean wall as work progresses by dry brushing to
remove mortar fins and smears before tooling joints.
L. Use soap and potable water to clean walls. If stain removal is necessary, use a cleaning method indicated in NCMA
M. During construction, cover tops of walls, with waterproof sheeting at the end of each day's work, or when construction is
not in progress. Extend sheeting a minimum of 2 feet down each side and secure in place.
N. Comply with Hot Weather Requirements in ACI 530.1.
2. MATERIALS:
A. Concrete Masonry Units (CMU): Provide normal weight blocks.
B. Cast-In-Place Concrete: Class II for slightly to moderate aggressive environments or Class IV for extremely aggressive
C. Mortar: Type S meeting requirements of ASTM C1329
D. Grout: Type S; coarse grout.
E. Aggregate for Grout: Meet the requirements of ASTM C404 or Specification Section 901 size 8 or 89 .
3. STORAGE OF MATERIALS
A. Store CMU's on elevated platforms in a dry location or under cover

If units become wet, do not install until they are dry
B. Store cementitious materials on elevated platforms, under cover, and in a dry location. Do not use cementitious materials
c. that have become damp or exceeded the manufacturers shelf life.

(Precast Option with SIngle Height Panel Shown, Others Similar)

VIEW A-A
(Type "A" Cap Shown, Type "B" \& "C" Caps Similar)

SECTION B-B

PICTORIAL VIEW
TYPE "A" CAP DETAILS
*Precast Option only

SECTION B-B
\qquad TYPE "B" CAP DETAILS

Pictorial view

Type A: $8^{\prime \prime}$
Type B: $1^{1}-0^{\prime \prime}$
Type C: $1^{\prime}-4^{\prime \prime}$
Type D: $1^{\prime}-8^{\prime \prime}$

DRAINAGE HOLES TYPES A, B, C \& D
Hole Types A, B, C, \& D refer to distance fro bottom of panel/wall to center of the pipe.

SECTION C-C
(Precast Option Shown, Masonry Option Similar)

NOTES:

1. Drainage holes may be formed with $4^{\prime \prime}$ NPS PVC pipe that
may remain in place.
See wall Control drawings for number, Type and location spacing of drainage holes.

TYPICAL PANEL ELEVATION

* In lieu of utilizing the standard pick up points below, panels may be cast vertically or cast horizontally then tilted upright using tilt-tables prior to lifting from form. In this case, pick points must be placed n the top of panels only and transported maintaining the vertical orientation. If these criteria are met, the vertical steel may be reduced to \#4 Bars @ $1^{\prime}-3^{\prime \prime}\left(A s=0.16 \mathrm{in} .^{2} / \mathrm{ft}\right.$.).

STANDARD PICK UP POINTS FOR PANELS (Panels shall be rotated about long axis only)

SECTION F-F

DETAIL "B" - TOP-INSTALLED
(Typ. Both Ends)

DETAIL "B" - SIDE-INSTALLED
(Typ. Both Ends)

PRECAST OPTION - TYPICAL PANEL DETAILS

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ \text { O1/01/14 } \end{gathered}$	\|ras	$\begin{array}{cc} \text { FDOT } & \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{array}$	PERIMETER WALLS	$\begin{gathered} \text { INDEX } \\ 534-250 \end{gathered}$	SHEET $5 \text { of } 10$

Table 2					
$\begin{gathered} \text { Wind } \\ \text { Speed } \\ \text { Category } \end{gathered}$	Masonry Walls ($8 \times 8 \times 16$)		Foundations		
			Bars	$T \text {-Footing }$	Trench
	Bars V1	$\begin{gathered} \text { SV } \\ \text { Spacing } \end{gathered}$	$F 1 \& F 2$	$\begin{aligned} & \text { Width } \\ & \text { (W) } \end{aligned}$	Fepth (${ }^{\text {F }}$)
130	\#5	$2^{\prime}-8^{\prime \prime}$	\#5	$4^{\prime \prime}-4^{\prime \prime}$	$5^{\prime}-6^{\prime \prime}$
150	\#5	$2^{\prime \prime}-0^{\prime \prime}$	\#5	$5^{\prime}-0^{\prime \prime}$	$6^{\prime \prime}-4^{\prime \prime}$
170	\#5	$1^{1}-4^{\prime \prime}$	\#5	$6^{\prime}-0^{\prime \prime}$	$7^{\prime \prime}-0^{\prime \prime}$

Notes: End vertical reinforcing bars $1 \frac{1}{2}$ " from top of bond beam blocks and horizontal bars

1. 11/2 from edge of control joints.
2. Do not continue horizontal \#4 Bond beam reinforcing through control joint.
3. Use stainless steel joint stabilizing anchors spaced at $16^{\prime \prime}$ vertically at all control
se sts. Install per manufacturers instructions. "A" silicone sealant (top and both sides),
Seal Control Joints with backer rod and Type "
4. Seal Control Joints with backer rod and Type "A" silicone sealant (top and both sides).
5. See Sheet 10 for Bar placement details.
6. See Sheet 10 for Bar placement details.

BAR BENDING DETAIL

All bar dimensions in bendin diagram are out to out. bending diagrams are straight.

SHEET	CONTENTS
1	General Notes; Index Contents
2	General, TL-3 Guardrail - Installed Plan and Elevation
3	Low-Speed, TL-2 Guardrail - Installed Plan and Elevation
4	W-Beam and Thrie-Beam Panel Details
5	Post and Offset Block Details
6	Guardrail Sections - Heights and Adjacent Slopes
7	End Treatment - Approach Terminal Geometry, Parallel
8	End Treatment - Approach Terminal Geometry, Curbed and Double Faced
9	End Treatment - Trailing Anchorage
10	End Treatment - Component Details
11	End Treatment - Controlled Release Terminal (CRT) System
12	Layout for CRT System - Side Roads and Driveways
13	Approach Transition Connection to Rigid Barrier - General, TL-3
14	Approach Transition Connection to Rigid Barrier - General, TL-3 - Curb Connections
15	Approach Transition Connection to Rigid Barrier - Low-Speed, TL-2
16	Approach Transition Connection to Rigid Barrier - Low-Speed, TL-2 - Curb Connections
17	Approach Transition Connection to Rigid Barrier - Details
18	Approach Transition Connection to Rigid Barrier - Double Faced Guardrail
19	Layout to Rigid Barrier - Approach Ends
20	Layout to Rigid Barrier - Approach Ends with Double Faced Guardrail Layout to Rigid Barrier - Trailing Ends Trailing End Transition Connection to Rigid Barrier
21	Rub Rail Details
22	Pedestrian Safety Treatment - Pipe Rail
23	Modified Mount - Special Steel Post for Concrete Structure Mount; Modified Mount - Encased Post for Shallow Mount; Modified Mount - Frangible Leave-Out for Concrete Surface Mount
24	Barrier Delineators - Post Mounted; Clear Space - Reduced Post Spacing for Hazards; 5/8" Button-Head Bolt System

GENERAL NOTES:

1. INSTALLATION: Construct guardrail in accordance with Specification 536.

This Index, along with the plans and the manufacturers' drawings on the Approved Products List (APL), is sufficiently detailed for installation of General Guardrail, Low-Speed Guardrail, End Treatment assemblies, and their connecting options shown herein. This precludes requirements for shop drawing submittals unless otherwise specified in the plans.
2. COMPATIBILITY: The General Guardrail in this Index is based on the Midwest Guardrail System (MGS) design, with an approximate height of $31^{\prime \prime}$ at the top of the Panel ($2^{\prime}-1^{\prime \prime}$ mounting height at vertical \mathbb{q} of Panel) and a midspan panel splice as shown on Sheet 2 . Guardrail components included on the APL, which are compatible with this Index, may also be identified as 31" or MGS Guardrail.
3. STANDARD COMPONENTS: Standard guardrail components, including posts, panels, and bolt systems, are based on the Task Force 13 Publication: Guide to Roadside Hardware Components (http://tf13.org/Guides/componentGuide/).
4. BUTTON-HEAD BOLTS: Install Button-Head Bolts where indicated using bolts, nuts, and washers as defined on Sheet 24. Place washers under nuts. Do not place washers between bolt heads and panels, except where otherwise shown in this Index.
5. HEX-HEAD BOLTS: Install Hex-Head Bolts where indicated using bolts, nuts, and washers in accordance with material properties of Specification 967. Place washers under nuts.
6. MISCELLANEOUS ASPHALT PAVEMENT: Install Miscellaneous Asphalt Pavement where indicated with a tolerance of $\pm 1 / 2^{\prime \prime}$ depth and in accordance with Specification 339,
7. ADJACENT SIDEWALKS \& SHARED USE PATHS: When guardrail posts are placed within 4'-0" of a sidewalk or shared use path, use timber posts, or use steel posts only if treated with Pipe Rail as shown on Sheet 22.

When timber posts are used, one of the following safety treatments is required for the bolt(s) protruding from the back face of the posts:

After tightening the nut, trim the protruding post bolt flush with the nut and galvanize per Specification 562.
b. Use post bolts $15^{\prime \prime}$ in length and countersink the washer and nut between $1^{\prime \prime}$ and $11 / 2^{\prime \prime}$ deep into the back face of the post, C. Use 15" post bolts with sleeve nuts and washers.

When End Treatment posts are within 4-0" of a sidewalk or shared use path, steel posts are not permitted within the End Treatment segment. Terminate the Pipe Rail outside of End Treatment segments, as noted per Sheet 22.
8. NESTED W-BEAM: Where called for in the plans, install two W-Beam Panels mounted flush per location, securing all panels with Button-Head Bolts threaded through aligned slots and holes. $2^{\prime \prime}$ Button-Head Bolts are permitted for panel splice locations.
9. CONNECTION TO RIGID BARRIER: The connections to Rigid Barrier in this Index only apply to newly constructed bridge Traffic Raling and Concrete Barrier or where the complete Approach Transition Connection to Rigid Barrier shown herein can be installed without conflicting with existing Traffic Railings, structures, or approach slabs.
For connecting guardrail to existing bridge Traffic Railings, see Indexes 536-002, 521-404, and 521-405.
10. CONNECTION TO EXISTING GUARDRALL: Where a transition to existing guardrail at 27 " height is required, linearly transition the解 guardrail height over a distance ranging from $25^{\prime}-0^{\prime \prime}$ to $31^{\prime}-3^{\prime \prime}$. Height transitions must occur outside of End Treatment and Approach Transition segments.
Provide an immediate transition to the required midspan panel splice using the available panel options on Sheet $4\left(9^{\prime}-4^{1 / 2} z^{\prime \prime}\right.$ or $15^{\prime}-7 \frac{1}{2} /{ }^{\prime \prime}$ panel). Alternatively, this transition to midspan panel splice may be achieved by installing a single reduced post spacing of $3^{\prime}-11 / 2$ within the new guardrail, immediately ad jacent to the connection location.
11. PLANS CALLOUTS: Begin/End Station labels are shown throughout this Index as they correspond to the station and offset callouts specified in the plans.

In the plans, Begin/End Guardrail Station refers to the General TL-3 Guardrail Pay Item, and it may be abbreviated as Begin/End GR. Station. Where the Low-Speed TL-2 Guardrail Pay Item is specifically required, the callout in the plans will then specif Begin/End TL-2 GR. Station.
2. QUANTITY MEASUREMENT: Measure guardrall and corresponding components as defined in Specification 536. The Guardrail length is measured along the centerline of installed Panels, between the points labeled Begin/End Guardrail Station shown on the following Index Sheets and defined in the plans (typically measured from the q of the panel's post bolt slots at the approach/trailing ends.

GENERAL GUARDRAIL
INSTALLED ELEVATION

INSTALLED SECTION

NOTES:

1. GENERAL: Install the General Guardrail configuration where indicated in the plans. This may include tapered segments if

Use $12^{\prime \prime}-6^{\prime \prime}$ or longer W-Beam Panels. A single $6^{\prime}-3^{\prime \prime}$ Panel may be used at the end of the run to meet the nominal Begin/End Guardrail Sta. requirements.
Where a differing guardrail configuration is required for
constructability beyond the options shown in this Index constructability beyond the options shown in this Index or the
plans, obtain approval from the Engineer prior to installation,
2. MIDSPAN PANEL LAP SPLICE: For proper structural function, Lap the Pane/s with the Splice Ridge oriented downstream of
the final Direction of Traffic in the nearest traffic lane. For reverse lane conditions, orient the Splice Ridge downstream of the lane direction with the highest traff fic volume. Orienting Lap
Splices for Temporary Traffic Control phasing is not required.
3. CONNECTION DETAILS: Connections to End Treatments, Approach following Index Sheets APL Drawings or the plans.
4. W-beam panel details: See Sheet 4
5. POST \& OFFSET BLOCK DETAILS: See Sheet 5 .
6. GUARDRAIL SECTIONS: For Sections showing typical mounting heights, grading, and lateral offsets in relation to adjacent heights, grading, and lateral of
roadway features, see Sheet 6
7. MODIFIED MOUNTS: Where concrete structures, concrete sidewalk, or shallow depth conditions are enc
Sheet 23 for additional post mounting options.
8. DEFINED SEGMENTS: The General Guardrail shown provides the base configuration, including Post Spacing and splice locations,
for Defined Segment modifications where indicated in the plans for Defined Segment modifications where indicated in the plans and using the Guardrail Types, Sections, and/or hardware as Shown in this Index (e.g. Double Faced W-Beam, Deep Posts at
Slope Breaks, Pipe Rail, Rub Rail, or Reduced Post Spacing for Hazards).
:

LOW-SPEED GUARDRAIL
INSTALLED ELEVATION

\ldots Direction of Traffic
INSTALLED PLAN

INSTALLED SECTION
NOTES:

1. GENERAL: Install the Low-Speed Guardrail configuration where segments if called for in the plans.
Use $12^{\prime}-6^{\prime \prime}$ or $25^{\prime}-0^{\prime \prime}$ W-Beam Panels for normal spans, and use $9^{\prime}-41 / 2^{\prime \prime}$ Panels for end connections to adjoining segments as $9^{\prime}-4 / 2^{\prime \prime}$ Panels for end connections to adjoining segments as
shown. A single $6^{\prime}-3^{\prime \prime}$ Panel may be used at the end of the Low-Speed Guardrail run along with a single reduced $6^{\prime}-3^{\prime \prime}$ post
spacing to meet the nominal Begin/End Guardrail Sta. required. Where a differing guardrail configuration is required for
constructailility beyonot the options shown in this Index or the
Plans obtain appoval from the Engineer prior to installation. to installation
2. MIDSPAN PANEL LAP SPLICE: For proper structural function.
place all Lap Splices at midspan unless otherwise indicated.

Lap the Panels with the Splice Riage oriented downstream of the final Direction of Traffic in the nearest traffic lane. For reverse
lane conditions, orient the Splice Ridge downstream of the direction with the highest traffic volume. Orienting Lap Splices for Temporary Traffic Control phasing is not required.
3. CONNECTION DETAILS: Connections to End Treatments, Approach ransitions, or other segment types are def ined in the following
. W-BEAM PANEL DETAILS: See Sheet 4.
POST \& OFFSET BLOCK DETAILS: See Sheet 5 .
GUARDRAIL SECTIONS: For Sections showing typical mounting heights, grading, and lateral offs
roadway features, see Sheet 6 . roaway feaures, see sheet 6 .
MODIFIED MOUNTS: Where concrete structures, concrete sidewa or shallow depth conditions are
additional post mounting options.
8. RESTRICTIONS: Low-Speed Guardrail segments are not permitted for use with items including, but not limited to, Double Faced W-Beam, Deep Posts
and lor Rub Rail.

LOW-SPEED, TL-2 GUARDRAIL DETAILS

LAST
REVISION
11/01/19

GUARDRAIL

index	$\begin{array}{c}\text { sheet } \\ 536-001 \\ 3 \text { of } 24\end{array}$

W-beam panel section

thrie-beam panel section

W-beam panel elevation

Panel Type	Number of Spaces ' N '	Gauge
6^{\prime}-3" W-Beam	2	12
9'-41/2" W-Beam	3	12
12'-6" W-Beam	4	12
15'-71/2 W-Beam	5	12
25'-O" W-Beam	8	12
3'-1/2" Thrie-Beam	1	10
6'-3"'Thrie-Beam	2	12
12-6" Thrie-Beam	4	12
25-0"1 Thrie-Beam	8	12

NOTES:

1. MATERIALS:

Use corrugated steel panels in accordance with
Specification 967 and made from either Class A, 12 gauge steel or Class B, 10 gauge steel as
specified in the 'Panel Summary Table' above.
2. CABLE ANCHOR PLATE BOLT HOLES:
Include $3 / 4$ Q Cable Anchor Plate Bolt Holes on where required for installation of the Cable
Anchor Plate shown on Sheet $9,10, \& 11$. $2 \% 3^{\prime \prime} \times 1 / /^{\prime \prime}$ slots may substitute for the $3 / /^{\prime \prime} \varnothing$ $293^{\prime \prime} \times 11^{\prime \prime}$ sl
holes shown.

W-BEAM

DOUBLE FACED W-BEAM

THRIE-BEAM

DOUBLE FACED

SLOPE BREAK CONDITION TIMBER DEEP POST

SLOPE BREAK CONDITION STEEL DEEP POST
GUARDRAIL TYPES - MOUNTING HEIGHTS \& POST DEPTHS

TYPICAL SIDEWALK DETAIL (Work with Other

TYPICAL

ADJACENT TO CURB (Type F Curb Shown)

BEHIND CURB
(Type F Curb Shown)

ADJACENT TO

TYPICAL GRADING \&
PAVT. PLACEMENT
PLACEMENT
(See Note 2)
\qquad GUARDRAIL SECTIONS - CURB \& GUTTER \qquad

GUARDRAIL SECTIONS - SHOULDERS

NOTES:

GUARDRAIL HEIGHT SUMMARY TABLE:			
Type:	Min. Depth 'D':	Mounting Height 'H':	Post Length 'L':
W-Beam (Single and Double Faced)	$3^{\prime \prime}-10^{\prime \prime}$	$2^{\prime \prime}-1{ }^{\prime \prime}$	$6^{\prime}-6{ }^{\prime \prime}$
Thrie-Beam (Single and Double Faced)	$3^{\prime}-10^{\prime \prime}$	$1^{1}-9{ }^{\prime \prime}$	$6^{\prime}-6^{\prime \prime}$
Timber Deep Post	$4^{\prime}-10^{\prime \prime}$	See Above	$7{ }^{\prime}-6{ }^{\prime \prime}$
Steel Deep Post	$6^{\prime}-4^{\prime \prime}$	See Above	$9^{\prime}-0^{\prime \prime}$

1. GUARDRAIL SECTIONS: Construct Sections as indicated in the plans. The details
shown herein depict W-Beam Guardrail, but are applicable to the other defined Shown herein depict W-Beam Guardrail, but are applicable to the other define
Guardrail Types placed at the corresponding height, 'H'. Use components per Sheets 4 \& 5 Steel and timber post types are interchangeable unless
otherwise defined. The $1: 10$ Max. cross slope shown is the maximum slop
ond otherwise def ined. The $1: 10$ Max. cross slope show is the maximums slope
permitted or prope guardrail function, but project-specific cross slope
requirements are governed by additional design criteria, per the plans permittee for proper guardrail unction, but project-specitic cross slope
requirements are governed by additional design criteria, per the plans.
2. TYPICAL GRADING \& PAVEMENT PLACEMENT DETAIL: Construct features as
depicted except where superceded by specific Guardrail Sections or the plans.
Pa
 slope break may be placed at the $\&$ Post with the $2^{\prime \prime}$ Miscellaneous Asphalt
Pavement omitted.
3. SLOPE BREAK CONDITION: Install Deep Posts only where called for in the
plans. Deep Posts are only permitted where post spacing is $6^{-1} \mathbf{3}^{\prime \prime}$ or less.
4. LATERAL OFFSETS: The Lateral Offsets shown are governed by the station
5. ADJACENT TO CURB: Place the Face of Guardrail consistently off set either flush with the Face of Curb or 5 " behind the Face of curb, as indicated by
the plans station and oftset callout. For off set changes, transition the Face
of Guardrail as shown in the plans.

GUARDRAIL SECTIONS

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$		$\begin{array}{cc} \text { FDOTY 2022-23 } \\ \text { STANDARD PLANS } \end{array}$	$\mathbb{G} U \mathbb{A} R$ RRAIL	$\begin{gathered} \text { INDEX } \\ 536-001 \end{gathered}$	SHEET 6 of 24

NOTES:

1. INSTALLATION: Locate Approach Terminals where called for in the plans.
with the Post (1) \& placed at the Begin/End Guardrail Station indicated in the plans.
The Plan Views shown herein are schematic only, showing basic geometry
for Approach Treatment, 'LE', includes the proprietary portion of various Aporoach Terminals and provides tor morere consistent portanning of as assemply installations across the differing Approach Terminal types.
Forward-anchoring style Approach Terminals may vary from the planned Forward-anchoring stye Afppren
lengths shown by up to $3^{\prime}-0^{\prime \prime}$.
Construct Approarh Terminals as shown in the APL and in accordance with
the manufacturer's unique drawing details, procedures, and specifications. Install posts in accordance with the manufacturer's drawings. The Special
Posts on Sheet 23, including Special Steel Posts, Encased Posts, and Posts
Frangible Leave-Outs, are not permitted within the Approach Terminal Frangibe Leave-outs, are not per firt te within the
segment unless otherwise called for in the plans.
Align panel lap splices in accordance with the manufacturer's drawings,
regardless of the direction of traffic. Install adjacent grading, gutters, and/or curbing as shown herein.
2. GENERAL GUARDRALL: General Guardrail typically includes Panels and Post
Spacing as shown on Sheet 2, including parallel and tapered segments. Approach Transitions, Low-Speed Guardrail, or Reduced Post Spacing
Guardrail segments may be substituted for the General Guardrail shown Guardrail segments may be subs
herein if indicated in the plans.
3. APPROACH TERMINAL TEST LEVEL: Install either a Test Level 3 (TLL-3) or Appoan Terminals may substitute for TL-2 Approach Terminals unless the
substitution is specifically prohibited in the plans. TL-2 Approach
4. IMPACT HEAD END DELINEATOR: Apply Yellow Retroreflective Sheeting to
the nose of the End Terminal in accordance with Specification 536 .
5. 2" MISCELLANEOUS ASPHALT PAVEMENT: The Plan View depicts the

5npaved Shoulder condition. For Fully Paved Shoulder and Shoulder Gutter
conditions exten the conditions, extend the $2^{\prime \prime}$ Misc. Asphalt Pavement as shown in the
esponding Section at Post (1) details below.
The 2" Misc. Asphalt Pavement shown upstream of Post (1) may be
substituted with a different pavement type where called for in the Plans.
6. CLEAR AREA REQUIREMENT: Do not place any permanent aboveground Installations within the areas shown with 1:10 maximum grading. For the
finished condition keep this area free of all aboveground obstructions finished condition, keep this area free of all aboveground obstruction
including dense vegetation and trees.
7. 'curbed' and 'double faced' guardrail segments: See Sheet 8 .

SECTION AT POST (1) WITH UNPAVED SHOULDER

SECTION AT POST (1) WITH FULLY PAVED SHOULDER

SECTION AT POST (1) WITH SHOULDER GUTTER

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{array}$		DESCRIPTION:		$\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	$\mathfrak{G U A R}$	INDEX 536-001	SHEET 7 of 24

APPROACH TERMINAL ASSEMBLY
$_$Direction of Traffic
'CURBED' SEGMENT - PLAN VIEW

APPROACH TERMINAL ASSEMBLY
'DOUbLE FACED' SEGMENT - PLAN VIEW

NOTES:

1. GENERAL: See Notes 1 through 3 on Sheet 7
2. CURED SEGMENTS: TYpe E curb is required within the limits shown. When a different curb type is called for
outside of the Type E curb limits, transition the curb outside of the e the E curb imits, transition the curb
shape linearly, over a nominal distance ranging $5^{\prime \prime}-0^{\prime \prime}$ to
3. TAPER LENGTH: For Curbed Segments, taper the guardrail away from the roadway where shown to place
the inside edge of the Impact Head at 5 " behind the The inside edge of the Impact Head at $5^{\prime \prime}$ behind
face of the curb. Where additional lateral offset required to torb the Approach Terminal Assembly hardware, such as a soil plate, place the Impact Head
as close to the curb as the hardware allows, not to ace of curb.
4. GUARDRAIL HEIGHT TAPER: For Curbed Segments, the
connecting General Guardrail Mounting Height, 'H', is typically measured from the Lip of Gutter (See Sheet 6
Guardrail Sections. 'Ad jacent to Curb') while the End Guardrail Sections, 'Adjacent to Curb'), while the
Terminal Assembly ' H ' is measured from the Misc Asphalt Pavt. (See Section A-A). Linearly taper the difference in Mounting Height over a minimum length of
5. DOUBLE FACED SEGMENT: Connect to Double Faced 5. General Guardrail. Use consistent Posts and Offset Block types as speciified in the APL drawings over the entire
Length of End Treatment, 'LE'. Posts and Offset Blocks in Length of End Treatment. LE. Posts and oft set Blocks
the ading General Guardrail segment may be
different from those inside of the ' E^{\prime} A hange in post different from those inside of the 'LE' A A hange in post
type between timber and steel is permitted, immediately outside of the 'LE' segment.

Maintain the 1:10 maximum grading as shown in Section
$B-B$ throughout segment ' $L E$ '. Where required, transition B-B throughout segm loper where required, transition
to differing ad jacent slopearly, over a minimum to differing adjacent slopes
Iongitudinal length of $25^{\prime}-0$
6. IMPACT HEAD END DELINEATOR: Apply Yellow in accordance with Specification 536 .

CLEAR AREA REQUIREMENT: Do not place any permanent
aboveground installations within the areas shown with $1: 10$ maximum grading. For the finished condition, keep this area free of all aboveground obstructions, including 2" MISCEllion and trees.
8. $2^{\prime \prime}$ MISCELLANEOUS ASPHALT PAVEMENT: The 2" Misc Asphalt pavement shown upstream of Post (1) may be
substituted with a different pavement type where called Plans.
9. Single faced 'Parallel' segments: See Sheet

'CURBED' SECTION A-A (Height, 'H', Measured from Misc. Asphalt Pavt.)

DOUBLE FACED' SECTION B-B (1:10 Slope or Flatter Reqd.)

END TREATMENT
APPROACH TERMINAL GEOMETRY CURBED AND DOUBLE FACED

SINGLE FACE TRAILING ANCHORAGE INSTALLED PLAN

NOTES:

1. COMPONENT DETAILS: For additional component
details, See Sheet 10 . detalls, see sheet 10 2. END UNITS: Use materials for end units as defined
in Specificications section 967 . End Units are referred in Specifications Section 966. End Units are refer
to as "End or Buffer Sections" in AASHTO M180. Lap the Flared End Unit behind the W-Beam; lap the
Rounded and Buffered End Units over the face of the W-Beam.
2. FOUNDATIONS: Install Steel Tubes by either of the
following methods: a. Excavate, backfill, and compact material to provide
full passive soil resistance to the surface of the Tube.
b. Drive the Tube using a dummy timber post to
prevent damage to the Breakaway Post.
3. GENERAL GUARDRAIL: General Guardrail typically
includes Panels and Post Spacing as shown on Sheet includes Panels and Post Spacing as shown on Sheet
2, incluling parallel and tapered segments. Transitions, Low-Speed Guardrail, or Reduced Post
Spacing Guardrail segments may Spacing Guardrail segments may be substituted for
the General Guardrail shown herein if indicated in
the plans. the General
the plans.
4. SIDEWALK REQUIREMENTS: When sidewalks are
Iocated ad jacent to the End Treatment, install a located adjacent to the End Treatment, install a
Rounded End Unit (Flared End Unit not permitted for
this case). this case).
5. END DELINEATOR: Mount retroreflective sheeting to the approach face of the End Unit in
Specification Sections 536 and 967 .

elevation

 $2 \% / 2^{\prime \prime} \times 1 \frac{1}{1 / 3}$ Slots
$\overline{\bar{Z}}$ FLARED END UNIT $=$

PLAN

PLAN
BUFFER END UNIT \qquad

DOUbLE face trailing anchorage INSTALLED PLAN
end treatment - trailing anchorage

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$	\|	$\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	$\mathbb{G} U \mathbb{A} R \mathbb{R} \mathbb{A} \mathbb{I L}$	INDEX 536-001	$\begin{aligned} & \text { SHEET } \\ & 9 \text { of } 24 \end{aligned}$

= SHORT TIMBER BREAKAWAY POST = (6"x8" Nom.)

SECTION
SOIL PLATE

SECTION
$6^{6^{\prime}-6^{6}}$

\qquad

elevation
SECTION

NOTES

1. INSTALLATION: Use components as shown on Sheets $9 \& 11$.
2. MATERIALS: Use steel plates, channels, and Cable Assemblies in accordance with Specification 967

$$
\text { Use Short Timber Breakaway Posts and Steel Tube Foundations in accordance with Specification } 536 .
$$

$$
\begin{aligned}
& \text { Use Hex Nuts, Hex Jam Nuts, and Washers in accordance with the AASHTO-AGC-ARTBA Guide to } \\
& \text { Standardized'Barrier Hardware with English unit equivalents of components FNX24a and FWC24a, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Stadadized, Barrier Hadware with Enlish unit equivalents of components } F N X 24 a \text { and } F W C 24 a, ~ \\
& \text { respectively. Two Hex Nuts may be used for the Hex am Nut System. }
\end{aligned}
$$

3. PLATE STOP-NAILS: To prevent rotation of the Bearing Plate, drive steel $21 / 2$ "Type $8 d$ nails with ASTM A153 hot-dip galvanization
4. CABLE ANCHOR PLATE ASSEMBLY INSTALLATION: Mount to the pre-fabricated Cable Anchor Plate Bolt
Holes in the W-Beam Panel as as shown on Sheet 4. These panel holes are only permitted for this Holes in the W-Beam Panel, as shown on
Cable Anchor Plate Assembly application.
5. SOIL PLATE BOLT HOLE(S): For Trailing Anchorage installations as shown on Sheet 9 , the two bolt
holes shown may be substituted with a single bolt hole located at the tube centerline.

LAST REVISION 11/01/19		DESCRIPTION:	FDOTY	$\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	\mathbb{G} UARDRAIL	INDEX 536-001	$\begin{gathered} \text { SHEET } \\ 10 \text { of } 24 \end{gathered}$

Principle Roadway (Typ.) \square

CONTINUING OPTION
end treatment option
\qquad

NOTES:

1. INSTALLATION: Construct the specified radius layout and Connecting Detail option as shown in the plans.
2. MIN. CLEAR AREA: Keep the area behind the CRT free of fixed objects and aboveground hazards within the Min. Clear Area limits
shown. Maintaina slope not steeper than $1: 10$ for a minimum 2^{\prime} behind the posts, and maintain a slope not steeper than $1: 2$ beyond 2^{\prime} Shown Maintazin
from the posts.
3. APPROACH GRADING: Maintain grading on the roadway side of the guardrail face at a maximum slope of 1:10.
4. MATERIALS: For CRT Posts, use Timber Post material in accordance with Specification 967. Use steel panels and hardware in
dance with Specification 967.
```
                            Me Timber
```

5. BOLT OMISSION: For the 8 Foot Radius CRT System only, do not place a panel-to-post mount bolt at the center CRT Post (omit the 5/" Button-Head Bolt only at the location shown).

6. GENERAL GUARDRAIL: General Guardrail typically includes Panels and Post Spacing as shown on Sheet 2, including parallel and tapered segments, Approach Transitions, Low-Speed Guard
Guardrail shown herein if indicated in the plans.

LAYOUT FOR CONTROLLED
RELEASE TERMINAL (CRT) SYSTEMS SIDE ROADS AND DRIVEWAYS

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$		STANDARD PLANS	GUARDRAIL	INDEX 536-001	$\begin{aligned} & \text { SHEET } \\ & 12 \text { of } 24 \end{aligned}$

TL-3 APPROACH TRANSITION INSTALLED ELEVATION

NOTES:

1. INSTALLATION: Construct the Approach Transition segment where indicated in the plans. For example Layouts showing
guardrail segments, see Sheet 19 .

For existing bridge connection options, see Indexes 536-002, 521-404, and 521-405.
2. SECTION VIEWS \& DETAILS: For cross sections and details, including the barrier
mounting hardware, curb transition, ad jacent grading, and installation dimensions, mounting hardw
see Sheet 17 .
3. GUARDRAIL TAPER: The connecting guardrail may require a different lateral offset if . At the location shown herein, taper the guardrail to the offset connecting guardrail off set. If the ad jacent guardrail segment
as the Approach Transition segment, then no taper is required.

TL-3 APPROACH TRANSITION INSTALLED PLAN
4. END TRANSITION OF CURB OPTIONS: The Plan and Elevation views depict an example equire a different shape depending on the End Transition option shown in the plans Either a 'Shoulder Gutter Option', 'Raised Curb Option', or 'rlush Shoulder Optio
See Sheet 14 for additional curb options and Sheet 17 for curb shape details.
5. RIGID BARRIER END TRANSITION: Taper the Rigid Barrier toe as shown. See
Concrete Barrier, Index $521-001$, and Traffic Railing, Indexes $521-422$ and 521-428, Concrete Barr
for details.
6. OFFSET BLOCKS: For Thrie-Beam post locations within the Length of Approach
Transition segment, use the Timber off seat Blocks with 1 1-6" height shown on Sheet 5 . For the midspan of the Thrie-Beam Transition Panel and for all other W-Beam
locations shown herein, use the W-Beam Offset Blocks with $11^{\prime \prime}-2^{\prime \prime}$ height.
\square Direction of Traffic
7. OFFSET: The required offset difference between the Face of Guardrail and Rigid Barrier Shoulder Line is considered negligible and may not be shown in the guardrail
offset callouts in the plans A consistent guardrail off set deviation of up to 4 inches outside of the Rigid Barrier Shoulder Line is permitted over the length 'LA'
8. GENERAL GUARDRAIL: General Guardrail typically includes Panels and Post Spacing as Low-speed Guardrail, or Reduced Post Spacing Guardrail segments may be
substituted for the General Guardrail shonn herein if indicated in the plans

APPROACH TRANSITION CONNECTION
TO RIGID BARRIER - GENERAL, TL-3

FDOT\} | FY 2022-23 |
| :---: |
| STANDARD PLANS |

TL-2 APPROACH TRANSITION
INSTALLED ELEVATION

L-2 APPROACH TRANSITION

 INSTALLED PLANAPPROACH TRANSITION CONNECTION
TO RIGID BARRIER - LOW-SPEED, TL-2

LAST REVISION 11/01/19	\|r	DESCRIPTION:	FDOTT	$\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	$\mathbb{G} U A R D R A I L$	Index 536-001	SHEET $15 \text { of } 24$

NOTES:

1. GENERAL: See the applicable notes and details on Sheet 15.
2. SECTION VIEWS \& DETAILS: For cross sections and details, including the barrier mounting hardware, curb transition, 17 .
adjacent grading, and installation dimensions, see Sheet
3. ELEVATION VIEW: For post and panel installation details
within 'LA' see the elevation view on Sheet 15 The curb details will differ depending on curb option required.

TL-2 APPROACH TRANSITION WITH 'TYPE F CURB CONNECTION - PLAN VIEW

Direction of Traffic

Apr
TO RIGID BARRIER - LOW-SPEED, TL-2 CURB CONNECTIONS

LAST
REVISION
11/01/19

11/01/19
2 DESCRIPTION:

| $F D T$ FY 2022-23 |
| :---: | :---: |
| STANDARD PLANS |

 CONNECTOR DETAIL

SECTION B-B

 begin alignment curb (Mate to Rigid Barrier)

SECTION E-E
END TRANSITION
FLUSH SHOULDER OPTION

FILLER PLATE

BACK PLATE

SECTION C-C ALIGNMENT CURB
(Intermediate)

SECTION D-D BEGIN TRANSITION (End Alignment Curb)

SECTION G-G

END TRANSITION RAISED CURB OPTION

End Transition
$($ Section $G-G)$

NOTES:

1. PLan and elevation views: Work with Sheets 13 thru 16
2. END TRASSITION OF CURB OPTION: Install one of the three End Transition types shown
3. GRADING BEHIND POSTS: Place Slope Break a Min. $2^{\prime}-0^{\prime \prime}$ behind the post, per Sheet 6 .
4. MATERIALS \& CONSTRUCTION: Construct the concrete Aligning Curb and Curb transition
in accordance with Specification 520. Use steel Plates and Thrie-Beam Terminal in accordance with Specifitication 520 Use steel P
Connectors in accordance with Specification 967 .

APPROACH TRANSITION CONNECTION - DETAILS

$\begin{aligned} & \text { LAST } \\ & \text { REVISION } \\ & 11 / 01 / 20 \end{aligned}$		$\begin{gathered} \text { FY 2022-23 } \\ \text { FDOT } \\ \text { STANDARD PLANS } \end{gathered}$	GUARDRAIL	INDEX 536-001	SHEET 17 of 24

TL-3 DOUBLE FACED APPROACH TRANSITION
INSTALLED ELEVATION

NOTES:

1. INSTALLATION: Construct the Approach Transition segment where indicated in the
plans. The required offset of the
conetcting adjacent guardrail is shown in
the plans.
The Layout given on Sheet 20 provides a
basic scheme for connections to adjacent basic scheme for connections to ad jacen
guarrrail) where a taper to a diftering
guardrail offset mar be tequire guardrail offset may be required. II the
ad jacent guardrail has the same offset adjacent guardrail has the same off set
as the Approach Transition segment, then no taper is required.
2. THRIE-BEAM TERMINAL CONNECTOR: See
Sheet 17 for Details. The installed bolt's Sheet 17 for Details. The installed bolt
threaded portion in ot permitted to
extend beyond 3 "/ from the face of the extend beyond $3 / 1$ " from the face of the
nut; trim the threaded portion as needed nut: trim the threaded portion as needed
and galvanize in accordance with specification 562 .
3. GENERAL GUARDRALL: General Guardrail
typically includes Panels and Post typically includes Panels and Post
Spacing as shown on Sheet 2, including
parallel and tapered sequants End parallel and tapered segments. End
Treatment or Reduced Post Spacing
Geartran sor Treatments or Reduced Post Spacing
Guardrail segments may be substituted Guardrail segments may be substituted
for the General Guardrail shown herein if
indicated in the plans.

SECTION

$$
\overline{=} \text { TRIMMED STD. OFFSET BLOCKS } \overline{=}
$$

TIMBER POST ALIGNMENT WIDTH

TL-3 DOUBLE FACED APPROACH TRANSITION INSTALLED PLAN

TYPE F-F SECTION $\overline{=}$ TRIMMED STD. OFFSET BLOCKS $=$ STEEL POST ALIGNMENT WIDTH

SECTION F-F

APPROACH TRANSITION CONNECTION TO RIGID BARRIER WITH DOUBLE FACED GUARDRAIL

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$		$\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	$\mathbb{G} U A R \mathbb{R}$ RAIL	Index 536-001	$\begin{gathered} \text { SHEET } \\ 18 \text { of } 24 \end{gathered}$

TYPE A APPROACH TO RIGID BARRIER - PLAN VIEW
MEDIAN OR OUTSIDE SHOULDERS
(Mirror Horiz. and/or Vert. for Opposite
Direction and/or Side of Road)

SECTION H-H BRIDGE ABUTMENT (Between Bridges)

NOTES:

1. INSTALLATION: The Plan Views shown are schematic only, showing example geometry for connecting
 and 521-40
2. GENERAL (OR LOW-SPEED) GUARDRAIL SEGMENT: COnstruct this segment if shown in the plans. For the
case where this segment's off set differs from the Approach Transition off set, linearly taper the Case where this segment's offset differs trom the Approach Transition off set set earny
guardrail between the Begin/End Taper Stations and off sets as specified in the plans.
For the shortest length case of a direct connection between the End Treatment and the Approach
Transition, this segment may be omitted as shown in the plans.
3. LENGTH OF APPROACH TRANSITIIN 'LA'' Install the applicable Approach Transition as shown per
4. LENGTH OF APSROACH TRANSITION 'LA': Install the
Sheets 13 thru 16, where called for in the plans.
5. LENGTH OF END TREATMENT 'LE' Install the Approach Terminal End Treatment as shown per Sheet 7
or 8 , where called for in the plans. Use the corresponding APL drawings for construction details.
6. CROSSOVER GUARDRAIL (FOR TYPE B APPROACH): Install the Crossover Segment tapering linearly from
the Begin Taper Sta. and offset to the End Taper Sta. and offset as specified in the plans.
7. LENGTH OF DOUBLE FACED GUARDRAIL PANELS, 'LD' (FOR TYPE B APPROACH): Terminate the Double Faced Gu
side of side of the median). Extend the panel segment longer
Panel's end Bolt slot to align with a post
Install a Flared End Unit where shown, as defined on Sheet 9
8. END TREATMENT OPTIONS (FOR TYPE B \& C APPROACH): For Double Faced applications, use either a

9.
10. SLOPE GUARD: where indicated in the plans, install a Guardrail segment between bridge a
 panel system. Use post spacing of either $3^{\prime}-11^{\prime \prime}$ or $6^{\prime} 6^{\prime}-3^{\prime \prime}$, as needed to correctly fit system between
barrierr. The system may also be lengthened to fit by installing two Rounded End Units as defined on
sheet

$F Y$ 2022-23 FTANDARD PLANS

TYPE D TRAILING CONNECTION FROM RIGID BARRIER
PLAN VIEW - MEDIAN OR OUTSIDE SHOULDER
(Mirror Horiz. and/or Vert. for Opposite
Direction and/or Side of Road)

NOTES:

1. See the applicable Notes on Sheet 19 ,
2. LENGTH OF TRAILING ANCHORAGE, 'LT': Install the Trailing Anchorage as shown on TRAILING END TRANSITION CONNECTION
3. THRIE-bEAM TERMINAL CONNECTOR: Install connector and bolts as shown on Sheet 17.
4. RIGID BARRIER SINGLE SLOPE END FACE: See Concrete Barrier Wall, Index 521-001,
and Traffic Railing, Indexes $521-422$ and $521-423$, for details. TO RIGID BARRIER - INSTALLED ELEVATION

| $\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$ | \|r|c|c | DESCRIPTION: | FDOTT | $\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$ | $\mathbb{G} U A R D R A I L$ | index 536-001 | $\begin{gathered} \text { SHEET } \\ 20 \text { of } 24 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

$12^{2}-5 \frac{3}{4} /{ }^{\prime \prime}$

C6x8.2 Steel Channel

SECTION A-A

NOTES
 1. GENERAL

1. GENERAL: Install Rub Rail where called for in the plans. Position as shown on Sheet 6 unless otherwise shown in the
 Panel Rub Rail options may be used (consistent type per project). Where Double Sided Rub Rail s called for, thread
Button-Head Boit through the post Bot Holels) and the panels on either side and tighten the nut against the face
panel farthest from adjacent traffic lanes. Trim the bolt's threaded portion in accordance with Note 4 on Sheet 5 .
2. Mounting height: Mount to the Standard Post's Rub Rail Bolt Hole as defined on Sheet 5 .
3. MATERIALS: Use steel components in accordance with Specification 967.
4. END RUB RAIL: For Single Sided Rub Rail, terminate the run of Rub Rail by bending the panel behind the post and
securing in place (as shown). For Double Sided Rub Rail, terminate the runs of Rub Rail on their respective front face of securing in place (as shonn). For Double Sided Rub Rai.

RUB RAIL DETAILS

NOTES:

1. INSTALLATION: When the construction of Guardrail at the required post spacing results in post(s) located atop
culverts, inlets, pier footings, or similar concrete structures, a Special Steel Post may be substituted for a Standard culverts, inlets, pier footings, or similar concrete structures, a Special Steel Post may be subst
Post. Install where shown in the plans and/or as-needed, in accordance with Specification 536 .
2. EDGE CONFLICT: When a required post location causes an Edge Conflict with the structure, where the Steel Base Plate

 the post location adjusted, use a Std. Post mounted in soil (Option 1) or a Special Steel Post with its Base plate
mounted entirely on the structure (Option 2). Maintain the original required spacing locations upstream and downstream
of the structure on
3. BASE PLATE MOUNT: Install Special Steel Posts as shown using steel Adhesive-Bonded Anchor Bolts in accordance with
4. PANEL MOUNT TO ADJUSTED POST: Punch additional $3 / 4 \times 21 / /^{\prime \prime}$ Post Bolt Slot(s) in the W-Beam or Thrie-Beam Panel only where needed to mount the panel to a post in an adjusted location. Meet the Panel Post Bolt Slots requirements of
Specification 536 .
5. MATERIALS: Use steel base plates in accordance with Specification 536
special steel post for concrete structure mount

NOTES:

1. INSTALLATION: Install Barrier Delineators as shown in accordance with the plans, with Specifications 536 and
705 , and with the manufacturere's design as approved on
the APL
,
2. MATERIALS: Use materials of the size and type defined for
Barrier Delineators in Specification 993.
3. COLOR: Use either white or yellow retroreflective sheeting
to match the color of the nearest lane's edgeline.
4. MOUNT LOCATIONS: Mount Barrier Delineators atop posts
as shown, starting with Post (3) of Approach Terminals and as shown, startitg with Post (3) of Approach Terminals and
incrementally tincreasing spacing towardo the downstream
direction. Install the Barrier Delineators at the following incrementally increasing spacing towards the downstream
direction. Install the Barrier Delineators at the following
spacing: $S 1=25^{\prime} \times 1$ Space
$S 2=50^{\prime} \times 1$ Space
$S 3=75^{\prime} \times 1 \begin{aligned} & \text { Space }\end{aligned}$
$54=100^{\prime} \times$ for
$\begin{array}{ll}53 \\ =100^{\circ} \times 1\end{array} \times$ for the Remaining Run
Additionally place a Barrier Delineator on Post (2)
of the Trailing Anchorage or on the post nearest of the Trailing Anc
the Rigid Barrier.
5. MEDIAN GUARDRALL: Install retroreflective sheeting on
both sides of the barrier delineator for Guardrail on both sides
medians.
STEEL POSTS
MBER POSTS

Direction of Traffic
MOUNT LOCATION - PLAN VIEW
BARRIER DELINEATORS

Elevation elevation OPTION 2

$R=138^{\prime \prime}$
PROFILE (Option 1 Shown)

elevation profile $=$ WASHER $=$

ELEVATION PROFILE
\qquad

ELEVATION PROFILE
= RECTANGULAR WASHER
(For CRT \& Terminal Connectors Where Shown

BUTTON-HEAD BOLT LENGTHS:

Application(s):	Length 'L':	Min. Thread Length:
Panel Splice	$1^{\prime \prime} /^{\prime \prime}$	Full Length
Steel Post Mount - Single Faced Guardrail	$10^{\prime \prime}$	$4^{\prime \prime}$
Timber Post Mount - Single Faced Guardrail	$18^{\prime \prime}$	$4^{\prime \prime}$
Steel or Timber Post Mount - Double Faced Guardrail	$25^{\prime \prime}$	$4^{\prime \prime}$

NOTES:

1. Use nuts, bolts, and washers in accordance with Specification 967.
2. For Steel Posts with Double Faced Guardrail, the single 25" Length bolt
(one bott thru both post tlanges) may be replaced with two 10 "Length bolts
(one bolt per post flange).
(one bot per post pange).

5/8" BUTTON-HEAD BOLT SYSTEM
LAST
REVISION

11/01/19

FDOTY | FY 2022-23 |
| :---: |
| STANDARD PLANS |

GUARDRAIL APPLICATIONS FOR BRIDGES WITH FULL WIDTH SHOULDERS AND
SAFETY SHAPE TRAFFIC RAILING bARRIER EXTENDING LESS THAN FULL APPROACH SLAB LENGTH

Varies \qquad Guardrail Transition

- No Panel (s) Required In Absence of Other Hazards Varies To Meet Need When Other Hazards Are Present UNDIVIDED ROADWAY - DETAIL S

$$
2
$$

DIVIDED ROADWAY - DETAIL T
UARDRAIL APPLICATIONS FOR BRIDGES WITH LESS THAN FULL WIDTH SHOULDERS AND CONCRETE TRAFFIC RAILING EXTENDING LESS THAN FULL APPROACH SLAB LENGTH

LAST REVISION

11/01/19
DESCRIPTION:

FDOTY	FY 2022-23
STANDARD PLANS	

GUARIDRAIL TRANSITIONS AND CONNECTIONS $F O R E X I S T I N G ~ B R I D G E S$

187' R LAYOUT
STANDARD PANELS SET TO RADIALS ADJOINING BRIDGES DETAIL W

medians with 10' bridge shoulders

MEDIANS WITH 6' BRIDGE SHOULDERS
Note: The guardrail configurations shown apply only to parallel or near parallel bridges with open medians.

GUARDRAIL LENGTHS								
MEDIAN WIDTH (Ft.)	6' bridge shoulders				10' BRIDGE SHOULDERS			
	1:10 TAPER RATE		1:15 TAPER RATE		1:10 TAPER RATE		1:15 TAPER RATE	
	PANELS (No.)	LENGTH (Ft.)						
30	12.5	156.25	18.5	231.25	6.5	81.25	9.5	118.75
28	11.5	143.75	16.5	206.25	5.5	68.75	7.5	
26	9.5	118.75	14.5	181.25	5.5*	68.75	5.5*	68.75
24	8.5	106.25	11.5	143.75	5.5*	68.75	5.5*	68.75
The lengths shown in this table are based on standard widths for roadway and bridge median shoulders. Length requirements for both standard width and narrow bridge shoulders and end anchorage or end shielding requirements shall be determined on a site specific basis. The number of panels may be reduced when installing a crash cushion more than 2.5 in width; see * below. *Number shown is the minimum number of panels plus a W-Thrie beam transition panel; single faced guardrail must have a length of five (5) or more panels.								

APPROACH GUARDRAIL TREATMENTS FOR BRIDGES WITH CONCRETE TRAFFIC RAILING extending less than full approach slab length in narrow medians with flush shoulders

SEE INDEX 460-471 - SCHEME 1

Front Face Of Existing Backwall
Front Face of Existing Backwall
\& Begin or End Existing Bridge
Existing Railing Removed
Existing Curb To Remain
SEE INDEX 460-471-SCHEME 3

Front Face of Existing Backwall
$\&$ Begin or End Existing Bridge
$\&$ Begin Or End Existing Bridge
Existing Railing Removed
Existing Curb To Remain

SEE INDEX 460-471 - SCHEME 3

PARTIAL PLAN VIEWS OF GUARDRAIL APPROACH TRANSITIONS AND CONNECTIONS FOR BRIDGE TRAFFIC RAILING (THRIE-BEAM RETROFIT)

SEE INDEXES 460-472 \& 460-475 - SCHEME 1

SEE INDEXES 460-472 \& 460-475 - SCHEME 2

SEE INDEXES 460-472 \& 460-475 - SCHEME 2

SEE INDEXES 460-472 \& 460-475-SCHEME 2

PARTIAL PLAN VIEWS OF GUARDRAIL APPROACH TRANSITIONS AND CONNECTIONS FOR BRIDGE TRAFFIC RAILING (THRIE-BEAM RETROFIT)

SEE INDEXES 460-472 \& 460-475 - SCHEMES $3 \& 4$

SEE INDEXES 460-472\& 460-475-SCHEMES $3 \& 4$

SEE INDEXES 460-472 \& 460-475 - SCHEMES 5 \& 6

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$			GUARDRAIL TRANSITIONS AND CONNECTIONS FOR EXISTING BRIDGES	INDEX 536-002	$\begin{aligned} & \text { SHEET } \\ & 7 \text { of } 28 \end{aligned}$

SEE INDEXES 460-473 \& 460-476 - SCHEME 1

SEE INDEXES 460-473\& 460-476-SCHEMES $3 \& 4$

SEE INDEXES 460-473\& 460-476 - SCHEME 2

SEE INDEXES 460-473\& 460-476 - SCHEME 2

PARTIAL PLAN VIEWS OF GUARDRAIL APPROACH TRANSITIONS AND CONNECTIONS

 FOR BRIDGE TRAFFIC RAILING (THRIE-BEAM RETROFIT)| $\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$ | | | FY 2022-23
 STANDARD PLANS | GUARDRAIL TRANS ITTIONS AND CONNECTIONS F OR EXISTING BRIDGES | $\begin{gathered} \text { INDEX } \\ 536-002 \end{gathered}$ | $\begin{aligned} & \text { SHEET } \\ & 8 \text { of } 28 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

SEE INDEXES 460-473 \& 460-476 - SCHEMES $5 \& 6$

SEE INDEXES 460-473 \& 460-476 - SCHEMES $5 \& 6$

PARTIAL PLAN VIEWS OF GUARDRAIL APPROACH TRANSITIONS AND CONNECTIONS FOR BRIDGE TRAFFIC RAILING (THRIE-BEAM RETROFIT)

SEE INDEX 460-474 - SCHEME 1

SEE INDEX 460-474 - SCHEME 3

SEE INDEX 460-474-SCHEME 3

SEE INDEX 460-474-SCHEME 2

_ Traffic Railing (Vertical Face Retrofit)
Roadway Guardrail Transition \qquad

SEE INDEX 521-405 OR 521-482 - SCHEME 2

> Note:
> * $21^{\prime \prime} \times 12^{\prime \prime} \times 58^{\prime \prime}$ Thrie-Beam Terminal Connector Plate (Back-Up Plate), And $78^{\prime \prime} \varnothing \times 12^{\prime \prime}$ Long

HS Hex Bolts And Nuts (5 Reqd.) with $21 / 4$ " OD Plain Round Washers Under Heads And Nuts

PARTIAL PLAN VIEWS OF TRAFFIC RAILING (VERTICAL FACE RETROFIT) (INDEX 521-482 SHOWN, INDEX 521-405 SIMILAR)

SEE INDEX 521-405 OR 521-482 - SCHEME 5

Note:
${ }^{*} 21^{\prime \prime} \times 12^{\prime \prime} \times 5 / z^{\prime \prime}$ Thrie-Beam Terminal Connector Plate (Back-Up Plate), And $77_{8}^{\prime \prime} \varnothing \times 12^{\prime \prime}$ Long
HS Hex Bolts And Nuts (5 Reqd.) With 2 $24_{4}^{\prime \prime \prime}$ OD Plain Round Washers Under Heads And Nuts
SEE INDEX 521-405 OR 521-482 - SCHEME 4

PARTIAL PLAN VIEWS OF TRAFFIC RAILING (VERTICAL FACE RETROFIT)
(INDEX 521-482 SHOWN, INDEX 521-405 SIMILAR)

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$	\|	$\begin{array}{cc} F Y \text { 2022-23 } \\ \text { FDOT\} } \\ \text { STANDARD PLANS } \end{array}$	GUARDRAIL TRANSITIONS AND CONNECTIONS $F O R E X I S T I N G \mathbb{B} \mathbb{E} I D G E S$	$\begin{gathered} \text { INDEX } \\ 536-002 \end{gathered}$	SHEET $17 \text { of } 28$

SEE INDEX 521-483-SCHEME 2

SEE INDEX 521-483-SCHEME 2

Note:
$21^{\prime \prime} \times 12^{\prime \prime} \times 58^{\prime \prime}$ Thrie-Beam Terminal Connector Plate (Back-Up Plate), And $78^{\prime \prime} \varnothing$ HS Hex Bolts And Nuts (12" Long For
Scheme 1 And Length To Fit For Schemes 2 And 3) (5 Reqd.) With 2 I_{4} " OD Plain Round Washers Under Heads And Nuts
PARTIAL PLAN VIEWS OF TRAFFIC RAILING (VERTICAL FACE RETROFIT)

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$			$\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	GUARDRAIL TRANSITIONS AND CONNECTIONS FOR EXISTING BRIDGES	$\begin{gathered} \text { INDEX } \\ 536-002 \end{gathered}$	$\begin{gathered} \text { SHEET } \\ 18 \text { of } 28 \end{gathered}$

PICTORIAL VIEWS OF GUARDRAIL APPROACH TRANSITIONS AND CONNECTIONS FOR BRIDGE TRAFFIC RAILING (VERTICAL FACE RETROFIT) (INDEX 521-482 SHOWN, INDEX 521-405 SIMILAR)

Use of Scheme I Shall Be Determined
In Accordance With The Standard Plans Instructions（SPI 536－002）． gUardrail transition to existing flat slab bridges

Splice Locations：Thrie－Beam－ 12 Guardrail Splice Bolts And Recessed Nuts W－Beam－ 8 Guardrail Splice Bolts And Recessed Nuts
Use of Schemes II And III Shall Be Determined In Accordance with The Standard Plans Instructions（SPI 536－002）． GUARDRAIL TRANSITIONS TO EXISTING PRESTRESSED BEAM OR GIRDER BRIDGES

GUARDRAIL APPROACH TRANSITION CONNECTIONS FOR EXISTING FLAT SLAB，PRESTRESSED BEAM AND girder bridges with safety shape traffic railing extending less than full approach slab length

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$		$\begin{gathered} \text { FDO } 5 \mathrm{~T}\} \quad 2022-23 \\ \text { STANDARD PLANS } \end{gathered}$	$G U A R D R A I L T R A N S I T I O N S ~ A N D$ CONNECTIONS $F O R E X I S T I N G \mathbb{E} \mathbb{E} I D G E S$

general notes:

. GENERAL: Work this Index in accordance with Specification 544 and the "Summary of Permanent Crash Cushions" table in the Plans. Where applicat components and panel lap splices in accordance with Index
. TRANSITION PANEL: Where crash cushions are placed between two-way traffic or adjacent to two-way two-lane traffic, place a Transition Panel from the Concrete Barrier to the Crash Cushion on the downstream side of
3. MANUFACTURER'S TRANSITION: Construct the proprietary guardrail transition only if shown in the applicable APL drawing. See Note 4 below.
4. Standard guardrail transition: If the apl drawing does not provide a guardrail transition to w-beam guardrail, construct the Standard Guardrail $21^{\prime}-10^{1} / 2$ " segment must remain parallel to the roadway.

If the APL drawing does provide a guardrail transition to w-beam guardrail, replace the Standard Guardrail Transition segment with a w-beam guardrail segment at 6^{\prime}-3" post spacing, except that Post (10) will remain where shown he Plans. This $21^{\prime}-10^{1} 1^{\prime \prime}$ segment must also remain parallel to the roadway.
5. LENGTH OF END TREATMENT: For Crash Cushions, the Length of End Treatment includes all proprietary elements of the design as shown in the APL drawing, including the manufacturer's transition of guardrail if applicable

The actual Length of End Treatment varies per Crash Cushion type, but an estimated Length of End Treatment is generally shown in the Plans to provide sufficient space for the Contractor's option of differing Cras Cushion types
6. LeNGTH RESTRICTION: In the "Summary of Permanent Crash Cushions" table, if a value is provided in the Length Restriction column, then select a Crash Cushion from the APL which has a Length of End Treatment less than or equal to the value shown. If the table instead shows not applicable (N / A) then Crash Cushion selection is unrestricted regarding length.
7. CRASH CUSHION STATION: The Crash Cushion Station point shown herein corresponds to the station provided in the "Summary of Permanent Crash Cushions" table in the Plans.

Direction of Traffic
\qquad

Direction of Traffic

FDOTY	$\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	CRASH CUSHION $\mathrm{DE}^{\text {CTALLS}}$	$\begin{gathered} \text { INDEX } \\ 544-001 \end{gathered}$	SHEET 1 of 3

PLAN VIEW

ELEVATION VIEW

NOTE：
Work this Sheet with the details and General Notes on Sheet 1 ．
STANDARD GUARDRAIL TRANSITION

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{array}$	｜r｜cren	FDOT） $\begin{gathered}\text { FY 2022－23 } \\ \text { STANDARD PLANS }\end{gathered}$	CRASH CUSHION DETAILS	$\begin{gathered} \text { INDEX } \\ 544-001 \end{gathered}$	SHEET 2 of 3

NOTES:

1. GENERAL: Work this Sheet with the details and General Notes on Sheet 1 .

Install short guardrail extension only where called for in the plans, using the project-specific length specified.
Short guardrail extensions are typically used where adding length to a barrier system is warranted, but a full Approach Transition Connection to Rigid Barrier will not fit,
2. CONNECTION TO CONCRETE TRAFFIC RAILING: See Index $536-001$ for connection details to rigid barrier
including the Thrie-Beam Terminal Connector and Alignment Curb details. Install the Alignent
including the Thrie-Beam Terminal Connector and Alignment Curb details. Install the Alignment Curb section with
no curb transition, and extend the curb to the crash cushion as shown. The crash cushion must laterally extend
beyond the above-ground portion of the alignment curb to shield its end face from approaching traffic.
3. CONNECTION TO THRIE-BEAM RETROFIT: Provide Thrie-Beam Retrofit guardrail connection splice, curb, and

SPACING OF RAISED RUMBLE STRIP SETS AT INTERSECTIONS \Longrightarrow (Preformed Thermoplastic Set Shown, Others Similar)
Direction of Traffic $\quad\left(\begin{array}{l}\text { Raised Rumble Strip Set (Typ.) } \\ \text { (See Optional Materials Details) }\end{array}\right.$

$C^{\prime}=0^{\prime}$ For Roadways with Paved Shoulders
$C^{\prime}=1.5^{\prime}$ For Roadways Without Paved Shoulders

$$
=D E T A I L " A \text { " } \bar{\square}
$$

TABLE 1-BRAKING ZONE	
Posted Speed (mph)	'L' (Feet)
≤ 30	150
35	200
40	250
45	300
50	350
55	410
60	470
65	550

OPTIONAL MATERIALS DETAILS \qquad

PERMANENT RAISED RUMBLE STRIPS

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVIISION } \\ 04 / 23 / 18 \end{array}$		$\begin{gathered} \text { FY 2022-23 } \\ \text { FTANDARD PLANS } \end{gathered}$	RAISED RUMBLE STRIPS	$\begin{gathered} \text { INDEX } \\ 546-001 \end{gathered}$	SHEET 1 of 2

OPTION ST1-ASPHALT SET

option st 2-preformed thermoplastic set

option st3 - Removable polymer striping tape set
NOTES:

1. Construct short-term raised rumble strips where noted in the Plans and in accordance with Specification 546
2. See Sheet 1 for placement and additional details.
3. Use color white for Preformed Thermoplastic and Removable Polymer Striping Tape Sets.

SHORT-TERM RAISED RUMBLE STRIPS LAST
REVISION DESCRIPTION:

RUMble StRIP DEPTH TABLE	
LOCATION	DEPTH FROM SURFACE (IN.)
A	0
B	$9 / 6(\pm 1 / 16)$

NOTES

1. When friction course extends more than $8^{\prime \prime}$ beyond the edge of the Haveled way, blade off the extended friction course to the $8^{\prime \prime}$ line rior to rumble strip grinding.
2. Use the continuous array on both inside and outside shoulders 1,000 feet in advance of bridge ends or back to the gore recovery area for mainline interchange bridges. Use the skip array for all other locations.
3. Exclude rumble strips at the following locations
A. At mainine tolling areas, terminate rumble strips at the end of the mainline normal section.
B. At All Electronic Tolling (AET) facilities, terminate rumble strips within 50 feet of the centerline of the overhead gantry
C. On outside shoulders of entrance ramp terminals, terminate rumble strips at the point of the physical gore and resume at the end of
the acceleration lane taper.
D. On outside shoulders of exit ramp terminals, terminate rumble
 . slab joint.
. On either side of median crossover openings, terminate rumble strips within 400 feet.

工 RUMBLE STRIP PLACEMENT (Plan View)

PLAN VIEW
$-5^{5^{\prime}-0^{\prime \prime}\left(\pm 6^{\prime \prime}\right) G a p}$
$7^{\prime}-0^{\prime \prime}\left(\pm 6^{\prime \prime}\right)$ Grinding \qquad $5^{\prime}-0^{\prime \prime}\left(\pm 6^{\prime \prime}\right)$ Gap

KIP ARRAY

LAST REVISION $04 / 04 / 18$	\|con		$G R O U N D-\mathbb{N}$ RUMBLE STRIPS	INDEX 546-010	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 3 \end{aligned}$

= EDGE LINE RUMBLE STRIP PLACEMENT TYPES $=$

$6^{\prime \prime}$ Double Yellow
TYPE "D2" - NO PASSING
(Plan View)
Centerline RUMBLE STRIP PLACEMENT TYPES $=$

plan VIEW
RUMBLE STRIP DETAILS

continuous array
(Centerlines and Inside Shoulder Edge Lines)

NOTE:
See the Plans for the Placement Type to be used.
SINUSOIDAL FOR ARTERIALS AND COLLECTORS

| LAST
 REVISION
 04/04/18 | \|l|l | $\begin{gathered} \text { FY 2022-23 } \\ \text { FDOTX } \\ \text { STANDARD PLANS } \end{gathered}$ | $G R O U N D-\mathbb{N}$ RUMBLE STRIPS | index 546-010 | SHEET
 3 of 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |

NOTES

DESIGN CRITERIA
desin is based on the assumption that the material contained within the materials are in accordance with specification section 548 and prefabricated of the FDOT Structures Design Guidelines.

SOIL PARAMETERS:

1. See Wall Contro
2. See Wall Control Drawings for soil characteristics of foundation material to be 2. The Contractor will provide sall system.
on the actual soil characteristics utilized ateters for backfill material based
MATERIALS:
3. See Specification Section 548 for material requirements.

CONSTRUCTION:

1. Walls will be constructed in accordance with Specification Section 548 and the Wall Company's instructions
For location and
2. If required, locate manholes and drop inlets as shown on wall elevations.
3.
4. Refer to Wall Control Drawings of individual walls for minimum reinforcement strip/mesh length, factored bearing resistance's, minimum wall embedment and anticipated long term and differential settlements.
during storm events as
5. It is the Contractor's responsibility to determine the location of any guardrail posts behind retaining wall panels. Prior to placement of the top ayer of soil reinforcement, individual reinforcing strips/mesh may be
skewed (15 maximum) to avoid the post locations if authorized by the Engineer. No cutting of soil reinforcement is allowed unless shown on Shop Drawings and approved by the Engineer. Any damage done to the soil reinforcement due to installation of the guardrail will be repaired approved by the Engineer.
6. If existing or future structures, pipes, foundations or guardrail posts within the reinforced soil volume interfere with the normal placement of
soil reinforcement and specific directions have not been provided on the plans, the Contractor will notify the Engineer to determine what course of action shall be taken.
7. The Contractor is responsible for gradually displacing upper layer(s) of soil reinforcement downward (15° maximum from horizontal) to avoid The Contractor's attention is directed especially to situations where roadway superelevation and/or soil mixing are anticipated.
8. For concrete facing panel surface treatment, see Wall Control Drawings
9. Drive piles located within the soil volume prior to construction of the retaining wall, unless a method to protect the structure, acceptable to both the Engineer and Wall Company, is proposed and approved in writing. The portion of piles or drilled shafts extensions within the soil volume will be wrapped with
10. A structural extension of the connection of the retaining wall panel to soil reinforcement wo med wenever hecessary to avoia call ing of excessive skewing (greater than 150) of the soil reinforcement around obstructions
11. Steps in leveling pads will occur at MSE Wall panel interfaces. Panels will not
cantilever more than $2^{\prime \prime}$ past the end of the upper tier leveling pad.
12. The top of leveling
elevations. The constructed leveling in the wall Control Drawings are maximum the panel layout shown in the shop drawings.
13. The height of panels in the bottom course of MSE Walls must not be less
14. Work this Index with Index 521-600 thru 521-650.

SHOP DRAWINGS:
See Specification Section 548 for shop drawing requirements.

ELEVATION VIEW OF COPING HEIGHT TRANSITION

typical mse retaining wall section WITH A CONCRETE BARRIER

FDOT MSE RETAINING WALL CLASSIfication table													
Applicable FDOT Wall Type *	Durability Requirements (Carbon-Steel Reinforcing)			Durability Requirements (FRP Reinforcing)			Soil Reinforcement Type	Other Allowable FDOT Wall Types					
	Concrete Cover (in.)	Concrete Class for Panels	Pozzolan Additions? **	Concrete Cover (in.)	Concrete Class for Panels	Pozzolan Additions? **		2 A	$2 B$	2 C	2 D	2 E	$2 F$
Type 2A	2	II	No	1.5	II	No	Metal		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Type 2B	2	IV	No	1.5	IV	No	Metal			\checkmark	\checkmark	\checkmark	\checkmark
Type 2C	3	IV	No	1.5	IV	No	Metal				\checkmark	\checkmark	\checkmark
Type 2D	3	IV	Yes	2	IV	No	Metal						\checkmark
Type 2E	3	IV	No	2	IV	No	Plastic						\checkmark
Type 2F	3	IV	Yes	2	IV	No	Plastic						

* See Data Table in Contract Plans
** Highly Reactive Pozzolans.
LAST
REVISION
11/01/21

2 DESCRIPTION:
REVISION
11/01/21

NOTES

DESIGN CRITERIA:
Design is based on the assumption that the material contained within the reinforced soil volume, methods of construction and quality of prefabrical
materials are in accordance with Specification Section 548 and FDOT Structures Design Guidelines Section 3.13.2.
2. It is the responsibility of the Engineer to determine that the factored bearing pressure shown for the wall does not exceed the factored
bearing resistance of the foundation for that specific wall location.
3. The Wall Company is responsible for internal stability of the wall. External stability design, including foundation and slope stability, is the responsibility of the Engineer
4. If present, consider in design and analysis and locate manholes and drop inlets as shown on wall elevations.

SOIL PARAMETERS:
See wall control drawings for soil characteristics of foundation material be used in the design of the wall system. The Contractor must provid characteristics utilized at the site. Provide the values of unit weight, cohesion and internal friction angle in the Shop Drawings.
MATERIALS:

1. Provide soil reinforcement in accordance with Specification Section 548 ,

For additional material notes, see Wall Company General Notes.
CONSTRUCTION:
Walls be constructed in accordance with Specification Section 548 and he Wall Company's instructions
2. For location and alignment of retaining walls, see wall Control Drawings. Refer to Plan and Elevation sheets of individual walls for minimum
reinforcement strip/mesh length, factored bearing resistance's mini reinforcement strip/mesh length, factored bearing resistance's, minimum
wall embedment and anticipated long term and differential settlements.
4. If existing or future structures, pipes, foundations or guardrail posts within the reinforced soil volume interfere with the normal placement of sol einforcement and specific irections have not been provided on the of action should be taken
5. The Contractor is responsible for gradually deflecting upper layer(s) of soil reinforcement downward (15° maximum from horizontal) to avoid utting soil reinforcement and conflicts with paving and subgrade situations where roadway superelevation and/or soil mixing are anticipated.

typical retaining wall section (Showing Limits of the Reinforced Soil Volume)

TEMPORARY TRAFFIC RAILING
PLACEMENT DETAIL

GENERAL NOTES

1. This fence to be provided generally in rural areas. For supplemental information see Specifications 550 ,
2. Fabric shall be woven wire, either galvanized steel, meeting the requirements of ASTM A116, No. 9 Grade 60 , 101 , gage top and bottom wire and with Class 3 zinc coating; or aluminum coated steel, meeting the
requirements of ASMM 5844 , No. 9 Farm, Design Number $1047-6-9$, with a minimum coating weight of 0.40 oz./ft. ${ }^{2}$ ditional information see payment note below.
3. Fence shall be installed with wire side to private property except on horizontal curves greater than 3°
the fence shall be installed so as to pull against all posts.
4. Posts may be either timber, steel, recycled plastic or concrete. Unless a specific post material is called
for in the plans, the Contractor may elect to use either a single material or a combination of timber, stel) recycled plastic or concrete materitls, but must comply with the electrtical ground ing requirements in
Specification 550. Line posts of one material may be used with corner, pull
 assemblies of only one optional material will be permitted between corner and end poss
individual corner and end post assemblies only one optional material will be permitted.
5. Timber posts shall meet the material requirements of Specification 954 . Timber line posts are to be
minimum $4^{\prime \prime}$ diameter. Timber corner, pull, approach and end posts are to be a minimum $5^{\prime \prime}$ diameter. Timber
 length. At approach, corner and pull posts, staple every line wire. At line posts, staple every line wire
in top half and alternate line wires in bottom half. Staples shall be driven diagonally across the line wire with the points in separate grains.
Connections between
(B) Connections between timber posts and braces to be provided by dowels as shown in fastener details,
(C) Wire to be wrapped and tied, as shown in the splice details, at the following locations: (a) All end posts, (b) Corner post, including the assemblies at vertical breaks of 15° or more and
(c) Pull posts where the wire is not spliced and pulled through the assembly; see General Note 18 .
6. Steel posts and braces shall be standard steel posts, galvanized at the rate of $2 \mathrm{oz} . / \mathrm{ft} .{ }^{2}$, together with
necessary hardware and wire clamps and meet ing the following requirements: (A) Line posts: 8^{\prime} long; 1.33 lbs./ft.; hot rolled studded; anchor plate attached, ASTM A702 (18 in.2), (B) Approach posts: $2^{1 / 2} /^{\prime \prime} \times 21^{1 / 2} \times 1 / 4^{1 /}$ angles, 8^{\prime} long; fabricated for attaching brace; with necessary
(C) Pull, end and corner
decessa harow elamps, et
(D) Braces: $2^{\prime \prime} \times 2^{\prime \prime} x^{1 / 4}$ angles with necessary hardware and fabricated for attaching to post.
(E) The pulll,
Note 15) (E) The pull
7. Recycled plastic posts shall meet the following material requirements: Line posts shall have a minimum section
of 4" round or 4" square. Plastic posts shall not be used as corner, pull, end or approach posts unless such use
 Standard Grading ulus for southern pine LLmber for No. 2SR Stress Rated Grade Timber. Platatic posts car be set by
either digging and tamped backfill or by driving into full depth preformed holes $1 / 4^{\prime \prime}$ to $1 / /^{\prime \prime}$ smaller than cross section of
post.
Staples for fabric and barbed wire connection to plastic line posts shall be the same size, count and location as
that for timber posts.
8. The Contractor, at his option, may use any suitable precast or prestressed concrete posts, however, approval by the
Engineer of posts not shown on this index, will be reauired prior to construction of the fence. Precast pasts shall Enginer, of posts not shown on this index, will be required prior to construction of the fence. Precast posts stall
be Class II concrete. Prestressed posts shall be Class III concrete. Lengths of concrete post to be as indicated for
timber posts. timber posts.
9. Aluminum post, braces and accessory framing hardware shall not be used unless the plans specifically detail their
application or the Engineer specifically approves their incorporation in fence construction or repair. Aluminum application or the Enginer specifically approves their incor
framed gates are permitted as described in General Note 19.
10. The woven wire shall be attached to steel and concrete posts by a minimum of five tie wires. The single wire ties shall be applied to the top, bottom and three intermittent line wires. The ends of each tie wire
shall have a minimum of two tioht turns around the line wire TTe wires shall be steel wire hot less than
Ol2 $0.120^{\prime \prime}$ diameter, zinc coating class 3 , soft temper, in accordance with ASTM A641.
11. Steel Barbed Wire can be either of the following types:
Type I. This type shall conform to the requirement
size 14 gage,
four-point barbs, wire size 14 gage, twisted around both line wires; and, Class 3 coating,
Design No. 12-4-5-14R. Type IIA: This Despe same as Type I except the two strand wires are twisted in alternating directions between Type IIB: This type shall contorm to the requirements of ASTM A121 with two strands of $151 / 2$ gage high tensile Aluminum Barbed Wire shall be fabricated of two strands of 0.110 -inch wire with 0.08 -inch diameter four-point barbs spaced at approximately $51 /{ }^{\prime \prime \prime}$, and at a maximum spacing of $6^{\prime \prime}$. The wire for the strands and
for the barbs shall be of ASTM B21 $^{2} 11 \mathrm{Alloy} 5052-H 38$ or equal.
The woven wire shall be stretched only until one-half the tension curl has been pulled out of the line wires
12. Posts to be set by driving or digging. If by digging, the posts shall be set at the center of the hole and the
soil tamped securely on all sides.
13. Longer posts than those indicated above may be required by the plans or for deeper installations.
14. Concrete bases for angular steel posts (pull, corner, end and approach) shall be Class NS in accordance with
Specification 347 . Materials for Class NS concrete may be proportioned by volume and/or by weight.
15. Pull post assemblies shall be installed at approximately 330° centers except that this maximum interval may be
reduced by the Engineer on curves where the radius is less than 3°.
16. Corner post assemblies are to be installed at all horizontal and vertical breaks in fence of 15° or more
17. A maximum length of 1320 of wire may be installed as a unit. For pulls through a pull post assembly the fabric
shall be spliced by crimping sleeves only. Pulls through a corner post assembly will not be permitted.
18. Unless otherwise called for in the plans gates shall be commercially available metal swing gates assembled and installed in accorcance with the manutacturer's specitications as approved by the Engineer. Chain Ink swing
gates in accordance with Index 550-002 may be substituted for metal swing gates as aporoved by the Engineer. gates in accordance with ndex sso-002 may se substituted for metal swing gates as appoved by the Engineer.
Gate size is full opening with whether single lea or doubl leves. Payment for gates shall include the gate,
single or double, all necessary hardware for installation and any additional length and/or size for posts at the single or double, all necessary hardware for installation and any additional length a
opening. Gates shall be paid for under the contract unit price for Fence Gates, EA.
19. For construction purposes, assemblies are defined as follows: End post assemblies shall consist of one end post, one aporosach post, two braces, four diagonal tension wores and all necesssary fittings and hardware.
ond
Pull post assemblies shall consist off: one pull post, two braces, four diagonal tension wires and necessary fitting and hardwaremblies shall consist of of one pull post, two braces, four diagonal tension wires and necessary fitting
andies shall consist of: one oneror porner post, two approach posts, four braces, eight
diagonal tension wires and all necessary fitt ings and hardware.
20. All posts, braces, tension wires, fabric, tie wires, Class NS concrete, and all miscellaneous fittings and hardware
to be included in the cost for Fencing, LF. Fencing shall be inclusive of the lengths of pull, end and corner post to be included in the cost for Fencing, L
assemblies, but exclusive of gate widths.

$\begin{aligned} & \text { LAST } \\ & \text { REVISION } \\ & 11 / 01 / 21 \end{aligned}$		$\begin{gathered} \text { FDO 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	$\mathbb{F E} \mathbb{N C E}^{\text {TYPE }}$	$\begin{gathered} { }_{\text {INDEX }} \\ 550-001 \end{gathered}$	SHEET 1 of 3

(Pull, Corner, End And
Approach Posts)
ONCRETE BASE FOR ANGULAR STEEL POST

FENCE POSITION AT LOCATIONS WITHOUT FRONTAGE ROADS (REFER TO DETAIL PLANS FOR FENCE POSITION AT
LOCATIONS WITH FRONTAGE ROADS)

fastener for concrete post and braces

FASTENER FOR TIMBER POST AND BRACE

PRESTRESSED POST ${ }_{3 / 8}{ }^{\prime \prime}$ Stressed Relieved Cable Centered

PRESTRESSED BRACE 3//" Stressed Relieved Cable Centered

alternate concrete posts and braces

$$
\begin{aligned}
& \begin{array}{l}
\text { Each horizontal wire to be wrapped around corner, end and } \\
\text { pull posts and tied to same wire. See General Notes } 5 \text { and }
\end{array} \\
& \begin{array}{l}
\text { pull posts and tied to same wire. See General Notes } 5 \text { and } 17 \\
\text { Timber post illustrated. These methods also apply to steel }
\end{array} \\
& \text { and concrete post illustrations. }
\end{aligned}
$$

SPLICES

FDOT	FY 2022-23 STANDARD PLANS	FENCE TYPE A	INDEX	sHEET

GENERAL NOTES

1. This fence to be used generally in urban areas.
2. For supplemental information refer to Specification 550 .
3. Chain link fabric, post, truss rods, tension wires, tie wires, stretcher bars, gates and all miscellaneous
fittings and hardware shall meet the requirements of AASHTO and ASTM signify current reference.
4. Fence Component Options:
(1) Galvanized steel pipe, Schedule 40-11/"n nominal dia. zinc galvanized at the rate of 1.8 oz./ft².
ASTM A53 Table $2(G r a d e ~ A ~ o r ~ B), ~ A S T M ~ F 1083, ~ a n d ~ A A S H T O ~ M 111 . ~$

(3) Aluminum alloy rate 0.40 oz./ft.: AASHTO M111
(3) Aluminum alloy pipe- $2^{\prime \prime}$ nominal dia.: ASTM B241 or B221, Alloy 6063 , T6.
(4) Steel H-Beam- $1 / \mathrm{l}^{\prime \prime} 11_{8}$: Zinc Galv. 1.8 oz./ft.: AASHTO M111 and Detail.

 (Alternative Design); fence industry $2^{\prime \prime} 0 D_{1} 1^{1 / 2 N}$ NPS, $1.900^{\prime \prime}$ dec. equiv., $0.120^{\prime \prime}$ min. wall thick. and min. wt. 2.28 Ib./ft.; with ASTM F 1043 metric equivalent internal coating Types A,
B, C or D and external coating Types A, B, or C; the chromate conversion coating of external Bype C shall have a thickness of $15 \mu \mathrm{~g} / \mathrm{in}^{2}$. min. and the polymer film topcoat shall have a
Typernal thickness of $0.0003^{\prime \prime}$ min.
of Table 2, ASTM F1043.
B. Corner, end, and pull post options:
(1) Galvanized steel pipe, Schedult
 (2) Aluminum coated steel pipe: ASTM A53 steel, X 2 Tables: Schedule 40; $2^{\prime \prime}$ nominal dia.,
$2.3755^{\prime \prime} 0 D$; coated at the rate 0.40 Oz./ft: A SHTO M11: (3) Aluminum alloy pipe- 21/1" nominal dia./: ASTM B241 or B221, Alloy 6063, T6.
4) Resistance welded steel pipee 50,000 psi min . . ield strength ASTM A569/A569M, A653/A653M
or undepleted stock of discontinued A446/A4CM ber
 thick. and min. wt. 3.117 Ib./ft.; with ASTM F 1043 metric equivalent internal coating Types A, B,
C or D and external coating Types A, B, or C; the chromate conversion coating of external Type B shall have a thickness of $15 \mu \mathrm{~g} / \mathrm{In}^{2}$ min. and the eolymer film topocoat shall have a
thickness of $0.000 \mathrm{~s}^{\prime \prime}$ min.; internal and external coatings are not restricted to the combination thickness of 0.0003" min
of Table 2, ASTM F1043.
C. Rail options:
(1) Galvanized steel pipe, Schedule 40-1 $1^{1 / 4}$ nominal dia. zinc galvanized at the rate of 1.8 oz.ffta

(4) Resistance welded steel pipe; 50,000 psi min. yield strength ASTM A569/A569M, A653/A653M
or undepleted stock of discontinued A446/A446M base materials; ASTM F669 Group IV (Alternative Design); fence industry $158^{\prime \prime} 0 \mathrm{D}, 11 /^{\prime \prime} \mathrm{NPS}, 1.660^{\prime \prime}$ dec. equiv., $0.111^{\prime \prime}$ min. wall thick.
 D and external coating Types A, B, or C; the chromate conversion coating of external Type B
shall have a thickness of $15 \mu \mathrm{~g} / \mathrm{in}^{2}$. min. and the polymer film topcoat shall have a thickness of She
S.ooo $3^{\prime \prime}$ min.: internal and external coatings are not restricted to the combinations of Table 2 .
D. Chain link fabric options (2" mesh with twisted and barbed selvage top and bottom for all options except as described in Note 10):
(1) AASHO M181 Type I Zinc
Coated Steel, No. 9 gage (coated wire diameter), coated at the

 and bonded) or class B (bonded). See table right. Unless the plans call for M181 standard
colors medium green, dark green or black the coating color shall be soft gray matching that of
No 36622 of Federal standard 595 . colors medium green, dark green or blat
No. 36622 of Federal Standard $595 a$.
E. Tension wire options:-
(1) Steel wire No.

Tension wire options:
(1) Steel wire No.7 gage zinc galvanized at the rate of 1.2 oz./fte: AASHTO M181
(2) Aluminum alloy wire with a diameter of 0.1875" or larger conforming to the redren (2) Aluminum alloy wire with a diameter of $0.1875^{\prime \prime}$ or larger conforming to the requirements
of ASTM B211, Alloy 5056 Temper H38, or, Alclad Alloy 5056 Temper H192.
(3) Aluminum coated steel wire No7 7 .
F. Tie wire and hog ring options:
(1) Steel wire No. 9 gage zinc
(2) Aluminum alloy wire with a diamizeter at the rate of 1.20 oz./ftit ${ }^{2}$. ASTM B211, Alloy 5056 Temper H 38 , or, Alclad Alloy 5056 Temper H 192 .
(3) Aluminum coated steel wire No. 7 gage coated at the rate of 0.040 oz.ft

GENERAL NOTES CONTINUED

5. Unless a specific material is called for in the plans the Contractor may elect to use either a single
type of material or a combination of material types from the component options listed in note 4 . Combinations of optional materials are restricted as follows:
(a) Only one fabric optional material will be permitted between corner and/or end post assemblies
(b) Only one line post optional material will be permitted between corner and/or end post assemblies (c) Pull post assemblies shall be optional materials identical to either the line post optional materia or the corner and end post assembly optional material; but, pull post assemblies shall be the same
6. Conriol

Concrete for bases shall be Class NS concrete as specified in Specification 347
or a packaged, dry material meeting the requirements of a concrete under ASTM C-387. Materials for
Class NS concrete may be proportioned by volume and/or by weight.
7. Line post shall be $8^{-6} 6^{\prime \prime}$ long (Standard). Line post are to be set in concrete as described above or
by the following methods: (a) In accordance with special details and/or as specifically described in the Contract Plans and (b) Specifications.
(b) In accordance with ASTM F567 Subsections 5.4 through 5.10 as approved by the Engineer (c) Post mounted on concrete structure or solid rock shall be mounted. in accordance with the base
plate detail "Fence Mot plate detail" "Fence Mounting on Concrete Endwath
in accordance with ASTM F567 Subsection 5.5.
End, pull and corner post assemblies shall be in concrete as detailed above for all soil conditions other than
solid rock. Post within assemblies that are located on concrete structures or solid rock shall be set by solid rock. Post within assemblies that are ocated on concrete structures or solid rock shall be set by
base plate or by embedment as prescribed under (b) above for line post.
Line and assembly posts for 6^{\prime} fence which must be lengthened due to a variation in the normal ground
clearance, shall be set an additional $3^{\prime \prime}$ in depth for each 1' of of additional ground clearance.
8. Pull post shall be used at breaks in vertical grades of 15° or more, or at approximately 355° centers
except that this maximum interval may be reduced by the Engineer on curves where the curve is except that this
greater than 3°
9. Corner post are to be installed at all horizontal breaks in fence at 15° or more and as required at vertical
breaks over 15° as determined by the Engineer.
io. Wen ferce has an intalia top or fabric
10. When fence has an installed top of fabric height less than $6^{\text {' }}$ knuckled top and bottom selvages shall
be used unless the plans specifically identify locations for twisted selvage fabrics.
11. Unless sliding gates or special gates are called for in the plans, all gates shall be chain link swing gates gates, single or double, all necessary hardware for installation and any additional length and/or size for
12. For construction purposes corner post assemblies shall consist of one corner post, two braces, two truss
rods, and all necessary fittings and hardware as detailed. End post assemblies shall consist of one end pos. rods, and all necessary fittings and hardware as detailed. End post assembll
one brace, one truss rod and all hecessary fittings and hardware as detailed.
13. In areas where there are physical constraints outside the right-of-way which restricts the fence construction,
the fabric may be installed on the inside of the posts..

TYPE IV VINYL COATED FABRIC										
AASHTO M181 Table 4 Redefined As Follows										
Specified Diameter Of Metallic Coated Core Wire			Minimum Weight Of Zinc Coating		PVC Thickness Range					
			M181 Class A (Extruded Or Extruded And Bonded Coating)	M181 Class B(Bonded Coating)						
in.	mm	gage			oz./ft ${ }^{\text {2 }}$.	g/m ${ }^{2}$	in.	mm	in.	mm
0.148	3.77	9	0.30	92	$\begin{aligned} & 0.015 \\ & \text { tol } \\ & 0.025 \end{aligned}$	$\begin{aligned} & 0.38 \\ & 0.38 \\ & 0.64 \end{aligned}$	$\begin{gathered} 0.006 \\ \text { to } \\ 0.010 \end{gathered}$	$\begin{aligned} & 0.15 \\ & 0.15 \\ & 0.25 \end{aligned}$		

DESIGN NOTE

his index details fencing that is constructed with chain link fabric 6^{\prime} (nominal) in height and with specific ground clearance.
For fencing of different height or installation details, the fence shall be fully detailed in the Contract plans.

OPTIONAL "C" LINE POST

FENCE POSITION AT LOCATIONS WITHOUT FRONTAGE ROADS (REFER TO DETAIL PLANS FOR FENCE POSITION AT
LOCAEIONS WITH FRONTAGE ROADS)

NOTES
Attachments to be used only when called for in the plans. Attachments to exted for in plans, direction of restraint will be as follows: (a.) Outward on limited access right of way line. (b.) Outward on controlled access right of way line.
(c.) Outward from utilities and hazardous facilities located
(d.) Within highway right of way. Outw, from lateral ditches, outfalls, retention basin
(d.) Outward from lateral ditches, outfalls, retention basi
canals, borrow areas and similat aupport facilities.
(e.) Inward on pedestrian ways.
(e.) Inward on pedestrian ways.

The cap-arm shall ex designed to provide a drive fit over the top
of posts and to exclude moisture in posts with tubular sections.

Ms" Dia. Hole For 3/"Anchors,
Nuts And Washers

TOP VIEW
two anchor plate option

BARB WIRE ATTACHMENT

base plate and anchor notes:

1. Base plate identical for line, pull, end and corner posts and shall be
considered an integral part of the respective posts for basis of payment.
2. Post to be plumbed by grout shim under base plate.
3. Anchors (Galvanized Steel):

12" Cast In Place, $101 /{ }^{\prime \prime}$ " Embedment:
Headed Bolts, U-Bolts or Cluster
Headed Bolts. U-Bolts or Cluster plates.
8" $^{\prime \prime}$ Adhesive Anchors, G $^{\prime \prime}$ Min. Embedment.*
Adhesive anchors shall be headless anchor bolts set in drilled
holes with an Adhesive Material System in accordance with holes with an Adhesive Material System in accordance
Secififications 416 and 937 ; drilled holes shall be $1 / 8^{\prime \prime}$
larger in diameter than the anchor bolt.
Expansion Bolts Not Permitted.
fence mounting on concrete endwall and retaining walls

| $\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$ | \|c|c | DESCRIPTION: | FDOT | $\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$ | $\mathbb{F E} \mathbf{N C E}$ TYPE B | INDEX $550-002$ | SHEET
 3 of 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

- End LA R/W Line \& Fence
 NOTE: LA R/W along the crossroad will extend a minimum 300 beyond the end of the acceleration or deceleration
 300 beyond the end of the acceleration or deceleration taper, with the taper most remote from the project estalishing the end for both sides of the roaduay. In the estan absence of a taper the radius point of the ramp return will absence of a taper the radius po be used with the above criteria.
 For interchange quadr ants having no ramp the $L A R / W$ For inerend along the crossroad to a point opposite will ext limit of LA R/W established by the ramp radius point as noted above.

applies to bridge over crossroad and crossroad over freeway (bridge over crossroad shown) FENCING TERMINALS AT RURAL INTERCHANGES

Retaining Wall

fencing terminals at retaining walls

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{array}$		$\begin{gathered} F Y \text { 2022-23 } \\ \text { FDOT\} } \\ \text { STANDARD PLANS } \end{gathered}$	$\mathbb{F E} \mathbb{N C E}^{\text {LOCATION}}$	$\begin{gathered} \text { INDEX } \\ 550-004 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 2 \end{aligned}$

DIVIDED NARROW MEDIAN WITH OR WITHOUT CURBED MEDIAN

divided wide median with or without curbed median

UNDIVIDED FLUSH SHOULDER

UNDIVIDED CURBED

DIVIDED CURBED

WILDFLOWER SEEDING RATES

Common Name (Botanical Name)	\|bs/ac
\#1 Group	
Black-Eyed S	2
nce-Leaf Tickseed (Coreops	10
Goldenmane Tickseed (Coreopsis basalis)	10
Leavenworth's Tickseed (Coreopsis leav	0
Fire Wheel (Gaillardia pulchella)	0
Softhair Coneflower (Rudbeckia mollis)	
Crimson Clover (Trifolium incarnatum)	
\#2 Group	
Annual Phlox (Phlox drummondii)	10
Moss Verbena (Verbena tenuisecta)	6
Leavenworth's Tickseed (Coreopsis leavenworthii)	10
Fire Wheel (Gaillardia pulch	10
Crimson Clover (Trifolium incarnatum)	5
Note: Wildflower seeding rates are for restoring impacted wildflower areas.	

GENERAL NOTES
.
2. Activities such as clearing, grading, and excavating that will disturb one or more acres of land require coverage under the Generic Permit for Stormwater Discharge from Large and Small Construction
 pollution prevention measures to minimize erosion and sedimentation and properly manage stormwater.
Confirm compatibility of wildflower with Seeding Zones.
SEEDING ZONES

impacted wildflower areas.

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$		DESCRIPTION:	FDOTY	FY 2022-23 STANDARD PLANS	PERMANENT EROSION CONTROL	$\begin{gathered} \text { INDEX } \\ 570-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 3 \end{aligned}$

$=$ INDEX 430-010 \qquad
\qquad
_INDEX 430-011 $=$

$=$ INDEX 430-031 Through 430-034

45° WING
Toe of Slope

\qquad

TABLE 2: SOD QUANTITIES (SY)																						
	INDEX 430-010	INDEX 430-011				INDEX 430-020	INDEX 430-030												INDEX 430-040			
		SLOPE				all slopes	SLOPE												SLOPE			
PIPE SIZE	1:4	1:2	1:3	1:4	1:6		1:2			1:3			1:4			1:6						
		PIPES				PIPES	PIPES															
	1	1	1	1	1	1	1	2	3	1	2	3	1	2	3	1	2	3				
$12^{\prime \prime}$						10													14	15	18	22
$15^{\prime \prime}$	15	13 (15)	16	17	23	11	19	21	24	22	26	29	26	30	33	34	38	43	15	17	20	25
$18^{\prime \prime}$	16	14 (16)	17	19	25	11	21	24	27	25	29	33	30	34	38	39	44	50	16	18	22	28
$21^{\prime \prime}$						12																
$24^{\prime \prime}$	19	15 (17)	19	21	28	14	26	30	34	32	37	42	38	44	50	50	58	66	19	22	26	34
$27^{\prime \prime}$						15																
$30^{\prime \prime}$	21	17 (18)	21	24	32	16	31	37	42	39	46	53	46	55	63	62	74	85	21	25	30	40
$36^{\prime \prime}$						18	37	44	52	46	56	65	56	67	79	76	91	107	24	29	35	47
$42^{\prime \prime}$						19	43	53	62	55	67	79	67	82	96	91	111	132	27	32	39	54
$48^{\prime \prime}$						21	50	62	73	64	79	93	78	97	115	108	133	158	30	36	44	61
$54^{\prime \prime}$						21	57	71	85	74	92	110	91	113	136	126	157	188				
$60^{\prime \prime}$						22																
$66^{\prime \prime}$						25																
$72^{\prime \prime}$						26																
() Endwall With Baffles																						

SOD PLACEMENT AT PIPE/CULVERT END TREATMENTS

| $\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$ | \|l|l | $\begin{gathered} \text { FDOT 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$ | $P E R M A \mathbb{N} T$ EROSION CONTROL | index 570-001 | $\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 3 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

COMPLETED SHOULDER

CRITERIA FOR USING TREATMENT

Project

- is res̄ürfacing, widening
of shoulder pavement
- is rural or is uremant without curb and gutter
- resurfacing buildan is is less than $3^{\prime \prime}$

general notes

1. Treatment I:

If trenching under sod is necessary to achieve the required Drop-off, excavated topsoil is
to be used for filling voids and low areas at the edge of pavement or for flushing along the edge of sod. Excess material to be uniformly distributed over the shoulder.
2. Treatment II:
A. Borrow must meet the requirements for a "Select" material in accordance with Index 120-001
and Specification 120.
B. Borrow may be used in lieu of excavated turf and topsoil when economically feasible. There
will be no additional payment for substituting borrow for excavated turf and topsoil.
3. Special attention is to be directed at achieving the required Drop-Off at the edge of pavement,
within the dimension range shown.
4. Activies such as cleariograte
4. Activities such as clearing, grading, and excavating that will disturb one or more acres of land
require coverage under the Generic Permit for Stormwater Discharge from Large and Small Construction Activities from the Florida Department of Environmental Protection, and implementation of appropriate pollution prevention measures to minimize erosion and sedimentation and properly
manage stormwater.
manage stormwater
A. Wildflowers destroyed by shoulder sodding and turf operations are to be reestablished under
the seeding rates prescribed for permanent wildflower \#2 Group shown by table on Index 570-001
B. Establish turf in accordance with Specification 570.

SHOULDER OPTION 2

CRITERIA For using treatment il

Project
is resūūfacing or construction of shoulder pavement - is rural or is urban without curb and gutter
resurfacing build-up is $3^{3 \prime}$ or more

A Similar treatment may be used for projects that require shoulder widening
DETAILS ARE TO BE SHOWN IN THE pLANS.
K

PLAN

elevation

Straps Securely Fastened to Tree (Typ.)
Safety Flags Straps, Add Fourth Strap or Trees Over 4" Cal. Mulch, Remove Existing Vegetation Prio to Straps Securely Stake, Driven in at Angle Existing Soil Soil Ring for Water Collection - Soil Backfill

ELEVATION

GENERAL NOTES:

1. Staking guidelines are based on standard horticultural requirements and are provided for plant establishment purposes only. Details not intended to apply when bracing is intended to address safety considerations. When bracing for safety, refer to pesigner generated signedway sealed detalls. These guce ines are eomended to apply when he ree or palm is with
falling distance of a roadway, pedestrian or bicycle route, under extreme wind loads, non-standard soil properties, falling distance of a roadway, pedestrian or bicycle route under extreme wind loads, non-standard soil properties,
non-standard plant dimensions, or when rootball is anticipated to be greater than 4 feet diameter and planted on $1: 3$ non-standard plar.
slope or steeper.
2. All dimensions $6^{6 \prime}$ and less are exaggerated for illustrative purposes only. Dimensions shown for wood materials are nominal Slopes shown are Vertical:Horizontal
3. Remove plant containers prior to planting. Remove a minimum of the top $1 / 3$ of burlap, fabric, or wire mesh for plants not grown in containers.
4. Allow no more than $1^{\prime \prime}$ of soil to cover the uppermost root on all trees. Set the top of rootball $1^{\prime \prime}$ - 2 "above finish grade after settling and set plumb to the horizon.
5. Backfill with loosened existing soil or as shown in the plans. Remove rocks, sticks, or other deleterious material greater than $1^{\prime \prime}$ in any direction prior to backfilling. Water and tamp to remove air pockets. Contact the Engineer prior to planting If existing soils contain excessive sand, clay, or other material not conducive to proper plant growth.
6. Construct soil rings at the outer edge of the planting pit with a height of $3^{\prime \prime}$ and gently sloping sides unless a permanent, Construct a $3^{\prime \prime}$ deep layer of mulch placed $2^{\prime \prime}$ off the edge of the trunk flare, around the base of shrub, or solidly around
ground cover. Never pile mulch against the tree trunk
7. Install guying with minimum 1" wide nylon or polypropylene straps with a minimum 600 lb . break strength. Check straps monthly and ad just as required to elliminate gira fing ohed grade unless otherwise specified alternate tree braing in axsting soll and embed a minimum of $18^{\prime \prime}$ below finished grade unless otherwise specified. Alternate tree bracing
guying systems specified or approved by the Engineer may be used in lieu of the tree bracing and guying methods detailed on the Index.
8. Relocated Trees and Palms: Brace relocated trees and palms in accordance with the Contract Documents. Remove bracing
at the conclusion of the contract or as directed by the Engineer. Bracing or straps must not damage or become embedded at the conclusion
in the tree bark.
9. Use $2^{\prime \prime} \times 2^{\prime \prime}$ minimum wood stakes unless otherwise shown in the Plans or directed by the Engineer. Use wood meeting \#2
Common or better in accordance with the Standard Grading Rules for Southern Pine.
10. Drive stakes into existing, undisturbed soil. Localized compaction may be provided to prevent displacement of the stakes
for previously disturbed existing soils that do not provide sufficient stability

ROADWAY WITHOUT UTILITY STRIP=

$\overline{\bar{Z}}$ ROADWAY MEDIAN OR ROUNDABOUT \qquad

NOTES:

. Work this Index with Specification 591
2. Install Sleeve with the minimum depth measured from the top of the Irrigation Sleeve as shown in the

Plans or specified in Index 630-001
3. When installing Irrigation Sleeves in a median crossover, place sleeves along the centerline.
4. Irrigation Sleeves for Electrical Control Wire and Irrigation Pipe must be no further than $12^{\prime \prime}$ apart.
5. Install Utility Strip Breaks only when shown in the Plans.

GENERAL NOTES:

1. Install conduit in accordance with Specification 630
2. When sidewalk is damaged by conduit installation,
3. Trench not to be open more than 250 at a time when constructio area is subject to vehicular or pedestrian traffic.
4. Sawcut asphalt at the edges of the trench to leave neat lines.
5. Provide route marker and route marker label in accordance with Specification 630 .

PLAN

CURB AND GUTTER

PLAN

ROUTE MARKER DETAIL \qquad FLUSH SHOULDER

| LAST REVISION $11 / 01 / 21$ | \|c|c | DESCRIPTION: | FDOT | FY 2022-23
 STANDARD PLANS | CONDUIT INSTALLATION DETAILS | $\begin{gathered} \text { INDEX } \\ 630-001 \end{gathered}$ | $\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 4 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

$\bar{\square}$ PLACEMENT UNDER SIDEWALK $\bar{\square}$
\qquad

VERTICAL CLEARANCE NOTE:
Waintain 1-0 minimum vertical clearance when crossing over pipe and or utilities.
If minimum vertical clearance cannot be maintained, condult is to be routed under ipe maintaining $1^{1}-0^{\prime \prime}$ minimum vertical clearance.

PLACEMENT NOT EXPOSED TO VEHICULAR TRAFFIC

PLACEMENT UNDER NEW ROADWAY PRIOR TO INSTALLATION OF base and pavement

NOTES:

1. Pavement Removal: The removal and replacement of the additiona pavement width (i.e., $\sigma^{\prime \prime}$ Width either side of trench) will not be required when the trench can be constructed without disturbing the asphalt surface on either side.
2. Placement Under Existing Pavement: Place conduit prior to installation of base and pavement, unless otherwise shown in the Plans or approved by the Engineer.

PLACEMENT UNDER EXISTING PAVEMENT

PLACEMENT UNDER EXISTING PAVEMENT ADJACENT TO GUTTER

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 18 \end{gathered}$		DESCRIPTION:	FDOTY	$\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	CONDUIT INSTALLATION DETAILS	$\begin{gathered} \text { INDEX } \\ 630-001 \end{gathered}$	SHEET 3 of 4

BELOW EXISTING

ABOVE EXISTING - DEPTH $2^{\prime}-6^{\prime \prime}$ OR LESS
—PLACEMENT ACROSS EXISTING DRAINAGE PIPES OR UTILITIES=

PLAN

\qquad

NOTES

1. Where conduits are to be installed over existing underground structures (e.g., drainage pipes or utility lines) which are ess than $2^{\prime}-6^{\prime \prime}$ deep, encase the conduit in Class NS concrete for the entire lengt of less than $2^{\prime}-6^{\prime \prime}$.
2. Place $3^{\prime \prime}$ Warning Tape when new conduit is installed at a depth of $1^{\prime}-6^{\prime \prime}$ or greater and the new conduit is not encased concrete.

INDEX	SHEET
$630-001$	4 of 4

CAble drop and termination with figure 8 CABLE=

CABLE DROP AND TERMINATION WITH MESSENGER WIRE AND COMPRESSION CLAMP

$\bar{\Longrightarrow}$ CABLE DROP AND TERMINATION WITH MESSENGER WIRE AND SUSPENSION CLAMP $=$

FDOT $\}$ FY 2022-23
\longrightarrow

elevation
PULL BOX

\qquad

NOTES:

1. Provide fiber optic splice boxes with cable hanger racks designed to support cables and splice enclosures.
2. Install a 1'-0" wide (Min.) concrete apron around all boxes using Class NS concrete. Slope the apron away from the box
3. Where multiple pull boxes are placed side by side, maintain at least $8^{\prime \prime}$ between the pull boxes.
4. Rectangular boxes shown, others similar.

GENERAL NOTES:

1. It shall be the contractors responsibility to provide a complete service assembly
.The service installation shall meet the requirements of the national electric code
and applicable local codes.
2. Shop drawings are not required for service equipment, unless noted in the plans.

A Pull Box is required at each service point, see Index 635-001

DETAIL A
AERIAL FEED

UNDERGROUND FEED

GENERAL NOTES

1. Work these Index Sheets with the Strain Pole Schedule in the Plans. See Index 634-00 Work these Index Sheets with the Strain pole Schedule in the Play
for corresponding signal cable and span wire installation details.
2. Shop Drawings:

This Index is considered fully detailed and no shop drawing are necessary. Submit shop drawings only for minor modifications not detailed in the Plans.
3. Materials:
A. Concrete:

Brestress Strands \& Spiral Reinforcing
C.Hand and coupler cover plates
.Screws:
4. Fabrication:
A. Pole Total Taper shown is for pole width, strands, reinforcing and void (0.081 in/ft per face)
A. Pole Total Taper Shown is
B. Concrete Cover: 1 " minimum.
as shown, and add one turn for splices and two turns at both the tip
D. The design dimensions for front Face (FF) and Back Face (BF) of the poles may vary transversely
from the section shown by $\pm 1 / 4$ " to assist with removal from forms. Balance addition and subtractio
of the face widths to maintain section areas shown.
E. Tie ground wires to the interior of reinforcing steel to prevent displacement during concreting operations. of the prestressed strand either first or simultaneously with the butt end.
6. Provide cover plates and screws for hand hole and couplers. Attach cover plates to the poles using lead

Provide or embedded threaded inserts.
a. Financial Project ID
b. Pole Manufacturer
. Standard Pole Type Number
d. Pole Length (L)
5. $\frac{\text { Support Points: }}{\text { Support Points }}$

Support Points shown may vary within a tolerance of ± 3
Horizontal Pole Support Points shown are for strand release, storage, handling and transport
of the horizontal pole. Keep Back Face oriented downward until final erection
6. Two point attachment: Provide an eye bolt hole for the messenger wire.
7. Tether wire: When required, field-drill the eyebolt hole prior to installation.

- CONCRETE POLE ASSEMBLY (Type P-VII Shown, others Similar)

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$		$\begin{array}{cc} \text { FDY 2022-23 } \\ \text { STANDARD PLANS } \end{array}$	CONCRETE POLES	$\begin{gathered} \text { INDEX } \\ 641-010 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 10 \end{aligned}$

SPIRAL REINFORCING ELEVATION (Strands and Fixtures Not Shown)

(Strands and Reinforcing Not Shown)

NOTES:

1. Provide a minimum $3^{\prime \prime}$ concrete plug at the Tip End.
2. For final erection, tilt pole upright with single point
attachment located a distance of 4 feet from the Tip End.
3. Dimension may vary from $21 / 4$ to $31 / 2$ to accommodate smaller radius of optional stepped (PVC) void.
4. Strands shown are continuous from Tip End to Butt End.
5. Strands are not shown in the elevation views for clarity.

LEGEND:

- Prestressed Strand:
before transfer or
0.375 in. ~ 14 kips before transfer (4 strands total)

SERVICE POLE - TYPE P-IIA (12 Ft.)

\qquad SPIRAL REINFORCING ELEVATION
(Strands and Fixtures Not Shown)

> (Strands and Reinforcing Not Shown)

$\overline{\text { SECTION C-C (Tip End) }}$

=SECTION D-D (Typical Square Section)=

NOTES:

1. Provide a minimum $3^{\prime \prime}$ concrete plug at the Tip End.
2. For final erection, tilt pole upright with single point
attachment located a distance of 10 feet from the Tip End
3. Dimension may vary from $2 / / 4$ to $31 / 2$ to accommodate
smaller radius of optional stepped (PVC) void. The minimum void diameter is $2^{\prime \prime}$
4. Strands shown are continuous from Tip End to Butt End.
5. Strands are not shown in the elevation views for clarity.

LEGEND:

- Prestressed Strand:
0.5 in. ~ 24 kips

0. 5 in. - 24 kips before transfer or
0.375 in. -14 kip
(4 strands total)

SERVICE POLE TYPE P-IIB (36 Ft.)

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$		$\begin{array}{cc} \text { FDY 2022-23 } \\ \text { STANDARD PLANS } \end{array}$	CONCRETE POLES	$\begin{gathered} \text { INDEX } \\ 641-010 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 10 \end{aligned}$

SPIRAL REINFORCING ELEVATION
(Strands, Holes, and Fixtures Not Shown)

(Strands and Reinforcing Not Shown)

NOTES:

1. Provide a minimum $3^{\prime \prime}$ concrete plug at the Tip End.
2. For final erection, tilt pole upright with single point
attachment located a distance of 4 feet from the Tip End.
3. Dimension may vary from $21 / 4$ " to $31 / 2$ " to accommodate
smaller radius of optional stepped (PVC) void.
4. Strands shown are continuous from Tip End to Butt End.
5. Strands are not shown in the elevation views for clarity.

LEGEND:

- Prestressed Strand:
0.5 in. - 24 kips before transfer or
0.37 in. 14 kips before transfer
(4 strands total)

LAST REVIIION $11 / 01 / 21$	\|	$\begin{array}{cc} F D O T \\ \text { FDOT } & \text { 2022-23 } \\ \text { STANDARD PLANS } \end{array}$	CONCRETE POLES	$\begin{gathered} \text { INDEX } \\ 641-010 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 4 \text { of } 10 \end{aligned}$

SPIRAL REINFORCING ELEVATION
(Strands, Holes, and Fixtures Not Shown)

POLE ELEVATION
Strands and Reinforcing Not Shown)

NOTES:

1. Provide a minimum $3^{\prime \prime}$ concrete plug at the Tip End.
2. For final erection, tilt pole upright with single point
attachment located a distance of 12.5% L from the Tip End
3. Dimension may vary from $31 /{ }^{3}$ " to $43 / /$ to accommodate
smaller radius of optional stepped (PVC) void.
The minimum void diameter is $4^{\prime \prime}$
4. Strands shown are continuous from Tip End to Butt End.
5. Strands are not shown in the elevation views for clarit

LEGEND:

- Prestressed Strana.
- Dormant Strand:

\qquad STRAIN POLE TYPE P-V

$\begin{aligned} & \text { LAST } \\ & \text { REVISION } \\ & 11 / 01 / 21 \end{aligned}$	\|	$\begin{gathered} \text { FDO 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	CONCRETE POLES	InDEX $641-010$	$\begin{aligned} & \text { SHEET } \\ & 7 \text { of } 10 \end{aligned}$

(Strands And Reinforcing Not Shown)

$\overline{=}$ SECTION M-M (Tip End) $\bar{\square}$

$\bar{\square}$ SECTION N-N (Typical Square Section)
FDOT
FDOT
FY 2022-23
STANDARD PLANS

NOTES:

1. Provide a minimum $3^{\prime \prime}$ concrete plug at the Tip End.
2. For final erection, tilt pole upright with single point
attachment located a distance of 10% L from the Tip End.
3. Dimension may vary from $3^{\prime \prime}$ to $4 \frac{1}{4}$ " to accommodate

Smaller radius of optional stepped (PVC) void.
4. Strands shown are continuous from Tip End to Butt End
5. Strands are not shown in the elevation views for clarity.

LEGEND:

- Prestressed Strand:
- Dormant Strand:

Dormant Strand:
0.5 in. (4 strands total) One 24 " splice allowed per strand

GENERAL NOTES

1. Work this Index with Specification 641
2. This Index is considered fully detailed and no shop drawings are necessary. Submit Shop
3. Provide either round or 12 -sided Poles.
4. See Index 635-001 for additional details for Pull Boxes.
5. Materials:
A. Pole: Use Class VI concrete with 6 ksi minimum strength at transfer.
A. Pole: Use Class
B. Prestressing Strands ASTM ASTM A4t 6 , Grade 270 low relaxation
Reinforcing Steel: ASTM A615, Grade 60

E. Bolts: ASTM F1554, Grade 55 Nuts: ASTM A563, Grade A Heavy Hex

Nuts: ASTM A553, Grade A Heavy Hex
Washers: ASTM F436
F. Stel pliates and pole Cap: ASTM A36 or ASTM A709, Grade 50
G. Galvanization: Bolts nut
G. Galvanization: Bolts, nuts and washers: AS
6. Fabrication:
A. Cut the tip end of the prestressed strand first or simultaneously with the butt end
B. For spiral reinforcing, one turn is required for spiral splices and two turns are required
at the top and bottom, of poles.
C. For Reinforcing Steel, lap splice to consist of a $3^{\prime}-0^{\prime \prime}$ lap length at each splice. No more
. For Reinf or cing Steel, lap splice to consist of a ${ }^{3}$ - $0^{\prime \prime}$ lap length at each splice. No more
than two opposing rebar to be spliced at the same cross section. Stagger lap splices as needed.
D. Provided a a Cass 3 surface finish in accordance with Specification 400 .
E. Provide a 11 minimum cover.
F. Provide a l 1 minimum cover.
Provide hand hole and oupler cover plates made of non-corrosive materials. Attach cover
plates to poles using lead anchors or threaded inserts embedded in the poles in conjunction
with round headed chrome plated screws.

Grovide Identification Markings on tre poles where indicated on the following sheets. Include
the following information using inset numerals with $1^{\prime \prime}$ height or as approved in the Producers the following information

Financial Project ID Pole Manufacturer Pole

Pole Length
H. Tie ground wires to the interior of reinforcing steel as necessary to prevent displacement
I. Suring concreting operations.
7. Pole Installation:
A. Install the Pole plumb
B. Install Pole with the handhole located away from approaching traffic
8. Cabinet Installation
A. Splice fiber optic cables in cabinet to preterminated patch panel.
B. Furnish and install Surge Protection Devices (SPDs) on all cabling

Furnish and install secondary SPDs protection on outlets for for for in cabinet.
D. Ensure that all electronic equipment power is protected and conditioned with SPD.
F. Ensure that equipment cabinet is bonded to CCTV pole ground ing system
F. Install the pole mounted cabinet with the hinges next to the pole.
G. Sizes and types of cond
6. Sizes and types of conduits and innerducts for nextwork communications between the pullbox
and cabinet are stated in the contract Documents.
9. Lowering Device Installation:
A. Place the lowering cable that moves within the pole in an interior conduit to prevent it from
tangling or interfering with any electrical wire that is in the pole. Ensure that any electrical wire within the pole is routed securely and free from slack
. Mount so that tharm perpendicular to the roadway or as shown in the plans. Position CCTV pole so that the camera can be safely lowered without requiring lane closures.
c. Coordinate all lowering device hardware requirements (including Tenon, Tenon mounting plates, parking stand, etc.) with lowering device manufacturer.

CCTV POLE ASSEMBLY \qquad

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$	景	DESCRIPTION:	FDOT	FY 2022-23 STANDARD PLANS	CONCRETE CCTV POLE	$\begin{gathered} \text { INDEX } \\ 641-020 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 5 \end{aligned}$

NOTES

$=A S S E M B L Y=$

1. Diameter of 12 -sided poles are measured flat to flat.
2. Total Taper applies to pole, strands and reinforcing.
3. For 12-Sided Pole and Round Roles Option 2, Stress prestressed strand to 70% of Ultimate before transfer. For Ro
4. Pole Design Tables, Burial Depth is based on level ground (flatter than 1:5). Increase the burial depth in accordance with the Additional Burial Depth Due To Ground Slope table
for foundations with slopes 1.5 and steeper. Use the higher value for slope or diameter for foundations with slopes $1: 5$ and steepere. Use the higher value for slope or diameter
follues that fall between those shown on the table.

CAMERA LOWERING DEVICE

Dome Type CCTV Camera
2"Coupling with Cap
At 90° To Handhole (Camera Cable Entry Point)

Hole Top Detail

$=$ ASSEMBLY $=$

NOTES:

1. Install all handhole and opening covers prior

-

2. Install $1 / /^{\prime \prime} \varnothing \times 5^{\prime \prime}$ long stud with hex nut in
3. As an alternate, embed $4-1 / 1^{\prime \prime} 8 \times 18^{\prime \prime}$
stainless steel threaded rods with a threaded nut. At top of rod, thread a a
coupling nut oo attach plate w/ $4-1 / 2^{\prime \prime} \times 1 \frac{13}{4}$
stainless steel bolts.
4. Handhole frame may be Cast Aluminum 356.2.
5. Work these details with Data Tables on Sheet 2.

PLAN VIEW

elevation
=TENON COVER= 3- Equally Spaced $1 / 4^{\prime \prime} \varnothing$ Holes (Typ).

Tenon Cap $1 / s^{\prime \prime}$
工TENON CAP=
$3^{3 / 2}$ " \varnothing Eye Bolt
With $1^{\prime \prime}$ Inner \varnothing

EyE bolt option
PPARK STAND DETAIL $\bar{\square}$

PLAN VIEW
pLAN VIEW Tenon $6^{\prime \prime}$ O.D. $\times 1_{1 / \prime \prime \prime}^{\prime \prime}$
Wall $\times 12^{\prime \prime}$ Min Long 21/3" \otimes Hole (Typ).
Din
$\underset{\substack{\text { LAST } \\ \text { REVISION }}}{\text { il/ }}$

11/01/21

INDEX	SHEET
$641-020$	4 of 5

NOTES:

1. Work this Index with Specification 646
2. For Pedestrian Signals see Index 653-001
3. For Pedestrian Detector Assembly (i.e., Pushbutton and Sign) details see Index 665-001.
4. Footing may be Cast-In-Place (C-I-P) or Precast.
5. As an alternative to the direct buried "Post Mounted Pedestrian Detector Assembly shown below, the post may be installed on a transformer base. Use a
transformer base included on the APL approved as an alternative to a "Post Mounted" assembly,

Nominal 4" Aluminum Post (Sch. 40) inished Grade

IN SIDEWALK CURB
ADJACENT to SIDEWALK IN SIDEWALK CURB
(Conduit And Grounding Not Shown
\qquad
\qquad
LAST
REVISION

INDEX	SHEET
646-001	1 of 1

NOTES:

1. Work with Index 634-001 for grounding and span wire details. See the plans for clamp
spacing, cable sizes and forces, signals and sign mounting locations and details.
2. Shop Drawings:

This Index is considered fully detailed, only submit shop drawings for
minor modifications not detailed in the plans.
3. Materials:
A. Strain Pole and Backing Rings:
b. Greater than or equal to $3 / / \mathrm{h}^{\circ}$: ASTM A572 Grade $50,55,60$ or 65
C. ATM A595 Grade A (55 ksi yield) or Grade B (60 ksi yield)
Steel Plates: ASTM A36
B. Steel Plates: ASTM
C. Weld Metal: E70XX
D. Bolts. Nuts and Washers:
a. High Strength Bolts: ASTM F3125, Grade A325, Type 1
b. Nuts: ASTM A563 Grade DH Heavy-Hex
c. Washers: ASTM F436 Type 1, one under turned element
C. Washer s: ASTM F436 TYpe 1, one under turned element
E. Anchor Bolts, Nuts and Washers:
a. Anchor Bolts: ASTM Fh5 S
a. Anchor Bolts: ASTM F1554 Grade 55
b. Nuts: STM A563 rade A Heavy-Hex (5 per anchor bolt)
C. Plate Washers: ASTM A36 (2 per bolt). Split-lock washers and
self-locking nuts are not permitted
F. Handhole Frame. ASTM A709 or ASTM A36, Grade 36
G. Handhole Cover: ASTM A1011 Grade 50,55, 60 or 65
H. Alumiole Cover: ATM A101 Grade 50, 55, 60 or 65
H. Alumum Pole Caps and Nut Covers: ATM B26 (319-F)

1. Stainless Steel Screws: AISI Type 316
K. Concrete: Class IV (D) rilled Shaft) for all environmental classifications.
L. Reinforcing Steel: Specification 415
2. Fabrication:
A. Pole Taper: Change diameter at a rate of 0.14 inches per foot, round or
12-sided (Min.)
B. Upright splices are not permitted. Transverse welds are only permitted at the base.
C. Provide bolt hole diameters as follows:
a. Bolts (except Anchor Bolts): Bolt diameter plus $1 / 16^{\prime \prime}$, prior to galvanizing.
b. Anchor Bolts: Bolt diameter plus 1/", maximum
D. Locate handhole 180° from $2^{\prime \prime}$ wire entrance pipe.
E. Identification Tag: (Submit details for approval.)
a. ""x 4" (Max.) aluminum identification tag.
b. Locate on the inside of the pole and visible from the handhole.
c. Secure to pole with $1 / s^{\prime \prime}$ diameter stainless steel rivets or screws.
d. Include the following information on the ID Tag:
3. Pole Ype
4. Pole height
5.
6. Pole height
7. Manutaturers' Name
8. Fan
9. Manufacturers' Name
10. Fy of Steel
11. Base Wall Thickness
F. Provide a 's' or 'C hook at the top of the pole for signal wiring support (See Sheet 3).

Provide a or chook hat the top of the pole for signal win
Perform all welling in accordance with Specitication 460-6.4
Fabricate longitudinal seam weld s in pole with 60 percent
Fabricate longitudinal seam welds in pole with 60 percent
fusion welds except, within $6^{\prime \prime}$ of the base plate connection use full-penetration
L. Hot Dip Galvanize after fabrication.
5. Coatings:
A. All Nuts, Bolts, Washers and Threaded Bars/Studs: ASTM F2329
B. All other steel items including plate washers: ASTM A123
6. Construction:
A. Foundation: Specification 455, except that payment is included in the cost of the strain pole.
B. After installation, place wire screen between top of foundation and bottom of base plate in.

After instaification place wire screen between top of foundation and bottom of base plate in accordance with Specification 649-6.

ELEVATION AND NOTES

GENERAL NOTES

2. This Index is considered fully detailed; only submit shop drawings for minor modifications not detailed in the Plans.
3. See Index 635-001 for additional details for Pull Boxes.
4. Materials:
. Pole: ASTM A1011 Grade 50,55, 60 or 65 (less than $1 / 4$ ") or ASTM A572 Grade 50,60 or 65 (greater than or equal to $\nu_{/ ")}$) or ASTM A595 Grade A (55 ksi yield) or Grade B (60 ksi yield)
B. Steel Plates and Pole Cap: ASTM A36 or ASTM A709 Grade 50
D. Bolts: ASTM F3125, Grade A325, Type 1 Nuts: ASTM A563.
Washers: ASTM F-43.
E. Anchor Bolts: ASTM F1554 Grade 55 with ASTM A563 Grade A heavy-hex nuts and ASTM A36 plate washers.
F. Handhole Frame: ASTM A709 Grade 36 or ASTM A36.
G. Handhole Cover: ASTM A1011 Grade 50, 55,60 or 65 .
H. Stainless Steel Screws: AISI Type 316.
I. Reinforcing Steel: ASTM A615 Grade 60 .
J. Galvanization: Bolts, nuts and washers: ASTM F2329 All other steel including plate washer: ASTM A123
K. Concrete: Class IV (Drilled Shaft) for all environment classifications.
5. Fabrication:

Specification 460-6. 4 and
a. Specification $460-6.4$ and
b. AASHTO RFD Specification for Structural Supports for Highway Signs, Luminaires, and Traffic Signals Section 14.4.4.
B. Poles:
a. Round or 16 -sided (Min.)
b. Taper pole diameter at 0.14 inches per foot
c. Fabricate Pole longitudinal seam welds (2 maximum) with 60 percent minimum penetration or fusion welds except as follows:

1. Use a full-penetration groove weld within 6 inches of the circumferential tube-to-plate connection and
2. Use full-penetration groove welds on the female end section of telescopic (i.e., slip type) field splices for a minimum Vole shaft of one and one-half times the inside diameter of the female section plus 6 inches.
e. Circumferentially welded pole shafts and laminated pole shafts are not permitted
C. Identification Tag: (Submit details for approval)
a. 2"x 4" (Max.) aluminum tag
b. Locate on the inside of the pole and visible from the handhole
d. Include the following information on the ID Tag:
3. Financial Project ID
4. Pole Type
5. Pole Height
6. Pole Height
7. Manufacturers'
8. Manufacturers Name
9. Yield Strength (Fy of Steel)
10. Base Wall Thickness

Except for Anchor Bolts, bolt hole diameters are bolt diameter plus $1 / 16^{\prime \prime}$ and anchor bolt holes are bolt diameter plus $1 / 2$ (Max) prior to galvanizing.
6. $\frac{\text { Pole Installation: }}{\text { A. Do not install }}$

Do not install additional wire access holes (not shown in this Index) with a diameter that exceeds $1 \frac{1 / 2 \prime \prime}{}$ in diameter
C. Cable Supports: Electrical Cable Guides and Eyebolts.
a. Locate top and bottom cable guides within the pole aligned with each other
b. Position one cable guide $2^{\prime \prime}$ below the handhole.
c. Position other cable quide 1" directly below the
d. Position Park Stands $2^{\prime \prime}$ below the top of the handhole.
d. Position Park Stands $2^{\prime \prime}$ below the top of the handhole.
D. Install pole with the handhole located away from approaching traffic.
E. Install the Pole plumb.
7. Cabinet Installation:
A. Splice fiber optic cables in cabinet to preterminated patch panel
A. Splice tiber optic cables in cabinet to preterminated patch panel.
B. Furnish and install Surge Protection Devices (SPDs) on all cabling in cabinet.
C. Furnish and install secondary SPDs protection on outlets for equipment in cabinet.
D. Ensure that all electronic equipment power is protected and conditioned with SPDs.
D. Ensure that all electronic equipment power is protected and conditioned
E. Ensure that equipment cabinet is bonded to CCTV pole grounding system.
E. Ensure that equipment cabinet is bonded to cCTV pole grounding
F. Install the pole mounted cabinet with the hinges next to the pole.
G. Sizes and types of conduits and inner ducts for network communi
G. Sizes and types of conduits and inner ducts for network communications between the pullbox
and cabinet are stated in the Contract Documents.
8. $\frac{\text { Lowering Device Installation: }}{\text { A. Place the lowering cable th }}$
moves within the pole in an interior conduit to prevent it rom tangling or interfering with any electrical wire that is in the pole. Ensure
any electrical wire within the pole is routed securely and free from slack.
B. Mount towering device perpendicular to the roadway or as shown in the plans. Position
C. Coordinate all lowering device hardware requirements (including Tenon, Tenon mounting plates, parking stands, etc.) with lowering device manufacturer

LAST
 $\stackrel{\text { LAST }}{\text { REVISION }}$

1/01/21
 DESCRIPTION:

$\overline{=} A S S E M B L Y=$

ADDITIONAL SHAFT DEPTH DUE TO GROUND SLOPE		
Ground Slope	$4^{\prime}-0^{\prime \prime} \text { Shaft }$ Diameter	$5^{\prime}-0^{\prime \prime} \text { Shaft }$ Diameter
1:5	$3^{\prime \prime}-0^{\prime \prime}$	$4^{4}-0^{\prime \prime}$
1:4	$4^{4}-0^{\prime \prime}$	$5^{\prime \prime}-0^{\prime \prime}$
1:3	$5^{\prime}-0^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$
1:2	$7^{\prime}-0^{\prime \prime}$	$9^{\prime}-0^{\prime \prime}$

FOUNDATION NOTES

1. Shaft Length is based on $1^{\prime}-0^{\prime \prime}$ height above the finished grade.
2. Shaft Design Table Shaft Length is based on level ground (flatter Additional Shaft Depth Due To Ground Slope table for foundations
with slopes $1: 5$ and steeper. Use the higher value for slope a diameter values that fall between those shown on the table.

BASE PLATE AND ANCHOR BOLT DESIGN TABLE							
Pole Overall Height (ft)	Base Plate Diameter (in.)	Base Plate Thickness (in.)	Anchor Bolt Circle (in.)	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Rolts } \end{gathered}$ Bolts	Anchor Bolt Diameter (in.)	Anchor Bolt Embedment (in.)	Minimum Anchor Bolt Projection (in.)
50	27	2.5	22	6	1.25	31	8.5
55	28	2.5	23	6	1.25	33	8.5
60	33	2.5	27	6	1.50	34	9.5
65	35	2.5	29	6	1.50	35	9.5
70	40	2.5	33	6	1.75	38	10.5

POLE DESIGN TABLE							
Pole OverallHeight (ft)	Section 1 (Top)			Section 2 (Bottom)			Joint
	Length	$\begin{gathered} \text { Wall } \\ \text { Thickness } \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \text { Base } \\ \text { Diameter } \\ \text { (in.) } \end{gathered}$	Length	$\begin{gathered} \text { Wall } \\ \text { Thickness } \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \text { Base } \\ \text { Diameter } \\ \text { (in.) } \end{gathered}$	Minimum Splice Length (in.)
50	---	---	---	$50^{\prime}-0^{\prime \prime}$	0.25	17	---
50	$25^{\prime \prime}-0^{\prime \prime}$	0.25	14	$28^{\prime \prime}-0^{\prime \prime}$	0.25	17	27
55	$30^{\prime}-0^{\prime \prime}$	0.25	15	$28^{\prime \prime}-0^{\prime \prime}$	0.3125	18	30
60	$35^{\prime}-0^{\prime \prime}$	0.25	18	$229^{\prime \prime} 0^{\prime \prime}$	0.3125	21	33
65	$33^{33^{\prime}-0^{\prime \prime}}$	0.25	19	${ }^{36^{\prime}-0^{\prime \prime}}$	0.3125	23	33 39
70	$38^{\prime}-0^{\prime \prime}$	0.25	22	$36^{\prime}-0^{\prime \prime}$	0.3125	26	39

Pole Top Or Tenon

$\overline{=}$ ASSEMBLY $\overline{ }$

$\overline{=}$ POLE TOP PLATE $\overline{=}$

LAST	DESCRIPTION:	
REVISION		
$11 / 01 / 21$	$\stackrel{0}{n}$	

FDOT	FY 2022-23 STANDARD PLANS	STE $\mathbb{L} \mathbb{C C T V}$ POLE	INDEX	SHEET

\#2 AWG Tin-Plated
Bare Solid Coper
Wire Continuous to
the Base of the
CCTV Pole

TYPICAL
(20' Rods, 40^{\prime} Spacing)

TYPICAL MODIFIED
(20' Rods, 40' Spacing)
Handhole -

Cabinet Adapter Bracket with Stainless Steel Bands
(As Shown in the Plans)

SIDE VIEW

ground rod array placement
front View
= DETAIL "E"

POLE MOUNTED CABINET
steel cctv pole grounding

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$			STEEL CCTV POLE	$\begin{gathered} \text { INDEX } \\ 649-020 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 6 \text { of } 6 \end{aligned}$

ARM AND BASE PLATE										
$\begin{array}{\|l\|} \hline \text { Arm ID } \\ \text { Axx-ArmLength } \\ \text { S-SingleArrm } \\ \text { D-DoubleArm } \end{array}$H-HeavyDuty	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Total } \\ \text { Angm } \\ \text { Length } \\ (f t) \end{array} \\ \hline \end{array}$	Arm			Arm Extension			Base Plate		
		$\underset{(f t)}{F A / S A}$	$\begin{gathered} F C / S C \\ (\text { (in) } \end{gathered}$	$\underset{(i n)}{F D / S D}$	$\begin{gathered} F E / S E \\ (f t) \end{gathered}$	$\begin{gathered} F G / S G \\ (i n) \end{gathered}$	$\underset{(\text { in) }}{\text { FH/SH }}$	$\begin{gathered} H T \\ \text { (in) } \end{gathered}$	$\begin{gathered} \left.F_{(\text {in })}\right) \end{gathered}$	$\underset{\left(\mathcal{F}_{(i n)}\right.}{ }$
A30/S	30	30	11	0.250				22	25	3
A30/S/H		30	12	0.250						
A30/D		30	11	0.250				30	36	
A30/D/H		30	12	0.250						
A40/S	40	40	13	0.250				22	27	3
A40/S/H		40	14	0.250				22	27	
A40/D		40	13	0.250						
A40/D/H		40	14	0.250				30	36	
A50/S	50	32.5	12	0.250	20.5	14	0.313			3
A50/S/H		32.5	13	0.250	20.5	15		22	29	
A50/D		32.5	12	0.250	20.5	14		30	36	
A50/D/H		32.5	13	0.250	20.5	15				
A60/S	60	35.5	12	0.250	27.5	15	0.375	30	36	3
A60/S/H		35.5	13	0.250	27.5	16				
A60/D		35.5	12	0.250	27.5	15				
A60/D/H		35.5	13	0.250	27.5	16				
A70/S	70	38	13	0.250	35	17	0.375	30	36	3
A70/S/H		38	14	0.250	35	18				
A70/D		38	13	0.250	35	17				
A70/D/H		38	14	0.250	35	18				
A78/S	78	39	13	0.250	42	18	0.375	30	36	3
A78/S/H		39	15	0.250	42	20				
A78/D		39	13	0.250	42	18				
A78/D/H		39	15	0.250	42	20				

POLE, BASE PLATE AND ARM CONNECTION																		
Pole ID Px-PoleNo S-Singlearm D-DoubleArm L-Luminaire PIS	Upright				Base Plate					Arm-Upright Connection								
	$\begin{gathered} U A \\ (f t) \\ (f) \end{gathered}$	$\begin{array}{\|l\|l} \hline \text { UD } \\ \text { (in) } \end{array}$	$\begin{aligned} & \text { (in) } \end{aligned}$	$\begin{aligned} & u g \\ & (f t) \\ & \left(\begin{array}{l} 4 \end{array}\right) \end{aligned}$	$\begin{array}{\|l\|l\|} \text { Noo } \\ \text { Bolts } \end{array}$	$\begin{aligned} & B A \\ & \text { (in) } \end{aligned}$	$\underset{(i n)}{B B}\left(\begin{array}{l} \text { (} \end{array}\right.$	$\begin{aligned} & B C \\ & (i n) \end{aligned}$	$\begin{aligned} & B F \\ & (i n) \\ & (1) \end{aligned}$	$\begin{aligned} & \text { (in } \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & F_{(i n)}, \end{aligned}$	$\underset{\substack{\text { FL/SL) } \\ \text { (in }}}{ }$	$\begin{array}{c\|} \hline F N / S N \\ (i n) \end{array}$	$\begin{gathered} \text { FO/SO } \\ \text { (in) } \end{gathered}$	$\begin{gathered} F P / S P \\ (\text { in }) \end{gathered}$	$\underset{\substack{F R / S R \\ \text { (in) }}}{ }$	$\underset{(i n)}{F S / S S}$	(FT/ST (in)
P1/S	25	16	0.375		6	32	2.5	2	40	22	25	0.75	0.438	14	1.25	2	8.5	0.438
P1/S/L	39			37.5						22	25			14				
P1/D	25 39			37.5						30	36			23		2.75	12.5	
P2/S	25	18	0.375		6	34	2.5	2	40	22	27	0.75	0.438	15	1.25	2	8.5	0.438
P2/S/L	39			37.5														
P2/D P2/D/L	25			37.5						30	36			23		2.75	12.5	
P3/S	25	20	0.375		6	36	2.5	2	40			0.75	0.438		1.25			0.438
P3/S/L	39			37.5						22	29			16		2	8.5	
P3/D	25			37.5						30	36			23		2.75	12.5	
P4/S	25	22	0.375		8	38	2.5	2	40	30	36	0.75	0.438		1.25	2.5	12.5	0.438
P4/S/L	39			37.5										17				
P4/D	25			37.5										23				
P5/S	25	24	0.375		8	40	2.5	2	40	30	36	0.75	0.5		1.25	2.5	12.5	0.5
P5/S/L	39			37.5										18				
P5/D	25													23				
P5/D/L	39 25			37.5		40	2.5	2	40	30	36							
P6/S/L	39	24	0.5	37.5	8							0.75	0.625	18	1.5	2.5	12	0.625
P6/D	25													23				
P6/D/L	39			37.5														
P7/S	25	26	0.5		8	42	2.5	2	40	30	36	0.75	0.625		1.5	2.5	12	0.625
P7/S/L	39			37.5														
$\frac{P 7 / D}{}$	25													23				
P7/D/L	39			37.5														

NOTE

Work this Index with Index 649-031.

DRILLED SHAFT												
Drilled Shaft ID			$\begin{gathered} D A \\ (f t) \\ \left(\begin{array}{c} 0 \end{array}\right. \end{gathered}$	$\begin{gathered} D B \\ (f t) \\ \left(\begin{array}{c} 1 \end{array}\right. \end{gathered}$	RA	RB		c	$\begin{aligned} & R D \\ & \text { (in) } \end{aligned}$		RE	$\xrightarrow[\text { (in) }]{\text { RF }}$
DS/12/4.0			12	4.0	11	14			12			
DS/12/4.5			12	4.5	11	16		8	12			
DS/14/4.5			14	4.5	11	16		0	8			
DS/14/5.0			14	5.0	11	18		0	8			
DS/16/4.5			16	4.5	11	16		0	8			
DS/16/5.0			16	5.0	11	18		0	8			
DS/18/5.0			18	5.0	11	18		0	8			
DS/20/5.0			20	5.0	11	18		0	6		10	9
DS/25/5.0			25	5.0	11	18		0	6		10	9
LUMINAIRE AND CONNECTION												
$\begin{gathered} \angle A \\ (f t) \end{gathered}$	$\begin{aligned} & \angle B \\ & (f t) \end{aligned}$	$\begin{aligned} & \angle c \\ & \stackrel{L i n}{ } \end{aligned}$	$\underset{(i n)}{L D}$	LE	$\begin{gathered} \stackrel{L F}{(f t)} \\ (f) \end{gathered}$	$\begin{aligned} & \angle G \\ & (i n) \end{aligned}$	$\begin{aligned} & L H \\ & (i n) \end{aligned}$	$\begin{aligned} & \text { Lin) } \\ & \text { (in) } \end{aligned}$		$\begin{aligned} & L K \\ & (i n) \\ & \left.()^{\prime}\right) \end{aligned}$	$\begin{gathered} \left.\hline \begin{array}{c} L L \\ \text { (deg) } \end{array}\right) \end{gathered}$	$\begin{array}{\|l\|} \hline U G \\ (f t) \end{array}$
40	10	3	0.125	0.5	8	0.5	0.75	0.2		0.25	0	37.5

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVIISION } \\ 11 / 01 / 20 \end{array}$		$\begin{gathered} \text { FY 2022-23 } \\ \text { FDOTANDARD PLANS } \end{gathered}$	STANDARD MAST ARM ASSEMBLIES	$\begin{gathered} \text { INDEX } \\ 649-030 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 1 \end{aligned}$

GENERAL NOTES:
Shop Drawings: This Index is considered fully detailed, only submit shop drawings
2. Prior to Fabrication: Verify the installed foundation elevation will result in the
3. Details for Signal and Sign locations, Signal Head attachment, Sign attachment, Pedestrian Head attachment, and Foundation Conduit are not shown for simplicity
4. $\frac{\text { Materials: }}{\text { A. Poles }}$
as Less than $3 / / 6^{\circ}:$ ASTM A1011 Grade $50,55,60$ or 65
Greater than or equal to 3 " m : ASTM A572 Grade 50, 55, 60 or 65
ASTM A595 Grade A (55 ksi yield) or Grade B (60 ksi yield)
B. Steel Plates: ASTM A36
C. Weld Metal: E70xX
D. Bolts, Nuts and Washers:
a. High Strength Hex Head Bolts: ASTM F3125, Grade A325, Type Nuts: ASTM A563 DH Heavy-Hex
Washers: ASTM F436 Type 1, one under turned element
E. Anchor Bolts, Nuts and Washers:'
a. Anchor Bolts: ASTM F1554 Grade 55
a. Ancts: ASTM A563 Grade A Heavy-Hex (5 per anchor bolt)
b. Nuts
F. Threaded Bars/Studs: ASTM A36 or ASTM A30
G. Handhole Frame: ASTM A700 or ASTM A36, Grade 36
H. Handhole Cover: ASTM A7011 Grade 50, 55 , 60 or 65
H. Handhole Cover: ASTM A1011 Grade 50, 55, 60 or 65
I. Pole Caps and Nut Covers: Fabricate from cast aluminum
or galvanized carbo stea
or galvanized carbon steel.
K. Concrete: Class IV (Drilled Shaft) for all environmental classifications.
L. Reinforcing Steel: Specification 415
$\frac{\text { Fabrication: }}{\text { A. Welding: }}$
a. Specification 460-6.4 and
b. AASHTO LRFD Specification for Structural Supports for
B. Poles and Mast Arms:
a. Round or 12-sided (Min.)
b. Taper pole diameter at 0.14 inches per foo
c. Upright poles must be a single section
. Upright poles must be a single section. For arms and upright
poles, circumferential welds and laminated sections are not
permitted.
d. Arms may be either one or two sections. See Sheet 4 for
telescopic splice detail
penetration or fusion weam welds with 60 percent minimum 1. Use a full-penetration groove weld
circumferential tube-to-plate connection. 6 inches of the of telescopic (i.e., slip type) field splices for a minimum of telescopic (i.e., slip type) field splices for a minimum
length of one and one-nall times the inside diameter of the
fenale section plus 6 竍 female section plus 6 inches.
Locate longitudinal seams weld al
f. Locate Iongitudinal seams weld along the

1. Lower quadrant of the arms.
2. Same side of the pole as the arm connections
g. Face handolele perpendicular from arm on single arm poles,
perpendicular from the first arm of doule perpenarcular ram the first arm of double arms poles facing
away from traffic or see special instructions on the Mast Arm
Tarulation Sheet
Tabulation Sheet.
Provide a ' ' $'$ or ' C '
h. Provide a ' 's or 'c' hook
support (See Sheet 6)
i. First and Second arm camber angle $=2$
i. Bolt holes diameters as follows:
3. Bolts (except Anchor bolts): Bolt diameter plus $1 / 16^{\prime \prime}$ " prior 2. Anchor Bolts: Bolt diameter plus $1 / 2$ " (Max.).
4. Coatings:
A. All Nuts, Bolts, Washers and Threaded Bars/Studs: ASTM F2329
5. Construction:
A. Foundation: Specification 455 Drilled Shaft, except that payment is

Inctuded in the cost of the Mast Arm.
B. Install Pole vertical
C. Place structuralically. pad with drain between top of foundation and bottom
D. Attach sinn Pancordance with Specification 649-7.
D. Attach Sign Panels and Signals centered on the elevation of the Mast Arm.
E. Wire Access holes are $11 / 2$ or less in diameter.

Single Arm Shown, Double Arm Similar (Luminaire Arm Not Shown)
\qquad
MAST ARM ASSEMBLY
elevation and notes
LAST
REVISION
$11 / 01 / 21$

2 DESCRIPTION:
1/01/21
FDOT
FY 2022-23
STANDARD PLANS

NOTES:
As an option, pedestrian signals may be installed on concrete poles and pedestals using lead anchors
(two bolts same size per hub) in lieu of the stainless

Repair drilled or punched holes in galvanized steel poles or pedestals in accordance with Specification
562. Install grommets or bushings in each fole.
3. Meet grounding requirements of Specification 620 .
4. See APL for Department-approved Pedestrian
Signal Assemblies and hardware.

For Prestressed Concrete Poles see Index 641-010.
6. For Steel Strain Poles see Index 649-010
7. For Pedestal Mounted Signal posts and foundations
see Index $646-001$

new construction

existing construction

$=$ PEDESTAL MOUNTED SIGNAL $=$
\qquad

NOTES

1. A transformer base is required for both conventionally-powered and solar-powered applications. Install pull box, conduit, wiring, and grounding in accordance with Index 700-120 based on the powering configuration called for in the Plans.
2. Install the RRFB in pairs, one on either side of approach traffic
3. Install controller on the backside of post from approach traffic.
4. Install a $30^{\prime \prime} \times 30^{\prime \prime}$ w11-2 sign on two-lane roadways and a $36^{\prime \prime} \times 36^{\prime \prime}$ W11-2 sign for multilane roadways.
5. Install push button and FTP-68C-21 sign in accordance with Index 665-001
6. Engage all threads on the transformer base and post unless the aluminum post is fully seated into base.
7. Meet the requirements of Specification 646 .
8. Install a concrete slab around all pull boxes. The minimum slab dimension is $4^{\prime}-0^{\prime \prime}$ by $4^{\prime}-0^{\prime \prime}$. In urban areas where space is limited slab dimensions may be adjusted as shown in the Plans.
9. For assemblies connected to conventional power, provide single pole non-fused watertight breakaway electrical connectors
in the frangible transformer base.
10. When wire entry holes are drilled in the sign column, use a bushing or rubber grommet to protect conductors.
11. For solar-powered applications, orient solar panel to face South
for optimal exposure to sunlight

Rectangular Rapid
Flashing Beacon

SIDE ELEVATION
Rectangular Rapior
Flashing Beacon

ADJACENT TO SIDEWALK

NOTES:

1. $\frac{\text { Materials: }}{\text { A. Sign pa }}$
A. Sign pane/s, wind beams and associated hardware: See Index $700-020$
B. Sign ad ustable hangers. wire rope
B. Sign ad justable hangers, wire rope clamps and associated hardware: See APL
c. Wire and additional hardware requirements: See Specification 634
2. Type B and CAttachments:
A. Extend wind beams to within $6^{\prime \prime}$ of the sign edge.
B. Number of sign hangers
a. Sign width < $4^{\prime}-0^{" \prime}$: One
b. $4^{\prime}-0^{\prime \prime} \leq$ sign width $\leq 8^{\prime}-0^{\prime \prime}:$ Two
C. Number of wind beams required based on sign depth:
a. Sign depth $<3^{\prime}-6^{\prime \prime}:$ One
b. $3^{\prime}-6^{\prime \prime} \leq \operatorname{sign}$ depth $\leq 7^{\prime}-0^{\prime \prime}$. Two

Type D Attachments:
$\frac{\text { Maximum sign width }}{\text { Man }}=3^{\prime}-0^{\prime \prime}$
4. Align the bottom edges of signs to approximately the same elevation.
5. Use a minimum of 2 bolts with a minimum spacing of $2^{\prime \prime}$ for overlapped connection of the adjustable hangers.
=SIGN MOUNTING DETAIL=

TYPICAL INSTALLATIONS FOR SIGN PANEL(S) MOUNTED ON SPAN WIRE

$\begin{aligned} & \text { LAST } \\ & \text { REVISION } \\ & 11 / 01 / 21 \end{aligned}$		FY 2022-23 STANDARD PLANS	SPAN WIRE MOUNTED SIGN DETAILS	INDEX 659-010	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 1 \end{aligned}$

GENERAL NOTES:

1. Lowering device to be shipped ready for pole attachment to include 100 ft . of composite power and signal cable
prewired to lowering device at the factory.
2. The lowering device manufacturer shall supply both a portable lowering tool with a manual hand crank and a half-inch
chuck variable-speed reversible industrial-duty electric drill that matches the winch's manufacturer-recommended chuck variable-speed reversibe industrial-duty electric drivinat matches the wuired.
revolutions per minute. One lowering tool per every 10 lowering devices is required
3. The lowering device manufacturer shall provide an on-site installation inspection and operator instruction and
certification. This ensures the product is assembled correctly and that all necessary persons are trained in the certireatione ohis ensures the product is assembled correctly atd that all necessary persons are trained in the
proper, safe operation of the syster. Berore erecting the first pole et he contractor must contact the lowering device
supplier and schedule a manufacturer's representative to be on-site. supplier and schedule a manufacturer's representative to be on-site.
4. Design camera mounting arm and connection to tenon according to FDOT Structures Manual (current edition).

CAMERA LOWERING DEVICE DETAIL
5. Camera to be mounted to camera junction box and stabilizing weight via $1 \frac{1}{2}$ " Standard NPT Pipe Thread.
6. Use air terminal extension when the pole top junction box is wider than top of pole.
7. The stainless steel device lowering cable shall be installed inside the pole within a $1 \frac{1}{4}$ "diameter PVC conduit.
8. All communication and power cables must be neatly bundled and secured.
9. Use a Camera Lowering Device listed on the Approved Product List (APL).
10. See Index 641-020 for concrete pole details and Index 649-020 for steel pole details.

1. Verify the pole type, the dimensions of the pole at the point of installation of the camera mount, and angle with respect
roadway before manufacturing camera mount assembly.
2. Design camera mounting arm and connection to the pole according to
FDOT Structures Manual (current edition).
3. No field welding shall be permitted.
4. Mounting bracket arm shall be level after installation
5. The contractor shall submit shop drawings for the proposed fixed mounting arm, shigned and sealed by a Professioneal Enineer
registered in the State of Florida, to the Engineer for review and approval.
6. See Index 641-020 for concrete pole details and Index 649-020 for

Galvanized pipe connections and conduit entry points shall be sealed in
accordance with Specification 630 .

GENERAL NOTES

1. If the loop lead-in is 75 , or less from the edge of the loop
detector to controller cabinet, continue the twisted pair to the detector to controller cabinet, continue the twisted pair to the
cabinet. If the loop lead-in is greater than 7 ' continue the twisted pair an Intermediate Pullbox, splice to shielded lead-i
wire and continue to the controller cabinet.
2. Provide sufficient saw-cut width to allow unforced placement of
loop wires or lead-in cables into the saw-cut. Except across exp wnsion or oints, saw-in cables into the saw-cut. Except across
standard depth of of $3^{\prime \prime}$, but no more
3. On resurfacing or new roadway construction projects, install the prior to the placement of the asphalt friction course. Place the
loop wires and lead-in cables in a saw cut in the structural course
4. Use nonmetallic hold down material to secure loop wires and
lead-ins to the boltom of saw-cuts. Place the hold down material approximately $12^{\prime \prime}$ intervals around loops and $24^{\prime \prime}$.
intervals on lead-ins.
5. The minimum distance between the twisted pairs of loop lead-in
wire is $6^{\prime \prime}$ from the loop to $12^{\prime \prime}$ from the pavement edge or curb.
6. Splice Connections in pull boxes with UL listed, watertight, conductor and place a third enclosure over the exposed end of the shielded cable. As an alternate, a larger diameter enclosure
that will accommodate both the splices of the conductors and the that will accommodate both the splices of the co
exposed end of the shielded cable may be used.
7. Do not disturb more than a $6^{\prime \prime} X{ }^{6^{\prime \prime}}$ area of asphalt. Restore
asphalt as directed by the Engineer.
8. Alternative installations may be approved by the State Traffic
Operations Engineer.

PLAN

NOTES:

1. Cut a slot in the edge of the roadway of
sufficient size and depth to snugly place suricient size and depth to snuar
2. Install the conduit at least $6^{\prime \prime}$ into the 2" below the top of the roadway surface
3. The departure angle of the conduit from
the roadway is between 30° to 45°.
elevation
Installation without curb \& gutter

alternative 1

4. Place the top of the rigid conduit approximately $2^{\prime \prime}$ below
the roadway surfface.
5. Fill the hole with loop sealant to the level of the
roadway surface.
6. Use a nonmetallic material to prevent excessive loop
sealant from entering the rigid conduit.
alternative 2

FDOT	FY 2022-23 STANDARD PLANS	VEHICLE LOOP INS TALLATION DETAILS	$\begin{gathered} \text { INDEX } \\ 660-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 2 \end{aligned}$

CABINET BACKPLANE DETAIL

| LAST REVISION $11 / 01 / 21$ | \|r|cren | FDOT) $\begin{gathered}\text { FY 2022-23 } \\ \text { STANDARD PLANS }\end{gathered}$ | TRAFFIC MONITORING SITE | $\begin{gathered} \text { INDEX } \\ 695-001 \end{gathered}$ | SHEET $3 \text { of } 9$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

J1 RECEPTACLE PINOUT	
26 Recessed Male Pins	
A	Loop 1a (5a) white
B	Loop 1a (5a) black
C	Loop 1b (5b) red
D	Loop 1b (5b) black
E	Loop 2a (6a) green
F	Loop 2a (6a) blue
G	Loop 2b (6b) orange
H	Loop 2b (6b) tan
J	Loop 3a (7a) white
K	Loop 3a (7a) green
L	Loop 3b (7b) red
M	Loop 3b (7b) black
N	Gnd
P	Loop 4a (8a) w/white
R	Loop 4a (8a) w/black
S	Loop 4b (8b) w/red
T	Loop 4b (8b) w/green
U	Piezo 1 (5) (+) w/blue
V	Piezo 1 (5) sh w/orange
W	Piezo 2 (6) (+) w/green
X	Piezo 2 (6) sh w/red
Y	Piezo 3 (7) (+) w/black
Z	Piezo 3 (7) sh w/red/blk
a	Piezo 4 (8) (+) red/ green
b	Piezo 4 (8) sh red/white
d	Gnd green

NOTES:

1. The contractor is responsible for contacting the TMS Manager in the and verification.
2. The equipment cable can accommodate up to four lanes of inductive loop
sensor inputs. (Reference Sheet 1 for cabinet layout)
3. For more than four lanes and up to eight lanes of inputs, the following
A. Second Vehicle Speed/Class. Unit and separate equipment cable
A. Seconct Vehicle Speed/Class. Unit and ser
connecting to a second 11 receptacle; or
B. Single Vehicle Speed/Class. Unit capable of up to eight lanes of inputs and a single equipment cable with suil)
11 receptacles. (Reference Sheet 2 detail)
4. Numbers in parenthesis in the pinout chart identify lane numbers when a secona backplane for lanes 8 is required.
5. Cable Ends must be fabricated to fit the vehicle Speed/Classification Unit.

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$		$\begin{gathered} \text { FY 2022-23 } \\ \text { FTANDARD PLANS } \end{gathered}$	TRAFFIC MONITORING S ITE

ROADWAYS WITH PAVED SHOULDERS= \qquad

NOTES

 2. Cut a $31 /{ }^{1 / 2}$ deep slot for the Inductive loops. Loop slots will be cut wide enough to allow unforced placement ofthe wire int the bottom of the slot. Four turn of \#14 AWG place the IMSA 51-7 coper wire in the slot. Place
short pieces of backer rod (2" to $3^{\prime \prime}$ in length) every 18" to 24" to hold the lop wire in the bottom of the slot.
3. Twist loop leads at the rate of 8 to 16 twists per foot. Loops that are within 150° of the cabinet, extend the twisted pair 100 w wire directly to the cabinet. For distances over 150 . \#14 IM SA $50-2$ shielded lead
must be spliced to the loop wire twisted pair at the first pull box to which the loop wire is pulled.
4. Marking will consist of two rounds of contrasting colored tape, one color for the lane number and the second color
for the lead loop location in the lane. The first band closest to the cabinet will represent the lane number, one for the lead loop location in the lane. The first band closest to the cabinet will represent the lane number, one
round of tape will be for lane 1 and two rounds will be lane 2, etc. The lead loop in lane one would have one round of tape and a second round of a contrasting colored tape for the lead loop in the lane. The trailing loo

See Index 635-001 for pull box and apron details.
6. All splices will be performed using splice kits designed for direct burial. Splice kits will include screw on wire
connectors and and housing with sufficient sealant to fully encapsulate the spliced connections. Taped splices are not permitted.
7. Use a chalk line or string and paint to layout the position of the sensor and lead-in cable slots. Ensure saw cuts
do not deviate more than 0.5 inches from the chalk line. Use a single blade or ganged blade saw wide enough to do not deviate more than o. 5 inches from the chalk line. Use a single blade or ganged blade saw wide enough to
cut the axle sensor slot at full width in a single pass. Cutting two slots and chipping out roadway material between cut the axle sensor
them is not allowed.
8. All sensor slots and any cuts in the roadway will be thoroughly blown out to ensure there is no dust or debris prior
to installation of sensors or leads. 9. Install Exit Windows at least 2' apart.
N:

FDA | FY 2022-23 |
| :---: |
| STANDARD PLANS |

EXIT WINDOW \qquad EXIT WINDOW DETAIL 'B'
CURB \& GUTTER ROADWAYS \qquad

END VIEW
(Axle Sensor Slot)
$\overline{=}{ }^{\text {DETAIL }}$ ' $C^{\prime}=$
荮

TYPE I CONFIGURATION-B
Vehicle Classification System

NOTE:
Configuration-A and Configuration-B are based on the vehicle Speed/classification unit. Contac
the TMS Manager in the Transportation Data and Analytics office for the correct configuration.

LANE CONFIGURATION FOR TMS INDUCTIVE LOOP AND STRAIN GAUGE/QUARTZ AXLE SENSOR

STEP 1: Calculate the area and the centroid for an individual sign or a sign cluster. Note that the centroid and areas have been calculated
for frequently used sign clusters. These are shown on Sheets 7,8 , and 9 .
(3)

STEP 2: Determine the height 'H' from groundline to the centroid of the individual sign or sign cluster
Assume: 'B' = 1 ft ., 'C' = 7 ft .
Calculated: $\quad X_{c}^{\prime}=-0.1 \mathrm{ft}, \mathrm{Y}_{c}^{\prime}={ }^{\prime} \mathrm{D}^{\prime} 2.26 \mathrm{ft}$.

STEP 3: Refer to the Aluminum Column (Post) Selection Tables and find the intersection point. See Sheet 3

For 'H' = $11 \mathrm{ft} ., \quad$ Area $=16 \mathrm{ft} .^{2}$
Refer to the Aluminum Column (Post) Selection
Table, from Sheet 3 and shown here for reference. To determine the required post size, find the
intersection of the row labeled "16 SF" and the column labeled "11 FT" For the example the
intersection value is "4" (4" OD).
In the Column (Post) and Foundation Table, the value "4" shows the design requires a 4.0" diameter and
y/4" thick Aluminum Column (Post) and a 2.0 ' diameter and 3.5^{\prime} deep Concrete Foundation and 3.0' Stub.

STEP 4: For sign assemblies with signs oriented in two directions, only the sign with the
Iargest area should be analyzed to determine the Column (Post) requirements.

SHEET	CONTENTS
1	General Notes and Design Example
2	Design Example - Centroid
3	Column and Foundation Tables
4	Slip Base and Foundation Details
5	Driven Postt, Concrete Stub, and
6	Soil Plate Details
$7,8 \& 9$	Wrequent Beam Connection Used Sign Clusters

GENERAL NOTES

1. Shop Drawings

This Index is considered fully detailed. Submit Shop Drawings only for ur
2. Aluminum Sign, Wind Beams and Column (Post) Materials:
A. Aluminum Plates: ASTM B209, Alloy 6061-T6
B. Auminum Bars and Extruded Shapes: ASTM B221, Alloy $6061-T 6$
C. Aluminum Structural Shapes: ASTM B221 Alloy 6061-T6
A. Aluminum Bars and Extruded Shapes: ASTM B221, Alloy 6061
C. Aluminum Structural Shapes: ASTM B221 Alloy $6061-T 6$
D. Cast Aluminum: ASTM B26 Alloy A355-T6 D. Cast Aluminum: ASTM B226 Alloy A356-T6
E. Aluminum Weld Material: ER 5556 or 5356
3. Galvanized Steel Slip Base Stub Materials: A. Steel Plate and Structural Shapes: ASTM A36 or ASTM A709, Grade 36
B. Steel Weld Metal: E7OXX
4. Sign Mounting Bolts, Nuts and Washers:
A. Aluminum Button Head and Flat Head Bolts: ASTM F468 Alloy 2024-T4
B. Aluminum Hex Nuts: ASTM F467 Alloy 6061-T6 or 6262-T9 A. Aluminum Button Head and
B. Aluminum Hex Nuts: ATM F467 Alloy 60661 -TT or 6262 -T9
C. Aluminum Washers: ASTM B221, Alloy 7075 -T6
5. Stainless Steel Bolts, Nuts and Washers may be used in lieu of the Aluminum
button head and flat head bolts as follows: A. Stainless Steel Bolts: ASTM Ft 593 Alloy Group 2, Condition A, CW1 or SH1 B. Stainless Steel Nuts: ASTM F594
6. Sign Column (Post) Bolts, Nuts and Washers:
A. Galvanized U-Bolt (Column): ASTM A449 or ASTM A193 B7 according to ASTM F2329 with double nuts (nut and lock washer optional).
B. Aluminum Bolts (Sleeve): ASTM F4688, Alloy 6061 -T6 or 2024 -T4 with B. Aluminum Bolts (Sleeve): ASTM F468, Alloy 6061 -T6 or 2024-T with
Hex Nuts F467 6061 -T6 or 6262 -T9 and Washers B21, A Clad 2024-T4 C. Galvanized High Strength Hex Head Bolts (Base Bolts): ASTM F312 Grade A325, Type
D. Galvanized Hex Nut
Galvanized Washers: ASTM A563 Grade D
F. Galvanized Bolts (Sleeve): ASTM A307 with Galvanized Hex Nuts and Washers
7. Coatings:
A. Aluminum Fasteners: Anodic coating (0.0002 inches mint.) and chromate sealed
B. High Strength Steel Bolts Nuts and Washers: ASTM F2329 B. All other steel items (excluding stainless steel): Hot-dip Galvanize-ASTM A123
C. Alepair damaged galvanizing in accordance with Specification 562
8. BREAKAWAY SUPPORTS REQUIREMENTS: Install non-frangible aluminum column (post) (larger than $3^{1 / 2 / 2}$) with breakaway supports as shown on Sheet 4. Signs shielded by
barrier wall or quardrail do not require breakaway support.
\qquad

- SIGN CLUSTER=

$$
x_{c}^{\prime}=\frac{\Sigma\left(X_{n}^{\prime} \times A_{n}^{\prime}\right)}{\Sigma ' A_{n}^{\prime}} \quad C^{\prime}=Y_{c}^{\prime}=\frac{\Sigma\left(Y_{n}^{\prime} \times A^{\prime} A_{n}^{\prime}\right)}{\Sigma^{\prime} A_{n}^{\prime}}
$$

${ }^{\prime} A_{n}^{\prime}=$ Area of individual sign
' B ' $=$ Height of the edge of pavement from the mounting elevation
'C' = Height of the the bottom of the sign or cluster from the edge of pavement elevation
${ }^{\prime} D^{\prime}=$ Height of the centroid of the sign or cluster from the bottom of the sign or cluster
h = Individual sign height
'H' = Height of sign or cluster centroid from groundline
a = Individual sign width
${ }^{\prime} X^{\prime}{ }_{c}=$ Centroid horizontal location of sign or cluster from \& Aluminum Column (Post)
${ }^{\prime} Y^{\prime}{ }_{c}=$ Centroid height of sign or cluster from bottom of sign cluster
' $x_{n}=$ Individual sign centroid horizontal location from \& Aluminum Column (Post)
${ }^{\prime} Y_{n}=$ Individual Sign centroid height from bottom of sign cluster
NOTES:

1. For 'B' \& 'C' see Index 700-101 and Roadway Plans.
2. Do not exceed an area of 30 SF or a width of 60 inches for a sign or a sign cluster,
including rotated sign panels.
3. Vertical sign spacing ($1^{\prime \prime}$ shown on Sign Cluster detail) also applies to rotated signs.
\qquad CALCULATION OF SIGN CLUSTER CENTROID \qquad

$=$ RAILROAD $=$

$=\mathrm{SCHOOL}=$

\qquad

\qquad

ALUMINUM COLUMN (POST) SELECTION TABLE (O.D. in.)

		'H' (FT)												
		8 ft	9 ft	10 ft	11 ft	12 ft	13 ft	14 ft	15 ft	16 ft	17 ft	18 ft	19 ft	20 ft
	3 sf	2	2.5	2.5	2.5	3	3	3	3	3.5	3.5	3.5	3.5	3.5
	4 sf	2.5	2.5	3	3	3	3	3.5	3.5	3.5	3.5	3.5	3.5	3.5
	5 sf	2.5	3	3	3	3.5	3.5	3.5	3.5	3.5	3.5	3.5	4	4
	6 sf	3	3	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	4	4	4
	7 sf	3	3.5	3.5	3.5	3.5	3.5	3.5	3.5	4	4	4	4	4
	8 sf	3.5	3.5	3.5	3.5	3.5	3.5	3.5	4	4	4	4	4	4
	9 sf	3.5	3.5	3.5	3.5	3.5	3.5	4	4	4	4	4	4	4
	10 sf	3.5	3.5	3.5	3.5	3.5	4	4	4	4	4	4	4.5	4.5
	11 sf	3.5	3.5	3.5	3.5	4	4	4	4	4	4	4.5	4.5	4.5
	12 sf	3.5	3.5	3.5	4	4	4	4	4	4	4	4.5	4.5	4.5
	13 sf	3.5	3.5	4	4	4	4	4	4	4	4.5	4.5	4.5	5
	14 sf	3.5	3.5	4	4	4	4	4	4	4.5	4.5	4.5	5	5
	15 sf	3.5	4	4	4	4	4	4	4.5	4.5	4.5	5	5	5
	16 sf	3.5	4	4	4	4	4	4	4.5	4.5	5	5	5	6
	17 sf	4	4	4	4	4	4	4.5	4.5	4.5	5	5	6	6
	18 sf	4	4	4	4	4	4.5	4.5	4.5	5	5	5	6	6
	19 sf	4	4	4	4	4	4.5	4.5	4.5	5	5	6	6	6
	20 sf	4	4	4	4	4.5	4.5	4.5	5	5	5	6	6	6
	21 sf	4	4	4	4	4.5	4.5	5	5	5	6	6	6	6
	22 sf	4	4	4	4.5	4.5	4.5	5	5	6	6	6	6	6
	23 sf	4	4	4	4.5	4.5	5	5	5	6	6	6	6	6
	24 sf	4	4	4.5	4.5	4.5	5	5	6	6	6	6	6	6
	25 sf	4	4	4.5	4.5	5	5	5	6	6	6	6	6	8
	26 sf	4	4.5	4.5	4.5	5	5	5	6	6	6	6	8	8
	27 sf	4	4.5	4.5	4.5	5	5	6	6	6	6	6	8	8
	28 sf	4	4.5	4.5	5	5	5	6	6	6	6	6	8	8
	29 sf	4.5	4.5	4.5	5	5	6	6	6	6	6	8	8	8
	30 sf	4.5	4.5	5	5	5	6	6	6	6	6	8	8	8

installing frangible column supports:
Columns (posts) $31 / 2$ " $0 . D$. and less are considered frangible and may be installed
 compaction) or filled with flowable fill or bagged concrete.

NOTES

1. For offset sign placement see Index $700-10$
2. For signs with widths greater than 4' see Index 700-011.
3. offset signs with driven posts require a soil plate.

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$		FDOT	$\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	SINGLE COLUMN GROUND SIGNS	$\begin{gathered} \text { INDEX } \\ 700-010 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 10 \end{aligned}$

NOTES:

1. Foundation Notes for Slip Base.
A. Place Stub into concrete foundation given in the
FOUNDATION TABLE using Class II Concrete.
2. Slip Base Fabrication Notes:
A. The difference between the 0.D. of the post and I.D. of
B. The WELDED STUB BASE and lower STUB/SLEEVE BASE PLATE may be fabricated using galvanized steel as an
option to aluminum. The upper portion of the SLIP BASE must be aluminum.
C. Either a Welded Stub Base or Bolted Stub/Sleeve Base
may be used in Slip Base.
D. For cast base plates bolted to foundation stubs, use a
3. Slip-Base Assembly Instructions:
Assemble the Slip Base as follows:
4. Insert tost into Sleeve and connect using $2 \sim 1 / 2 "$ diameter Sleeve Bolts.
5. Assemble top base plate to bottom Base Plate using
Base Bolts (High strength) with 3 washers per bolt. Base Borts (
(See Detail
A '):
a. Place one washer on each Base Bolt between the
bottom Base Plate and the Base Bolt head. b. Place the next washer between the Bottom Base c. Sse brass or golvanizeed steel shims to plumb the post
d. Add the top base plate section. d. Add the to pare plate section.
e. Place the third washer between the Top Base
Plate and the Nut e. Plate and the Nut.
B. Orient the Bolt Keeper Plates in the Direction of Traffic.
C. Tighten Base Bolts as follows
Tighten Base Bolts to the maximum possible with a $12^{\prime \prime}$
to $15^{\prime \prime}$ wrench (this will bed the washers and shin 2. Loosen each Base Bolt one turn.
6. Looser each Base Bolt one turn.
7. Under the supervision of the Engineer, use a calibrated
wrench to to tighten bolts to the wrench to tighten bolts to the torque prescribed in the
SLIP BASE DETAILS Table. Over tightened Base Bolts
8. Distort bortt threads at the junction with nuts to prevent
loosening. Repair damaged galvanizing. loosening. Repair damaged ga
D. Obtain a tight sleeve connection by placing 4 galvanized steel
shims between the column (post) and sleeve Space the shims evenly around the perimeter of the column (1 between each
bolt hole, 4 total). Use shims that are 1 " shorter than the height of the sleeve.

Column (Post) Size		SLIP BASE DETAILS												
Outside	Wall			Weld	Base	Plate	Radius	Bas	Se Bolt	Base Pla	orque		SHIM	
Dia.	Thickness	I.D. (Max.	Height 'H'	'W'	'L'	'T'	'R'	Size	Length	$f t-1 \mathrm{lbs}$	in.-lbs	Size 'D'	L	M
$4{ }^{\prime \prime}$	$1 / 4 /$	$4^{1 / 1 / 6 "}$	$6^{\prime \prime}$	1/4"	$8^{\prime \prime}$	3/4"	${ }^{11 / 32^{\prime \prime}}$	$5 / 8$	$3^{\prime \prime}$	29	45	${ }^{11 / 1 / 6^{\prime \prime}}$	13/8"	${ }^{11 / 166^{\prime \prime}}$
41/2"	$1 / 4 / 4$	49/6"	$6^{\prime \prime}$	1/4"	$8^{\prime \prime}$	7/8"	${ }^{11 / 32}{ }^{1 /}$	5/8"	31/4"	29	345	${ }^{11 / 1 / 6^{\prime \prime}}$	1\%/8"	${ }^{11 / 1 / 6^{\prime \prime}}$
$5^{\prime \prime}$	1/4"	5 $1 / 6^{\prime \prime}$	$7{ }^{\prime \prime}$	1/4"	$8^{\prime \prime}$	/8"	${ }^{11 / 32^{\prime \prime}}$	5/7	$31 / 4^{\prime \prime}$	29	345	${ }^{11 / 1 / 6 "}$	13/8"	${ }^{11 / 16^{\prime \prime}}$
$6^{\prime \prime}$	$1 / 4 / 1$	$6^{1 / 1 / 6^{\prime \prime}}$	$8^{\prime \prime}$	1/4"	$9^{\prime \prime}$	${ }^{\prime \prime}$	${ }^{13 / 32^{\prime \prime}}$	3/4"	$3{ }^{1 / 21}$	46	554	${ }^{13 / 166^{\prime \prime}}$	13/4"	${ }^{13 / 1610}$
$8^{\prime \prime}$	1/4"	81/6"	$10^{\prime \prime}$	1/4"	11"	${ }^{1 \prime}$	${ }^{15} 32^{\prime \prime}$	//8"	33/4"	53	640	15/6"	23/8"	11/16"

$\overline{=\text { SLIP BASE AND FOUNDATION DETAIL }=\overline{=} \text { SLIP BASE AND FOUNDATION DETAIL IN CONCRETE= }}$ (Non-Frangible Column, Typ.) (Non-Frangible Column In Crossovers, Medians \& Sidewalks)

SLIP BASE AND FOUNDATION DETAILS

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$		$\begin{array}{cc} \text { FDOT 2022-23 } \\ \text { STANDARD PLANS } \end{array}$	SINGLE COLUMN GROUND SIGNS

$\bar{\Longrightarrow}$ ALUMINUM SOIL PLATE DETAIL $\bar{\square}$
 (Traffic Separator)

Optional Slotted Holes
DETAIL "B" $\bar{\square}$

NOTE: Grout seal only required hen sidewalks is present
\qquad
(Frangible Post In Through Sidewalk Shown Frangible Post In Through Sidewalk Shown
Installations without Sidewalk Similar)

DRIVEN POST, CONCRETE/STUB, AND SOIL PLATE DETAILS

FDOT STANDARD PLANS
ITNGE COLUMN GROUND SIGNS
700-010 5 of 10

WIND BEAM CONNECTIONS DETAILS

NOTES:

1. $5 /$ / $^{\prime \prime} \varnothing$ stainless steel hex head bolts with nylon washer under head and washer under ut may be used in lieu of flat head bolts.
2. Use nylon washers (provided by the sheeting sign sheeting.
3. Slots up to $2^{\prime \prime}$ long are allowed in wind beams to accommodate U-Bolts for varying Column (Post) diameters.
4. Wind beams may be oriented in either direction
5. For signs greater than $66^{\prime \prime}$ in height, install a third wind beam evenly spaced between the top and bottom wind beams. For signs up to 1 in height, use only one wind beam at \& Sign.
Install two wind beams on signs with heights Install two wind beams on signs with heights
greater than $12^{\prime \prime}$ and less than or equal to 66

WIND BEAM CONNECTION

LAST REVIIION 11/01/20	全䆩\|DESCRIPTION:	$\begin{gathered} \text { FY 2022-23 } \\ \text { FTANDARD PLANS } \end{gathered}$	SINGLE COLUMN GROUND SIGNS	$\begin{gathered} \text { INDEX } \\ 700-010 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 6 \text { of } 10 \end{aligned}$

SIGN PANEL FRONT VIEW

UNDEPLOYED SIGN DETAIL

DEPLOYED SIGN DETAIL

NOTES:

Install sign in the undeployed (down) position
2. Provide a continuous stainless steel hinge with minimum $0.060^{\prime \prime}$ leaf thickness, $2^{\prime \prime}$ open width and $0.120^{\prime \prime}$ pin diameter. Stake the hinge at both ends to prevent pin movement.
3. Stowed 1 or 2 pcs of U-Bolt sized specifically for column (post) diameter. Stowed on Wind Beam and displaced whil deploying the sign.
. Bolts, Wingnuts, and washers at the bottom corners of the sign hold the sign panels closed when in the undeployed down) position. Store bolts, wingnuts, and washers in the bottom corner of the sign when in the deployed (up) position

\qquad

WIND BEAM CONNECTION FOR FLIP UP SIGN

FDOTX	FY 2022-23 STANDARD PLANS	SINGLE COLUMN GROUND S IGNS	INDEX	SHEET

GENERAL NOTES:

1. Refer to Index 700-010 for additional notes, assembly of base connection and material specifications not given in this Index
2. Aluminum Columns: ASTM B429 Alloy 6061-T6.
3. Place galvanized steel shims between the Sleeve and Post to obtain a tight fit between the Post and Sleeve.

Provide 2 ~ 0.0149" Thick (28 gauge) and 2 ~ 0.0329" Thick (21 gauge) Brass Shims Per Post. Used brass shims to pumb the post
4. Use nylon washers under the button bolt heads to protect sign sheeting. Use aluminum washers under nu

column selection and footing size table							
$\begin{gathered} \text { Sign Size } \\ \text { Height } \times \text { Length } \\ \hline \end{gathered}$	Column Size Diameter x Thickness	Sleeve Size Diameter x Thickness	$U \text {-bolt }$ Diameter	Base Bolt Diameter x Length	Torque lbs./in	Base Plate Thickness	Footing Depth
$4^{\prime \prime}-0^{\prime \prime} \times 5^{\prime}-0^{\prime \prime}$	$\begin{gathered} 4 \text { NPS } \\ \text { Schedule } 80 \\ \left(4.5^{\prime \prime} \times 0.337^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 5 \text { NPS } \\ \text { Schedule } 120 \\ \left(5.563^{\prime \prime} \times 0.5^{\prime \prime}\right) \end{gathered}$	1/2"	$5 / 8^{\prime \prime} \times 3 / z^{\prime \prime}$	270 サ 45	${ }^{1 \prime}$	$6^{\prime}-0^{\prime \prime}$
$4^{\prime}-0^{\prime \prime} \times 6^{\prime}-0^{\prime \prime}$							
$4^{\prime \prime}-0^{\prime \prime} \times 7^{\prime \prime}-0^{\prime \prime}$	$\begin{gathered} 5 \text { NPS } \\ \text { Schedule } 80 \\ \left(5.563^{\prime \prime} \times 0.375^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 6 \text { NPS } \\ \text { Schedule } 80 \\ \left(6.625^{\prime \prime} \times 0.432^{\prime \prime}\right) \end{gathered}$	5/8'	3/4" $\times 4{ }^{\prime \prime}$	445 そ. 75	11/8"	$6^{\prime}-6^{\prime \prime}$
$4^{\prime}-0^{\prime \prime} \times 8^{\prime}-0^{\prime \prime}$							$7^{\prime}-0^{\prime \prime}$

$\left.\begin{array}{l}\text { U-bolt (See Table } \\ \text { and Note 1) }\end{array}\right)$

$1 / 4$ " Dia. Aluminum
Flat or Button Flat or Button
Head Bolts with
wuts and Washers
\qquad

$=$ SECTION $\mathrm{C}-\mathrm{C}=$

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$	\|rest DESCRIPTION:		SINGLE COLUMN CANTILEVER GROUND MOUNTED SIGN	$\begin{gathered} \text { INDEX } \\ \text { 700-011 } \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 2 \end{aligned}$

NOTES:

1. Work with Index 700-010.
2. Shop Drawings: Not required
3. Materials:
A. Steel Plate: ASTM A36 or ASTM A709 Grade 36
B. Steel Pipe (Support Post): ASTM A501 Schedule 40
C. Aluminum Pipe: ASTM B429 Alloy 6061 -T6
D. Galvanized U-Bolts, Nuts and Plate Washer
b. Hex Nuts: ASTM A 563
b. Hex Nuts: ASTM A 563 Lock Nuts
c. Plate Washer: ASTM A 36 or ASTM A709 Grade 36 or 50
E. Galvanized Anchor bolts, Nuts and Washers:
a. Anchor Rod: ASTM F1554 Grade 55 fully threaded (for Adhesive Anchors) b. Anchor Bolts: ASTM F1554 Grade 55 Grade A Hex
Nuts: ASTM A563 Heavy
d. Washers: ASTM Fu36
F. Adhesive Anchor Bonding
F. Adhesive Anchor Bonding Material: Specification 931 Type HV Adhesive.
H. Snap-In Post Cap: UV and weather-resistant glass-filled polyester cap
4. Coating:
A. U-Bolts, Threaded Rods, Nuts and Washers: ASTM F2329
5. Fabrication:
A. Weld: Specification 460-6. 4
B. Hot dip galvanize after fabrication
6. Construction:
A. Locate Sign Support a minimum of 5 feet from an open joint or cransition (sign stationing may be adjusted to accommodate this requirement.
B. Base plate
B. Base plate must be flush with back of Traffic Railing
C. Anchors in Traffic Railings
a. Install Adhesive Anchors in accordance with Specificatio

416 except perform field test on one anchor per sign

$$
\begin{aligned}
& \text { Dimension } C= \text { Vertical distance from the bottom of the sign or sign cluster } \\
& \text { to the Centroid of the sign or sign cluster. }
\end{aligned}
$$

b. Use templates and tie anchors as necessary to maintain correct
placement of $C-I-P$ Embedded Anchors placement of C-I-P Embedded Anchors
Do not drill into existing conduit
C. Do not drill into existing conduit
D. Temporary Signs on Permanent Traffic Railings: Same as Permanent except Field testing of anchors is not required
7. Removal of Temporary Signs on Permanent Traffic Railings:
A. Cut anchor rods flush with the top of the traffic railing
B. Coat anchors with Type F-1 epoxy to prevent corrosion B. Coat anchors with Type F-1 epoxy to prevent corrosion
a. Extend coating 2 inches beyond edge of cut anchor rods b. Epoxy coating $1 / 16^{\prime \prime}$ thick minimum
8. Payment:

Include the cost of all materials and labor in the cost of the single
post sign assembly.

\section*{SIGN LIMITATIONS TABLE} | MAX. SIGN AREA | |
| :---: | :---: |
| (SF) | MAX. SIGN CENTROID HEIGHT |
| (DIM. A + DIM. C) | |

$$
\begin{aligned}
& \text { Dimension } A=\begin{array}{l}
\text { Distance from centerline of the Support Post to the bottom } \\
\text { of the sign or sign cluster. }
\end{array}
\end{aligned}
$$

through bolting

FDOT) $\begin{gathered}\text { FY 2022-23 } \\ \text { STANDARD PLANS }\end{gathered}$	SINGLE POST BRIDGE MOUNTED SIGN S UPPORT	$\begin{gathered} \text { INDEX } \\ 700-012 \end{gathered}$	SHEET 2 of 3

= SIGN SUPPORT ASSEMBLY \qquad

$\overline{\bar{Z}}$ SIGN SUPPORT WELDMENT DETAIL $\bar{\square}$

NOTES:

1. Work with Index 700-010.
2. Shop Drawings: Not required
3. Materials:
A. Steel Plate: ASTM A36 or ASTM A709 Grade 36
B. Steel Pipe (Support Post): ASTM A53 Grade B Schedule 40
A. Steel Pipe (Support Post): ASTM AS3 Grad
B. Galvanized U-Bolts, Nuts and Plate Washer
a. U-Bolts U-Bolts, Nus
b. Hex Nuts: ASTM A 563 Lock Nuts
c. Clate Washer: ASM A 36 or ASTM A709 Grade 36 or 50
Galvanized Anchor Bolt
D. Galvanized Anchor Bolts, Nuts and Washers:
a. Anchor Rod: ASTM F154 Grade 55 fully threaded (for Adhesive Anchors)
a. Anchor Rod: ASTM F1554 Grade 55 fully threaded (for
b. Anchor Boots: ASTM F1554 Grade 55 Grade A Hex
c. Nuts: ASTM A563 Heayy Hex ack 55
E. Ad Wasivers: Anchor Bonding Material: Specification 937 Type HU Adhesive
F. Weld Material: E70XX G. Snap-In Post Cap: UV and weather-resistant glass-filled polyester cap
4. Coating:
A. U-Bolts, Threaded Rods, Nuts and Washers: ASTM F2329
B. Other Steel: ASTM A123
5. Fabrication:
A. Weld: Specification $460-6.4$
B. Hot dip galvanize after fabrication
6. Construction:
A. Locate Sign Support a minimum of 5 feet from an open joint or transition (sign B. Base plate must be flush with top of Railing
C. Anchors in Traftic Ralilings:
a. Install Adhesive Anchors in accordance with Specification 416 except perform fiel test on one anchor per sign support location
. Use template and tie anchors as necessary
C. Do not drill into existing reinforcing

Temporary Signs on Permanent Traffic Railings, Same as Permanent except field
E. temting of anchors is not required
and
a. Install sion supports at the midpoint along the length of a single segment
b. Avoid drilling through extsing reinforement; use of metal detector not required.
7. Removal of Temporary Signs on Permanent Traffic Railings.
A. Cut anchor rods flush with the top of the railing
B. Coat anchors with Type F-1 epoxy to prevent cor Coat atchors with 2 per bexh od prevent corrosion
a. Extend coating 2 inches beyond edge of cut anchor rods b. Epoxy coating $1 / 16^{\prime \prime}$ thick minimum
8. Payment:

Include the cost of all materials and labor in the cost of the single post sign assembly

TABLE 1 - SIGN PANEL AND POST SIZING

	Max. Sign Area (SF)	Post (NPS)
Temporary Signs	≤ 24	3.0
Permanent Signs	<13.5	3.0
	$13.5<$ Sign <20	3.5

rection of traffic

PERPENDICULAR TO direction of traffic

Index 521-001 Median Barrier shown; others similar)

NOTES

1. Place anchor rods in a staggered or linear pattern as necessary to avoid reinforcing. 2. Use a staggered pattern for all temporary barriers.

table 2 - base plate type and anchor rod sizing			
Index	Type/Application	Base Plate Type	Anchor Rod ø
521-001	Full Wall	B	
521-001	Cantilever or L-Wall	A	${ }^{\prime \prime}$
All listed above Plus $102-110 \& 102-100$	Temporary Signs	c	3/4"

PLAN

SIGN SUPPORT WELDMENT DETAIL Staggered Anchor Rod Pattern shown)

GENERAL NOTES:

1. Verify Column lengths in the field prior to fabrication.
2. Shop drawings:
A. Sign Support Shop drawings are not reauired when fabricated in accordance with this Index and
support columns do not exceed the length shown in the plans by more than 2'- $0^{\prime \prime}$.
B. Sign Panels: Horizontal panel splices are allowed at interior wind beams for sign panels with
a depth $($ " D ")
greater than 10 feet. Shop drawings required for horizontal panel splice details.
c. When shop drawings are required, obtain approval prior to fabrication.
3. Materials:
A. Sign Panel Mounting Materials:
a. Aluminum Bars, and Extruded Shapes: ASTM B221, Alloy 6061-T6 or Alloy 6351-T5
b. Aluminum Structural Shapes.
B. Aluminum Structural Shapes:
a. Steel Plates ard Structural Shapes: ASTM A36 or ASTM A709, Grade 36
a. Stel
S.
C. Shims: Brass ASTM B36 or Galvanized Steel
c. Aluminum Bolts, Nuts and Washers:
a. Flat Head and Button Head Boits: ASTM F 468, Alloy 2024-T4 b. Hex Nuts: ASTM F467, 2024-T4
D. Stainless Steel Bolts, Nuts and Washers Alloy Group 2, Condition A, may be substituted for the Aluminum bolts as follows:
a. Bolts: ASTM F593, CW1 or SH
b. Nuts: ASTM F594,' E.el Bolts, Nuts and Washers
a. Galvanized Hex Head Bolts: AuTM F3125, Grade A325, Type
b. Galvanized Nuts: ASTM A563 Hex, Grade DH
c. Galvanized Washers: ASTM F436
F. Concrete: Class II. Welded Wire Reinforcement (WWR): Specification 415
G. Reinforcing Bars or
4. Coatings:
A. Aluminum Fasteners: Anodic coating (0.0002 inches min.) and chromate sealed
B. Galvanize High Strenoth Steel Bolts
B. Galvanize Hilh Stsenth Steel Bolts Nuts and washers: ASTM F2329
C. Galvanize all other steel items (excluding stainless steel): Hot-dip ASTM A12.3
D. Treat damaged galvanizing in accordance with Specification 562
5. Fabrication:
A. All Base Connections and Stub Column materials are steel unless otherwise
B. Drill or sub-punch and ream holes in Fuse Plates and Hinge Plates
B. Drill or sub-punch and ream holes in Fuse Plates and Hinge Plates
C. Weld Base Plate to Post stur stur or if using the Alternate Connection Detail weld Base Plate and
stiffeners to Post and Stub Sheet
. Stiffeners to post and Stub (Sheet 2) 2) Hot dip galvanize after fabrication; Remove all drips, runs or beads on base plate within
D.
D. Hot dip galvanize after fabrication; Remove
washer contact areas (Including saw cuts)
6. Construction:
A. Install the Sign Structure foundation in accordance with Specification 455. Orient Stub Post
B. Tighten all high strength bolts except Base Bolts in accordance with Specification 700 B. Assemble Post to So Sub with Base Bolts and trree flat washers per bolt See Bease Connectio
Details, Sheet 2). Tighten Base Bolts in accordance with Instructions Notes on Sheet 2 .

back elevation
MULTI-COLUMN SIGN ASSEMBLY

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$			$\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$	MULTIT-COLUMN GROUND S IGN

= MULTI-COLUMN SIGN ASSEMBLY $=$

FOUNDATION NOTES:

The Contractor may use Welded Wire Reinforcement (WWR) for foundation reinforcing.
At the Contractors option, the \#4 tie bars at 12" o.c. may be replaced by D10 Spiral Wire @ $6^{\prime \prime}$ pitch, with three flat turns
at the top and one flat turn at the bottom in accordance with at the top and one
Specification 415 .

INSTRUCTIONS NOTES:

- Assembly of Base Instructions:
A. Place one washer on each Base Bolt between the Bottom Base Plate and the head of high strength Base Bolt;
place the next washer between the Bottom Base Plate place the next washer between the Bottom Base Plate and
the Bolt Keeper Plate; add the Top Base Plate section and place the third washer between the Top Base Plate and place the
and the Nut.
B. Shim as required to plumb column. Provide 2-0.0149" thick (28 gauge) and $2-0.0329^{\prime \prime}$ thick (21 gauge) shims per
H.S. Base Bolt L_{2} Tightening Instructions:
A. Tighten Base Bolts to the maximum possible with a $12^{\prime \prime}$ clear the bolt threads).
B. Loosen each Base Bolt one turn.
C. Under the supervision of the Engineer, use a calibrated
wrench to tighten bolts to the torque prescribed in the Table. Over tightened Base Bolts will not be permitted
D. Burr threads at junction with nut to prevent nut D. Burr threads at junction with nut to
loosening. Treat damaged galvanizing.
nished

Class II
Concrete

alternative base connection data												
Steel section*	a	b	c	${ }^{\text {d }}$	e	t_{2}	L_{2}	R	Torque (lbf*in)	g	h	w_{2}
W6x12	4-3/4"	1-1/8"	1-3/16"	2-1/2"	$2^{\prime \prime}$	1/2"	5/8"	3/8"	270 ± 45	5-1/8 ${ }^{\text {" }}$	$2^{\prime \prime}$	1/4"
W 8×18	5-3/4"	1-1/2"	$1-3 / 8^{\prime \prime}$	2-3/4"	2-3/16"	5/8"	3/4"	7/16"	445 ± 75	6-1/4"	2-3/16"	1/4"
W 8×24	$7{ }^{\prime \prime}$	$1-3 / 4^{\prime \prime}$	1-3/8"	$3-1 / 2^{\prime \prime}$	2-3/8"	$3 / 4^{\prime \prime}$	3/4"	7/16"	445 ± 75	$8^{\prime \prime}$	2-3/8"	5/16"
W 10x33	$8^{\prime \prime}$	$2^{\prime \prime}$	1-9/16"	$4^{\prime \prime}$	$2-3 / 4^{\prime \prime}$	$3 / 4^{\prime \prime}$	1^{11}	9/16"	580 ± 90	$8^{\prime \prime}$	$2-3 / 4^{\prime \prime}$	5/16"
W 12x45	$8^{\prime \prime}$	$2^{\prime \prime}$	1-9/16"	$4^{\prime \prime}$	$3^{\prime \prime}$	$3 / 4^{\prime \prime}$	$1^{\prime \prime}$	9/16"	580 ± 90	$8^{\prime \prime}$	$3^{\prime \prime}$	5/16"
* Designations: (Nominal Depth in inches) \times (weight in pounds per linear foot).												

FOUNDATION AND BASE CONNECTION DETAILS
LAST
REVISION
11/ $01 / 21$

D DESCRIPTION:
REVISION
11/01/21

| $1 / 4 \\| \begin{array}{c}\text { Aluminum Flat Head } \\ \text { Bolts With Washers }\end{array}$ |
| :---: | Bolts With Washers

and Nuts (Typ.) uts (Typ.

NUMBER OF WIND BEAMS BASED ON SIGN DEPTH (D)

$$
\begin{array}{|l|l|l|l}
\hline 2 \text { Beams } & 3 \text { Beams } & 4 \text { Beams } & 5 \text { Beams } \\
\hline
\end{array}
$$

$$
D \leq 8^{\prime} \quad 8^{\prime}<D \leq 12^{\prime} 12^{\prime}<D \leq 16^{\prime} 16^{\prime}<D \leq 20^{\prime}
$$

**Designation gives (Member Depth in inches)
(Flange Width in inches) $x(1 \mathrm{l} / \mathrm{ft}$)

WIND BEAM, BACKING STRIP \& FUSE/HINGE PLATE DETAILS

LAST		
REVISION		
$11 / 01 / 18$	哥	DESCRIPTION:

| $F Y$ 2022-23 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STANDARD PLANS |

GENERAL NOTES

2. The number and location of the Panel Splices are determined by the Sign
3. Spacing of Vertical Hangers:
A. Two Vertical Hanger $=21.0 \%$ L
Treee Vertical Hanger $=15.0 \% ~ L$
Fre

Four Vertical Hanger $=11.0 \%$ L
Five Vertical Hanger $=9.0 \%$ L
Si. Vertic
B. Spacing of verticical hangers may be varied slightly as necessary to clear the
truss struts and diagonals at panel points
4. Spacing of Wind Beams:

Two wind Beams $=21.0 \%$ D
Three wind Beams $=15.0 \% D$
Four Wind Beams $=11.0 \%$ D
Five Wind Beams $=1.0 \%$ Beams $=9.0 \% D_{0}$
Six wind Beams $=7.0 \% ~$
5. Shop Drawings:
A. Required for Sign Panels deeper than 10'0" with a horizontal panel splice
B. Splice must be Iocated in between interior Zee Supports and only allowed on signs greater than $10^{\prime}-0^{\prime \prime}$
6. Materials:
A. Aluminum: and Extruded Shapes: ASTM B221, Alloy 6061-T6 or Alloy 6351-T5

 d. Hex Nuts: ASTM FFF67. Alloy 0611 T-T6 or Alloy 6262 -T9
e. Washers: ASTM B221, Alclad 2024-T4
B. Steel: $\begin{aligned} & \text { a. } U \text {-Bolt } \\ & \text { a } \\ & \text { al }\end{aligned}$
a. U-Bolts: ASTM A449 or ASTM A193 BT
B. Nut: ATM A563 2 per leg
c. Washers: ATM 43 (
b. Nuts: ASTM A563, 2 per leg
c. Washers: ASTM F436, (Flat Washers)
7. Coatings:
A. Aluminum Bolts, Nuts and Washers: Anodic
B. Gailvanized Steel Bolts, Nuts and Washer s: ASTM F2329
8. Wind Speed by county: see Index 715-010.

LAST	DESCRIPTION:	
REVISION		
$11 / 01 / 20$	気	

FDOT\} $\begin{gathered}\text { FY 2022-23 } \\ \text { STANDARD PLANS }\end{gathered}$
WIND AND HANGER BEAMS FOR OVERHEAD SIGNS
SHEET
STANDARD PLANS
700-030

NOTES:

1. Work this Index in conjunction with CANTILEVER SIGN STRUCTURE
DATA TABLES in the Plans and Index 700-030.
2. Handholes are required at pole base for DMS Structures. Refer
to Index $700-090$ for Handhole Details.
3. Shop Drawings are required.

Obtain Shop Drawing approval prior to fabrication. Include the following, Apright Pipe height (AA) and foundation eleevations: Verify dimension in
the field prior to sumittal to ensure minimum vertical clearances of
the sign panel over the roadway
B. Height of the foundation above adjacent ground.
C. Anchor bolt orientation with respect to centerline of truss and the direction of traffic
D. Chord Splices
E. Handholes at pole base (when required).
4. Materials:
A. Sign Structure:

Chords (Steel Pipe): API 5 L X42 PSL2, 42 ksi yield
or ASTM A500, Grade B (Min.) olates and Bars: ASTM A709 Grade 36
B. C. Weld Material: ETOXX
a. High Strength Boltrs: ASTM F3125, Grade A325 Type 1
b. Nuts: ASTM A563 Grade DH Heavy-Hex
C. Washers: ASTM F 436 Type 1 T, Hene under
C. Hex turned element
. Anchor Boits. Nuts and washers
a. Anchor Boits: ASTM F1554 Grade 55
b. Nuts: ATM AS563 Grade A Heavy-Hex (5 per bolt)

a. Spread Footing Concrete: Class IV
b. Drilled Shatt concrete: Class IV (Drilled Shaft)
. Reinforcing Steel: Specification 415
5. Fabrication:
 a chord splice may be used. See Plans for CANTILEVER SIGN STRUCTURE
DATA TABLE. Minimum splice spacing is two truss panel lengths apart.

E. Anchor bolt hole diameters: Bolt diameter plus $1 / 2$
F. Hot Dip Galvanize after fabrication.

Shop assemble the entire structure after galvanizing to validate/documen
alignment and clearance for bolted connections as well as contact betwee alonnecting pates. Take remedial action, if necessary, prior to to shipment.
colt
Coatings:
A. Bolts, Nuts and Washers: ASTM F2329
B. All other steel, including Plate Washers,
7. Construction:
A. Construct ioundation in accordance with Specification 455, excep
B. Prior to erection, record the as-built anchor locations and submit to
C. Place Engineer.

Place backefili above spread footings prior to installation of the sign
pacels. Do not remove or reduce backfill without prior approval of
pane Engineer.
the
Tighten nuts
Tolit-Lock W and bolts in accordance with Specification 700.
E. Install Aluminum Sign Panels as shown in the Plans.

Place structural grout pad with drain between top of foundation and
bottom of baseplate in accordance with Specification $649-7$.

\qquad
CAMBER DIAGRAM
\qquad CANTILEVER SIGN ASSEMBLY

side elevation
SPLICE CONNECTION DETAIL \qquad

SPLICE CONNECTION NOTES:

1. Only 6 bolts are shown in detail for clarity.
(One Half Each Side of Splice)
2. Splices are not permitted for trusses less
than or equal to 40,' Splice optional for than or equal to 40 , split
trusses greater than 40^{\prime}.

PLAN

elevation

NOTES:

1. Work this Index in conjunction with SPAN SIGN STRUCTURE DATA
TABLES in the Plans and Index $700-030$.
2. Handholes at the pole base are required for DMS Structures.
Refer to Index $700-090$ for Handhole Details.
3. Shop Drawings are required.

Obtain Shop Drawing approval prior to fabrication. Include the following: A. Upright Pipe height ' $C, \mathcal{Q} B$ ' ana sumital to ensure minimum vertical
dimensions in the field prior to sum clearances of the sion panel over the roadway.
B. Height of the foundation above ad jacent ground.
C. Anchor bolt orientation with respect to centerline of truss and
D. Method to be used to t .
D. Method to be used to provide the required parabolic camber
(see Camber Diagram).
E. Hand holes at pole base (when required).
4. Materials:
A. Sign Structure:
a. Upright and Chords (Steel Pipe): API 5L X42 PSL2, 42 ksi yield or
ASTM A500, Grade B BMin.) b. Steel Angles and Plates: ASTM A709 grade 36
B. C. Weld Material: E70XX
a. High Strength Bolts: ASTM F3125, Grade A325, Type 1
b. Nuts: ASTM A563, Grade DH Heavy-Hex
b. Nuts: ASTM A563, Grade DH Heavy-Hex
c. Washers: ASTM F436, Type 1, one under turned element
c. Anchor Borts. Nuts and Washers
a. Anchor Boits : ASTM F1554 Grade 5
a. Nuts: ATM A563 Grade A Heavy--Hex (5 per bolt)
b. Plate Washers: ASTM A36 (2 per bolt)
D. Concrete: Class iv (Drilled Shaft) bolt)
D. Concrete: Class IV (Drilled Shaft)
E. Reinforcing Steel: Specification 415
5. Fabrication:
A. Welding: Specification $460-6.4$
B. Chord Splices: Minimum splict

Chord Splices: Minimum splice spacing is three truss panel
lengths apart and three truss panel lengths from the uprights
 Splice, but not both on the same structure ent exceds available
C. Upright splice: Not allowed unless the upright excel

E. Structural bolt hole diameters: Bolt diameter plus
F. AHo Dip Galvanize after fabrication.
G. Shop assemble the entire structure a
6. Shop assemble the entire structure after galvanizing to Validate/document alignment and clearance for bolted connections
as well as contact between connecting plates. Take remedial action
if if necessary, prior to shipment.
H. Disassemble as necessary and secure components for shipment.
6. Coatings:
A. Bolts. Nuts and Washers: ASTM F2329
B. All other steel, including Plate Washers, hot dip galvanize: ASTM A123
7. Construction:
A. Construct foundation in accordance with Specification 455 Drilled
Shaft, except payment is included in the cost of the structure

Shaft, except payment is included in the cost of the structure.
B. Prior to erection, record the as-built anchor locations and submit to
C. Provide a parabolic camber with the required upward deflection as
D. Thown on the Camber Diagram.
D. Tighten nuts and boltt in accordance with Specification 700 .
Split-Lock Washers are not permitted.
S. Split-Lock Washers are not permitted.
E. Instal Aluminum Sign Panels as show in the Plans.
F. After instalatiolat

After installation, place wire screen between top of foundation and
bottom of baseplate in accordance with specification 649-6.
Upright-Truss Connection
(See Sheet 3)
$\begin{aligned} & \text { Upright Cap } \\ & \text { (See Sheet 5) }\end{aligned} \quad \begin{array}{r}\text { Splice Connection } \\ \text { (See Sheet 5) 5) }\end{array}$ Back Truss Chord

Truss Plug
(See Sheet 5 ,
\& Span (Even Number of Panels)
Bottom Truss Chora
\& Span (Odd Number of Panels)

Left Upright Pipe 'H'

```
<
```

```
<
```


\qquad

CAMBER DIAGRAM

FDOTY	FY 2022-23 STANDARD PLANS	SPAN SIGN STRUCTURE	$\begin{gathered} \text { INDEX } \\ 700-041 \end{gathered}$	SHEET 1 of 5

SPAN SIGN ASSEMBLY \qquad 'F'OD/2
(Each End of Back Truss Chord)
$=$ TRUSS PLUG DETAIL $=$

PLAN
 1/4" Plate (Cap) $\begin{aligned} & \text { Gasket (Glued To The } \\ & \text { Underside of The Cap) }\end{aligned}$

1/2" Hex Head Bolt With lon
elevation
Q Upright Pipe And Cap

SPLICE CONNECTION NOTE:

1. Only 6 bolts are shown in detail for clarity
(One Half Each End of Splice)

front elevation

SA' Angle Shape $>^{\text {\& Truss Chord }}$
\qquad
splice Connection detail UPRIGHT CAP DETAIL \qquad
front elevation

side elevation

\qquad

- alternate splice connection detail $=$

FDOŤ $\begin{gathered}\text { FY 2022-23 } \\ \text { STANDARD PLANS }\end{gathered} \quad$ SPAN SIGN STRUCTURE

Index	Sheet
$700-041$	5 of 5

Mast Arm

OPTION 2

MAST ARM ASSEMBLY

NOTES:

1. Free-swinging, internally-illuminated street signs shall only be installed on the signal pole
for span wire assemblies. For mast arm assemblies the street sign may be installed on the arm or pole.
2. Free-swinging, internally-illuminated street signs meet the requirements of Specification 700
3. Pole attachments and cantilever arm (or truss) assemblies may be accepted by Contractor included in Specification 700 for "Acceptance by Certification".
4. Pole attachments and cantilever arm (or truss) assemblies supporting signs not meeting the weight or area limitations included in Specification 700 for "Acceptance by Certification" require the calculations and Shop Drawings that have been prepare by and sealed by the Specialty Enginee.

SPAN WIRE ASSEMBLY

GENERAL NOTES:

1. Work this Index with Specification 700
2. Furnish and install the Dynamic Message Sign (DMS), sign structure
in accordance with Index $700-040$ or $700-041$. Locate foundations at locations shown in the Plans.
3. Shop Drawings are required:
A. Include the DMS connection
B. Do not start fabrication until the shop drawings are approve
4. If required, install guardrail at location show in the Plans and in
5. Materials:
A. Sign Mounting Components:
a. Aluminum Structural Shapes: ASTM B221, Alloy 6061-T6
b. Vertical Hangers: ASTM A709, Grade 36
c. U-Bolts: ASTM A449 or A193 B7
d. Steel Bolts, Nuts, and Washers:
6. High Strength Bolts: ASTM F3125, Grade A325, Type 1 2. Nuts: ASTM F563
7. Washers: ASTM F463 (Flat Washer)
B. Coatings:
a. All nuts, bolts and washers ASTM F2329 b. All other steel items ASTM A123"
C. Bolt hole Diameters: Bolt plus $1 / 6^{\prime \prime}$ before galvanizing
8. Installation:
A. See project requirements for location of DMs Cabinet.
B. Field Adjust pole-mounted DMS cabinet height to achiev best access for maintenance persinnel given sit condition
as directed by the Engineer. Avoid contlicts with stiffeners, as directed by the Engineer. Avoid contlicis
handoloe and maintenance of anchor bolts.
C. Locate the sign horizontal on the structure as shown in the
plans. Vertically center the sign enclosure with the centerline ot the truss.
D. Before erection, field drill the bolt holes in the vertical
hangers and horizontal mounting member attached to the sign enclosure. Field locate holes to allow vertical hang placement as shown on the Plans with no conflicts with
E. Locate threaded couplings on sign side of upright above the
sign truss
F. Signnect grounding conductors to the steel framework that
has been cleaned to base metal by use of bonding plates
having contact area of not less than 8 square inches or by havidg contact area of not tess than 8 square inches or by
welding or brazing. Drilling and tapping the steel structure
to accept a threaded connector is
to accept a threaded connector is also an acceptable meth
G. If steel framework is to be drilled and tapped to accept
threaded connector, the threaded connector shall be galvanized
and have at least 5 threads fully engaged and secured with and have at least 5 threads fully engaged and secured with
a jam nut to the steel framework. . Bends in the conduit must be grea
radius for the cable contained in the conduit minimum bending 1. Completelly encase all datacat fiber optic and power cables for the J. Permanently stamp/mark foundation to indicate conduit locations. J. Permanently stamp/mark foundation to indicate conduit locations
k. Transition conduit in foundation to indicate underground conduit with appropriate reducer outside the limits of the foundation.

= DYNAMIC MESSAGE SIGN GENERAL LAYOUT
NOTE: Actual number and direction of travel lanes varies.

LAST REVISION $11 / 01 / 19$	\|	$$	DYNAMIC MESSAGE SIGN WALK-IN

(Pole Mounted Cabinet Configuration Shown)
\qquad

\qquad
20' Radius Each "Sphere of Influence"

TYPICAL
(20' Rods, 40^{\prime} Spacing)
GROUND ROD ARRAY DETAIL

- DETAIL "D" \qquad

(Cantilever Sign Structure Shown, Span Sign Structure Similar,
HANGER LOCATION DETAIL

\qquad

\qquad

GENERAL NOTES

1. Work this Index with Specification 700
2. Shop Drawings are required
A. Provide length as shown in the Plans
B. Do pogn in accordance with AISC, AASHTO, and OSHA requirements
3. Catwalk hangers must be positioned to avoid conflicts with the sign structure truss and gusset plates. Place walkway close to the sign with a maximum open distance from walkway grate to DMS sign of $1 / 2$.
4. Maximum spacing of Catwalk hanger supports is $5^{\prime}-0^{\prime \prime}$. Cantilever ends of grating is $8^{\prime \prime}$.
5. Galvanized steel catwalk grating meeting the requirements of Specification 504-2.3. Must Support a 90 pst load and have a $3 / 2$ minimum toe kick. Altach grating in accordance
6. Supply and install an OSHA 1910 compliant, self closing, hot dip galvanized safety gate. Install per manufactures instructions
7. Chain link fabric options ($2^{\prime \prime}$ mesh with knuckled selvage top and bottom for all options):
A. AASHTO M181 Type I - Zinc Coated Steel, No. 9 gage (coated wire diameter), coated
at the rate of $1.8 \mathrm{oz} / \mathrm{ft}^{2}$. (M181 Class D 2.0 oz. $\mathrm{ft} \mathrm{t}^{2}$. modified to 1.8 oz . $\mathrm{ft} \mathrm{f}^{2}$). at the rate of $1.8 \mathrm{oz} / \mathrm{ft}^{2}$. (M181 Class D 2.0 oz./ft². modified to 1.8 oz./ftr).).
coated at the rate of 0.40 oz./ft t^{2}.
8. Install $2^{\prime \prime}$ NPS (Sch. 40) guiderail and posts: ASTM A53 Grade B for standard weight pipe.
9. Welding:

E70XX
A. Steel Plates ASTM A 36 or A709 Grade 36
C. Steel Pipe Railings or Structural Tubing: Specification 962
D. High Strength Bolts, Nuts and Washers: Specification 962

1. Coatings/Galvanizing:

Hot dip galvars in frame after fabrication and gan-stainles steel fasteners in accordance with Specification 962 .

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Content
2	General Assembly and Fixed Base Details
3	Walkway Support Details

(Cantilever Shown, Span Similar)

SIDE ELEVATION

front elevation
= DETAIL "C" (Guiderail Attachment)

$\begin{aligned} & \text { LAST } \\ & \text { REVISION } \\ & \text { 11/01/19 } \end{aligned}$	\|	DESCRIPTION:	FDOT	$\begin{gathered} \text { FY 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$

$$
\overline{\bar{Z}} \text { WALKWAY SUPPORT DETAILS } \bar{\square}
$$

Clip $1 / 2^{\prime \prime} @ 45^{\circ}$

$\overline{\text { (Stiffener Plate) }}$ DETAIL "E" WALKWAY SUPPORT DETAILS

DIGITS	NUMERAL SIZE	SERIES LEGEND	PANEL SIZE
$1-3$	$15^{\prime \prime}$	C	$48^{\prime \prime} \times 36^{\prime \prime}$
4	$12^{\prime \prime}$	C	$48^{\prime \prime} \times 36^{\prime \prime}$

NOTES:

1. Stroke width of State Outline shall be $1^{\prime \prime}$.
2. $2 \%_{2}$ Radii

NOTES:

1. Stroke width of State Outline shall be $1^{\prime \prime}$.
2. The $24^{\prime \prime} \times$ 24" $^{\prime \prime}$ panel shall only be used for

3. $11 / 2 "$ Radii
$\bar{\square}$

NOTES:

1. Series D Legend.
2. Color: Yellow Legend and
Border on Blue Backround.
3. When used on a guide sign,
marker must be overlaid on
marker must te overlaido on
a rectangular Yellow Background
a rectangular Yellow Background
as shown in chart.
4. When two or more County Route
Markers are mounted together, Warkers dimensions of the larges
use the dor all other markers.
mark

SIGN	DIMENSIONS												Rectangular Yellow Background Dimensions (See Note 3
	A	B	c	D	E	F	G	H	J	K	R	5	
$\begin{aligned} & \hline 4 \text { DIGIT } \\ & \text { POST MOUNTED } \end{aligned}$	251/8"	42"	3/4"	10"	4 "	$4^{\prime \prime}$	$8^{\prime \prime}$	$8^{\prime \prime}$	83/8	$22^{\prime \prime}$	$5^{\prime \prime}$	83/4"	
$\begin{aligned} & 2 \text { DIGIT } \\ & \text { OVERHEAD } \end{aligned}$	$21 / /^{\prime \prime}$	$36^{\prime \prime}$	1/2"	71/2"	$3^{\prime \prime}$	$3^{\prime \prime}$	$12^{\prime \prime}$	41/2"	71/8"	187\%	41/4"	71/2"	$42^{\prime \prime} \times 42^{\prime \prime}$
$\begin{gathered} 3 \text { DIGIT } \\ \text { OVERHEAD } \end{gathered}$	251/8"	$42^{\prime \prime}$	$34^{\prime \prime}$	$8^{\prime \prime}$	$4 "$	$4 "$	$12^{\prime \prime}$	$6^{\prime \prime}$	83/4	$22^{\prime \prime}$	$5^{\prime \prime}$	$83 / 4$	$48^{\prime \prime} \times 48^{\prime \prime}$
$\begin{gathered} 4 \text { DIGIT } \\ \text { OVERHEAD } \end{gathered}$	297/ ${ }^{\prime \prime}$	$48^{\prime \prime}$	$34^{\prime \prime}$	$8^{\prime \prime}$	$5^{\prime \prime}$	$5^{\prime \prime}$	$12^{\prime \prime}$	$8^{\prime \prime}$	93/4	25\%/'	$534^{\prime \prime}$	10174	$52^{\prime \prime} \times 52^{\prime \prime}$

= FTP-18-06 - COUNTY ROUTE MARKER (M1-6)

FDOTY | FY 2022-23 |
| :---: |
| STANDARD PLANS |

WELCOME CENTER TRUCK PARKING \square 16.7" \square				
LAST REASISION $11 / 01 / 21$	STANDARD PLANS	SPECIAL SIGN DETAILS		$\begin{gathered} \text { SHEET } \\ 10 \text { of } 12 \end{gathered}$

DETAIL "D"
 See
Detail "B"
or
Detail "C"

Sign to be installed at
beginning of deceleration

See Detail "A"
G_-.. CITY

\| MILE
G/F/L

EXIT	0	EXIT	0

DETAIL "B"
(4 To 6 Symbols)

NOTE
When approved for attachment to the
advance guide signs, up to 3 service advance guide signs, up to 3 services
may be used for an exit. The symbol signs shall be suspendit. Tre sym she
guide sign panel or oxisting the Signs shall be suspende from the
guide sian panel or existing wind
beams. Symbol s signs are not to beams. Symbol signs are not to
connected to existing sign posts.
The mounting height of the advance
guide sign shall be increased, where guide sign shall be increased, whe
necessary, to provide 8 'between
the level of the pavement edge and
the bottom of the guide sign, prior
to mounting the supplementary panel. Traftic Operations Engineer for each interchange shall be shown. Symbol signs for motorist services shall always appear in the following orddrereading from left to right and top
to bottom: Gas, Food, Lodging, Phone $*$. Hospital. Camping.

* The phone symbol shall not be shown whenever any Gas, Food, Lodging or Camping symbol appears.

2. Symbols shall appear consecutively on the sign with no positions left blank or reserved
for intermediate symbols not currently approved for a particular interchange.
3. All motorist service signs to have White Legend and Border with Blue Background.
4. For mounting details see Index $700-010$ for Single-column Ground Signs or Index 700-020 for
Multi-column Ground Signs.

```
STATE OF FLORIDA WELCOME CENTER 1 MILE
```


Sign FTP-11-06

STATE OF FLORIDA

Sign FTP-13-06

Note: Roadway not drawn to scale
Distances shown are adequal
Distances shown are addequate for driver communication
but may be altered slightly if conditions require.

Tourist Information Center NEXT RIGHT

Sign FTP-14-06

Note: Sign FTP-14-06 shall be used as a supplemental guide sign at forchanges which have a Tour ist Information Center approved
for such signing (locate half-way between normal guide signs)

$\begin{gathered} \text { LAST } \\ \text { REVISION } \end{gathered}$ 11/01/17	\|r	DESCRIPTION:	FDOTT	FY 2022-23 STANDARD PLANS	WELCOME CENTER SIGNING	$\begin{gathered} \text { INDEX } \\ 700-105 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 2 \end{aligned}$

${ }^{4}$ White Reflective
Markers Evenly Spaced
4^{4} off $18^{\prime \prime}$ White Chevro

Direction of Travel \square

Outside Shoulder
DETAIL "A"

NOTES:

1. Roadways with Two-Way Traffic:

No passing zone should be extended 1570' in advance of narrow bridge.
2. If the bridge or the approach is on a curve, delineators shall be installed for a distance of 1570^{\prime} in advance of narrow bridge on the outside portion of the roadway. Spacing shall be 100^{\prime} between delineators. Delineators are to be placed not less than 2^{\prime} or not more than 8^{\prime} outside the outer edge of pavement.
3. Object markers and delineators on both sides of roadway shall face traffic approaching bridge
4. The $O M-3 R \& O M-3 L$ object markers shall be installed 4' above the roadway edge. The panels may be post mounted at the bridges.
5. Install Audible and Vibratory treatments (e.g., ground-in rumble strips or profiled thermoplastic) in accordance with the Plans.

4 Yellow Reflective
Markers Evenly
Markers Eventispaced

Direction of Travel \square
\qquad
Median Shoulder

Shoulder Width	No. of RPM's	Spacing
2^{\prime}	2	$14^{\prime \prime}$
3^{\prime}	3	$13^{\prime \prime}$
4^{\prime}	3	$19^{\prime \prime}$
5^{\prime}	4	$16.67^{\prime \prime}$

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 20 \end{gathered}$		DESCRIPTION:	FDOTY	FY 2022-23 STANDARD PLANS	$\mathbb{R U R A L}$	$\begin{gathered} \text { INDEX } \\ 700-106 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 2 \end{aligned}$

(1)

WEIGHT LIMIT RESTRICTION AHEAD

FTP-50-06
(2)

X MILES
w 16-3A

WEIGHT
LIMIT
LAST EXIT
FTP-51-06

1. See Standard Highway Signs for sign R12-5 and W16-3 details.
2. Location of Sign 3 may require some field adjustment.
3. The Cross Road is the last detour to route around the restricted bridge.
4. Location of Sign 2 should be established from the Cross Road
the following approximate distances; Interstate-1 Mile Non- Interstate-1/2 Mile,
5. See Index 700-102 for sign details.

2 DESCRIPTION:

LAST REVISION

11/01/17

FDOT) $\begin{gathered}\text { FY 2022-23 } \\ \text { STANDARD PLANS }\end{gathered}$	BRIDGE WEIGHT RESTRICTIONS	$\begin{gathered} \text { INDEX } \\ 700-107 \end{gathered}$	SHEET 1 of 1

2. Materials (Aluminum):

Sheets and Plates: ASTM B209 Alloy 6061-T6
B. Standard Structural Shapes: ASTM B221 Alloy 6061-T6
C. Extruded Shapes: ASTM B221 Alloy 6061-T6
D. For Bolts, Nuts, and Washers requirements see

Index 700-020 or 700-030.
3. Fabrication:
A. See sign layout sheet for dimension "L" and sign face details in the Plans.
B. Round all sign corners.
4. For right exits, install the Exit Numbering Panel to the top right side of the Highway Sign
. For left exits, install the Exit Numbering Panel to the top left side of the Highway Sign.

Overhead Sign (See Index 700-030)
Multi-Column Ground Sign (See Index 700-020)
back elevation
SIDE ELEVATION

front elevation
without auxiliary pole

SIGN ASSEMBLY
FRONT ELEVATION AUXILIARY POLE
ELEVATION with auxiliary pole

POWER CONFIGURATION 'B' NOTES:

Install a separate pole for mounting the solar panel, controller and batteries for all roadside assemblies with solar
panels, controllers and batteries weighing more than 170 ibs.
2. Install the auxiliary pole as close to the right of way boundary as possible.
3. Install the auxiliary pole so that the height is the same as the column for the roadside assembly.
4. Orient solar panel to face South for optimal exposure to sunlight.
5. The controller and the solar batteries may be located in the same compartment.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Conduit, wiring, and Foundation Details
3	Roadside Sign Assembly-1
4	Roadside Sign Assembly-2
5	Roadside Sign Assembly-3
6	Roadside Sign Assembly-4
7	Roadside Sign Assembly-5
8	Roadside Sign Assembly-6
9	Roadside Sign Assembly-7
10	Roadside Sign Assembly-8
11	Overhead Sign Assembly

based on Alpha-Numeric Type designation shown in the Plans (e.g., Type All. Assembly Type is based on Power Configuration 'Alpha' Identification shown above and Numerical Identification shown on Sheet 3 thru
2. Install sign panel and wind beam in accordance with Index $700-010$ and Specification 700
3. Engage all threads on the transformer base and post unless the aluminum post is fully seated into base,
4. Meet the requirements of Specification 646 .
5. Install a concrete slab around all roadside assemblies on slopes 6:1 or greater. The minimum slab dimension is $6^{\prime \prime}$ by $4^{\prime}-0^{\prime \prime}$ by $5^{\prime}-0^{\prime \prime}$.
6. When wire entry holes are drilled in the sign column, use a bushing or rubber grommet to protect conductors.

POWER CONFIGURATION 'A' ONVENTIONALLY-POWERED

(Type A1 Shown)

$\bar{\square}$

$\overline{\bar{Z}} D E T A I L$ " B " $\bar{\square}$

NOTES:

1. Type A1 Assembly (conventionally-powered) is show 1. Type A1 Assembly (conventionally-powered) is
Type B1 Assemblies (solar-powered) similar.
2. Foundation reinforcement not shown.

NOTES:

1. Type A2 Assembly (conventionally-powered) is shown.

Type B2 Assemblies (solar-powered) similar
2. Foundation reinforcement not shown.

LAST REVISION 11/01/21	\|ran	DESCRIPTION:	FDOTT	FY 2022-23 STANDARD PLANS	$E \mathbb{N}$	$\begin{gathered} \text { INDEX } \\ 700-120 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 4 \text { of } 11 \end{aligned}$

NOTES:

1. Type A3 Assembly (conventionally-powered) is show Type B3 Assemblies (solar-powered) similar.
2. Use electronic speed feedback sign with $15^{\prime \prime}$ high d of 45 mph or less, and 18" high numerals for posted speeds greater

45 mph .

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$	\|	DESCRIPTION:	FDOTY	FY 2022-23 STANDARD PLANS	$E \mathbb{N} H \mathbb{N C E D ~ H I G H W A Y ~ S ~ I G N I I N G ~ A S ~ S E M B L I E S ~}$	$\begin{gathered} \text { INDEX } \\ 700-120 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 5 \text { of } 11 \end{aligned}$

NOTES:

1. Type A4 Assembly (conventionally-powered) is shown Type B4 Assemblies (solar-powered) similar
2. Foundation reinforcement not shown

NOTES:

1. Type A6 Assembly (conventionally-powered) is shown Type B6 Assemblies (solar-powered) similar
2. Use electronic speed feedback sign with $15^{\prime \prime}$ high ner $18^{\prime \prime}$ high nted speed of 45 mph or less, than 45 mph .
3. Foundation reinforcement not shown.

| $\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$ | \|c|cos | $\begin{gathered} \text { FDOT 2022-23 } \\ \text { STANDARD PLANS } \end{gathered}$ | ENHANCED HIGHWAY SIGNING ASSEMBLIES | $\begin{gathered} \text { INDEX } \\ 700-120 \end{gathered}$ | $\begin{aligned} & \text { SHEET } \\ & 8 \text { of } 11 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

=FRONT ELEVATION=

NOTES:

1. Type A7 Assembly (Conventionally-Powered) is shown.
2. Install cameras, wireless link, detectors, and antennas in accordance with the manufacturer's instructions.
3. For solar powered assemblies, install controller and batteries in the same ground mounted cabinet. Install
a separate pole for mounting the solar panel. Install a separate pole for mounting the solar panel. Install
the solar panel pole and cabinet as close to the right the solar panel pole and cabinet as close to the rial
of way boundary as possible. Orient solar panel to face South.
4. Foundation reinforcement not shown

OVERHEAD SCHOOL SIGN ASSEMBLY
$1 / 4^{\prime \prime} \otimes$ Aluminum Round Head Bolts with Nuts and @ 12" centers max
Alum. Zee - $3^{\prime \prime} \times 2.33^{\prime \prime}$

ZeE SECTION DETAIL
mounting detail
DETAIL "D"
Signal Head

NOTES:

1. Flasher unit and cabinet to be placed on assembly or on survicte pole orread assembly or on service pole. The flasher
unit not to overhang private property or
sidewalk. sidewalk.
2. Optional flashing beacon will be called for
in the Plans. They may be placed within or below the panel, or face to the rear.
OVERHEAD SIGN ASSEMBLY

$$
\overline{\bar{Z}} \text { ALTERNATING SKIP LINE } \bar{\square}
$$

$\overline{\bar{u}}$ SOLID LINE WITH ALTERNATING SKIP $\bar{\square}$

DOUBLE SOLID LINE

MULTILANE

$\overline{\bar{Z}}$ SOLID LINE WITH SKIP $\bar{\square}$

$\overline{\bar{\longrightarrow}}$ SKIP LINE WITH TWO-WAY LEFT TURN LANE $\bar{\square}$

$\overline{\bar{Z}}$ ALTERNATING SKIP LINE WITH TWO-WAY LEFT TURN LANE $\overline{=}$
NOTES:

1. Off set all RPMs $1^{\prime \prime}$ from solid
longituuinal lines unless otherwise
noted or shown.
2. Spacing may be reduced for sharp
curves if required.
3. For placement of RPMs on ramps,
see Index $711-$-003.
4. Make the traffic face of the RPM
the same color as the pavement
marking that it is supplementing.

LEGEND
$B / C=B A C K$ OF CURB
EOP = EDGE OF PAVEMENT
RPM $=$ RAISED PAVEMENT MARKER
$W / R=W H I T E / R E D R P M$
Y/Y = YELLOW/YELLOW RPM
$Y / R=Y E L L O W / R E D$ RPM $M D / Y=\underset{Y E L L O W}{\text { MONO-DIRECTIONAL }}$ marking that it is supplementing.
of 6

\qquad

$\overline{=}$ RPM PLACEMENT AT TRAFFIC ChANNELIZATION AT GORE $\overline{=}$ (Traffic Flows In Same Direction)

RPM PLACEMENT AT TRAFFIC SEPARATION (Traffic Flows In Opposite Direction)
$6^{\prime \prime}$ White Direction of Traffici \quad W/R RPMs (Typ.)

Edge of Pavt. -
Right side of the roadway shown. For the left side of roadwa,
the pavement marking is yellow and oriented opposite hand.
$\overline{=}$ RPM PLACEMENT AT ROADSIDE CROSSHATCHING $\overline{=}$

\qquad
WRONG-WAY ARROW $=$

NOTE:
Center the Raised Pavement
Markers between chevrons and crosshatching.

LEGEND:

$B / C=B A C K$ OF CURB
EOP $=$ EDGE OF PAVEMENT RPM $=$ RAISED PAVEMENT MARKER $W / R=W H I T E / R E D$ RPM Y/Y $=$ YELLOW/YELLOW RPM $Y / R=Y E L L O W / R E D$ RPM $M D / Y=\underset{Y E L O W}{\text { MONO-DIRECTIONAL }}$

DETAIL "A"

DETAIL "B'

$6^{\prime \prime}$ Yellow -
Direction of Traffic-1

DETAIL "C"

FLUSH MEDIAN OPENINGS (Type "E" Curb Similar. See Note 1)

DETAIL "D"

DETAIL "E"

DETAIL "F"
TYPE "D" OR "F" CURB

LEGEND:

$B / C=B A C K$ OF CURB
EOP = EDGE OF PAVEMENT
RPM $=$ RAISED PAVEMENT MARKER
$W / R=W H I T E / R E D R P M$
Y/Y $=$ YELLOW/YELLOW RPM
$Y / R=Y E L L O W / R E D$ RPM
MD/Y $=\underset{\text { YELLOW RPM }}{\text { MONO-DIRECTIONAL }}$

NOTES

1. For Type "E" Curb, install RPMs along the pavement edge marking using the same spacing shown.
2. Orient traffic faces of RPMs in curb median radii to be parallel to direction of travel lanes.
3. Use epoxy adhesive to install RPMs on concrete median nose curbs.
4. Install RPMs on clean, unpainted surface, Do not paint curb surface where RPMs will be placed.

$\begin{aligned} & \text { LAST } \\ & \text { REVISION } \\ & \text { 11/O1/21 } \end{aligned}$	\|rest	$\begin{gathered} \text { FY 2022-23 } \\ \text { FDTANDARD PLANS } \end{gathered}$	TYPICAL PLACEMENT OF RAISED PAVEMENT MARKERS	$\begin{gathered} \text { INDEX } \\ 706-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 6 \end{aligned}$

DETAIL "G"

DETAIL "J"

RPM PLACEMENT AT ISLANDS (When called for in the Plans)

DETAIL "K"

= RPM PLACEMENT AT TRAFFIC SEPARATORS
 \qquad

 (When called for in the Plans)| POSTED
 SPEED LIMIT
 MPH | "Y"
 FEET |
| :---: | :---: |
| 30 OR LESS | 10 |
| 35 | 20 |
| 40 | 20 |
| 45 | 30 |
| 50 OR MORE | 40 |

NOTES.

1. For Type "E" Curb install RPMs along the pavement edge marking using the same spacing shown.
2. Orient traffic faces of RPMs in
3. Orient traffic faces of RPMs in
median radii to be parallel to direction median radii to
of travel lanes

LEGEND

$B / C=B A C K$ OF CURB
EOP $=$ EDGE OF PAVEMENT
RPM $=$ RAISED PAVEMENT MARKER
$W / R=W H I T E / R E D ~ R P M$
Y/Y = YELLOW/YELLOW RPM
$Y / R=Y E L L O W / R E D$ RPM
MD/Y $=\begin{gathered}\text { MONO-DIRECTIONAL } \\ \text { YELLOW REM }\end{gathered}$
MD/W $=$ MONO-DIRECTIONAL

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$		$\begin{array}{cc} F Y \text { 2022-23 } \\ \text { FDOTANDARD PLANS } \end{array}$	TYPICAL PLACEMENT OF RAISED PAVEMENT MARKERS	IndEX 706-001	$\begin{aligned} & \text { SHEET } \\ & 4 \text { of } 6 \end{aligned}$

= RPM PLACEMENT FOR CROSSOVERS ON LIMITED ACCESS ROADWAYS

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 18 \end{gathered}$		FDOT $\begin{gathered}\text { FY 2022-23 } \\ \text { STANDARD PLANS }\end{gathered}$	TYPICAL PLACEMENT OF RAISED PAVEMENT MARKERS	$\begin{gathered} \text { INDEX } \\ 706-001 \end{gathered}$	SHEET 5 of 6

two-lane roadway

multilane roadway

two-Lane roadway at intersection

mULTILANE ROADWAY with turn lane

gultilane roadway at intersection

BLUE RPM PLACEMENT

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 18 \end{gathered}$	\|	$\begin{gathered} \text { FY 2022-23 } \\ \text { FDTANDARD PLANS } \end{gathered}$	TYPICAL PLACEMENTT OF RAISED PAVEMENT MARKERS	index 706-001	SHEET 6 of 6

12" Solid Stop Line Crosswalk Line 24" Solid Stop Line

2-4 Dolted Guide Line

'-10' Dotted Extension Line

 3^{\prime}-9' Dotted Interchange Line
$9^{9^{\prime}} 9^{\prime} 9^{\prime}$

$3^{\prime}-9^{\prime}$ Dotted Lane Drop Line

10'-30' Skip Line
$\boldsymbol{T}^{\circ} 30^{\circ} \boldsymbol{T}_{10^{\prime}} 30^{\circ} \boldsymbol{F}_{10^{\prime}} 30^{\prime} \boldsymbol{F}_{10^{\prime}} 30^{\circ} \boldsymbol{T}_{10^{\prime}}{ }^{\frac{1}{6}}$

— DOTTED LINE WITH ALTERNATING SHADOW MARKINGS $\bar{\square}$ ded Lie

InDEX	SHEET
$711-001$	2 of 13

CURB AND GUTTER

FLUSH SHOULDER
$x=$ LANE WIDTH (FT.)
$Y=$ buffered bike Lane width (fT.)

STRIPING FOR BUFFERED BIKE LANE \qquad

CURB AND GUTTER

FLUSH SHOULDER
$x=$ LANE WIDTH (FT.)
Y = PAVED Shoulder / bike Lane

STRIPING WITH SHOULDER OR NON-BUFFERED BIKE LANE

NOTES

1. Lane widths (X) may not be same for each lane in the sectio
2. For placement of RPMs, see Index 706-001.

PLACEMENT OF LONGITUDINAL PAVEMENT MARKINGS

PAVEMENT MARKINGS
 TERECTION APPROACH STRIPING WITH TURN

NOTES:

1. Lane widths (X) may not be same for each
lane in the section. lane in the section.

BUFFERED EXPRESS LANE STRIPING
placement of longitudinal pavement markings
LAST
REVISION
11/01/21

11/01/21
FDOT\} $\begin{gathered}\text { FY 2022-23 } \\ \text { STANDARD PLANS }\end{gathered} \quad$ PAVEMENT MARKINGS

PAVEMENT MARKINGS AND DELINEATORS FOR MEDIAN CROSSOVER

Non-Paved Surface Foundation
$\overline{=} D$
DETAIL
" A "
$\bar{\square}$
= DETAIL "C" $=$

1. Apply y
2. Apply yellow reflective paint to the noses of curbed medians, reflective paint in conjunction with Raised Pavement Markers,
see Index $706-001$. see Index 706-001.
3. Options for grassed medians.
A. Option 1: Tubular Marker (Yellow). Attach Tubular Marker
according to manufacturer's instructions. Non-Paved Surf according to manufacturer's instructions. Non-Paved Surface
Foundation (See Detail "A") is provided as an option if no Foundation See Detail "A" is provided as an option if no
other suitable surface is provided. Install Non-Paved Surface
Foundation flush with the surro
Foundation flush with the surrounding ground surface.
B. Option 2: Delineator Post. Use yellow retro-reflective sheeting
on both sides of the delineator. Install the fost so that the on both sides of the delineator. Install the post so that
top is $4{ }^{-}$-0 above the grade at the edge of the pavement.
4. Extend double yellow centerlines 100 back from intersection on all
approaches or 50^{\prime} for unmarked cross roads.

PAVEMENT MARKINGS FOR INTERSECTIONS WITH MAJOR AND MINOR ROADS

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$		DESCRIPTION:	FDOTY	FY 2022-23 STANDARD PLANS	PAVEMENT MARKINGS	$\begin{gathered} \text { INDEX } \\ 711-001 \end{gathered}$	SHEET 7 of 13

(With Single Lane Left Turn Channelization)

POSTED SPED LIMIT MPH	"Y" (FT.)
30 OR LESS	10
35	20
40	20
45	30
50 OR MORE	40

MARKINGS FOR TRAFFIC SEPARATION \qquad TRAFFIC CHANNELIZATION AT GORE \qquad

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 21 \end{gathered}$	2	DESCRIPTION:	FDOTY	FY 2022-23 STANDARD PLANS	PAVEMENT MARKINGS	$\begin{gathered} \text { INDEX } \\ 711-001 \end{gathered}$	SHEET $8 \text { of } 13$

STANDARD CROSSWALK DETAILS
SPECIAL EMPHASIS CROSSWALK DETAILS $=$

[^1]\times

```




GENERAL NOTES:
1. Make the traffic face of the raised pavement marker (RPM) the same color as the
pavement marking that it is supplementing.
2. See Index 706-001 for additional Raised Pavement Markers (RPM) requirements.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { LAST } \\
& \text { REVISION } \\
& 11 / 01 / 21
\end{aligned}
\] & | & DESCRIPTION: & FDOTY & \begin{tabular}{l}
FY 2022-23 \\
STANDARD PLANS
\end{tabular} & \(\mathbb{N T E R E H A N G E ~ M A R I K I N S ~}\) & \[
\begin{gathered}
\text { INDEX } \\
711-003
\end{gathered}
\] & \[
\begin{aligned}
& \text { SHEET } \\
& 1 \text { of } 8
\end{aligned}
\] \\
\hline
\end{tabular}


(Single-Lane Parallel-Type Entrance Without Added Lane Similar, See Note 3)

\section*{NOTES:}
. Extend this \(8^{\prime \prime}\) white Pavement Marker one-fourth the length of the
acceleration tane from the gore markings.
2. See Index 711-001 for pavement message dimensions and details,
3. Discontinue the \(6^{\prime \prime}\) White ( \(\left.3^{-}-9^{\prime}\right)\) Dotted Interchange Line where the merging taper begins for a Single-Lane Parallel-Type Entrance Without Added Lane.
Merge Pavement Message and Arrow taper begins for a Single-Lane Paralle--Type Entrance without Added La
Merge Pavement Message and Arrow only used for Two-Lane Entrances.



PARALLEL DECELERATION LANE






\(q\)

\section*{NOTES:}
1. Use compacted select material in accordance with Index 120-001.
2. Concrete shall be Class NS with a minimum strength at 28 days of \(f^{\prime} c=2.5 \mathrm{ksi}\)
3. Outside edge of slab shall be cast against formwork.
4. The pull box shown is \(13^{\prime \prime} \times 24^{\prime \prime}\); others approved under
5. Slabs to be placed around all Poles and Pull Boxes in rural locations In urban areas or where space is
ad justed as shown in the plans.
6. Concrete for slabs around pull boxes shall be included
in the price of pull box.


SLAB DIMENSIONS


SECTION A-A

NOTES:
1. Use compacted select material in accordance with Index 120-001
2. Concrete shall be Class NS with a minimum strength at 28 days of \(f^{\prime} c=2.5 \mathrm{ksi}\)
3. Outside edge of slab shall be cast against formwork.
4. The pull box shown is \(13^{\prime \prime} \times 24^{\prime \prime}\) "; others approved under
Specification 635 may be used
5. Slabs to be placed around all Poles and Pull Boxes. In urban areas or where space
ad justed as shown in the plans.
6. Concrete for slabs around poles and pull boxes shall be included
in the price of pore or pur box
7. The expansion joint shall consist of \(1 / 2 /\) of closed-cell polyethylene foam expansion material. The top \(1 /{ }^{\prime \prime}\) of expansion material shall be removed after
pouring the sab and sealed with an APL approved Type A sealant meeting the
requirements of Specification 932 .


LAB DIMENSIONS


SECTION B-B
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline LAST
REVISION
11/01/17 &  & DESCRIPTION: & FDOET & \begin{tabular}{l}
FY 2022-23 \\
STANDARD PLANS
\end{tabular} & CONVE \(\mathbb{N T I O N A L}^{\text {LIGHHTING }}\) & \[
\begin{aligned}
& \text { INDEX } \\
& \text { 715-001 }
\end{aligned}
\] & SHEET 3 of 3 \\
\hline
\end{tabular}

\section*{GENERAL NOTES.}
1. Poles are designed to support the following:
A. Luminaire Effective Projected Area (EPA): 1.55 SF

2. Shop Drawings: This Index is considered fully detailed, only submit shop drawings for minor modifications not
included in the Plans.
3. Materials:
A. Pole, Pole Connection Extrusions and Arm Extrusions: ASTM B221, Alloy 6063-T6 or Alloy 6061-T6
B. Bars, Plates, Stiffeners and Backer Ring: ASTM B221, Alloy 6063-T6
C. Caps, and Covers: ASTM B-26. Alloy 319 -F
D. Steel Bearing Plate: ASTM A709 or ASTM A36 Grade 36
D. Steel Bearing Plate: ASTM A709 or ASTM A36 Grade 36
E. Aluminum Weld Material: ER 4043
B.
F. Transformer and Frangible Base Materials: ASTM B26 or ASTM B108, Alloy 356-T6
G. Bolts, , Nuts and Washers::
G. Bolts, Nuts and Washers:
a. Sho Base Bolts: ASTM F3125, Grade A325, Type 1
bit Nut: ATM A563 Grade DH
b. Nuts: ASTM A553. Grade DH Heavy-Hex
c. Washer: ASTM F436 Type 1 .
C. Washer: ASTM F436 Type 1 .
H. Anchor Bolts, Nuts, and Wash
a. Anchor Boits ASTMM F1554 Grade 55
b. Nuts: ASTM A563 Grade A Heavy-Hex
C. Plate Washer: ASTM A36
1. Stainness Steel Fasteners: ASTM F593 Alloy Group 2, Condition A, CW1 or SH1
I. Stainless Steel Fasteners: ASTM
J. Nut Covers: STMM B26 (319-F)
K. Concrete: Class II
K. Concrete: Class II:
L. Reinforcing Steel:
Specification 415
4. Fabrication: \(\qquad\) Alloy 6063) in the T4 temper using 4043 filler.

Age the Arm and Pole artificially to the T6 B. Transverse welds are are only allowed at the base.


D. Median Barrier Mounted Liohn Pole Taper: Taper as required to provide a \(6^{\prime \prime \prime} 0 . D\). round top with an \(11^{\prime \prime} \times 7^{\prime \prime} 0.0\).
oblong base. Portions of the pole near the base and at the arm connections may be held constant at \(11^{\prime \prime}\)
oblong base. Portions of the pole near the base and at the
7 ". oblong and \(6^{\prime \prime}\) round respectively to s.

G. Perform all werling in accord
a. Weld all seams continuously and grind smooth.
b. Hot Dip Galvanize after Fabrication.
b Prover
C. Provide a watertight cover with neoprene gasket and secure cover with galvanized screws,
I. For Median Barrier Mounted Aluminum Light Poles, the fabricator must demanstrate the abilitt
1. For median Barrier Mounted Aluminum Light Poles, the fabricator must demonstrate the ability to produce a crack
free pole. The fabricator's Department-approved oc Plan must contain the following information prior to fabrication:
a. Tests demonstrating a pole with a \(1 / 4 / "\) wall thickness achieves and ultimate moment capacity of 36 kip*ft
the strong axis and 30 kip \(* f t\) in the weak axis.
b. Tests demonstrating a pole with a \(5 \# 16^{\prime \prime}\) wall . hickness achieves an ultimate moment capacity of 44 kip*ft in the strong axis and 37 kip**t in the weak axis.
c. Test results showing the pole does not buckle at the shape transition area under the ultimate moment
d. compatity lead oetails and calculations for the reinforced \(4^{\prime \prime} \times 6^{\prime \prime}\) (Min.) handhole located \(1^{1}-6^{\prime \prime}\) above the base plate
Identification Tase (submit details for approval a. \(2^{" \prime} \times 4^{4 \prime}(\) Max.) aluminum identification tag

c. Secure to transformer base with \(1 / /^{\prime \prime}\) diameter stainless steel rivets or screws.
1. Financial Projest ID
2. Pole Height
3. Manufacturer's Name
5. Coatings/Finish:
A. Pole and Arm
B. Galvanize Steel Bolts, Screws, Nuts and washers: ASTM F2329
. Hot Dip Galvanize EJB and other steel items including poles and plate washers: ASTM A123
6. Construction:
A. Foundation
A. Foundation: Specification 455, except payment for the foundation is included in the cost of the pole
B. Frangible Base, Base Shoo, and Clamp:
a. Certify that the clamp, Frangible Pransformer Base, and Base Shoe Design are capable of providing the required capacity
b. Certify the Base conforms to the current FHWA required AASHTO Frangibility Requirements, tested under b. Certify the Base conforms to the current FHWA required AASHTO Frangibility Requirements, tested under c. Do not erect pole without Luminaire attached.
7. Embedded Junction Box (EJB): Install EJBS per Note 4 and in accordance with Specification 635, as shown on the following Sheets. 8. Wind Speed by County:

Alachua, Baker, Bradford, Calhoun, Clay, Columbia, Dixie, Duval, Gadsden, Gilchrist, Hamilton, Jackson,
Jefferson, Lafayette, Leon, Liberty, Nassau, Madison, Putnam, Suwannee, Taylor, Union and Wakulla Counties.
140 MPH
Bay, Citrus, De Soto, Flagler, Franklin, Glades, Gulf, Hardee, Hendry, Hernando, Highlands, Hill shorough,
Holmes, Lake, Levk, Manate, Marion Okaloosa, Okeechobee, Orange, Osceola, Pasco, Pinellas Polk, Santa Rosa, Seminole, St. Johns, Sumter, Volusia, Walton and Washington Counties.

160 MPH
Brevard, Broward, Charlotte, Collier, Escambia, Indian River, Lee, Martin, Miami-Dade, Monroe, Palm Beach
Sarasota and St. Lucie Counties.



ARM CONNECTION DETAIL
\(1 /{ }^{\prime \prime}\). \(\times 3^{\prime \prime}\) Bar Each
Side of Arms.Extruded
Sadd Ae, or Other Acceptable
Connection Connection


ARM SECTION


VIBRATION DAMPER ELEVATION


\section*{ARM TUBE EXTRUSIONS NOTES:}

At the pole connections, provide arm tube extrusions with dimensions as
shown. Uniformly transition elliptical section to a cylindrical section at shown. Uniformly transition elliptical section to a cylindrical section at
the arm connection.

The fabricator may substitute elliptical cross sections other than those
tabulated, provided the section properties about the vertical axis and the tabulated, provided the section properties about the vertical axis and the
area of the section equal or exceed that of the required section, and provide minimum wall thickness of \(1 / 8^{\prime \prime}\) nominal and within the Aluminum Association Tolerances.
The outside diameter about the minor axis should be held at \(238^{3 \prime}\) at the upper and lower arms.







\section*{gENERAL NOTES}
1. LUMINAIRE LOAD: Poles are designed to support the following A. Luminaire Effective Proje
2. SHOP DRAWINGS: This Index is considered fully detailed; only submit shop drawings for
minor modifications not included in the Plans.
3. MATERIALS:
A. Pole, Arm Tubes, Strut Tubes, Bars, Plates, Stiffeners: ASTM B221, Alloy 6063-T6 or

Alloy 601 Cornection Extrusion Clamp: ASTM B221, Alloy 6061-TG
B. Pole Cons Covers: ASTM B-26, Alloy 319-F
C. Cand
C. Caps and Covers: ASTM B-26, A
D. Aluminum Weld Material: ER 4043
D. Aluminum Werd Material: ER 4043
E. Transformer and Frangible Base Materials: ASTM B26 or ASTM
B108 Alloy \(35-T 6\).

B108, Alloy 356-T6
Fase Bolts, Nuts and W Washers:
a. Shoe Base Bolts: ASTM F3i25, Grade A325, Type 1
b. Nuts ASTM
b. Nuts: ASTM A563 Grade DH Heavy-Hex
c. Washer: ASTM F436 Tvpe
G. Anchor Bolts, Nuts, and Washe
a. Anchor Solt s. ASTM F1. 154 Grade 55
b. Nuts: ASTM A563 Grade A Heav
H. Clamp Hardmare: See Sheet 2 Heavy-H
H. Clamp Hardwale: See Sheet 2
I. Stainless Steel Cap Fasteners: ASTM F593 Allo
Grou 2 Condition A

Group 2, Condition A, cW 1 or S
1. Nut Covers: ASTM B26 (319-F)
k. Concrete: Class II
L. Reinforcing
fabrication:
4. FABRICATION:
A. Weld Arm
A. Weld Arm and pole Alloy in the T4 temper using 4043 filler. Age the Arm and Pole
B. Transverse welds are onply allowed wat ing the base
C. Light Pole Properties: Taper as reauired
o.D. of \(10^{\prime \prime}\) for all .
D. Fixture Arm. Tube Properties: See Sheet 2.
E. Provide ' \(J\) ', 'S' or ' 'C' hook at top of pole for electrical wire

b. Locate on the inside of the transformer base and visible from the door opening.
d. Include the following information on the ID Tag:
1. Financial Project ID
2. Pole Height
3. Manufacturer's Name
5. COATINGS/FINISH:
5. COATINGS/FINSNH:
A. Pole and Arm Finish: 50 grit satin rubbed.
Baglvanize Stel
B. Galv anize Steel Bolts, Screws, Nuts and Washers: ASTM F2329
C. Hot Dip Galvanize miscellaneous steel items: ASTM A123
6. CONSTRUCTION:
6. CONSTRUCTION:
A. Foundation:
of the pole
A. ound ot pole.
of the

Base Shoe Desippole Connection Extrusion Clamp, Frangible Transformer Base, and wind sheed Design are capable of providing the required capacity, assuming a design
w. 160 MPH . b. Certify the Base conforms to the FHWA required AASHTO Frangibility Requirements,
tested under NCHRP Report 350 Guidelines (e.g. Akron Foundry TB1-17). c. Do not erect pole without Luminaire attached.

light pole - elevation



\section*{highmast LIGHTING NOTES:}
1. Poles are designed to support the following: A. One (1) cylindrical head assembly with a maximum effective projected area of 6 sf and 340 lbs (Max) Fight (8) cylindrical luminaires with a maximum effective projected are of 1.5 sf and 77 lbs each
2. Shop Drawings: This Index is considered fully detailed, only submit shop drawings for minor modifications
not detailed in the Plans.
3. Higa Mast stuct be wa
A. Poles and Backing Rings:
. Less than \(3 / 16^{\prime \prime}:\) ASTM A1011 Grade 50, 55, 60 or 65
b. Greater than or equal to \(3 / 1 /\) ha \(^{\prime \prime}\) ASTM A572 Grade 50,55 , 60 or 65
ASTM A595 Grade A (55 ksi yield) or Grade B ( 60 ksi yield \()\)
B. Steel Plates: ASTM A709 or ASTM A36
B. Stee Arates. ASM A1011 Grade \(50,55,60\), or 65 or ASTM B209
C. Pole Caps ASTM ASMA
D. Weld Metal. ETOXX
E. Atainless steel Screws: AISI 316
a. Ancts: ASTM A563 Grade A Heavy-Hex (5 per anchor bolt)
C. Plate Washer: ASTM A36 (2 pery anchor bolt)
Nut Covers: ATM B26 (319-)
H. Concrete: Class IV (Drilled Shaft)
4. Fabrication:
A. Welding:
a. Specification Section \(460-6.4\) and and ASHTO LRFD Specification for Structural Supports for Highway Signs, Luminaires, and Traffic
B. Poles:
a. Round or 16 -sided (Min.)
b. Taper pole diameder at o. 14 inches per foot
bat
. Pole shaft may be up to three sections (using telescopic field splices)
1. Circumferentially welded pole shafts and laminated pole shafts are not permitted
e. Fabricate Pol ongitudinal seam welds ( 2 maximum) with 60 percent minimum penetration or fusion
welds except as follows:

Welds excepl-penetration groove weld within 6 inches of the circumferential tube-to-plate connection and
i. Use a full-
ii. Use full-penetration groove welas on the female end section of telescopic (i.e., slip type) field
S. Idices for a minimum length of 42 inches.
C. Itication Tag: (Submit details for approval)
a.
a. ""x 4" (Max.) aluminum tag
b. Locate on the insside of the pole and visible from the handhole
c. Secure with \(1 / 88^{\prime \prime}\) diameter stainless steel rivets or screws.

Include the following information on the ID Tag
2. Pol Type
3. Pole Height
3. Pole Height
5. Yield Strength (Fy of Steel)
6. Bas
D. Excent for Anchor Bocts. bolt hole diameters are bolt diameter plus \(1 / 16^{\prime \prime}\) and anchor bolts holes are
bolt diameter plus \(1 / 2\) (Max) prior to galvanizing. bolt diameter plus lis' (Max) prior to galvanizing.
E. Hot Dip Galvanize after fabrication
5. Coating
A. Galvanize Anchor Bolts, Nuts and Washers: ASTM F2329
B. Hot Dip Galvanize all other steel items includ

Costrution
6. Construction:
A. Foundation: Specification 455 Drilled Shaft, except that payment is included in the cost of the Structure.
B. After Installation: Place wire screen between top of foundation and bottom of baseplate in accordance with Specification 649-

130 MPH
Alachua, Baker, Bradford, Calhoun, Clay, Columbia, Dixie, Duval, Gadsden, Gilchrist, Hamilton, Jackson,
Jefferson, Lafayette, Leon, Liberty, Nassau, Madison, Putnam, Suwannee, Taylor, Union and Wakulla Counties,
150 MPH
De Soto, Flagler, Franklin, Glades, Gulf, Hardee, Hendry, Hernando, Highlands, Hillsborough Holmes, Lake, Levy, Manatee, Marion, Okaloosa, okeechobee, Orange, Osceola,
Rosa, Seminole, St. Johns, Sumter, Volusia, Walton and Washington Counties.

170 MPH
Brevard,
Brevard, Broward, Charlotte, Collier, Escambia, Indian River, Lee, Martin, Miami-Dade, Monroe, Palm Beach
Sarasota and St. Lucie Counties.
\begin{tabular}{|c|c|c|c|c|}
\hline FDOTY & \begin{tabular}{l}
FY 2022-23 \\
STANDARD PLANS
\end{tabular} & \(\mathbb{H I G H}\) MAST LIGHTING & \[
\begin{gathered}
\text { INDEX } \\
715-010
\end{gathered}
\] & \begin{tabular}{l}
SHEET \\
1 of 6
\end{tabular} \\
\hline
\end{tabular}




NOTES:
1. At all pull boxes and pole bases, ends of conduit shall be
sealed in accordance with Specification 630 .
2. Slabs to be placed around all Poles and Pull Boxes.
3. For Pull Boxes between Poles refer to Index 715-001.


\section*{NOTES:}
1. Use compacted select material in accordance with Index 120-001
2. Concrete shall be Class NS with a minimum strength at 28 days of \(f^{\prime} c=2.5 \mathrm{ksi}\).
3. Outside edge of slab shall be cast against formwork.
4. The pull box shown is \(13^{\prime \prime} \times 24^{\prime \prime}\); others approved under

Spertical 635 may be used.
5. Slabs to be placed around all Poles and Pull Boxes. In urban areas or where
space is imited slab dimensions may be adjusted as show the
6. Concrete for slabs around poles and pull boxes shall be included
7. The expansion joint shall consist of \(1 / 2\) " of closed-cell polyethylene foam expansion material. The top \(\mathrm{I}_{2}\) of expansion material shall be removed after pouring the slab and sealed with an APL approved Type A sealant meeting th
requirements of Specification 932 .


SLAB DIMENSIONS


\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ CROSSING SURFACES } \\
\hline Type & Definition \\
\hline\(C\) & Concrete \\
\hline\(R\) & Rubber \\
\hline\(R A\) & Rubber/Asphalt \\
\hline\(T A\) & Timber/Asphalt \\
\hline
\end{tabular}

\section*{STOP ZONE FOR RUBBER CROSSING}
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
Design Speed \\
(mph)
\end{tabular} & \begin{tabular}{c} 
Zone Length \\
(Distance From Stop)
\end{tabular} \\
\hline 45 Or Less & \(250^{\prime}\) \\
\hline \(50-55\) & \(350^{\prime}\) \\
\hline \(60-65\) & \(500^{\prime}\) \\
\hline 70 & \(600^{\prime}\) \\
\hline
\end{tabular}

Notes:
1. Type R Crossings are NOT to be used for multiple track crossings within zones for an existing or scheduled ren tharted above.
2. Single track Type \(R\) Crossings within the zones on the hart may be used uness engineering or safety considerations dictate otherwise.

\section*{GENERAL NOTES}
1. The Railroad Company will furnish and install all track bed (ballast), crossties, rails, crossing surface panels and accessory components. All pavement material, including that through the crossing, will be furnished and installed by the Department or its Contractor, unless negotiated otherwise
2. When a railroad grade crossing is located within the limits of a highway construction project, a transition pavement will be maintained at the approaches of the crossing to reduce vehicular impacts to the crossing. The transition pavement will be maintained as appropriate to surface is constructed.
3. The Central Rail office will maintain a list of currently used Railroad Crossing Products and will periodically distribute the current list to he District Offices as the list is updated.
4. The Railroad Company shall submit engineering drawings for the proposed crossing surface type to the Construction Project Engineer and/or the District Rail Office for concurrence along with the List of Railroad Crossing Products. The approved engineering drawings of the crossing surface type shall be made a part of the installation agreement.
5. Sidewalks shall be constructed through the crossing between approach sidewalks of the crossing. Sidewalks shall be constructed with appropriate material to allow unobstructed travel through the crossing in accordance with ADA requirements.
6. Install pavement in accordance with the Specifications.
7. The Department will participate in crossing work, that requires adjustments to rail outside of the crossing, no more than 50 feet from he edge of the travel wa



HALF PLAN
CURBED ROADWAYS

\section*{HALF PLAN}

ROADWAYS WITH FLUSH SHOULDERS


To prevent low-clearance vehicles from becoming caught on the tracks, the crossing surface should be at the same plane as the top of the rails for a distance of 2 feet outside the rails. The surface of the highway should also not be more than 3 inches higher or lower than the top of the nearest rail at a point 30 feet from the rait miess
superelevation makes a different level appropriate. Vertical curves should be used to traverse from the highway grade to a level plane at the elevation of the rails. Rails that are superelevated, or a roadway approach section that is not level, will necessitate a site specific analysis for rail clearances.

TYPICAL CROSSING MATERIAL REPLACEMENT AT RR CROSSINGS
VERTICAL ROADWAY ALIGNMENT THROUGH A RAILROAD CROSSING
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\hline \text { LAST } \\
\text { REVISION } \\
11 / 01 / 19
\end{gathered}
\] & | & \[
\begin{gathered}
\text { FY 2022-23 } \\
\text { FTANDARD PLANS }
\end{gathered}
\] & RAILROAD (GRADE) \(\mathbb{C R O S S I N G}\) & \[
\begin{gathered}
\text { INDEX } \\
830-T 01
\end{gathered}
\] & \[
\begin{aligned}
& \text { SHEET } \\
& 2 \text { of } 2
\end{aligned}
\] \\
\hline
\end{tabular}```


[^0]:    NOTES:

    1. See Plans for Infill Panel Type required.
[^1]:    NOTES:

    1. For crosswalk width, exceed width of the adjacent sidewalk, but do not make width less than $6^{\prime}$ for intersection
    crosswalks and 10' for midblock crosswalks. Measure width from the inside of the transverse crosswalk markings.
    2. When the Special Emphasis Crosswalk is not perpendicular to the lane lines, make the longitudinal markings parallel to the lane lines.
    3. Refer to Index 522-002 when Curb Ramps are present
    
    

    Arrow should be evenly spaced between first and last arrow. Turn
    lanes longer than $200^{\prime}$ add one arrow for each $100^{\prime}$ additional length

    ARROW SPACING
    

    Through Lane Becomes Optional Left Turn (Drop Lane)

    TURNS LANE MARKINGS


    
    

    ## NOTES:

    1. All grids are $4^{\prime \prime} \times 4^{\prime \prime}$.
    2. Pavement Marking Should Not Extend Into Opposing Lane
    3. Center School Pavement Marking in lane.

    SCHOOL PAVEMENT MARKING
    

    NOTE:
    Orient Railroad Dynamic Envelope Marking as shown in the Plans.
    
    
    
    
    shared lane marking (SLM)
    
    
    railroad crossing

    ```
 NOTES:
 1. All bicycle markings and pavement messages shall be White.
 2. All bicycle markings shall be preformed thermoplastic
 3. All grids are 4" ```

