

NAVIGATION LIGHT SYSTEM SCHEMATIC for single bridge with fenders

NAVIGATION LIGHT SYSTEM SCHEMATIC FOR DUAL BRIDGES WITH FENDERS

NAVIGATION LIGHT SYSTEM SCHEMATIC FOR SINGLE BRIDGE WITHOUT FENDERS

NAVIGATION LIGHT SYSTEM SCHEMATIC FOR DUAL BRIDGES WITHOUT FENDERS

* Use RFL when Pier is at Channel Edge and see CFR, Title 33, part 118 for Mounting Height restrictions. Use RCL otherwise.
${ }^{* *}$ Mounted only on the Pier that defines CM, otherwise does not apply.
*** RFL to be located at mid length of straight portion of fender.
\square
LAST
REVISION
REVIO1/17 DESCRIPTION:

FDOT $\}$	$F Y 2022-23$
STANDARD PLANS	$\quad \mathbb{N A V I G A T I O N ~ L I G H T S ~ S Y S T E M ~ D E T A I L S ~}$

navigation light notes:

1. Provide Navigation Light System in compliance with Specifications Section 510.
(FIXED $\mathbb{B} \mathbb{R} I D G E S$)

SYMBOL DESCRIPTION
TYPICAL ELECTRICAL SCHEMATIC DIAGRAM

GCL OR RCL MOUNTING DETAILS (SCHEMATIC)

36" Single-Slope
Traffic Railing Traffic Railing
(shown) other

SECTION B-B TYPICAL POSITION OF RCL OR GCL RELATIVE TO SUPERSTRUCTURES

elevation of inside face of traffic railing with pedestrian/bicycle bullet railing

SECTION A-A
TYPICAL SECTION THRU BRIDGE DECK (APPROACH SLAB SIMILAR)

NOTES:

1. A Bullet Railing Tapered-End Transition is required for all approach ends of Bullet Railings on Traffic Railings. When Guardrail Connection is required㲘 Rals End Transio.
2. Where Bullet Railing continues on retaining wall mounted Traffic

Railings or Barriers, provide a Bullet Railing Tapered End Transition at the terminus of the Bullet Railing.

CROSS REFERENCES:
Work in conjunction with Index 515-02
For Traffic Railing Details, Reinforcement and Notes see Index 521-427.

RAILING (PBR) ON CONCRETE PARAPETS (INDEX 521-820) POST "B2" DETAILS FOR SHBR ON TRAFFIC RAILING (INDEX 521-427 AND 515-021)

POST "B1" DETAILS FOR SHBR ON TRAFFIC RAILING (INDEX 521-423) AND FOR PEDESTRIAN/BICYCLE

POST "C1" DETAILS FOR PEDESTRIAN/BICYCLE RAILING (PBR) ON TRAFFIC RAILINGS (INDEX 521-423) POST "C2" DETAILS FOR PBR ON
TRAFFIC RAILING (INDEX 521-427 \& 515-021)

CROSS REFERENCES:
For post spacing on Concrete Parapets
see Index 521-820.
For post spacing on Traffic Railings
see Index 515-021.
For Rail Details see Sheet 2
For Railing Notes and Tapered End
Transition Details see Sheet 3 .

ALTERNATE ANCHOR BOLT
(Concrete Parapet Shown Traffic Railings Similar)

| LAST |
| :---: | :--- | :--- |
| REVISION |
| $11 / 01 / 17$ |$|$| 苞 |
| :--- |
| DESCRIPTION: |

$F Y 2022-23$	PEDESTRIAN/BICYCLE
FTANDARD PLANS	

index	sheet
$515-022$	1 of 3

Railing or Parapet

ELEVATION OF TAPERED END TRANSITION

RAILING NOTES:
Work this Index with Index 521-423, 521-427, 521-428, 521-820
2. Shop Drawings: Submit shop drawings prior to fabrication.
A. Include post and rail splice/expansion assembly location for curved
3. Materials:
A. Supply Aluminum materials In accordance with Specification Section 965 and the following: Wrought Aluminum Post: ASTM B221, Alloy 6061 -T6 or 6351-T5
Rail End Cap: ASTM B26 sand cast aluminum alloy $356.0-\mathrm{F}$ Rail End Cap: ASTM B26 sand cast aluminum alloy 356.0-F Rails: ASTM B221 Alloy 6061-T6 or 6351-T5.
Stop Pins: Press-fit aluminum or stainless steel pins or tubes
B. Stainless Steel Fasteners: ASTM F-593, Alloy Group 2 (316).

Bearing Pads: Plain or Fiber Reinforced meeting Specification Section
D. Anchor Bolts: Galvanized ASTM A307 Grade 36 Hex Head. Galvanized ASTM 1554 Grade 55 Threaded rods for Adhesive Anchors.
4. Layout:
B. Tapers shall be uniformly spaced with reasonable consistency Tapered End Transitions are required at the terminus of the Bullet Railings on concrete parapets shielded by a traffic railing do not require Tapered End Transitions unless noted
Ad just post spacing's
expansion plates, by 9 incheid parapet obstacles, such as armor
D. Rails shall be continuous oves minimum.
less than 12 feet need only be continuous over 2 posts, except that lengths
section at about the same center line.
F. Provide rail expansion assemblies in panels between posts on either side
of a bridge expansion joint. Rail expansion assemblies are similar to the of a bridge expansion joint. Rail expansion assemblies are similar to the
rail splice assemblies with increased space at the expansion assembly to rail splice assemblies with increased space at the expansion assembly to
allow for movement equal to 1.5 times the bridge joint opening or $1^{\prime \prime}$ greater than the expected joint movement.
5. Installatio
A. Set rails near bridge expansion joints to allow for expected movement
6. Payment: Includes inforcing steel is permitted for post installed anchors.

Payment: Includes the full cost of installed bullet railing. Cost of the Concrete Parapet or Traffic Railing is separate.
(Bullet Rail not shown for Clarity)

3/4" Intermediate
Open Joint (6C)
$1 / 2^{\prime \prime}$ V-Groove in both faces and

PLAN

- Begin or End Approach Slab
(Scheme 2 shown, other Schemes similar, Reinforcing Steel not shown for clarity)

for Pre-cured
silicone Sealant
Silicone Sealant

ELEVATION OF INSIDE FACE OF RAILING

(Scheme 2 shown with Post "A", other Schemes similar, Reinforcing Steel not shown for clarity)
Notes:
ES: Shop Drawings are required
2. Work this Index with Index 515-052 Bicycle/Pedestrian Railing Details (Steel) and

Specification Section 515. Refer to the SPI for Design Criteria and Limits of Use.
3. Materials:
ized after fabrication
a. Fasteners: Hex Head Bolt ASTM A307, Hex Nuts ASTM A563, Washers ASTM F436
b. Support Bracket (Scheme 3) L-shape and Stiffener Plate: ASTM A36
C. Bottle-guard (Schemes $1 \&$ 3) L-shape: ASTM A36
B. Concrete: Same as bridge deck
C. Pre-cured Silicone Sealant. Specification Section 932
D. Bearing Pads: Provide 1/s" Plain, Fabric Reinforced or Fabric Laminated bearing
pads that meet the requirements of Specification Section 932 for Ancillary Structures.
4. See Structures Plans, Superstructure Sheets for bridge information including
5. Railings: type, deck expansion joint locations and orietations, ad thermal movement.
A. Fo
between adjacent pickets, or panels at Rail Expansion Joints above Deck Joints
must be reduced to $31 / 1 /$.
B. For treatment of railings on skewed bridges see Index 521-427.
A. Match open curb joints at Deck Expansion Joint locations to the deck joint dimension.
B. Construct Concrete Curb (Scheme 2) vertical with the top surface finished
C. Provide $3 / 4$ " Intermediate open joints in curbs coinciding with the $3 / 4$ " joints in the traffic railing
7. Payment: Support bracket (Scheme 3) is incidental to the cost of railing. Curb concrete and reinforcing steel (Scheme 2) are included in the bridge deck quantities.

* Deck Joint at Begin Bridge or End Bridge shown; Deck Joint at \& Pier or Intermediate Bent similar
** SHBR~Special Height Bicycle Rail PBR~Pedestrian/Bicycle Rail

CURB REINFORCING STEEL NOTES:
CURB REINFORCING STEEL NOTES:

1. All bar dimensions in the bending diagrams are out to out.
2. The reinforcement for the curb on a
the same as detailed for an $8^{\prime \prime}$ deck.
3. All reinforcing steel at the open joints shall have a $2^{\prime \prime}$ minimum cover.
4. Bars 45 may be continuous or spliced at the construction joints.

Bar splices for Bars 45 shall be a minimum of $1^{\prime}-8^{\prime \prime}$
5. Deformed Welded Wire Reinforcement (WWR) meeting the requirements
of Specification Section 931 may be used in lieu of all Bars $4 P$ and $4 S$,

ESTIMATED CONCRETE CURB QUANTITIES (SCHEME 2)		
ITEM		UNIT
Concrete	QYANTITY	
Reinforcing Steel	LB/LF	0.0124
4		

DETAIL "A" - SECTION

AT INTERMEDIATE OPEN JOINT

intermediate joint seal note:

At Intermediate Open Joints, seal the lower 6" portion of the open joint with Pre-cured Silicone Sealant. Apply sealant prior to any Class V finish coating and remove all curing compound and loose material from the surface prior to
application of bonding agent. application of bonding agent.

TYPICAL SECTION THROUGH BOTTOM RAIL
(Post Not Shown for Clarity)
SCHEME 1-BOTTLE GUARD DETAIL $\overline{ }$

CROSS REFERENCE:

See Sheet 1 for Bridge Railing Notes.

TYPICAL SECTION THROUGH BOTTOM RAIL
(Post Not Shown for Clarity)
$\bar{\square}$ SCHEME 3-BOTTLE GUARD DETAIL $\bar{\square}$
\qquad

N/B ICYCLE RAILING	Index	sheet
$E L)$	$515-051$	3 of 3

- Begin or End Approach Slab
(Scheme 2 shown, other Schemes similar, Reinforcing Steel not shown for clarity)

$1 / 2 " V-G r o o v e ~ i n ~ b o t h ~ f a c e s ~ \& ~$
top of Concrete Curb (Equally
spaced between open joints)
Scheme 2

ELEVATION OF INSIDE FACE OF RAILING

Deck Joint at Begin Briage or End Briage Shown;
Deck Joint at \& Pier or Intermediate Bent similar
*SHBR ~ Special Height Bicycle Railing PBR ~ Pedestrian/Bicycle Railing

1. Shop Drawings are required
2. Work this Index with Index 515-062 Aluminum Bicycle/Pedestrian Railing Details and Specification Section 515. Refer to the IDS for Des
3. Materials:
A. Galvanized Steel Fasteners: Hex Head Bolt ASTM A307. Hex Nuts ASTM A563, Washers ASTM F436

Aluminum:
a. Support Bracket (Scheme 3) L-shape and Stiffener Plate: ASTM B209, Alloy 6061-T6
b. Bottle-guard (Schemes 1
Concrete: Same as bridge deck
D. Pre-cured Silicone Sealant: Specification Section 932
E. Bearing Pads: Provide $1 / 8^{11}$ thick Plain, Fabric Reinforced or Fabric Laminated pads meeting the
4. See Structures Plans, Superstructure Sheets for bridge information including concrete type, deck
5. Railings:
A. For thermal movement greater than $4^{\prime \prime}$ (up to a maximum of $5^{\prime \prime}$), clear opening between adjacent For trear or panels at Rail Expansion Joints above Deck Joints must be reduced to $31 / 2$.
B. For treatment of railings on skewed bridges see Index 521-427
A. Match open curb joints at Deck Expansion Joint locations to the deck joint dimension
B. Construct Concrete Curb (Scheme 2) vertical with the top surface finished level transversely. See Concrete Curb Details Sheet 3,
Provide $3 / 11$
7. Payment: Support bracket (Scheme 3) is incidental coinciding with the $3 / 4$ "joints in the traffic railing.
7. Payment: Support bracket (Scheme 3) is incidental to the cost of railing. Curb concrete and reinforcing steel (Scheme 2) are included in the bridge deck quantities.

DETAIL "B" EXPANSION JOINT (FIELD SPLICE SIMILAR) \qquad

CURB REINFORCING STEEL NOTES:

1. All bar dimensions in the bending diagrams are out to out. Pre-cured Silicone
2. The reinforcement for the curb on a retaining wall shall be
the same as detailed for an $8^{\prime \prime}$ deck
Bars 45 may be continuous or spliints shall have a $2^{\prime \prime}$ minimum cover.
Bar splices for Bars 45 shall be a minimum of $1^{\prime}-8^{\prime \prime}$.
3. Deformed WWR meeting the requirements of Specifications Section 93
may be used in lieu of all Bars $4 P$ and $4 S$.

ESTIMATED CONCRETE CURB QUANTITIES (SCHEME 2)		
ITEM	UNIT	QUANTITY
Concrete	CY/LF	0.0124
Reinforcing Steel	LB/LF	4.01

DETAIL "A" - SECTION AT INTERMEDIATE OPEN JOINT
intermediate joint seal note:
At Intermediate Open Joints, seal the lower $6^{\prime \prime}$ portion of the open joint with At intermediate open Soints, seal the lawer ${ }^{\text {Pre-cured Silicone Sealant. Apply sealat prior to any Class } V \text { finish coating }}$ and
and remove all curing compound and loose material from the surface prior to application of bonding agent.
\qquad

FDOT\} FY 2022-23
$\mathbb{B} \mathbb{R} I D G E \operatorname{PEDESTRIAN/BICYCLE~RAILING}$ (ALUMINUM)
INDEX
515-061

SHEET
RE1/01/16
BRIDGE PEDES IRIANABICY
515-061
3 of 3

gENERAL NOTES

CONCRETE: Concrete for the Traffic Railing (Vertical Face Retrofit) shall be Class IV Concrete for Curb Transition Block hall be Class II (Bridge Deck).

ADHESIVE-BONDED DOWELS: Adhesive Bonding Material Systems for Dowels Shall comply with Specification Section 937 and be installed in accordance with Specification Section 416. The field testing proof loads required by Specification Section 416 shall 23800 lbs for Dowel Bars 6 D on the inside face (traffic side) of the railing ($1^{\prime}-0^{\prime \prime}$ embedment) and $18,500 \mathrm{lbs}$ for Dowel Bars 6 D along the outside face of the traffic railing ($5^{\prime \prime}$ min. embedment).

BRIDGES ON CURVED ALIGNMENTS: The details presented in this Standard are shown for bridges on tangent alignment Details for bridges on horizontally curved alignments are similar

BARRIER DELINEATORS: Barrier Delineators shall meet Specification Section 993. Install Barrier Delineators on top of the raffic Railing along the entire length of the bridge $2^{\prime \prime}$ from the face on the traffic side in accordance with Specification Section 705. Barrier Delineator color (white or yellow) shall match the color of the near edgeline.
GUARDRAIL: See Index 536-001 for guardrail component details, geometric layouts and associated notes not fully detailed herein.

RIDGE NAME PLATE: If a portion of the existing Traffic Railing is to be removed that carries the bridge name, number and or date, or if the installation of the Traffic Railing (Thrie Beam Retrofit) will obscure the bridge name, number and or date, then
eplace the information that has been removed or obscured, with $3^{\prime \prime}$ tall black lettering on white nonreflective sheeting applied to the top of the adjacent guardrail. The information must be clearly visible from the right side of the approaching travel lane. he sheeting and adhesive backing shall comply with Specification Section 994 and may comprise individual decals of letters nd numbers.

PAYMENT: Concrete Traffic Railing-Bridge Retrofit - Post \& Beam Railing (EA) includes all material and labor required to demolish a portion of the existing structure where required and to construct the oncrete portion of the retrofit ralling. Guardrall Approach Transition to rigid Barriers (EA) includes transition block and necessary hardware to complete the Guardrail transitions show

DOWEL DETAIL
Note:
Shift dowel holes to clear if the xisting reinforcement is encountered Open Joint
in Railing
(if present) if present) \qquad

Existing Narrow Curb ${ }^{-}$ Existing Bridge Deck

3 OR MORE CONTINUOUS RAILING PANELS ON WINGWALL ADJACENT TO END POST
3 OR MORE CONTINUOUS RAILING PANELS ADJACENT TO BEGIN OR END BRIDGE

C

1 Railing panel on wingwall adjacent to end post
1 RAILING PANEL ADJACENT to begin or end bridge
SCHEME 1-APPROACH ENDS OF BRIDGES WITH BEAM OR GIRDER SUPERSTRUCTURE \qquad
\qquad WITH FLAT SCHEME 2-APPROACH ENDS OF BRIDGES

 Begin or End Bridge
Open Joint (width varies \qquad Existing End Post Existing Guardrail
(to be removed, if present)

Flat Slab
Existing Bridge Deck

2 CONTINUOUS RAILING PANELS ON WINGWALL ADJACENT TO END POST

1 RAILING PANEL ON WINGWALL ADJACENT TO END POST
\qquad WITH FLAT SCHEME 4 -APPROACH ENDS OF BRIDGES OR BEAM OR GIRDER SUPERSTRUCTURE \& PARALLEL OR CURVED WINGWALLS (SIMILAR)

* See Limits of Removal of Existing Structure, Sheets
2 of 8 and 4 of 8 .

| $\begin{array}{c\|} \hline \text { LAST } \\ \text { REVISION } \\ 07 / 01 / 14 \end{array}$ | \|c|cos | $\begin{gathered} \text { FY 2022-23 } \\ \text { FDOT } \\ \text { STANDARD PLANS } \end{gathered}$ | GUARDRAIL TRANS ITIONS -EXISTING POST \& BEAM
 BRIDGE RAILINGS (NARROW \& RECESSED CURBS) | INDEX 521-404 | $\begin{aligned} & \text { SHEET } \\ & 6 \text { of } 8 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

partial elevation - approach transition
(Narrow Curb shown; Recessed Curb similar)

SCHEME 6

GUARDRAIL TRANSITION DETAILS - SHEET 2 OF 2

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 07 / 01 / 14 \end{gathered}$	傻DESCRIPTION:	FDOT) $\begin{gathered}\text { FY 2022-23 } \\ \text { STANDARD PLANS }\end{gathered}$	GUARDRAIL TRANSITIONS-EXISTING POST \& BEAM BRIDGE RAILINGS (NARROW \& RECESSED CURBS)

END VIEW A-A

\#3 STIRRUP (FIELD BEND)

NOTES:
ANCHOR RODS: Steel Anchor Rods shall be ASTM A36, ASTM A709 Grade 36 or ASTM A615 Grade 60 hot-dip galvanized in accordance with Specification Section 962.
ADHESIVE-BONDED DOWELS: Adhesive Bonded Dowels are shown installed in an existing curb or sidewalk integrally reinforced with Approach Slab,
Wingwall or Bridge Deck. For installations in existing detached curbs or Wingwall or Bridge Deck. For installations in existing
sidewalks, install dowels in available sound concrete.

Shift bars (as needed) to install six dowels into existing bridge or approach slab mounted curb.

ESTIMATED QUANTITIES PER TRANSITION BLOCK		
ITEM	UNIT	QUANTITY
Concrete Class II (Bridge Deck)	$C Y$	0.4
Reinforcing Steel	$L B$	61

GENERAL NOTES
CONCRETE: Concrete for the Traffic Railing (Vertical Face Retrofit) and replacement curb sections shall be Class IV. Concrete Curb Transition Blocks shall be Class II (Bridge Deck).
REINFORCING STEEL: Reinforcing steel shall be ASTM A615, Grade 60, except Expansion Dowel Bar B which shall be ASTM A36 smooth round bar hot-dip galvanized in accordance with the Specifications.

EXPANSION SLEEVE ASSEMBLY: Pipe sleeve shall be ASTM D2241 PVC pipe, SDR13.5. End Cap shall be ASTM D2466 PVC socket fitting, Schedule 40. End of Sleeve assembly at railing open joint shall be sealed with silicone to prevent concrete intrusion during ralling casting. A compressible expanded polystyrene plug is required in the opposite end of the assembly for correct
dowel positioning during railing casting. Correct dowel positioning is required in order to provide for thermal movement of the deck.
ADHESIVE-BONDED ANCHORS AND DOWELS: Adhesive Bonding Material Systems for Anchors and Dowels shall comply with Specification Section 937 and be installed in accordance with Specification Section 416. The field testing proof loads
required by Specification Section 416 shall be 23,800 lls...for Dowel Bars 60 on the inside face traffic side) of the railing
$\left(1^{\prime}-0^{\prime \prime}\right.$ embedment) and 18,500 lbs for Dowel Bars $6 D$ along the outside face of the traffic railing (5" min. embedment). ($1^{\prime}-0^{\prime \prime}$ embedment) and 18,500 lbs for Dowel Bars 6 D along the outside face of the traffic railing ($5^{\prime \prime}$ min. embedment).
BRIDGES ON CURVED ALIGNMENTS: The details presented in these Standards are shown for bridges on tangent alignments. Details for bridges on horizontally curved alignments are similar.

BARRIER DELINEATORS: Barrier Delineators shall meet Specification Section 993. Install barrier delineators on top of the Traffic Railing along the entire length of bridge $2^{\prime \prime}$ from the face on the traffic side in accordance with Specification Section
705 . Barrier Delineator color (white or yellow) shall match the color of the near edgeline.

PAYMENT: Concrete Traffic Railing - Bridge Retrofit - Post \& Beam Ralling (each) includes all materials and labor required to demolish a portion of the existing structure where required and to construct the concrete portion of the retrofit railings. Guardrail Approach Transition to Rigid Barriers (EA) includes
all transition blocks, and necessary hardware to complete the Guardrail transitions shown.

ESTIMATED TRAFFIC RAILING QUANTITIES			
ITEM	UNIT	QUANTITY	
		$9^{\prime \prime}$ Curb	Increment
		CY/FT	0.064
	Concrete	0.003 per in. height	
	LB/FT	13.27	0.10 per in. length

(Quantities are based on a $9^{\prime \prime}$ curb, no curb cross slope and $1^{\prime}-0^{\prime \prime}$ embedment length of Bars 6 . If the curb height or embedment length differs from
that shown, increase or decrease quantity by the given per inch increment.)

partial elevation of railing showing finger/sliding plate joint at begin or end bridge - schemes 2 thru 5

* Place 1" thick polystyrene blockout over limits
of bridge deck expansion joint full width to the end of the Traffic Railing to allow for the
movement. Seal Forms to prevent mortar leakage into the expansion joint.

partial elevation of railing showing finger/sliding plate JOINT AT BEGIN OR END BRIDGE - SCHEME 1
(Guardrail Transition not shown for clarity)

CONVENTIONAL REINFORCING ST			
BILL OF REINFORCING STEEL			
MARK	SIZE	LENGTH	NOTE NOS.
A	4	AS REQD.	3
B	$1^{\prime \prime} \varnothing$	$2^{\prime}-0^{\prime \prime}$	$2 \& 5$
C	4	$2^{\prime}-0^{\prime \prime}$	$1,2 \& 3$
D	6	AS REQD.	$2 \& 3$
L	4	$4^{\prime}-1^{\prime \prime}$	$1 \& 3$
M	4	$4^{\prime}-3^{\prime \prime}$	$1 \& 3$
N	4	$2^{\prime}-5^{\prime \prime}$	$1 \& 3$
S	5	AS REQD.	$2,3 \& 4$

Reinforcing steel notes:

1. All bar dimensions in the bending diagrams are out to out. 2. The reinforcement for the railing on a retaining wall shall
2. be the same as detailed for a bridge deck.
3. All reinforcing steel in the Vertical Face R
4. All reinforcing steel in the Vertical Face Retrofit Railing Shall have a $2^{\prime \prime}$ minimum cover
Bars 55 may be continuous or spliced at the construction joints.
5. Expansion Dowel Bars B shall be ASTM A36 smooth round bar and hot-dip galvanized in accordance with the bar and hot-dip
Specifications.

Length as Required

BARS $4 A, B, 6 D \& 5 S$

BARS 4C
(12 required per open joint)

DOWEL DETAIL
Dowel Installation Note:
Shift dowel holes to clear if the existing reinforcement is encountered

* $1 / 2$ " Preformed Joint Filler at top of Existing Curb shall extend beyond the joint material (Silicone, poured rubber, armored neoprene seal or sliding plates) as shown to prevent concrete intrusion during railing casting and
shall be placed so as not to restrict in any way normal joint movement.

partial plan of railing (Skew angle ø less than 70)
PARTIAL PLAN OF RAILING (SKEW ANGLE $\varnothing=70^{\circ}$ OR GREATER)
SKEW DETAIL

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVISION } \\ 07 / 01 / 13 \end{array}$		$\begin{gathered} \text { FY 2022-23 } \\ \text { FDOTANDARD PLANS } \end{gathered}$	GUARDRAIL TRANSITIONS - EXISTING POST \& BEAM BRIDGE RAILINGS (WIDE CURBS)	IndEX $521-405$	SHEET 2 of 6

Match Line (See Sheet 3 of 6)

PARTIAL PLAN OF RAILING

PARTIAL ELEVATION OF INSIDE FACE OF GUARDRAIL (Existing Wing Post not shown for clarity)
\qquad
RAILING END TREATMENT FOR PERPENDICULAR OR ANGLED WING WALLS
SCHEME 1 NOTES
Provide Transition Block (as shown) or Curb if existing Approach Slab does not have a curb, see Roadway Plans. Shape and height of Transition Block or Curb shall match existing bridge curb. Railing End
2. Field bend Dowel Bars 42 within Transition Block as required to maintain 2 "top and side clearance and 3 and bottom clearance.
3. If a Special Steel Guardrail Post is required for attachment to the top of a sloping Wing Wall, saw cut and remove a wedge shaped portion of the sloping Wing Wall as required to provide a level surface for post installation.

Front Face of Backwall, Begin or End Bridge \&
PARTIAL PLAN OF RAILING

PARTIAL ELEVATION OF INSIDE FACE OF RAILING
(Existing Wing Post, Railing Reinforcing and Expansion Dowel Assemblies not shown for clarity)

SCHEME 2 NOTES:

railing end treatment for parallel curbs

1. See Roadway Plans for limiting station of Roadway Guardrail Transition or other site specific treatment. If limiting station of Roadway Guardrail Transition is along the Wing Wall, attach Thrie-Beam Terminal Connector to railing as shown
above. If limiting station of Roadway Guardrail Transition is on the bridge, see Sheet 3 of 6 . On skewed bridges, if the skeve. If limiting station of Roadway Guardrail Transition is on the bridge, see Sheet 3 of 6 . On skewed briages, if the and back face of the railing.
2. Provide Transition Block (as shown) or Curb if existing Approach Slab Curb does not extend beyond end of existing End Bent see Roadway Plans. Shape and height of Transition Block or Curb shall match existing bridge curb. Railing En Transition and Transition Block may be omitted on trailing ends with no opposing traffic
3. Field bend Dowel Bars $4 L$ within Transition Block as required to maintain 2 "top and side clearance and 3 bottom clearance

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 07 / 01 / 13 \end{gathered}$	傻DESCRIPTION:	$\begin{gathered} \text { FY 2022-23 } \\ \text { FTANDARD PLANS } \end{gathered}$	GUARDRAIL TRANSITIONS - EXISTING POST \& BEAM BRIDGE RAILINGS (WIDE CURBS)	INDEX $521-405$	$\begin{aligned} & \text { SHEET } \\ & 4 \text { of } 6 \end{aligned}$

SECTION A-A
TYPICAL SECTION THRU TRAFFIC RAILING SECTION THRU BRIDGE DECK SHOWN
,
. Begin placing Railing Bars $5 T$ and 5X on Approach Slab at the railing end and proceed toward Begin or End Bridge
to avoid conflict with guardrail bolt holes. If required to avoid conflict with guardrail bolt holes. If required,
adjustments to the bar spacing for Bars $5 T$ and $5 X$ shall be adjustments to the bar spacing for Bars 5 and $5 \times$ Shall be and rotate Bars $5 T$ and 5X as required to maintain cover in Railing End Transition.
2. Omit Railing End Transition and Guardrail if Concrete Traffic Railing is used beyond the Approach Slab or Retaining Wall. See Structures Plans, Plan and Elevation Sheet and Roadway Plans. If Taper and Railing End Transition is omitted,
extend Typical Section to end of the Approach Slab or limiting station on Retaining Wall, and space Bars 5T and 5X at $1^{\prime}-0^{\prime \prime}$ (Tyр.)

ROSS REFERENCE:
(END VIEW OF TRAFFIC RAILING END TRANSITION) (Approach Slab shown, Retaining Wall Junction Slab similar)

CONVENTIONAL REINFORCING STEEL BENDING DIAGRAMS

BILL OF REINFORCING STEEL		
MARK	SIZE	LENGTH
S	5	As Reqd.
T	5	$10^{\prime}-8^{\prime \prime}$
x	5	$6^{\prime}-9^{\prime \prime}$

| ROADWAY |
| :---: | :---: | :---: |
| CROSS-SLOPE | LOW GUTTER | HIGH GUTTER |
| :---: |
| 0% to 2% |

Length as Required

BAR 5S

STIRRUP BAR $5 T$

END TRANSITION STIRRUP BARS $5 T$
To Be Field Cut (7 of each required
per Railing End Transition)

STIRRUP BAR 5X

END TRANSITION STIRRUP BARS 5X To Be Field Cut (7 of each required
per Railing End Transition)
(The above quantities are based on a $6^{\prime \prime}$ thick $\times 6^{\prime}$ wide raised sidewalk at low side of deck, 2% deck cross slope and counter 2% sidewalk cross slope)

DETAIL "A" - SECTION at intermediate open joint
intermediate joint seal notes:
. At Intermediate Open Joints, seal the lower $6^{\prime \prime}$ portion of the open joint with Pre-cured Silicone Sealant in accordance
2. Apply sealant prior to any Class V finish coating and remove all curing compound and loose material from the surface prior to application of bonding agent.
3. The cost of the Pre-cured Silicone Sealant shall be included in the Contract Unit Price for the Traffic Railing.

SECTION THRU RECESSED "V" GROOVE TO FORM INSCRIBED LETTERS AND FIGURES

ESTIMATED TRAFFIC RAILING QUANTITIES		
ITEM	UNIT	QUANTITY
Concrete	CY/LF	0.145
Reinforcing Steel	LB/LF	30.68

1. All bar dimensions in the bending diagrams are out to out.
2. The $4^{\prime}-6 \frac{3}{4} 4^{\prime \prime}$ vertical dimension shown for Bars $5 T$ and 5 X is based on a bridge deck with a
$6^{\prime \prime}$ thick $\times 6^{\prime}$ wide raised sidewalk at low side of deck, 2% deck cross slope and a counter 2%
raised sidewalk cross slope. If the raised sidewalk thickness, width or cross slope vary from the
above amounts, adjust this dimension accordingly to achieve a minimum embedment into the brial
deck. See Structures Plans, Superstructure and Approach Slab Sheets.
3. The reinforcement for the railing on a retaining wall shall be the same as detailed above with
$\varnothing A=90^{\circ}$.
4. Bars 55 may be col at the open joints shall have a $2^{\prime \prime}$ minimum cover. splices for Bars 5 S shall be
5. a minimum of $2^{\prime}-2^{\prime \prime}$
6. The Contractor may utilize Welded Wire Reinforcement (WWR) when approved by the Engineer. WWR
must consist of Deformed wire meeting the requirements of Specification Section 931

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	\|	$\begin{array}{cc} \text { FDY 2022-23 } \\ \text { STANDARD PLANS } \end{array}$	TRAFFIC RAILING - (42" VERTICAL S HAPE)	$\begin{gathered} \text { INDEX } \\ 521-422 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 3 \end{aligned}$

SECTION A-A
TYPICAL SECTION THRU TRAFFIC RAILING (Section Thru Bridge Deck shown)

For location of Section A-A and View B-B
NOTE: For Bullet Railing Details,

NOTES: 1 Begin placing Railing Bars $5 T$ and 5 X on Approach Slab at the railing end and proceed toward Begin or End Bridge
to avoid conflict with guardrail bolt holes If required ad justments to the bar spacing for Bars $5 T$ and $5 X$ shall be made immediately adjacent to Begin or End Bridge. Cut, shift
and rotate Bars 5T and 5X as required to maintain cover in Railing End Transition. 2. Omit Ralling End Transition and Guardrall if Concrete
Traffic Railing is used beyond the Approach Slab or Retaining Wall. See Structures Plans, Plan and Elevation Sheet and Roadway Plans. If Taper and Railing End Transition is omitted,
extend Typical Section to end of the Approach Slab or limiting station on Retaining Wall, and space Bars $5 T$ and 5 X at $1^{\prime}-0^{\prime \prime}$
(Typ.) (Typ.)

CROSS REFERENCE:
see Index 515-022.
APPROACH SLAB END VIEW
OF TRAFFIC RAILING
(Guardrail Not Shown For Clarity)

FDOTY	FY 2022-23 STANDARD PLANS		$\begin{gathered} \text { INDEX } \\ 521-423 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 3 \end{aligned}$

CONVENTIONAL REINFORCING STEEL BENDING DIAGRAMS

BILL OF REINFORCING STEEL		
MARK	SIZE	LENGTH
S	5	As Reqd.
T	5	$9^{\prime}-0^{\prime \prime}$
x	5	$5^{\prime}-10^{\prime \prime}$

ROADWAY CROSS-SLOPE	øA	
	LOW GUTTER	HIGH GUTTER
0\% to 2\%	90°	90°
2\% to 6\%	87°	93°
6\% to 10\%	84°	96°

STIRRUP BAR 5T

STIRRUP BAR 5X

BAR $5 S$

DETAIL "A" - SECTION

AT INTERMEDIATE OPEN JOINT

Intermediate joint seal notes:

1. At Intermediate Open Joints, seal the lower $6^{\prime \prime}$ portion of
the open joint with Pre-cured Silicone Sealant in accordance with Specification Section 932.
2. Apply sealant prior to any Class V finish coating and remove all curing compound and loose material from the surface arior to application of bonding agent.
3. The cost of the Pre-cured Silicone Sealant shall be included in the Contract Unit Price for the Traffic Railing

SECTION THRU RECESSED "V" GROOVE TO FORM INSCRIBED LETTERS AND FIGURES
Refforcing steel notes

1. All bar dimensions in the bending diagrams are out to out.
2. The $3^{3}-8^{3} / 4^{\prime \prime}$ vertical dimensions shown for Bars $5 T$ and $5 X$ are based on a bridge deck with a $6^{\prime \prime}$ thick $\times 6^{\prime}$ wide raised sidewalk at low side of deck, 2% deck cross slope and a counter 2%
raised sidewalk cross slope. If the raised sidewalk thickness, width or cross slopes vary from the above amounts, ad just these vertical dimensions accordingly to achieve a $6^{\prime \prime}$ minimum embedment into the bridge deck.
3. The reinforcement for the railing on a Retaining wall shall be the same as detailed with $\varnothing \mathrm{A}=90^{\circ}$
4. All reinforcing steel at the open joints shall have a $2^{\prime \prime}$ minimum cover.
5. Bars. 5 S may be continuous or spliced at the construction joints. Bar splices for Bars 5 S shall be
a minimum of $2^{\prime}-2$
6. The Contractor may utilize Welded wire Reinforcement (WWR) when approved by the Engineer. WWR must consist of Deformed wire meeting the requirements of Specification Section 931.

PARTIAL PLAN VIEW OF BRIDGE DECK AND APPROACH SLAB WITH median traffic railing

Notes:

1) Median Traffic Railing reinforcement vertical Bars 5W may be shifted up to 1" (Max.) and rotated up to 10 degrees as required to allow proper placement.
2) Transition Stirrup Bars 5 W shall be used as required at railing ends adjacent to expansion joints to facilitate placement of bars in acute corners. Place Transition Bars 5 W in a fan pattern to maintain spacing. Rotate bars in 10° (Max.) increments as required
3) Median Traffic Railing ends at deck expansion joints shall follow the deck joint with allowance for joint movement. See Structures Plans, Superstructure and Approach Slab Sheets for Details.
4) $3 / 4$ " Intermediate Open Joints and V-Grooves in railing shall be placed perpendicular or radial to the q of the median railing. See Structures Plans, Superstructure and Approach Slab Sheets for locations
5) At begin or end approach slab extend slab at the median railing ends $3^{\prime \prime}$ (open side) as shown At begin or end approach slab extend Slab at
to provide a base for casting of the railing.
6) Work this Sheet with Approach Slab Indexes as applicable.
7) Deck Expansion Joint at begin or end bridge shown. Deck Expansion Joints at \& Pier or Intermediate Bents are similar. 8) Partial Plan Views shown are intended as guides only. See Structures Plans,
Superstructure and Approach Slab Sheets for skew angles, joint orientation, dimensions and details,
8) If Welded Wire Reinforcement is used in lieu of conventional reinforcement, placement of the WWR vertical elements shall be similar to those shown above. Clipping of horizontal elements to facilitate placement shall be minimized where possible. Where clipping is required, supplement horizontal
elements by lap splicing with deformed bars having an equivalent area of steel.

WWR Piece No. 2

SPLICE DETAIL
(Between WWR Sections)

WWR Piece No. 1

WWR Piece No. 1
SECTION A-A SECTION A-A

WELDED WIRE REINFORCEMENT NOTES:

1. At the option of the Contractor deformed Welded Wire Reinforcement (WWR) may be utilized in lieu of all Bars 5R, $5 S$ and 5W. WWR must meet the requirements of Specification Section 931 .
. WWR at Railin End Transition shall be field bent invard as required (Pieces $1 \& 2$) to maintain cover. The botto . Pf Piece 1 shall be cut to allow overlap.
Place WWR panels so as to minimize the end overhang of longitudinal wires at Railing Ends and Open Joints.
Overhangs greater than $6^{\prime \prime}$ are not permitted.

$\begin{gathered} \text { ROADWAY } \\ \text { CROSS-SLOPE } \end{gathered}$	ON SLOPE		AT CROWN	
	øA	øB	øA	øB
0\% to 2\%	79°	79°	79°	79°
>2\% to 6%	81°	77°	79°	79°
>6\% to 10%	84°	74°	79°	79°

$\varnothing A$ and $\varnothing B$ shall be 79° if Contractor elects to place
railing perpendicular to the deck, and approach slabs.

BILL OF REINFORCING STEEL		
MARK	SIZE	LENGTH
R	5	$7^{\prime}-2^{\prime \prime}$
S	5	As Reqd.
w	5	$5^{\prime}-10^{\prime \prime}$

BAR $5 S$

STIRRUP BAR 5W
RANSITION STIRRUP BAR SW
To Be Field Cut
(10 required per Railing End Transition)

DETAIL "C" - SECTION at intermediate open joint

INTERMEDIATE JOINT SEAL NOTES

1. At Intermediate Open Joints, seal the lower 6 portion of
the open joint with Pre-cured Silicone Sealant in accordance with Specification Section 932.
2. Apply sealant prior to any Class V finish coating and remove all curing compound and loose material from the surface prior to application of bonding agent.
3. Include the cost of the Pre-cured Silicone Sealant in the Contract Unit Price for the Traffic Railing.

ESTIMATED TRAFFIC QUANTITIES		
ITEM	UNIT	QUANTITY
Concrete	CY/LF	0.157
Reinforcing Steel	LB/LF	23.99

(The above quantities are based on a crowned (The above quantities are based
roadway, with a 2% (ross slope)

PARTIAL PLAN VIEW OF SKEWED BRIDGE DECK AND APproach SLAB With Single-slope TRAFFIC RAILING, OTHER TRAFFIC RAILINGS SIMILAR

1) Railing expansion joint shall match the deck expansion joint which shall be turned perpendicular
or radial to the qutter line. See Structures Plans, Superstructure Sheets for details. 2) or radial to the gutter line. See Structures Plans, Superstructure Sheets for details.
tures Plans. Superstructure and Approach Slab Sheets for locat or radial to the 3) When Guardrail Structures Plans, Superstructure and Approach slab Sheets for locations. the railing end and proceed toward Begin or End Bridge to ensure placement of on Approach Slab at the railing end and proceed toward Begin or End Bridge to ensure placement of guardrail bolt holes,
If required, ad justments to the bar spacing for Bars $4 P$ and $4 V$ shall be made immediately adjacent to Begin or End Bridge.
2) Concrete Parapet reinforcement is not effected by skew angle, see Index 521-820 for details.
3) Parapet expansion joint shall match the deck expansion joint which shall be turned perpendicular
4) Traffic Railing reinforcement vertical Bars $4 V \& 4 P$ may be shifted up to $1^{\prime \prime}$ (Max.) and rotated
up to 10 degrees as required to allow proper placement. Bars 4 V adjacent to expansion joints shall be field adjusted to maintain clearance and spacing, extra Bars 4V will be required. Cut bottom horizontal remainder of the bar. Rotate cut bars to maintain clearance
5) Railing ends at deck expansion joints shall follow the deck joint with allowance for joint movement. Expansion joint at the inside face of parapet shall be turned perpendicular or radial to this line. See Structures Plans, Superstructure and Approach Slab Sheets for details.
53" Intermediate Open Joints and V-Grooves in railing and parapet shall be placed perpendicular or radial to the gutter line or inside face of parapet line. See Structures Plans, Superstructure Sheets for locations. 6) At begin or end approach slab extend slab at the railing ends 3" (gutter side or back face of railing
as required) as shown to provide a base for casting of the railing. Field trim toe of Bars 4 V by 1 inch as required) as shown to provide a base for casting of
as required to maintain concrete cover at edge of deck.
6) When Guardrail is shown on the approach, begin placing Railing Bars 4P and 4V on Approach Slab at the railing end and proceed toward Begin or End Bridge to ensure placement of guardrail bolt holes. If required, adjustments to the bar spacing for Bars $4 P$ and $4 V$ shall be made immediately adjacent to Begin or End Bridge.
general notes
7) Work this Sheet with Traffic Railing, Pedestrian/Bicycle Railing, and Approach Slab Indexes as applicable.
8) Deck Expansion Joint at begin or end bridge shown. Deck Expansion Joints at \& Pier or 3) Intermediate Bents are similar
9) Partial Plan Views shown are intended as guides only. See Structures Plans, Superstructure
and Approach slab Sheets for skew angles, joint orientation, dimensions and details.
10) Railings on Raised Sidewalks shall be treated similar to the Partial Plan View of Bridge Deck
11) with Traffic Railing.
12) If Welded Wire Reinforcement is used in lieu of conventional reinforcement, placement of the WWR
vertical elements shall be similar to those shown above. Clipping of horizontal elements to
facilitate placement shall be minimized where possible. When clipping is required, supplement
horizontal elements by lap splicing with deformed bars having an equivalent area of steel.

CONVENTIONAL REINFORCING STEEL BENDING DIAGRAMS

WWR Piece No. 2
D20 (Extend or

SPLICE DETAIL
(Between WWR Sections)

WELDED WIRE REINFORCEMENT NOTES:

Longitudinal D20 Wires or
\#4 Bars may be tied.

WWR Piece No. 1
\#4 Bars may be tied.

1. At the option of the Contractor deformed Welded Wire Reinforcement (WWR) may be utilized in lieu of all Bars $4 P$

4S and 4V. WWR must consist of Deformed wire meeting the requirements of Specification Section 931 .
2. WWR at Railing End Transition shall be field bent inward as required (Piece 2) to maintain cover. The bottom of the vertical wires (D20) in Piec
required to allow placement

$\varnothing B$ shall be 90° if Contractor elects to place railing
perpendicular to the deck and approach slabs.

STIRRUP BAR 4P

$$
\begin{aligned}
& \text { END STIRRUP BAR } 4 P \\
& \text { TO Be Field Cut }
\end{aligned}
$$

To Be Field Cut
reinforcing steel notes and Bent
.. All bar dimensions in the bending diagrams are out to out
2. The $8^{1 / 2 "}$ vertical dimensions shown for Bar $4 V$ is based on a $6^{\prime \prime}$ embedment into the bridge deck without a raised sidewalk. If a raised sidewalk is to be provided, increase this dimension to
achieve a $6^{\prime \prime}$ minimum embedment into the bridge deck. See Structures Plans, Superstructure and Approach Slab Sheets.
3. All reinforcing steel at the open joints shall have a $2^{\prime \prime}$ minimum cover
4. Bars 45 may be continuous or spliced at the construction joints. Bar splices for Bars 45 shall be a minimum of $2^{\prime}-0^{\prime \prime}$

DETAIL "C" - SECTION at intermediate open Joint

INTERMEDIATE JOINT SEAL NOTES:

1. At Intermediate Open Joints, seal the lower $6^{\prime \prime}$ portion of the open joint with Pre-cured Silicone Sealant in accordance
en
2. Apply sealant prior to any Class verial remove and remer
all curing compound and loose material from the surface prior to application of bonding agent.
3. Include the cost of the Pre-cured Silicone Sealant in the Contract Unit Price for the Traffic Railing.

SECTION THRU RECESSED "V" GROOVE TO FORM INSCRIBED LETTERS AND FIGURES

(The above quantities are based on a 2% deck
cross slope; railing on low side of deck.)

BILL OF REINFORCING STEEL		
MARK	SIZE	LENGTH
P	4	$5^{\prime}-11^{\prime \prime}$
S	4	As Reqd.
V	4	$4^{\prime}-10^{\prime \prime}$

\qquad
BAR $4 S$

END TRANSITION BAR 4V Field Cut and Lapped

SECTION A-A
36" Single-Slope Shown Other traffic railings similar

drainage slot notes:

1. Use only when required for safety. See Plans for locations and size of drainage slots.
2. Maintain $2^{\prime \prime}$ minimum cover to all reinforcing. Trim P Bars over drainage slots and raise
3. Fortom S bars as necessary to maintain cover.
4. Drainage slot heights are $2^{\prime \prime}$ or $3^{\prime \prime}$. See the plans for size and location details.

(Showing Lower Section with Bars 5V, 6S1, $5 S 2$ and 6T2)

NOTE:
Begin placing Railing Bars 5 P and 5 V on Approach Slab at the railing end and proceed toward Begin or
End Bridge to ensure placement of guardrail bolt holes. If required, adjustments to the bar spacing for Bars $5 P$ and 5 V shall be made immediately adjacent to Begin or End Bridge. Shift Bars $5 P$ and $5 V$ (see Detail " A ") as
required to maintain cover in Railing End Transition. Begin or End
Approach Slab **

Where railings of adjacent bridges are to be built back to back, the outside vertical plane of the ralling and
deck may coincide along a plane centered $11^{\prime \prime}-6^{\prime \prime}$ from each gutter line. A bond breaker will be required. See Structures Plans, Superstructure Sheets for Details.
** See joint orientation note on Sheet 1.
*** Field Cut \& Lap Bars 5 V in Toe Transition to maintain clearance.

SECTION A-A

TYPICAL SECTION THRU TRAFFIC RAILING (Section Thru Bridge Deck shown (Section Thru Bridge Deck Shown -
Section Thru Approach Slab similar)
\& Thrie-Beam Terminal
or Bolts

VIEW B-B

END TRANSITION

(Section thru Approach Slab shown, Section thru Retaining Walls similar)

$\begin{aligned} & \text { LAST } \\ & \text { REVISION } \\ & 11 / 01 / 17 \end{aligned}$	

FDOㄷT | FY 2022-23 |
| :---: |
| STANDARD PLANS |

VIEW C-C
railing height transition
(Begin/End of Bridge)
(Bars 5V not shown for clarity)

SECTION D-D
(Index 400-091 Shown, 400-090 Similar) (Index 521-427 Bars $4 V$ not shown for Clarity)

DETAIL \qquad

CONVENTIONAL REINFORCING STEEL BENDING DIAGRAMS

BILL OF REINFORCING STEEL		
MARK	SIZE	LENGTH
P	5	$7^{\prime}-0^{\prime \prime}$
$S 1$	6	As Reqd.
$S 2$	5	As Reqd.
$T 1 \& T 2$	6	$10^{\prime}-0^{\prime \prime}$
V	5	$5^{\prime}-9^{\prime \prime}$

STIRRUP BAR 5P

TRANSITION STIRRUP BAR 5P To Be Field Cut (10 of each required per Railing End Transition)

Pre-cured Silicone
Sealant (4" wide)

DETAIL "C" - SECTION at intermediate open Joint

InTERMEDIATE JOINT SEAL NOTES

1. At Intermediate Open Joints, seal the lower $6^{\prime \prime}$ portion of the open joint with Pre-cured Silicone Sealant in accordance Aply seatcation Section 932.
2. Apply sealant prior to any Class V finish coating and remove
all curing compound and loose material from the surface all curing compound and loose material from the surface prior to application of bonding agent.
3. The cost of the Pre-cured Silicone Sealant shall be included in the Contract Unit Price for the Traffic Railing.

SECTION THRU RECESSED V" GROOVE TO FORM INSCRIBED LETTERS AND FIGURES

ESTIMATED TRAFFIC RAILING QUANTITIES		
ITEM	UNIT	QUANTITY
Concrete	CY/LF	0.143
Reinforcing Steel	LB/LF	39.34

. All bar dimensions in the bending diagrams are out to out
2. All reinforcing steel at the open joints shall have a 2" minimum cover.
3. Bars 6 S1 may be continuous or spliced at the construction joints. Lap splice
for Bars 6 St and 52 suall be a minimum of $3^{\prime \prime}-0^{\prime \prime}$ and $\mathbf{V}^{\prime \prime}-2^{\prime \prime}$, respectively.
4. The Contractor may utilize deformed WWR when approved by the Engineer.
WWR must meet the requirements of Specification Section 931.

ROADWAY	LOW GUTTER	HIGH GUTTER
CROSS-SLOPE	$\varnothing B$	$\varnothing B$
0% to 2%	101°	101°
2% to 6%	98°	104°
6% to 10%	95°	107°

$\emptyset A$ and $\varnothing B$ shall be 90° if Contractor elects
to place Railing perpendicular to the Deck.

TRANSITION BARS $6 T 1 \& 6 T 2$ (2~Bars 6T1 \& 3~Bars 6 T2 required per Railing End Transition)

STIRRUP BAR 5V To Be Field Cut and Lapped
his Traffic
 521-484 $521-484$
CONCRETE:
Class IV. Concrete for Curb Transition Blocks shall be Class II (Bridge Deck),
REINFORCING STEEL: Reinforcing steel shall be ASTM A615, Grade 60, except Expansion Dowel Bar B which shall be ASTM A36 smooth round bar hot-dip galvanized in accordance with the Specifications.
socket fitting, Schedule 40. End of Sleeve assembly at railing open joint Socket fitting, Schedule 40. End of Sleeve assembly at railing open joint shall be sealed with silicone to prevent concrete
intrusion during railing casting. A compressible expanded polystyrene plug is required in the opposite end of the assembly intrusion during raling casting. A compressible expanded polystyrene plug is required in the opposite end of the assembly
for correct dowel positioning during railing casting. Correct dowel positioning is required in order to provide for thermal movement of the deck.
Hecification Section 937 and be installed in accordance with Specification Section 4nchors and Dowels shall comply with
She field testing proof loads required by Specification Section 416 shall be 23,800 lbs. for Dowel Bars 6 D on the inside face (traffic side) of the railing ($11^{\prime}-0^{\prime \prime}$ embedment) and $18,500 \mathrm{lbs}$ for Dowel Bars 6 D along the outside face of the traffic railing ($5^{\prime \prime}$ min. embedment). Details for bridges on horizontally curved alignments are similar.
NAME, DATE AND BRIDGE NUMBER: The Name and Bridge Number shall be placed on the Traffic Railing so as to be seen on the driver's right side when approaching the bridge. The Date shall be placed on the driver's left side when approaching the bridge. The Date shall be the year the bridge was constructed. Letters and figures may be $3^{\prime \prime}$ tall black plastic as approved by the Engineer or $3 / 8$-Grooves. V-Grooves shall be formed by preformed
ELEVATION MARKERS: Elevation Markers need not be replaced when portions of the existing traffic railing carrying existing elevation markers are removed.
BARRIER DELINEATORS: Barrier Delineators shall meet Specification Section 993. Install Barrier Delineators on top of the Traffic Railing $2^{\prime \prime}$ from the face on the traffic
Delineator color (white or yellow) to the near edgeline.
PAYMENT: Payment under Traffic Railing (Vertical Face Retrofit) includes all materials and labor required to construct the railing and incidental work as required for transition blocks, curbs, spread footing approaches, and Barrier Delineators.

Match Deck Joint width

Bars 4C and Expansion Dowels
Bars B, see Sheet 2 (Typ.) Field Bend Bars 55 to

Existing Bridge Deck
Polystyrene Blockout *
partial elevation of railing showing finger/Sliding plate joint - schemes 2 thru 5 (Begin or End Bridge Shown, Intermediate Joints Similar)

Limiting Station of Transition	$1^{1 \prime}-0^{\prime \prime}$	Varies
(See Roadway Plans)	(Min.)	(2'-6" Min.)
in NAME OR DATE		
I BRIDGE NUMBER		
- Bridge number		

(Quantities are based on a $9^{\prime \prime}$ curb, no curb cross slope and height or embedment length differs from that shown, increase or decrease quantity by the given per inch increment.) See Index 521-484,
Sheet 4 for Spread Footing Approach Quantities.

* Place 1" thick polystyrene blockout over limits
of bridge deck expansion joint full width to the
end of the Traffic Railing to allow for thermal
end of the Traffic Railing to allow for therm
movement. Seal Forms to prevent mortar
leakage into the expansion joint.

partial elevation of railing showing finger/sliding plate JOINT AT BEGIN OR END BRIDGE - SCHEME 1
(Guardrail Transition not shown for clarity)

CONVENTIONAL REINFORCING STEEL BENDING DIAGRAM

REINFORCING STEEL NOTES:

Typical Section) (Tapered End Transition)

OPEN JOINT EXPANSION DOWEL DETAIL (Railing Reinforcing Not Shown For Clarity)

DOWEL DETAIL
Dowel Installation Notes:

1. Shift dowel holes to clear if the existing
reinforcement is encountered.
2. See Index 521-481 thru 521-484 for required
/2 Preformed Joint Filler at top of Existing Curb shall extend beyond the joint material (Silicone, poured rubber, armored neoprene seal or sliding plates) as shown to prevent concrete intrusion during railing casting and

* See Index 521-481 thru 521-484 for spacing of Bars 6D.

PARTiAL PLAN OF RAILING (SKEW ANGLE θ GREATER THAN 20ㅇ) (Skewed Deck Joint at Begin or End Bridge Shown, Skewed Deck Joint at Intermediate Pier or Bent Similar)
partial plan of Railing (SKEW angle $\theta=20^{\circ}$ OR LESS)
(Skewed Deck Joint at Begin or End Bridge Shown, Skewed Dec Joint at Intermediate Pier or Bent Similar)

partial elevation of inside face of guardrail

SCHEME 1 NOTES

1. Provide Transition Block (as shown) or Curb if existing Approach Slab does not have a curb, see Roadway Plans. Shape and height of Transition Block or Curb shall match existing bridge curb. Railing
opposing traffic
2. Field bend Dowel Bars $4 L$ within Transition Block as required to maintain $2^{\prime \prime}$ top and side clearance and $3^{\prime \prime}$ bottom clearance.

partial elevation of inside face of railing (Railing Reinforcing and Expansion Dowel Assemblies not shown for clarity)

$$
\begin{gathered}
\text { SCHEME } 2 \overline{\overline{\text { RAILING END TREATMENT FOR }}} \begin{array}{c}
\text { PARALLEL WING WALLS }
\end{array} \text { }
\end{gathered}
$$

SCHEME 2 NOTES:

1. See Roadway Plans for limiting station of Roadway Guardrail Transition or other site specific treatment. If limiting station of Roadway Guardrail Transition is along the Wing Wall, attach Thrie-Beam Terminal Connector to railing
as shown above. If limiting station of Roadway Guardrail Transition is on the bridge, see Index 521-481, Sheet as shown above. If limiting station of Roadway Guardrail Transition is on the bridge, see Index 521-481, Sheet
On skewed bridges, if the skew along the deck joint extends across the width of the railing, the 2'-6" minimum dimension shall apply to both the front and back face of the railing.
2. Provide Transition Block (as shown) or Curb if existing Approach Slab does not have a curb, see Roadway Plans Shape and height of Transition Block or Curb shall match existing bridge curb. Railing End Transition and Transition Block may be omitted on trailing ends with no opposing traffic
3. Fleld bend Dowel Bars $4 L$ within Transition Block as required to maintain $2^{\prime \prime}$ top and side clearance and 3 "botton
clearance. clearance

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVISION } \\ 07 / 01 / 07 \end{array}$	\|	$\begin{gathered} \text { FY 2022-23 } \\ \text { FDTANDARD PLANS } \end{gathered}$	

SCHEME 3 NOTE:

1. See Roadway Plans for limiting station of Roadway Guardrail Transition or other site specific treatment. If limiting station of Roadway Guardrail Transition is along the Wing Wall, attach Thrie-Beam Terminal Connector to railing as shown above. If limiting station of Roadway Guardrail Transition is on the bridge, see Sheet I.
partial elevation of inside face of railing
(Railing Reinforcing and Expansion Dowel Assemblies not shown for clarity)
\qquad
RAILING END TREATMENT FOR
FLARED WING WALLS

PARTIAL PLAN OF RAILING

- Front Face of Backwall, Begin or End Bridge \& Match Line (See Sheet 1)

PARTIAL ELEVATION OF INSIDE FACE OF RAILING
(Existing Wing Post, Railing Reinforcing and Expansion Dowel Assemblies not shown for clarity)

SCHEME 2 NOTES:

RAILING END TREATMENT FOR PARALLEL CURBS

 1. See Roadway Plans for limiting station of Roadway Guardrail Transition or other site specific treatment. If limiting above. If limiting station of Roadway Guardrail Transition is on the bridge, see Sheet 1 . On skewed bridges, if the skenalong the deck joint extends across the width of the railing, the $2^{\prime}-6^{\prime \prime}$ minimum dimension shall apply to both the front and back face of the railing.
2. Provide Transition Block (as shown) or Curb if existing Approach Slab Curb does not extend beyond end of existing End Bent ing wall, see Roadway Plans. Shape ard Transition and Transition Block may be omitted on trailing ends with no opposing traffic
3. Field bend Dowel Bars $4 L$ winn Transition Block as required to maintain 2 top and side clearance and botlom cleara
\qquad

07/01/05	

STAND PLANS

partial elevation of inside face of guardrail

RAILING END TREATMENT FOR PERPENDICULAR OR ANGLED WING WALLS

SCHEME 1 NOTES:

1. Provide Transition Block (as shown) or Curb if existing Approach Slab does not have a curb, see Roadway Plans. Shape and height of Transition Block or Curb shall match existing bridge curb. Railing End Transition and Transition Block may be omitted on trailing ends with no opposing traffic.
2. Field bend Dowel Bars $4 L$ within Transition Block as required to maintain $2^{\prime \prime}$ top and side clearance and $3^{\prime \prime}$ bottom clearance.
3. If a Special Steel Guardrail Post is required for attachment to the top of a sloping Wing Wall. saw cut and remove a wedge shaped portion of the sloping Wing Wall as required to provide a saw cut and remove a wedge shap
level surface for post installation

PARTIAL ELEVATION OF INSIDE FACE OF RAILING
(Railing Reinforcing and Expansion Dowel Assemblies not shown for clarity)

RAILING END TREATMENT FOR

PARALLEL WING WALLS

1. See Roadway Plans for limiting station of Roadway Guardrail Transition or other site specific treatment. If limiting station of Roadway Guardrail Transition is along the Wing Wall, attach Thrie-Beam Terminal Connector to railing as shown above. If limiting station of Roadway Guardrail Transition is on the bridge, see Sheet 1. On skewed bridges, if the skew along the deck joint extends across the width of the railing,
2. Provide Transtion Block (as shown or Curb if existing Approach Slab Curb does not
3. Provide Transition Block (as shown) or Curb if existing Approach Slab Curb does not extend beyond end of existing End Bent Wing Wall, see Roadway Plans. Shape and height of Transition Block or Curb shall match opposing traffic.
4. Field bend Dowel Bars $4 L$ within Transition Block as required to maintain 2" top and side clearance and $3^{\prime \prime}$ bottom clearance.
Front Face of Backwall, Begin
or End Bridge \& Match Line \longrightarrow Direction of Traffic
or End Bridge \& Match Line
(See Sheet 1)
PARTIAL PLAN OF RAILING

SCHEME 3 NOTE:

1. See Roadway Plans for limiting station of Roadway Guardrail Transition or other site specific treatment. If limiting station of Roadway Guardral Transition is along the Wing Wall, attach Thrie-Beam Terminal Connector
o railing as shown above. If limiting station of Roadway Guardrail ransition is on the bridge, see Sheet 1
partial elevation of inside face of railing
(Railing Reinforcing and Expansion Dowel Assemblies not shown for clarity)
\qquad
RAILING END TREATMENT FOR FLARED WING WALLS

\rightarrow

CROSS REFERENCE
For General Notes, Dowel Details, Expansion Dowel Details, Reinforcing Steel Notes and Reinforcing Steel Bending Diagram see Inde
$521-480$.

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 07 / 01 / 09 \end{gathered}$	\|rest	$\begin{gathered} \text { FY 2022-23 } \\ \text { FDTANDARD PLANS } \end{gathered}$	TRAFFIC RAILING - (VERTICAL FACE RE TROFIT) SPREAD FOOTING APPROACH	INDEX 521-484	SHEET 1 of 10

See Schemes 1 thru 7 for
Details and Reinforcement
Begin or End Bridge
and Begin Spread
Footing Approach

partial plan view
 (With Curb Approach)

$$
\begin{aligned}
& \text { Begin or End Approac } \\
& \text { Slab Transition (see } \\
& \text { Crhomact }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Slab Transition (see } \\
& \text { Schemes for Details }
\end{aligned}
$$

artial ELEVATION VIEW
(With Curb Approach)

PARTIAL ELEVATION VIEW
(Without Curb Approach)

NOTES

$\bar{\longrightarrow}$ GUARDRAIL END TRANSITION
 \square

1. On approach end provide a Roadway Guardrail Transition, Index 536-002 (Sheet 16 -
Scheme 1) or other site specific treatment. See Roadway Plans for limiting station of

Roadway Guardrail Transition or other site specific treatment,
2. Provide Railing \& Curb Base Transitions (as shown) if curb does not extend beyond end of Spread Footing Approach, see Roadway Plans. Railing End Transition \& Railing \& Curb Base
Transitions may be omitted on trailing ends with no opposing traffic. ransitions may be omitted on trailing ends with no opposing traffic.

SECTION C-C

CROSS REFERENCES: For location of Sections $A-A, B-B$
and $X-X$ see Sheet 2 .
For location of Section $C-C$ see
Sheet 3.
(GUARDRAIL END TRANSITION)
Match Cross Slope of high side and low side at begin or end bridge or approach
** Match curb height of adjacent bridge and approach slab. Adjust height in Transitio area to match adjoining Roadway curb.

ESTIMATED TRAFFIC RAILING RETROFIT SPREAD FOOTING APPROACH QUANTITIES		
ITEM	UNIT	QUANTITY
		9" Curb
Concrete - Typical Section	CY/Ft.	0.25
Reinforcing Steel - Typical Section	Lb./Ft.	38
Concrete - 20'-0" Tapered End Transition plus Footing	Cr	4.57 Total
Reinforcing Steel - 20'-0' Tapered End Transition plus Footing	Lb.	776 Total

SECTION X-X (TYPICAL CURB,

 TYPE VARIES, TYPE F SHOWN) (See Index 520-001 and Plans for Details)NOTE: Quantities are based on a $9^{\prime \prime}$ curb, no curb cross slope.

2'-5" (Curb \&
Varies ($3^{\prime \prime}$ Max., ${ }_{\text {" }}$ Min., matc
bridge offs set constant for
Retrofit to begin transition)

Bars 5 E (Cut and tied to maintain cover

Sidewalk or Finis
Grade Elevation

PARTIAL ELEVATION OF INSIDE FACE OF RAILING
(Expansion Dowel Assemblies and Bars 4C not shown for clarity)
CROSS REFERENCES:
For Section A-A see Sheet 4
For Section D-D see Sheet
For Section D-D see Seeet 5 .
For Expansion Dowel Assembly and placement of Dowel Bars 6 D Details see Index 521-480.

partial elevation of inside face of railing
(Expansion Dowel Assemblies and Bars 4C not shown for clarity)
— SCHEME 7 ~ MODIFICATION FOR INDEX 521-483 SCHEME 3 = Railing end treatment for parallel curbs and flared wing walls with intermediate curbs
$\stackrel{2}{2}$

CROSS REFERENCES:
For Section A-A see Sheet 4
For Section D-D see Sheet
For Section H-H see Shest 9 .
For Expansion Dowel Assemblies and
placement of Dowel Bars 6D Details see Index 521-480.

ELEVATION OF RAILING/NOISE WALL REINFORCING STEEL (INTERMEDIATE OPEN JOINT SHOWN, DECK JOINT SIMILAR (Bars $5 S 1$ in Railing not shown for clarity)

ELEVATION OF RAILING/NOISE WALL END TAPER (ADJACENT TO TRAFFIC RAILING SHOWN, GUARDRAIL ATTACHMENT SIMILAR SEE DETAIL "A", SHEET 5) (Bars $5 S 1$ in Railing not shown for clarity

Notes.
Field Cut Bars $5 R \& 551$ to maintain clearance

* Terminate 3 /" V-groove at construction joint \& cast top of
*** Bar spacing shown for Bars 5 V only applies when Single-Slope Iraffic Railing continues. For transition to guardrail see Sheet

REINFORCING STEEL BENDING DIAGRAMS

SECTION THRU RECESSED＂V＂GROOVE TO form inscribed letters and figures
intermediate joint seal notes
1．At Intermediate Open Joints， seal the lower 6＂portion of the open joint with Pre－cured
Silicone Sealant in accordance with Specification Section 932.
2．Apply sealant prior to any Class V finish coating and remove all curing
compound and loose material from the surface prior to application of bonding agent．

3．The cost of the Pre－cured Silicone Sealant shall be included in the Contract
Unit Price for the Traffic Rail Unit Price for the Traffic Railing．
DETAIL＂B＂－SECTION AT INTERMEDIATE OPEN JOINT

ESTIMATED TRAFFIC		
RAILING／NOISE WALL QUANTITIES		
ITEM	UNIT	QUANTITY
Concrete（Railing）	CY／LF	0.107
Concrete（Noise Wall）	CY／LF	0.136
Reinforcing Steel（Typical）	LB／LF	69.36
Additional Reinf．＠Open Joint	LB	226.85

The above quantities are based on the bridge mounted typical

BILL OF REINFORCING STEEL		
$M A R K$	SIZE	LENGTH
$R 1$	5	$5^{\prime}-2^{\prime \prime}$
$R 2$	5	$5^{\prime}-2 / /^{\prime \prime}$
$R 3$	5	$4^{\prime}-10^{\prime \prime}$
$S 1$	5	$A s$ Reqd．
$S 2$	5	$7^{\prime}-3^{\prime \prime}$
V	5	$6^{\prime}-66^{\prime \prime \prime} 2^{\prime \prime}$

BAR 5R1

BAR 5R2 \＆ BAR 5R3 （Fielling and Bend for Railing End Transition）
reinforcing steel notes：
2．All reinforcing steel at the open joints shall have a $2^{\prime \prime}$ minimum cover
Bars 551 may be continuous or spliced at the construction joints．Lap splices for Bars 5R2 and 5S1
5．The Contractor may use Welded Wire Reinforcement（WWR）when approved by the Engineer．WWR
must consist of deformed wire meeting the requirements of Specification Section 931.
里 section， 2% deck cross slope and railing on low side of deck．）

1．All bar dimensions in the bending diagrams are out to out．
3．Bars 5 R shall be one continuous or lap spliced bar．No mechanical couplers are permitted

CROSS REFERENCE： For locations of Detail＂B＂， see Sheet 1.
$-2+2 x+1$

$\begin{gathered} \text { BRIDGE } \\ \text { CROSS-SLOPE } \end{gathered}$		LOW GUTTER		HIGH GUTTER	
		øA	øB	øA	өB
$\begin{aligned} & \text { 岂岂 } \\ & \text { 炭 } \\ & \text { on o } \end{aligned}$	0\％to 2\％	90°	90°	90°	90°
	2\％to 6\％	93°	87°	87°	93°
	6\％to 10\％	96°	84	84°	96°

\square

PLAN - RAILING END TRANSITION
(Showing Bars 5R, and Bars 5S1) (Bars 5V \&
Noise Wall Reinforcement not shown for Clarity)

PLAN - RAILING END TRANSITION (Showing Bars 5V and Bars 5S1)

 (Bars 5R not shown for Clarity)
$\underset{\substack{\text { LAST } \\ \text { REVISION }}}{ }$
 LAST REVISION $11 / 01 / 18$

11/01/18

Z DESCRIPTION:

DETAIL "A" \qquad
1101/18

DETAIL "A" NOTES:
Begin placing Railing Bars 5V at the railing end and proceed toward the guardrail (thrie beam) terminal connector to ensure placement of guardrail bolt holes. Pair Bars 5R with Bars 5V as shown. Clearance of Bars $5 R \& 5 V$ to guardrail bolt holes shall be checked to prevent cutting of bars if holes are to be driled. Shift bars locally where conflicts occur.
2. For Guardrall cond Transition if a $36^{\prime \prime}$ Single-Slope Traffic Railing is used beyond the End Taper. See the Plan Sheets.
Field cut Bars $5 R 2$ to maintain cover. Field cut Bars 5 V and lap as necessary to maintain cover; field cut

CROSS REFERENCE:
For location of Detail "A" see Sheet 1 . For location of Section C-C see Sheet 1 .
For View B-B see Sheet 3 .

Conventional reinforcing steel bending diagrams

Reinforcing steel notes:
a. When Pedestal is attached to Pedestrian/Bicycle Railing - Index 521-820 or an $8^{\prime \prime}$ wide concrete curb and the Bridge Deck or Approach Slab thickness is less than $1^{\prime}-1 \frac{1}{2}$ ", Bars $4 F 3$ shall have leg length and bar
length shown in parentheses.

The number of bars shown in parentheses is for Bars 4F4 when Pedestal is attached to Pedestrian/Bicycle Railing - Index 521-820 or an 8" wide concrete curb, and the Bridge Deck or Approach Slab thickness is less than $1^{\prime}-1 \frac{1}{2}{ }^{\prime \prime \prime}$. Lap Splices for Bars 4F1, 4F2 \& 4F3 shall be a minimum of $1^{\prime}-4$
Lap Splices for Bars $4 F 4 \& 4 F 5$ shall be minimum of $1^{\prime}-8^{\prime \prime}$. Lap Splices for Bars 4F4 \& 4F5 shall be minimum of $1^{\prime \prime}-8^{\prime \prime}$.
d. Bars 4 J 1 and 4 J 2 are not required when Pedestal thickness is less than $1^{\prime}-51 / 2^{\prime \prime}$. Field trim height of bars to maintain cover when Pedestal Wall Coping to maintain cover.
e. All bar dimensions in the bending diagrams are out to out.

BARS $4 F \quad$ BARS $4 J 1 \& 4 J 2$

BAR $5 G$

Light pole pedestal notes

1. Concrete and Reinforcing Steel required for the construction of the Pedestrian/Bicycle Railing the Pequirements as the Traffic Railing or
2. Ligt Pole pedestal ma be used with the following

Index 521-422 - Traffic used with the following. Index 521-422-Traffic Railing (42" Vertical Shape), Index 521-427-Traffic Railing (36" Single-Slope), Index 521-428-Traffic Railing (42" Single-Slope), Index 521-820 - Pedestrian/Bicycle Railing,
Index 515-021 - Pedestrian/Bicycle Bullet Railing for
Index 515-509 - Traffic Railing /Noise Wall - Bridge.
3. Unless otherwise noted, Traffic Railing (36" Single-Slope) is shown in or Pedestrian/Bicycle Railing are similar.

TABLE 1-DESIGN LIMITATIONS FOR ANCHOR BOLTS (1" Dia.)				
$\begin{aligned} & \text { WIND } \\ & \text { SPEED } \\ & \text { (MPH) } \end{aligned}$	$\begin{gathered} \text { ARM } \\ \text { LENGTH } \\ \text { (Ft.) } \\ \hline \end{gathered}$	BRIDGE DECK HEIGHT (Ft.)*		
		design	Mounting	EIGHT
		40 Ft .	45 Ft .	50 Ft .
130	≤ 15	75	75	75
150	≤ 15	75	75	75
170	$8 \& 10$	75	75	45**
170	$12 \& 15$	75	75	25^{*}

Above natural ground or MLW

Deck Height greater than shown, in Table 1, up to 75
4. ANCHOR BOLTS

Anchor Bolt design is based on the standard Roadway Aluminum Light Pole configurations shown on Index 715-002
Anchor Bolt Diameter: See Table 1
Anchor Bolts: ASTM F1554 Grade 55.
Washers: ASTM F436 Type
Anchor Plate: ASTM A709 (Grade 36) or ASTM A36.
Coating: Galvanize all Nuts Bolts
Coating: Gavanize al Nuts, Borco Galvanize plates in accordance with ASTM Ance with ASTM F2329. Galvanize plates in accordance with ASTM A123.
The Contractor is responsible for ensuring the anchor bolt configuration is compatible with the light pole base plate. Submit modifications of the ancho左t design to the Engineer for approval.
5. Install Anchor Bolts plumb.
6. For Conduit, Embedded Junction Boxes (EJB), Expansion/Deflection Fitting and adjacent Reinforcing Steel Details, see Utility Conduit Detail Sheets and Index 630-010
7. PAYMENT: The cost of Wire Screen, Anchor Bolts, Nuts, Washers and Anchor Plates shall be included in the Bid Price for Light Poles. The cost of all Labor, Concrete Miscellaneous Hardware required for the completion of the Electrical Syster Shall be included in the Bid Price for the Traffic Railing or Pedestrian/Bicycle
Railing the Pedestal is attached to.

ESTIMATED LIGHT POLE PEDESTAL QUANTITIES

ITEM		UNIT
Concrete Per Pedestal Thickness	CY/In.	0.040
Reinforcing Steel	LB	195 (182)

(The Reinforcing Steel quantity shown in parenthesis is for a Pedestal attached to Pedestrian/Bicycle Railing - Index 521-820 with Bridge Deck or Approach Slab thinner than $1^{\prime}-1 / 1^{\prime \prime \prime}$. Add 59 Lbs. for
Bars $4 / 1 \& 4 J 2$ when Pedestal Thickness is $1^{\prime}-5 /{ }^{\prime \prime \prime}$ or greater

CROSS REFERENCE:
DETAIL "A"
For location of Detail "A" see Sheets 1,2 and 3.
LAST
REVISION
11/

11/01/21
FDOET $\begin{gathered}\text { FY 2022-23 } \\ \text { STANDARD PLANS }\end{gathered}$

ELEVATION OF inside face OF railing
 (Reinforcing Steel not shown for clarity)

PEDESTRIAN/BICYCLE RAILING NOTES:
CONCRETE PARAPET: Concrete parapet shall be placed vertical and top surface shall be level transversely
RAIL AND POST DETAILS: For Rail, Post, Rail BRIDGE FENCING: For Bridge Fencing see Ind see 550-10x 515-022 thru 550-013 in lieu of Posts and Rails on Index 515-022.
PAYMENT: Concrete parapet shall be paid for under the contract unit price for 27" Concrete Parapet (Pedestrian/Bicycle), LF, $\underset{\substack{\text { and } \\ \text { LF. }}}{\text { Rails shall be paid for under Bullet Railings, }}$

See Structures Plans, Superstructure Sheets for actual dimensions and joint orientation. Open Parapet Joints at Deck Expansion Joint Iocations shall match the dimension of the Deck Joint. For treatment
of Railings on skewed bridges see Index 521-427. Deck Joint at Begin Bridge or End Bridge shown. Deck Joint at \& Pier or Intermediate
Bent similar.
Open Joints shall be provided at locations

ALTERNATE REINFORCING (WELDED WIRE REINF.) DETAILS
NOTE: Place wire panels to minimize the end
than $4^{3} / 4^{\prime \prime}$ are not permitted.

D19.7 (Horizontal) $\underbrace{(\text { Typ.) }}_{\text {D19.7 (Vertical) }}$
SPLICE DETAIL
(Between WWR Sections)
CONVENTIONAL REINFORCING

MARK	SIZE	LENGTH
P1	4	$5^{\prime}-6{ }^{\prime \prime}$
P2	4	$6^{\prime}-0^{\prime \prime}$
5	4	As Reqd.
BAR 4P1		4 P 2
As Reqd.		
BAR 4S		

reinforcing steel notes:

1. All bar dimensions in the bending diagrams are out to out.
2. The reinforcement for the parapet on a retaining wall shall

The reinforcement for the parapet on a retaining wall shall
be the same as detailed above for a $8^{\prime \prime}$ dec.
be the same as detailed above for a $8^{\prime \prime}$ deck
minimum cover.
. Bars 45 may be continuous or spliced at the construction
joints. Bar splices for Bars 45 shall be a minimum of $1^{\prime}-8^{\prime \prime}$.
Bars $4 P 2$ may be used in lieu of Bars 4P1.
5. Bars 4P2 may be used in lieu of Bars 4P1.
6. At the option of the contractor deformed WWR may be used in lieu of all Bars 4P or 4P2 and 4S.

DETAIL "A" - SECTION INTERMEDIATE OPEN JOINT

INTERMEDIATE JOINT SEAL NOTE:

1. At Intermediate Open Joints, seal the lower $\sigma^{\prime \prime}$ portion of the open joint with Pre-cured
silicone Sealant meeting the requirements Silicone Sealant meeting the requirements
2. Apply sealant prior to any class coating and remove all curing compound and loose material from the surface prior to application of bonding agent
shall be included in the Contract Unit Price for the Concrete Parapet.

ESTIMATED CONCRETE QUANTITIES				
ITEM	UNIT	QUANTITY		
Concrete CY/LF	0.056			
Reinforcing Steel (P1 \& S)	LB/FT	6.35		
Reinforcing Steel (P2 \& S)	LB/FT	6.68		(The above quantities are based on a deck with
:---				
a 2% cross slope)				

(The above quantities are based on a deck with
a 2% cross slope)

FENCING NOTES

FENCE INSTALLATION:
Install posts plumb (within a tolerance of $\pm 1 \frac{1}{2} 2^{\prime \prime}$). Use shim plates as required to achieve plumb. The required quantity and
thickness of shim plates will be determined in the field. Install chain link fence in accordance with ASTM F567 as applicable.
See Superstructure Sheets
CONCRETE PARAPET DETAILS:
See Index 521-820-Pedestrian/Bicycle Railing for Concrete Parapet details. Provide fencing in lieu of aluminum bullet railing as shown on Index
LIMITS OF FENCING:
Limits of fencing are from begin of approach slab at Begin Bridge to end of approach slab at End Bridge, unless otherwise
shown in the plans. shown in the plans.
PAYMENT.
PAYMENT:
Payment will be made under Fencing, Type R. Payment includes posts, horizontal and expansion rails, brace rails and bands,
rail ends, rand ends, combination rail ends, boulevard clamps, chain link fabric, tension wire, ties, hog rings, tension bars and bands, post
and loop caps, pipe clamps, base plates, anchor rods, bolts, nuts, washers, shim plates, spacers, bearing pads, miscellaneous and loop caps, pipe clamps, base plates, anchor rods, bolts, nuts, washers, shim plates, spacers, bearing pads, mis
fence fittings and hardware and all incidental materials and labor required to complete installation of the fence.

For Table of Fence Components, Table of Post Attachment Components, View A-A and Detail "A" see Sheet 2.
For Pull Post Assembly Detail for Traffic Railings see Sheet 3.
For Pull Post Assembly Detail for Concrete Parapets and Detail "B" see Sheet 4.

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	\|	$\begin{array}{cc} \text { FDO 2022-23 } \\ \text { STANDARD PLANS } \end{array}$	$\mathbb{B R I D G E ~ F E N C I N G}(\mathbb{N E R T I C A L}$)

table of chain link fence components			
	COMPONENT	$\begin{gathered} \hline \text { ASTM } \\ \text { DESIGNATION } \\ \hline \end{gathered}$	COMPONENT INFORMATION
	Posts	F1083	Galvanized Steel Pipe - 3" NPS, Schedule 40 Regular Grade
	Chain Link Fabric (2" mesh with twisted top and knuckled bottom selvage)	A392	Zinc Coated Steel - 9 gage (coated wire diameter), Class 2 Coating
		A491	Aluminum Coated Steel - 9 gage (coated wire diameter)
		F668	Polyvinyl Chloride (PVC) Coated Steel - 9 gage Class 2b
	Tie Wires	F626	Zinc Coated Steel Wire - 9 gage
	Brace Bands	F626	12 Gage (Min. thickness) × 3/4" (Min. width) Steel Bands (Beveled or Heavy)
	Tension Bars	F626	$3 / 16{ }^{\prime \prime}$ (Min. thickness) $\times 3 / 44^{\prime \prime}$ (Min. width) $\times 5^{\prime}-10^{\prime \prime}$ (Min. height) Steel Bars
	Tension Bands	F626	14 Gage (Min. thickness) $\times 3 / 4 / 4$ (Min. width) Steel Bands
	Miscellaneous Fence Components	F626	Zinc Coated Steel ~ (includes post or loop caps, horizontal and brace rail ends, combination rail ends, boulevard clamps and all other miscellaneous fittings \& hardware)
	Horizontal Rails	F1083	Galvanized Steel Pipe - $2^{1 / 2}{ }^{\prime \prime}$ NPS, Schedule 40 Regular Grade
	Expansion Rails	F1083	Galvanized Steel Pipe - 2" NPS, Schedule 40 Regular Grade
	Bolts	A307	1/4" $\varnothing \times 41 / 4$ Hex Head Bolts for Expansion Rail Connections
	Nuts	A563	Hex Nuts for Expansion Rail Connections
	Washers	F436	Flat Washers for Expansion Rail Connections
\%	Tension Wire	A824 \& A817	Type II (Zinc Coated Steel Wire)-7 gage, Class 4 Coating
			Type I (Aluminum Coated Steel Wire) - 7 gage
	Hog Rings	F626	Zinc Coated Steel Wire - 12 gage
	Brace Rails	F1083	Galvanized Steel Pipe - 11/4"NPS, Schedule 40 Regular Grade

table of post attachment components			
	COMPONENT	$\begin{gathered} \hline \text { ASTM } \\ \text { DESIGNATION } \\ \hline \end{gathered}$	COMPONENT INFORMATION
Pipe Clamps		A36 or A709 Grade 36	1/4" Steel R
Base Plates		A36 or $\text { A709 Grade } 36$	3/4" Steel P
Shim Plates		A36 or A709 Grade 36 or B209 Alloy $6061-T 6$ or B221 Alloy $6063-T 5$	Plate thicknesses as required; Holes in shim plates will be $3 / 4 / 4$
Spacers		-	Plate thickness varies based on traffic railing type (See Detail "A")
	Adhesive Anchor Rods	F1554 Grade 36	Fully threaded Headless Anchor Rods $\sim 5 / 8^{\prime \prime} \varnothing \times 6^{\prime \prime}$ (no spacer) or $5 / /^{\prime \prime} \varnothing \times\left(6^{\prime \prime}+\right.$ spacer thickness)
	C-I-P Anchor Rods	F1554 Grade 36	Hex Head Anchor Rods $\sim 5 / 8^{\prime \prime} \varnothing \times 6^{\prime \prime}$ (no spacer) or $5 / 8^{\prime \prime} \varnothing \times\left(6^{\prime \prime}+\right.$ spacer thickness)
	Adhesive Anchor Rods	F1554 Grade 36	Fully threaded Headless Anchor Rods ~ $7 / 8^{\prime \prime} \varnothing \times 141 / 2^{\prime \prime}$
	C-I-P Anchor Rods	F1554 Grade 36	Hex Head Anchor Rods ~ 7/s" $\varnothing \times 141 /{ }^{1 / \prime}$
Bolts		A307	$3 / 8^{\prime \prime} \varnothing \times 43 / 4$ Hex Head Bolts for Pipe Clamp Connections to Posts
Nuts		A563	Hex Nuts for Pipe Clamp and Base Plate Connections
Washers		F436	Flat Washers for Pipe Clamp and Base Plate Connections
Bearing Pads (Plain Neoprene)		-	In accordance with Specification Section 932 for Ancillary Structures

VIEW A-A

POST ATTACHMENT NOTES

ANCHOR RODS, NUTS AND WASHERS:
After the nuts have been tightened, distort the Anchor Rod threads to prevent removal of the nuts. Coat distorted threads and exposed trimmed ends of anchor with a g
COATINGS:
Hot-dip galvanize all Nuts, Washers, Bolts, C-I-P Anchor Rods, Adhesive Anchors and Fence Framework (Posts, Internal Sleeves, Shim Plates, Base Plates, Pipe Clamps and Spacers) in accordance with Specification Section 962. Hot-dip galvanize Fence Framework after fabrication
ADHESIVE-BONDED ANCHORS AND DOWELS:
Adhesive Bonding Material Systems for Anchors and Dowels will comply with Specification Section 937 and be installed in accordance with Specification Section 416. Cutting of reinforcing steel is permitted for drilled hole installation.
WELDING:
All welding will be in accordance with the American Welding Society Structural Welding Code (Steel) ANSI/AWS D1.1 (current edition). Weld metal will be E60XX or E70XX. Nondestructive testing of welds is not required.

CROSS REFERENCE:
For location of View A-A and Detail "A" see Sheet 1.

DETAIL "B"

bASE PLATE DETAIL

Bridge Deck (shown
or Raised Sidewalk
(See Note 4) $1^{1}-6$

EXPANSION ASSEMBLY DETAIL
Required only at expansion joint locations where total movement exceeds $6^{\prime \prime}$)

EXPANSION RAIL DETAIL

Post Spacing (See Note 1) Equal Spaces @ 10'-0"Max. (Posts may be shifted minimally to meet required clearances)

fENCING NOTES

fence applicatlon:
This bridge fence can only be used on sidewalk installations separated from traffic by a traffic railing
FENCE INSTALLATION:
Install posts plumb (within a tolerance of $\pm 1 / 2^{\prime \prime}$). Use shim plates as required to achieve plumb. The required quantity
and thickness of shim plates will be determined in the field. Install chain link fence in accordance with ASTM F567 as
applicable.
applicable.
CONCRETE PARAPET DETAILS:
See Index 521-820 - Pedestrian/Bicycle Bullet Railing for Concrete Parapet details. Provide fencing in lieu of aluminum bullet
railing as shown on Index 521-820.
LIMITS OF FENCING:
LIMITS OF FENCING:
Limits of fencing are from begin of approach slab at Begin Bridge to end of approach slab at End Bridge, unless otherwise Limits of fencing are
shown in the plans.
PAYMENT:
Payment will be made under Fencing, Type R. Payment includes posts, horizontal and expansion rails, brace bands, rail ends,
combination rail ends, boulevard clamps, chain link fabric, ties, tension bars and bands, post and loop caps, base plates, combination rail ends, boulevard clamps, chain link fabric, ties, tension bars and bands, post and loop caps, base plates,
anchor rods, bolts, nuts, washers, shim plates, neoprene pads, miscellaneous fence fittings and hardware and all inciden anchor rods, bolts, nuts, washers, shim, plates, neoprene pads, miscellaneous fence fittings and hardware and all incidental

CROSS REFERENCE:
For Table of Fence Components and Pull Post Assembly Detail see Sheet 2
For Table of Post Attachment Components and Detail "A" see Sheet 3

2 DESCRIPTION:

LAST
REVISION
11/01/17

回

PULL POST ASSEMBLY DETAIL
Bridge Deck (shown)
or Raised Sidewalk

See Note 4) $1^{1} 1^{\prime}-6^{\prime \prime}-\sqrt{2} r^{1^{\prime}-6^{\prime \prime}}-1$
$13^{3^{\prime}-0^{\prime \prime}}($ Min. $)+$ Expansion Joint Opening

$$
\underset{\text { Concrete Parapet }}{\longrightarrow}
$$

EXPANSION ASSEMBLY DETAIL

table of chain link fence components		
COMPONENT	$\begin{gathered} \text { ASTM } \\ \text { DESIGNATION } \\ \hline \end{gathered}$	COMPONENT INFORMATION
Posts	F1083	Galvanized Steel Pipe - 31/2" NPS, Schedule 40 Regular Grade
Horizontal Rails	F1083	Galvanized Steel Pipe - 3"'NPS, Schedule 40 Regular Grade
Expansion Rails	F1083	Galvanized Steel Pipe - $21 / 1 / 1$ NPS, Schedule 40 Regular Grade
Bolts	A307	1/4" $\varnothing \times 41 / 4$ Hex Head Bolts for Expansion Rail Connections
Nuts	A563	Hex Nuts for Expansion Rail Connections
Washers	F436	Flat Washers for Expansion Rail Connections
Chain Link Fabric ($2^{\prime \prime}$ mesh with twisted top and knuckled bottom selvage)	A392	Zinc Coated Steel - 9 gage (coated wire diameter), Class 2 Coating
	A491	Aluminum Coated Steel - 9 gage (coated wire diameter)
	F668	Polyvinyl Chloride (PVC) Coated Steel - 9 gage Zinc Coated Wire, Class 2b
Tie Wires	F626	Zinc Coated Steel Wire - 9 gage
Brace Bands	F626	12 Gage (Min. thickness) \times 3/4" (Min. width) Steel Bands (Beveled or Heavy)
Tension Bars	F626	3/16" (Min. thickness) x 3/4" (Min. width) x Variable Height Steel Bars ~ Height $=$ Post Length along inside Post $-2^{\prime \prime}$ Max.
Tension Bands	F626	14 Gage (Min. thickness) $\times 3 / 4$ (width) Steel Bands
Miscellaneous Fence Components	F626	Zinc Coated Steel ~ (includes post or loop caps, horizontal and brace rail ends, combination rail ends, boulevard clamps and all other miscellaneous fittings and hardware)

(Required only at expansion joint location
where total movement exceeds $6^{\prime \prime}$)

EXPANSION RAIL DETAIL

LEGEND: NPS = Nominal Pipe Size

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$			BRIDGE FENCING (CURVED TOP)	INDEX 550-011	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 3 \end{aligned}$

TABLE OF POST ATTACHMENT COMPONENTS		
COMPONENT	$\begin{gathered} \text { ASTM } \\ \text { DESIGNATION } \\ \hline \end{gathered}$	COMPONENT INFORMATION
Base Plates	$\begin{gathered} \text { A36 or } \\ \text { A709 Grade } 36 \\ \hline \end{gathered}$	3/4" Steel R
Shim Plates	A36 or A709 Grade 36 or B209 Alloy $6061-T 6$ or B221 Alloy $6063-T 5$	Plate thicknesses as required, Holes in shim plates will be 3/4" \varnothing
Adhesive Anchor Rods	F1554 Grade 36	Fully threaded Headless Anchor Rods $\sim 7 / 3^{\prime \prime} \varnothing \times 14 / 2^{\prime \prime}$
C-I-P Anchor Rods	F1554 Grade 36	Hex Head Anchor Rods $\sim 7 / /^{\prime \prime} \varnothing \times 141 / 2^{\prime \prime}$
Nuts	A563	Hex Nuts for Base Plate Connections
Washers	F436	Flat Washers for Base Plate Connections
Bearing Pads (Plain)	-	In accordance with Specification Section 932 for ancillary structures

POST ATTACHMENT NOTES

After the nuts have been tightened, distort the Anchor Rod threads to prevent removal of the nuts. Coat distorted threads and exposed trimmed ends of anchors with a galvanizing compound in accordance with Specification Section 562.
Hot-dip galvanize all Nuts, Washers, Bolts, C-I-P Anchor Rods, Adhesive Anchors and Fence Framework (Posts, Internal Sleeves, Shim Plates and Base Plates) in accordance with Specification Section 962. Hot-dip galvanize Fence Framework after fabrication
ADHESIVE-BONDED ANCHORS AND DOWELS:
Adhesive Bonding Material Systems for Anchors and Dowels will comply with Specification Section 937 and be installed in accordance with Specification Section 416. Cutting of reinforcing steel is permitted for drilled hole installation
All welding will be in accordance with the American Welding Society Structural Welding Code (Steel) ANSI/AWS D1.1 (current edition) Weld metal will be E60XX or E70XX. Nondestructive testing of welds is not required.

DETAIL "A"

BASE PLATE DETAIL

CROSS REFERENCE
For location of Detail "A" see Sheet 1 .

FENCE INSTALLATION:
Install posts plumb (within a tolerance of $\pm 1^{1 / 211)}$. Use shim plates as required to achieve plumb. The required quantity
and thickness of shim plates will be determined in the field. Install chain link fence in accordance with ASTM F567 as
and thickness of shim plates will be determined in the field. Install chain link fence in accordance with ASTM F567 as
applicable.
applicable.
TRAFFIC RAILING DETAILS:
See Superstructure Sheets for Traffic Railing details.
CONCRETE PARAPET DETAILS:
See Index 521-820 - Pedestrian/Bicycle Railing for Concrete Parapet details. Provide fencing in lieu of aluminum bullet railing as shown on
LIMITS OF FENCING:
Limits of fencing are from begin of approach slab at Begin Bridge to end of approach slab at End Bridge, unless otherwise
shown in the plans.

Shown in the plans.
PAYMENT:

PMENT:
combinatill be made under Fencing. Type R. Payment includes posts, horizontal and expansion rails, brace bands, rail ends, combination rail ends, boulevard clamps, chain link fabric, tension wire, ties, hog rings, tension bars and bands, pipe clamps, base plates, anchor rods, bolts, nuts, washers, shim plates, spacers, neoprene pads, miscellane
hardware and all incidental materials and labor required to complete installation of the fence.

For Table of Fence Components and Table of Post Attachment Components see Sheet 2. For Pull Post Assembly Detail, View A-A and Detail "A" see Sheet 3.
For Detail "B" and "E" see Sheet 4.

LAST
REVISION
$11 / 01 / 17$

REVISION
FDOT\} $\begin{gathered}\text { FY 2022-23 } \\ \text { STANDARD PLANS }\end{gathered}$

table of Chain link fence components		
COMPONENT	$\begin{array}{c\|} \hline \text { ASTM } \\ \text { DESIGNATION } \\ \hline \end{array}$	COMPONENT INFORMATION
Posts	F1083	Galvanized Steel Pipe - $3^{\prime \prime}$ NPS, Schedule 40 Regular Grade
Horizontal Rails and Internal Sleeves	F1083	Galvanized Steel Pipe - 21/2" NPS, Schedule 40 Regular Grade
Expansion Rails	F1083	Galvanized Steel Pipe - 2" NPS, Schedule 40 Regular Grade
Chain Link Fabric (2" mesh with knuckled bottom selvages)	A392	Zinc Coated Steel - 9 gage (coated wire diameter), Class 2 Coating
	A491	Aluminum Coated Steel - 9 gage (coated wire diameter)
	F668	Polyvinyl Chloride (PVC) Coated Steel - 9 gage Class 2b Zinc Coated wire
Tension Wire	A824 \& A817	Type II (Zinc Coated Steel Wire)-7 gage, Class 4 Coating
		Type I (Aluminum Coated Steel Wire) - 7 gage
Tie Wires	F626	Zinc Coated Steel Wire - 9 gage
Hog Rings	F626	Zinc Coated Steel Wire - 12 gage
Brace Bands	F626	12 gage (Min. thickness) $\times 3 / 4{ }^{\prime \prime}$ (Min. width) Steel Bands (Beveled or Heavy)
Tension Bars	F626	3/6" (Min. thickness) x 3/4" (Min. width) x Variable Height Steel Bars ~ Height $=$ Tangent or Hoop Length - Barrier or Parapet Height - 2" max.
Tension Bands	F626	14 gage (Min, thickness) x $3 / 4 \prime \prime$ (Min. width) Steel Bands
Miscellaneous Fence Components	F626	Zinc Coated Steel ~ (includes horizontal rail ends, combination rail ends, boulevard clamps and all other miscellaneous fittings and hardware)
Bolts	A307	$3 /{ }^{\prime \prime} \emptyset \times 4 \frac{1 / 4 "}{}$ Hex Head Bolts for Internal Sleeve connections $\frac{1 / 4 "}{}$ Ø $\times 4 \frac{1}{4} /{ }^{\prime \prime}$ Hex Head Bolts for Expansion Rail connections
Nuts	A563	Hex Nuts for Internal Sleeve and Expansion Rail connections
Washers	F436	Flat Washers for Internal Sleeve and Expansion Rail connections

TABLE OF POST ATTACHMENT COMPONENTS			
	COMPONENT	$\begin{gathered} \hline \text { ASTM } \\ \text { DESIGNATION } \\ \hline \end{gathered}$	COMPONENT INFORMATION
Pipe Clamps		A36 or A709 Grade 36	1/4" Steel R
Base Plates		A36 or A709 Grade 36	3/4" Steel R
Shim Plates		A36 or A709 Grade 36 or B209 Alloy 6061-T6 or B221 Alloy 6063-T5	Plate thicknesses as required; Holes in shim plates will be $3 / 4 / 4$
Spacers		-	Plate thickness varies based on Traffic Railing type. (See Detail "A")
	Adhesive Anchor Rods	F1554 Grade 36	Fully threaded Headless Anchor Rods $\sim 5 / 8^{\prime \prime} \varnothing \times 6 "$ (no spacer) or $5 / /^{\prime \prime} \varnothing \times\left(6^{\prime \prime}+\right.$ spacer thickness)
	C-I-P Anchor Rods	F1554 Grade 36	Hex Head Anchor Rods $\sim 5 / /^{\prime \prime} \varnothing \times 6^{\prime \prime}$ (no spacer) or $5 / 8^{\prime \prime} \varnothing \times\left(6^{\prime \prime}+\right.$ spacer thickness)
	Adhesive Anchor Rods	F1554 Grade 36	Fully threaded Headless Anchor Rods ~ $7 / 8^{\prime \prime} \varnothing \times 141 / 2^{\prime \prime}$
	C-I-P Anchor Rods	F1554 Grade 36	Hex Head Anchor Rods $\sim 7 / s^{\prime \prime} \varnothing \times 141 / 2^{\prime \prime}$
Bolts		A307	$3 / /^{\prime \prime} \varnothing \times 43 / 4$ Hex Head Bolts for Pipe Clamp Connections to Posts
Nuts		A563	Hex Nuts for Pipe Clamp and Base Plate Connections
Washers		F436	Flat Washers for Pipe Clamp and Base Plate Connections
Bearing Pads (Plain)		-	In accordance with Specification Section 932 for Ancillary Structures

EXPANSION RAIL DETAIL

1. Expansion Rails are required at expansion joint locations where the total movement exceeds $1^{\prime \prime}$, Install expansion rails midway between the fence posts spanning the expansion joint. 2. An Expansion Assembly is required where the total joint movement exceeds $6^{\prime \prime}$. Expansion
Assembly includes Expansion Rails and two pull posts (see Sheet 3). When the Expansion Join Opening is greater than $9^{\prime \prime}$ add an additional length to the free end of the Expansion Rail equal to the difference between the Expansion Joint Opening and $9^{\prime \prime}$.
2. Install nut for the expansion rail finger-tight. The nut will fully engage bolts with a minimum of one bolt thread extending beyond the nuts. Distort the first thread on the outside of the nut to prevent loosening.

POST ATTACHMENT NOTES

ANCHOR RODS, NUTS AND WASHERS:
After the nuts have been tightened, distort the Anchor Rod threads to prevent removal of the nuts. Coat distorted threads and exposed trimmed ends of anchor with a galvanizing compound in accordance with Specification Section 56.

Hot-dip galvanize all Nuts, Washers, Bolts, C-I-P Anchor Rods, Adhesive Anchors and Fence Framework (Posts, Internal Sleeves, Shim Plates, Base Plates, Pipe Clamps and Spacers) in accordance with Specification Section 962. Hot-dip galvanize Fence Framework after fabricatio
ADHESIVE-BONDED ANCHORS AND DOWELS:
Adhesive Bonding Material Systems for Anchors and Dowels will comply with specification Section 937 and be installed in accordance with Specification Section 416. Cutting of reinforcing steel is permitted for drilled hole installation.
WELDING: All welding will be in accordance with the American Welding Society Structural
Welding Code (Steel) ANSI/AWS D1.1 (current edition). Weld metal will be E60XX or E70XX. Nondestructive testing of welds is not required
$3^{\prime}-0^{\prime \prime}$ (Min.) + Expansion Joint Opening
q Line Post

PULL POST ASSEMBLY DETAIL

(Traffic Railing Barrier Shown, Concrete Parapet Similar)

VIEW A-A

PIPE CLAMP CONNECTION DETAIL (Connection without spacer shown, Connection with spacer similar)

Bridge Deck
$\xrightarrow[\text { (See Note 4) } 1^{1} 1^{\prime}-6^{\prime \prime}]{l}+I^{1^{\prime}-6^{\prime \prime}}$
Expansion Joint opening ASSEMBLY DETAIL
EXPANSION
Required only at expansion joint locations Traffic Railing where total movement exceeds $6^{\prime \prime}$)

CROSS REFERENCE:
For location of View A-A and Detail "A" see Sheet 1

| LAST |
| :---: | :--- | :--- |
| REVISION |
| $11 / 01 / 17$ |$|$| 気 |
| :--- |
| DESCRIPTION: |

FDOT\} $\begin{gathered}\text { FY 2022-23 } \\ \text { STANDARD PLANS }\end{gathered}$
 PLANS

PIPE CLAMP DETAIL
$11 / 2$ Q Spacer
(See Note 3)

POST A DETAIL

POST B DETAIL
POST C DETAIL

SPACER DETAIL
Must be manufactured from an incompressible material (i.e. steel or aluminum))

base plate detail

DETAIL "B"

DETAIL "D"

NOTES:

1. Values shown for Dim. H are for a $5^{\prime}-0^{\prime \prime}$ clear sidewalk width.
2. Adjust as required for clear sidewalk widths greater than $5^{\prime}-0^{\prime \prime}$.
3. For clear sidewalk widths greater than $5^{\prime}-0^{\prime \prime}$ increase radius
and height by $6^{\prime \prime}$ for every one foot increase in sidewalk widt
4. Spacer plate thickness shown is for Single-Slope Traffic

Railings. Adjust thickness as required for other Traffic Railings.

DETAIL "E" (INTERNAL SLEEVE DETAIL)

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	号DESCRIPTION:

FDOT	FY 2022-23
STANDARD PLANS	

index	sheet
$550-012$	4 of 4

* Do not anchor Fencing to the top of Traffic Railings.

FENCING NOTES

Install posts plumb (within a tolerance of $\pm 1 \frac{1}{2}$). Use shim plates as required to achieve plumb. The required quantity and
thickness of shim plates will be determined in the field. Install chain link fence in accordance with ASTM F567 as applicable RAFFIC RAILING DETAILS:
See Superstructure Sheets for Traffic Railing details.
Limits of fencing are from begin of approach slab at Begin Bridge to end of approach slab at End Bridge, unless otherwis
shown in the plans.
Paymen
CROSS REFERENCE:
For Table of Fence Components, Table of Post Attachment Components, View A-A and Detail "A For Pull Post Assembly Detail for Traffic Railing see Sheet 3.

FDOT	FY 2022-23 STANDARD PLANS	$\mathbb{B} I(1) \mathbb{F E} \mathbb{N} C I \mathbb{N G}(O V E R \mathrm{RAIL}$ (OAD)	INDEX 550-013	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 3 \end{aligned}$

table of Chain link fence components		
COMPONENT	$\begin{gathered} \hline \text { ASTM } \\ \text { DESIGNATION } \\ \hline \end{gathered}$	COMPONENT INFORMATION
Posts	F1083	Galvanized Steel Pipe - 31/2" NPS, Schedule 40 Regular Grade
Chain Link Fabric (2" mesh with twisted top and knuckled bottom selvage)	A392	Zinc Coated Steel - 9 gage (coated wire diameter), Class 2 Coating
	A491	Aluminum Coated Steel - 9 gage (coated wire diameter)
	F668	Polyvinyl Chloride (PVC) Coated Steel - 9 gage Class 26
Tie Wires	F626	Zinc Coated Steel Wire - 9 gage
Brace Bands	F626	12 Gage (Min. thickness) × 3/4" (Min. width) Steel Bands (Beveled or Heavy)
Tension Bars	F626	$3 / 16^{\prime \prime}$ (Min. thickness) $\times 3 / 44^{\prime \prime}$ (Min. width) $\times 6^{\prime}-10^{\prime \prime}$ (Min. height) Steel Bars
Tension Bands	F626	14 Gage (Min. thickness) $\times 3 / 4 /$ (Min. width) Steel Bands
Miscellaneous Fence Components	F626	Zinc Coated Steel ~ (includes post or loop caps, horizontal and brace rail ends, combination rail ends, boulevard clamps and all other miscellaneous fittings \& hardware)
Tension Wire	A824 \& A817	Type II (Zinc Coated Steel Wire)-7 gage, Class 4 Coating
		Type I (Aluminum Coated Steel Wire) - 7 gage
Hog Rings	F626	Zinc Coated Steel Wire - 12 gage
Brace Rails	F1083	Galvanized Steel Pipe - 11/4"NPS, Schedule 40 Regular Grade

TABLE OF POST ATTACHMENT COMPONENTS		
COMPONENT	$\begin{gathered} \text { ASTM } \\ \text { DESIGNATION } \end{gathered}$	COMPONENT INFORMATION
Pipe Clamps	A36 or $\text { A709 Grade } 36$	1/4'Steel R
Base Plates	A36 or A709 Grade 36	3/4"Steel R
Shim Plates	A36 or A709 Grade 36 or B209 Alloy 6061-T6 or B221 Alloy 6063-T5	Plate thicknesses as required; Holes in shim plates will be 3/4" \varnothing
Spacers	-	Plate thickness varies based on traffic railing type (See Detail "A")
	F1554 Grade 36	Fully threaded Headless Anchor Rods $\sim 5 / 8^{\prime \prime} \varnothing \times 6^{\prime \prime}$ (no spacer) or $5 / /^{\prime \prime} \varnothing \times\left(6^{\prime \prime}+\right.$ spacer thickness)
	F1554 Grade 36	Hex Head Anchor Rods $\sim 5 /$ /' $^{\prime \prime} \varnothing \times 6^{\prime \prime}$ (no spacer) or $5 / /^{\prime \prime} \varnothing \times\left(6^{\prime \prime}+\right.$ spacer thickness)
Bolts	A307	$3 / 2^{\prime \prime} \varnothing \times 43 / 4 / 1$ Hex Head Bolts for Pipe Clamp Connections to Posts
Nuts	A563	Hex Nuts for Pipe Clamp Connections
Washers	F436	Flat Washers for Pipe Clamp Connections
Bearing Pads (Plain Neoprene)	-	In accordance with Specification Section 932 for Ancillary Structures

POST ATTACHMENT NOTES

ANCHOR RODS, NUTS AND WASHERS:
After the nuts have been tightened, distort the Anchor Rod threads to prevent removal of the nuts. Coat distorted threads and exposed trimmed ends of anchor with a galvanizing compound in accordance with Specification Section 562.

Hot-dip galvanize all Nuts, Washers, Bolts, C-I-P Anchor Rods, Adhesive Anchors and Fence Framework (Posts, Internal Sleeves, Shim Plates, Base Plates, Pipe
Clamps and Spacers) in accordance with Specification Section 962. Hot-dip galvanize Fence Framework after fabrication
ADHESIVE-BONDED ANCHORS AND DOWELS:
Adhesive Bonding Material Systems for Anchors and Dowers win comply with
Specification Section 937 and be installed in accordance with Specification
Section 416. Cutting of reinforcing steel is permitted for drilled hole
installation.
WELDING:
All welding will be in accordance with the American Welding Society Structural elding Code (Steel) ANSI/AWS D1.1 (current edition). Weld metal will be E60XX er E70XX. Nondestructive testing of welds is not required

CROSS REFERENCE:
For location of View A-A and Detail "A" see Sheet 1

