GENERAL NOTES:

1. Install conduit in accordance with Specification 630
2. When installing conduit under sidewalk by open trench, replace the entire sidewalk slab.
3. Trench not to be open more than 250^{\prime} at a time when construction Trench not to be open more than 250 at a time w
4. Sawcut asphalt at the edges of the trench to leave neat lines.

PLAN

CURB AND GUTTER

PLAN

FLUSH SHOULDER

$\bar{\square}$ PLACEMENT UNDER SIDEWALK $\bar{\square}$
\qquad

VERTICAL CLEARANCE NOTE:
Waintain 1-0 minimum vertical clearance when crossing over pipe and or utilities.
If minimum vertical clearance cannot be maintained, conduit is to be routed under ipe maintaining $1^{1}-0^{\prime \prime}$ minimum vertical clearance.

PLACEMENT NOT EXPOSED TO VEHICULAR TRAFFIC

PLACEMENT UNDER NEW ROADWAY

NOTES:

1. Pavement Removal: The removal and replacement of the additiona pavement width (i.e., $\sigma^{\prime \prime}$ Width either side of trench) will not be required when the trench can be constructed without disturbing the asphalt surface on either sid.
2. Placement Under Existing Pavement: Place conduit prior to installation of base and pavement, unless otherwise shown in the Plans or approved by the Engineer.

placement under existing pavement not adjacent to gutter ADJACENT TO GUTTER

below existing

Above existing - depth 2'-6" or greater

above existing - DEPTH $2^{\prime}-6^{\prime \prime}$ OR LESS

- PLACEMENT ACROSS EXISTING DRAINAGE PIPES OR UTILITIES=

PLAN

\qquad

NOTES

1. Where conduits are to be installed over existing underground structures (e.g, drainage pipes or utility lines) which are less than $2^{\prime}-\sigma^{\prime \prime}$ deep, encase the conduit in Class NS concrete for the entire length of less than $2^{\prime}-6^{\prime \prime}$.
2. Place $3^{\prime \prime}$ Warning Tape when new conduit in installed at a depth of 1 '-6" or greater,
and the new conduit is not encased in concrete

New Conduit $\underbrace{-\frac{j}{2}}$
$3^{3 \prime}$ Warn

Orange Insulated Locate
Wire (When Required)和
\qquad
\qquad Z DESCRIPTION:

CAble drop and termination with figure 8 CABLE=

CABLE DROP AND TERMINATION WITH MESSENGER WIRE AND COMPRESSION CLAMP

$\bar{\Longrightarrow}$ CABLE DROP AND TERMINATION WITH MESSENGER WIRE AND SUSPENSION CLAMP $=$

elevation
PULL BOX

\qquad

NOTES:

1. Provide fiber optic splice boxes with cable hanger racks designed to support cables and splice enclosures.
2. Install a 1'-0" wide (Min.) concrete apron around all boxes using Class NS concrete. Slope the apron away from the box
3. Where multiple pull boxes are placed side by side, maintain at least $8^{\prime \prime}$ between the pull boxes.
4. Rectangular boxes shown, others similar.

GENERAL NOTES:

1. It shall be the contractors responsibility to provide a complete service assembly
.The service installation shall meet the requirements of the national electric code
and applicable local codes.
2. Shop drawings are not required for service equipment, unless noted in the plans.

A Pull Box is required at each service point, see Index 635-001

DETAIL A
AERIAL FEED

DETAIL B UNDERGROUND FEED

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$

FDE气َ $\} \begin{gathered}\text { FY 2020-21 } \\ \text { STANDARD PLANS }\end{gathered}$

general notes

1. Work these Index drawings with the Strain Pole Schedule in the Plans.
mit
2. Materials:

abrication:
A. Pole Taper for pole width, strands, reinforcing and void: $0.081 \mathrm{in} / \mathrm{ft}$ per face.
B. Concrete Cover: 1 " 1 minimum
C. Spiral Reinforcing: As shown, plus one turn for splices and two turns at both the tip and butt ends
D. The design dimensions for Front Face (FF) and Back Face (BF) of the poles may vary transversely
from the section shown by \pm 罍 4 to assist with removal from forms. Balance addition and subtraction
from the section sown th maintain section areas shown.
of the eace widths to main
Tie ground wires to the interior of reinforcing steel to prevent displacement during concreting operations.
. Cut the tip end of the prestressed strand first or simul Altach cover plates to the poles using lead
anchors or empedded threaded inserts.
a. Financial Project ID.

Financial Project ID.
Pole Manufacturer
Standard Pole Type Number
5. Support docations are for for strand release, storage, lifting and transport. Keep BF oriented downward until final erectio
Pick-up and
Pick-up and support locations shown may vary within a tolerance of ± 3
Two point attachment: provide an eye bolt hole for the messenger wire
Two point attachment: provide an eye bolt hole for the messenger wire.
Tether wire: When required, field-drill the eyebolt hole prior to instaliation

(Strands Not Shown)

PEDESTAL POLE P-IIC (12 Ft.) ELEVATION
(Strands Not Shown)

NOTES:
Strands shown are continuous from Tip End to Butt End.
Elevation view scale is exaggerated vertically for clarity.
For final erection, tilt pole upright with single point attachment located a
distance of 4 Ft. (for P-IIA \& P-IIC) or 10 Ft. (for P-IIB) from the Tip End.

* Dimension may vary from $2^{1 / 1 / 4}$ to $3 / 2 / 2$ to accommodate smaller radius of optional stepped (PVC) void. The void diameter shall not be less than 2

STRAND LEGEND

- Prestressed Strand:
0.5 in. ~ 31 kips Bef 0.5 in. - 31 kips Before
Transfer (4 strands total)

SETION A.A pical Square Section

NOTES:
Strands shown are continuous from Tip End to Butt End. Elevation view scale is exaggerated vertically for clarity, For final erection, tilt pole upright with single point attachment
located a distance 33.3% L from Tip End. lor

Dimension may vary from $21 / 2$ " to $33 / 4$ " to accommodate smaller radius of optional stepped (P)
diameter shall not be less than $2 / 2$."

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	\|rest	$\begin{gathered} \text { FDO 2020-21 } \\ \text { STANDARD PLANS } \end{gathered}$	CONCRETE POLES	$\begin{gathered} \text { INDEX } \\ 641-010 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 8 \end{aligned}$

TIP END SECTION (TOP) (For Dormant Strand Locations See Section A-A)

STRAND LEGEND

- Prestressed Strand 0.5 in. -31 kips Before
Transfer $(6$ strands total)
- - Dormant Strand
0.5 in. (3 strands total)
one 24^{4}

Per Strand

NOTES
Strands shown are continuous from Tip End to Butt End. Elevation view scale is exaggerated vertically for clarity For final erection, tilt pole upright with single point attachment
located a distance 20% L from the Tip End.

Dimension may vary from $3^{\prime \prime}$ to 41/" to accommodate
smaller radius of optional stepped (PyC) void. The smaller radius of optional stepped (PVC) void. The void diameter shall not be less than $2 / 2 / 2$ ".

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		$\begin{array}{cc} \text { FDOT } \\ \text { 2020-21 } \\ \text { STANDARD PLANS } \end{array}$	CONCRETE POLES	$\begin{gathered} \text { INDEX } \\ 641-010 \end{gathered}$	SHEET 5 of 8

- Prestressed Strand 0.5 in. ~ 31 kips Before
Transfer (8 strands total)
- - Dormant Strand - Dormant Strand
o.5 in. 4 strands total)
One 244 Splice Allowed One 24" Splice Allowed
Per Strand

SECTION A-A
(Typical Square Section

NOTES:
Strands shown are continuous from Tip End to Butt End.
Elevation view scale is exaggerated vertically for clarity.
For final erection, tilt pole upright with single point attachment
located a distance $10 \% L$ from Tip End
Dimension may vary from $3^{3 "}$ to 4/1/" to accommodate
smaller radius of optional stepped (PVC) void. The void smamer radius of optional stepped shall not be less than $6 /{ }^{\prime \prime}$."
 For Dormant Strand Locations, See Section A-A)

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		$\begin{array}{cc} \text { FDOT } \\ \text { 2020-21 } \\ \text { STANDARD PLANS } \end{array}$	CONCRETE POLES	$\begin{gathered} \text { INDEX } \\ 641-010 \end{gathered}$	SHEET 6 of 8

spiral reinforcing elevation

StRAND LEGEND

- - Prestressed Strand 0.5 in. - 31 Kips Before
Transfer (10 strands tota)
- - Dormant Strand
- Dormant Strand
0.5 in. (6 strands total)
One 241 Splice Allowed

One Strands

TIP END SECTION (TOP) (For Dormant Strand Locations, See Section A-A)

Strands and Reinforcing Not Shown)

notes.
Strands shown are continuous from Tip End to Butt End.
Elevation view scale is exaggerated vertically for clarity
For final erection, tilt pole upright with single point attachment
located a distance 10% L from the Tip End.
Dimension may vary from $33^{\prime \prime}$ " to $5^{\prime \prime}$ to accommodate maller radius of optional stepped (PVC) void. The void diameter shall not be less than 6 /2".

PIRAL REINFORCING ELEVATION

(Strands and Reinforcing Not Shown)
1/1/2" Min (Typ.)

TIP END SECTION (TOP) (For Dormant Strand Locations, See Section A-A)

OTES
Strands shown are continuous from Tip End to Butt End
Elevation view scale is exaggerated vertically for clarit,
For final erection, tilt pole upright with single point attachment ocated a distance 10% L from the Tip End:

- Dimension may vary from $3^{33 / "}$ to 5^{n} to accommodate diameter shall not be less than $6 / 2 / 2$ ".

gENERAL NOTES

2. This Index is considered fully detailed and no shop drawings are necessary. Submit Shop
3. Install pole plumb.
4. Provide either round or 12 -sided Poles
5. See Index 635-001 for additional details for Pull Boxes.
6. Materials:
A. Pole: Use Class VI concrete with 6 ksi minimum strength at transfer
B. Prestressing Strands:A ALM A4 Grade 60
C. Reinforcing Steel: ASTM A615, Grade 60
D. Spiral Reinforcing: ASTM A1064 Cold-Drawn
E. Botts: ASTM F1554, Grade 55
Nuts ASTM A563, Grade A Heavy Hex
Washers: ASTM F436
F. Washers: ASTM F436 (Slates and Pole Cap: ASTM A36 or ASTM A709, Grade
F. Steel plates and pole Cap: ASTM A36 or ASTM A709, Grade 50
G. Galvanization: Bolts, nuts and washers: ASTM F2329

All other steel: ASTM Ai23
7. Pole Fabrication:
A. Cut the tip end of the prestressed strand first or simultaneously with the butt end
B. For spiral reinforcing, one turn is required for spiral splices and two turns are required
B. For spiral reinforcing, one turn is required for spiral splices and two turns are require

E. Provide a a 11 minimum cover. $_{\text {F. Provide handhole and coupler }}$.

Provide handhole and coupler cover plates made of non-corrosive materials. Attach cover
plates to poles using lead anchors or threaded inserts embedded in the poles in conjunction
with round headed chrome plated screws.
 lity Control Program
Financial Project ID
Pole Manufacturer Pole Manuta
Pole Length
H. Tie ground wires to the interior of reinforcing steel as necessary to prevent displacement
during concreting operations.
I. Storage, Handling and Erection locations shown may vary within $\pm 3^{\prime \prime}$.
8. Cabinet Installation
A. Splice fiber optic cables in cabinet to preterminater patch panel.
C. Furnish and install secondary SPDS protection on outlets for equipment in
D. Ensure that alt electronic equipment power is protected and condipment in cabinet
E. Ensure that equipment cabinet is bonded to ccTV pole ground ing system.
E. Install the pole mounted cabinet with the hinges next to
F. Instal the pole mounted cabinet with the ninges next to the pole
Gizes and types of conduits and innerducts for network communications between the pullbox
and cabinet are stated in the Contract Documents.
9. Lowering Device Installation:
A. Place the lowering cable that moves within the pole in an interior conduit to prevent it from
tangling or interfering with any electrical wire that is in the pole. Ensure that any electrical wire within the pole is routed securly and free from slack. pole. Ensure that any electrica
B. Mount lowering arm perpendicular to the roadway or as shown in the plans. Position CCTV
B. Mount lowering arm perpendicular to to the roadway or as shown in the plans. Position CCTV

Cole so that the camera can be safely lowered without requiring lane closures.
c. Coordinate all lowering device hardvare requirements (including Tenon, Tenon mounting plates,
parking stand, etc.). with lowering device manufacturer.

NOTES:

1. Diameter of 12 -sided poles are measured flat to flat.
2. Total Taper applies to pole, strands and reinforcing.
3. For 12 -Sided Pole and Round Roles Option 2, Stress prestressed strand to 70% of Ultimate before transfer. For Round Pole Option 1, stress prestressed strand to 60% of Ultimate before transfer.

Air Terminal (See Sheet 5)

$\bar{Z} A S S E M B L Y=$
4. Pole Design Tables, Burial Depth is based on level ground (flatter than 1:5). Increase the burial depth in accordance with the Additional Burial Depth Due To Ground Slope tabl for foundations with slopes $1: 5$ and steeper. Use the higher value for slope or diameter

ADDITIONAL BURIAL DEPTH	
DUE TO GROUND SLOPE	
Ground	Additional Burial Depth (feet)
Slope	3
$1: 5$	4
$1: 4$	7
$1: 3$	7
$1: 2$	

12-SIDED POLE DESIGN TABLE (See Note 1)										
$\left\lvert\, \begin{gathered} \text { Pole } \\ \text { Length } \\ (\mathrm{ft}) \end{gathered}\right.$	Pole Heigh (ft)	$\begin{gathered} \text { Burial } \\ \text { Depth } \\ (f t) \end{gathered}$	Total Taper (inft) See Note 2)	$\begin{aligned} & \text { Void } \\ & \text { Taper } \\ & \text { (in/ft) } \end{aligned}$	Min. Wall Thicknes Tip	Min. Wall Thickness Butt (in)	$\begin{gathered} \text { Tip } \\ \text { Diameter } \\ \text { (in) } \end{gathered}$	$\begin{gathered} \text { Butt } \\ \text { Diameter } \\ \text { (in) } \end{gathered}$	Strand Pattern	Strand Diameter
63	50	13	0.18	0.18	3	3	12	23.34	1	$0.6{ }^{\prime \prime}$
69	55	14	0.18	0.18	3	3	12	24.42	1	$0.6{ }^{\prime \prime}$
75	60	15	0.18	0.18	3	3	12	25.50	2	$0.6{ }^{\text {" }}$
80	65	15	0.18	0.18	3	3	12	26.40	2	0.6" ${ }^{\text {" }}$
86	70	16	0.18	0.18	3	3	12	27.48	2	$0.6{ }^{\prime \prime}$

ROUND POLE DESIGN TABLE											
$\left\lvert\, \begin{gathered} \text { Pole } \\ \text { Length } \\ \text { (ft) } \end{gathered}\right.$	$\begin{gathered} \text { Pole } \\ \text { Height } \\ (f t) \end{gathered}$	$\begin{gathered} \text { Burial } \\ \text { Depth } \\ (f t) \end{gathered}$	$\begin{aligned} & \text { Design } \\ & \text { Option } \end{aligned}$	Total Taper (in/ft) (See Note 2)	$\begin{aligned} & \text { Void } \\ & \text { Tapar } \end{aligned}$ $(i n / f t)$	$\begin{array}{\|c\|} \hline \text { Min. Wall } \\ \text { Thickness } \\ \text { Tip } \\ \text { (in) } \\ \hline \end{array}$	$\begin{aligned} & \text { Min. Wall } \\ & \text { Thickness } \\ & \text { Butt } \\ & \text { (in) } \end{aligned}$	$\begin{gathered} \text { Tip } \\ \text { Diameter } \\ \text { (in) } \end{gathered}$	$\begin{gathered} \text { Butt } \\ \text { Diameter } \\ \text { (in) } \end{gathered}$	Strand Pattern	$\begin{gathered} \text { Strand } \\ \text { Diameter } \end{gathered}$
63	50	13	Option 1	0.216 0.180	0.192 0.172	3	3.76 3.50	12.15 12.00	25.76 23.34	3	$\frac{0.5 \text { " }}{0.5}$
			Option 1	0.216	0.192	3	3.83	12.15	27.05	3	$0.5{ }^{\text {a }}$
69	55	14	Option 2	0.180	0.173	3	3.50	12.00	24.42	4	$0.5{ }^{\prime \prime}$
75	60	15	Option 1	0.216	0.192	3	3.90	12.15	28.35	3	$0.5{ }^{\prime \prime}$
75	60	15	Option 2	0.180	0.173	3	3.50	12.00	25.50	4	$0.5{ }^{\prime \prime}$
80	65	15	Option 1	0.216	0.192	3	3.96	12.15	29.43	3	$0.5{ }^{\prime \prime}$
80	65	15	Option 2	0.180	0.174	3	3.50	12.00	26.40	4	$0.5{ }^{\prime \prime}$
86	70	16	Option 1	0.216	0.192	3	4.03	12.15	30.73	3	$0.5{ }^{\text {a }}$
	70	16	Option 2	0.180	0.174	3	3.50	13.00	28.48	4	$0.5{ }^{\prime \prime}$

Camera lowering device

Pole And Foundation
Details same as "Ca Details Same as "Camera
Cowering Device" Detail

5/2" Min. Inside Diameter of
Pole Raceway

Dome Type CCTV Camera
2"Coupling with Cap
At 90° To Handhole (Camera Cable Entry Point)

.${ }^{1.25^{\prime \prime} \text { Pitch }}$ 3" Pitch 3" Pitch
Varies
a crase Location
\because
1.25" Pitch ${ }_{\text {\#5 Gage Spiral }}^{\text {*einforcing }}$ Burial Depth $\frac{\text { Gage Spiral }}{\text { Reinforcing }}$

SPIRAL REINFORCING ELEVATION
(Strands, Holes and Fixtures Not Shown)
$\bar{\square}$ ASSEMBLY $=$

LEGEND:

- Prestressed Strand
$\Delta \begin{aligned} & \text { (4) \#5 Rebar (Shown) } \\ & \text { or (6) \#4 Rebar }\end{aligned}$
\uparrow Lift Points

NOTE:
Strands and rebar show are continuous from Tip

Hole Top Detail

$=$ ASSEMBLY $=$

NOTES:

1. Install all handhole and opening covers prior
to shipping.
2. Install $11 / 20 \times 5^{\prime \prime}$ Iong stud with hex nut in
3. As an alternate, embed $4 \sim 1 / 2^{\prime \prime} \varnothing \times 18^{\prime \prime}$ stainless steel threaded rods with a
threaded nut. At top of rod, thread coupling nut. to attach of rood, thread a
stainess stel bolts.
4. Handhole frame may be Cast Aluminum 356.2.

工TENON CAP=

PLAN VIEW
elevation
=TENON COVER=

lowering device tenon
elevation CAP PLATE DETAIL
(Without Lowering Device)

3/" \varnothing Eye Bolt
With 1" Inner \varnothing 1/2" Dia. Sch. 40 Pipe

eye bolt option

PIPE OPTION

PLAN VIEW

Index	SHeet
$641-020$	4 of 5

NOTES:

1. Work with Index 634-001 for grounding and span wire details. See the plans for clamp
spacing, cable sizes and forces, signals and sign mounting locations and details.
2. Shop Drawings:

This Index is considered fully detailed, only submit shop drawings for
minor modifications not detailed in the plans.
3. Materials:
A. Strain Pole and Backing Rings:
b. Greater than or equal to $3 / / 6^{\circ}$: ASTM A572 Grade $50,55,60$ or 65
C. ATM A595 Grade A (55 ksi yield) or Grade B (60 ksi yield)
Steel PTates: ASTM A36
B. Steel Plates: ASTM
C. Weld Metal: E70XX
D. Bolts. Nuts and Washers:
a. High Strength Bolts: ASTM F3125, Grade A325, Type 1
b. Nuts: ASTM A563 Grade DH Heavy-Hex
c. Washers: ASTM F436 Type 1, one under turned element
C. Washer s: ASTM F436 TYpe 1, one under turned element
E. Anchor Bolts, Nuts and Washers:
a. Anchor Bolts: ASTM Fh5 Sis Grade 55
a. Anchor Bolts: ASTM F1554 Grade 55
b. Nuts: STM A563 rade A Heavy-Hex (5 per anchor bolt)
c. Plate Washers: ASTM A36 (2 per bolt). Split-lock washers and
F. Handhole Frame. ASTM A709 or ASTM A36, Grade 36
G. Handhole Cover: ASTM A1011 Grade 50,55, 60 or 65
H. Alumiole Cover: ATM A101 Grade 50, 55, 60 or 65
H. Alumum Pole Caps and Nut Covers: ATM B26 (319-F)

1. Stainless Steel Screws: AISI Type 316
K. Concrete: Class IV (D) rilled Shaft) for all environmental classifications.
L. Reinforcing Steel: Specification 415
2. Fabrication:
A. Pole Taper: Change diameter at a rate of 0.14 inches per foot, round or
12-sided (Min.)
B. Upright splices are not permitted. Transverse welds are only permitted at the base.
C. Provide bolt hole diameters as follows:
a. Bolts (except Anchor Bolts): Bolt diameter plus $1 / 16^{\prime \prime}$, prior to galvanizing.
b. Anchor Bolts: Bolt diameter plus 1/", maximum
D. Locate handhole 180° from $2^{\prime \prime}$ wire entrance pipe.
E. Identification Tag: (Submit details for approval.)
a. ""x 4" (Max.) aluminum identification tag.
b. Locate on the inside of the pole and visible from the handhole.
c. Secure to pole with $1 / s^{\prime \prime}$ diameter stainless steel rivets or screws.
d. Include the following information on the ID Tag:
3. Pole Ype
4. Pole height
5.
6. Pole height
7. Manutaturers' Name
8. Fan
9. Manufacturers' Name
10. Fy of Steel
11. Base Wall Thickness
F. Provide a 's' or 'C hook at the top of the pole for signal wiring support (See Sheet 3).

Provide a or chook hat the top of the pole for signal win
Perform all welling in accordance with Specitication 460-6.4
Fabricate longitudinal seam weld s in pole with 60 percent
Fabricate longitudinal seam welds in pole with 60 percent
fusion welds except, within $6^{\prime \prime}$ of the base plate connection use full-penetration
L. Hot Dip Galvanize after fabrication.
5. Coatings:
A. All Nuts, Bolts, Washers and Threaded Bars/Studs: ASTM F2329
B. All other steel items including plate washers: ASTM A123
6. Construction:
A. Foundation: Specification 455, except that payment is included in the cost of the strain pole.
B. After instal

After instaifiction place wire screen between top of foundation and bottom of base plate in accordance with Specification 649-6.

ELEVATION AND NOTES

GENERAL NOTES

1. Work this Index with Specification 649 .
2. This Index is considered fully detailed; only submit shop drawings for minor modifications not detailed in the Plans.
 to $1 / /^{\prime \prime}$) or ASTM A595 Grade A (55 ksi yield) or Grade B (60 ksi yield).
B. Steel Plates and Pole Cap: ASTM A36 or ASTM A709 Grade 50
C. Bolts: ASTM F3125, Grade A325, Type 1

Nuts: ASTM A563.
Washers: ASTM F-436
E. Anchor Bolts: ASTM F1554 Grade 55 with ASTM A563 Grade A heavy-hex nuts and ASTM A36 plate washers.
F. Handhole Frame: ASTM A709 Grade 36 or ASTM A36.
G. Stainless Steel Screws: AISI Type 316 .
H.
I. Reinforcing Stel. ASTM A615 Grad 6 .
J. Galvanization: Bolts, nuts and washers: ASTM F2329 All other steel including plate washer: ASTM A123
4. Fabrication:

Welding:
a. Specification 460-6.4 and
b. AASHTO RFD Specification for Structural Supports for Highway Signs, Luminaires, and Traffic Signals Section 14.4.4.
B. Poles:
a. Round or 16 -sided (Min.)
b. Ta
b. Taper pole diameter at 0.14 inches per foo
c. Fabricate Pole longitudinal seam welds (2 maximum) with 60 percent minimum penetration or fusion welds except as follows:

1. Use a full-penetration groove weld within 6 inches of the circumferential tube-to-plate connection and
2. Use full-penetration groove welds on the female end section of telescopic (i.e., slip type) field splices for a minimum
d. Pole shaft may be either one or two sections (with telescopic field splice)
e. Circumferentially welded pole shafts and laminated pole shafts are not permitted
a. 2"x 4" (Max.) aluminum tag
b. Locate on the inside of the pole and visible from the handhole
d. Include the following information on the ID Tag:
d. Incrade Financial Project ID
3. Pole Type
4. Pole Height
5. Pole Height
6. Manufacturers'
7. Manufacturers' Name
8. Yield Strength (Fy of Steel)
. Except for Anchor Bolts, bolt hole diameters are bolt diameter plus $1 / 6^{\prime \prime}$ and anchor bolt holes are bolt diameter plus $1 / 2$ " (Max) prior to galvanizing.
9. Pole Installation:
A. Do not install additional wire access holes (not shown in this Index) with a diameter that exceeds $1 \frac{1 / 2 \prime}{\prime \prime}$ in diameter.
C. Cable Supports: Electrical Cable Guides and Eyebolts.
a. Locate top and bottom cable guides within the pole aligned with each other b. Position one cable guide $2^{\prime \prime}$ below the handhole.
c. Position other cable guide 1" directly below the top of the tenon.
d. Position Park Stands $2^{\prime \prime}$ below the top of the handhole
10. Cabinet Installation:
A. Splice fiber optic cables in cabinet to preterminater patch panel.
B. Furnish and install Surge Protection Devices (SPDs) on all cabling in cabinet.
C. Furnish and install secondary SPD protection on outlets for equipment in cabinet.
D. Ensure that all electronic equipment power is protected and conditioned with SPDs.
E. Ensure that equ
E. Ensure that equipment cabinet is bonded to CCTV pole grounding system.
F. Install the pole mounted cabinet with the hinges next to the pole.
G. Sizes and types of conduits and inner ducts for network communications between the pullbox
G. Sizes and types of Conduits and inner duct s or net
and cabinet are stated in the Contract Documents.
11. Lowering Device Installation:
A. Place the lowering cable that moves within the pole in an interior conduit to prevent it from tangling or interfering with any electrical wire that is in the pole. Ensure that
any electrical wire within the pole is routed securely and free from slack
B. Mount lowering device perpendicular to the roadway or as shown in the
B. Mou TV pole so that the camera can be safely lowered without requiring lane closures.
C. Coordinate all lowering device hardware requirements (including Tenon, Tenon mounting plates, parking stands, etc.) with lowering device manufacturer.

$\overline{=} A S S E M B L Y=$

ADDITIONAL SHAFT DEPTH DUE TO GROUND SLOPE		
Ground Slope	$4^{\prime}-0^{\prime \prime} \text { Shaft }$ Diameter	$5^{\prime}-0^{\prime \prime} \text { Shaft }$ Diameter
1:5	$3^{\prime \prime}-0^{\prime \prime}$	$4^{4}-0^{\prime \prime}$
1:4	$4^{4}-0^{\prime \prime}$	$5^{\prime \prime}-0^{\prime \prime}$
1:3	$5^{\prime}-0^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$
1:2	$7^{\prime}-0^{\prime \prime}$	$9^{\prime}-0^{\prime \prime}$

FOUNDATION NOTES

1. Shaft Length is based on $1^{\prime}-0^{\prime \prime}$ height above the finished grade.
2. Shaft Design Table Shaft Length is based on level ground (flatter Additional Shaft Depth Due To Ground Slope table for foundations
with slopes $1: 5$ and steeper. Use the higher value for slope dith slopes $1: 5$ and steeper. Use the higher value for slope

BASE PLATE AND ANCHOR BOLT DESIGN TABLE							
Pole Overall Height (ft)	Base Plate Diameter (in.)	Base Plate Thickness (in.)	Anchor Bolt Circle (in.)	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Bolts } \end{gathered}$	Anchor Bolt Diameter (in.)	Anchor Bolt Embedment (in.)	Minimum Anchor Bolt Projection (in.)
50	27	2.5	22	6	1.25	31	8.5
55	28	2.5	23	6	1.25	33	8.5
60	33	2.5	27	6	1.50	34	9.5
65	35	2.5	29	6	1.50	35	9.5
70	40	2.5	33	6	1.75	38	10.5

POLE DESIGN TABLE							
Pole OverallHeight (ft)	Section 1 (Top)			Section 2 (Bottom)			Joint
	Length	$\begin{gathered} \text { Wall } \\ \text { Thickness } \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \text { Base } \\ \text { Diameter } \\ \text { (in.) } \end{gathered}$	Length	$\begin{gathered} \text { Wall } \\ \text { Thickness } \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \text { Base } \\ \text { Diameter } \\ \text { (in.) } \end{gathered}$	Minimum Splice Length (in.)
50	---	---	---	$50^{\prime}-0^{\prime \prime}$	0.25	17	---
50	$25^{\prime \prime}-0^{\prime \prime}$	0.25	14	$28^{\prime \prime}-0^{\prime \prime}$	0.25	17	27
55	$30^{\prime}-0^{\prime \prime}$	0.25	15	$28^{\prime \prime}-0^{\prime \prime}$	0.3125	18	30
60	$35^{\prime}-0^{\prime \prime}$	0.25	18	$229^{\prime \prime} 0^{\prime \prime}$	0.3125	21	33
65	$33^{33^{\prime}-0^{\prime \prime}}$	0.25	19	${ }^{36^{\prime}-0^{\prime \prime}}$	0.3125	23	33 39
70	$38^{\prime}-0^{\prime \prime}$	0.25	22	$36^{\prime}-0^{\prime \prime}$	0.3125	26	39

Pole Top Or Tenon

$\overline{=} A S S E M B L Y=$

= POLE TOP PLATE $=$

$\begin{array}{cc} \text { FY 2020-21 } \\ \text { FDOT } \\ \text { STANDARD PLANS } \end{array}$	STEEL CCTV POLE	$\begin{gathered} \text { INDEX } \\ 649-020 \end{gathered}$	SHEET 5 of 6

TYPICAL
(20' Rods, 40^{\prime} Spacing)

TYPICAL MODIFIED
(20' Rods, 40^{\prime} Spacing)

Pole Plate
With Stainless With Stainles.
Steel Band With Stainle
Steel Band
side view

FRONT VIEW
= DETAIL "E"

POLE MOUNTED CABINET
= Steel cctv pole grounding

ARM AND BASE PLATE										
Arm IDAxx-ArmLength S-SingleArm D-DoublearmH-HeavyDut H-HeavyDuty	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Total } \\ \text { Arm } \\ \text { Length } \\ (f t) \end{array} \\ \hline \end{array}$	Arm			Arm Extension			Base Plate		
		$\begin{gathered} F A / S A \\ (f t) \end{gathered}$	$\left.\begin{gathered} F C / S C \\ (i n) \end{gathered} \right\rvert\,$	$\begin{gathered} F D / S D \\ (\text { in }) \end{gathered}$	$\begin{gathered} F E / S E \\ (f t) \end{gathered}$	$\underset{\substack{\text { (in) } \\ \text { (i/SG }}}{ }$	$\underset{\left(\begin{array}{l} \text { (in) } \end{array}\right.}{\substack{\text { S/SH }}}$	$\begin{aligned} & H T \\ & (i n) \end{aligned}$	$\begin{aligned} & \hline F_{(i / 5)} \end{aligned}$	$\begin{gathered} F K / S K \\ (i n) \end{gathered}$
A30/S	30	30	11	0.250				22	25	3
A30/S/H		30	12	0.250						
A30/D		30	11	0.250				30	36	
A30/D/H		30	12	0.250						
A40/S	40	40	13	0.250				22	27	3
A40/S/H		40	14	0.250				22	27	
A40/D		40	13	0.250						
A40/D/H		40	14	0.250				30	36	
A50/S	50	32.5	12	0.250	20.5	14	0.313			3
A50/S/H		32.5	13	0.250	20.5	15		22	29	
A50/D		32.5	12	0.250	20.5	14		30	36	
A50/D/H		32.5	13	0.250	20.5	15		30	36	
A60/S	60	35.5	12	0.250	27.5	15	0.375	30	36	3
A60/S/H		35.5	13	0.250	27.5	16				
A60/D		35.5	12	0.250	27.5	15				
A60/D/H		35.5	13	0.250	27.5	16				
A70/S	70	38	13	0.250	35	17	0.375	30	36	3
A70/S/H		38	14	0.250	35	18				
A70/D		38	13	0.250	35	17				
A70/D/H		38	14	0.250	35	18				
A78/S	78	39	13	0.250	42	18	0.375	30	36	3
A78/S/H		39	15	0.250	42	20				
A78/D		39	13	0.250	42	18				
A78/D/H		39	15	0.250	42	20				

POLE, BASE PLATE AND ARM CONNECTION																		
Pole IDPx-PoleNo S-Singlearm D-DoubleArmL-Luminaire L-Luminaire	Upright				Base Plate					Arm-Upright Connection								
	$\underset{(f t)}{U A}$	$\begin{aligned} & \text { (in) } \end{aligned}$	$\underset{(i n)}{(i n)}$	$\begin{gathered} U G \\ (f t) \end{gathered}$	$\begin{aligned} & \text { No. } \\ & \text { Bolts } \end{aligned}$	$\begin{aligned} & \text { BA) } \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & \text { (in) } \\ & (\text { in } \end{aligned}$	$\begin{aligned} & B C \\ & (\text { in }) \end{aligned}$	$\underset{(i n)}{B F}$	$\underset{\text { (in) }}{\substack{\text { (in) }}}$		$\begin{aligned} & F L / S L \\ & (i n) \end{aligned}$	$\begin{gathered} F N / S N \\ \text { (in) } \end{gathered}$	$\underset{\substack{\text { FO/SO } \\ \text { (in) }}}{ }$	$\underset{(i n)}{F P / S P}$	$\begin{gathered} F R / S R \\ \text { (in) } \end{gathered}$	$\begin{gathered} F S / S S \\ (\mathrm{in}) \end{gathered}$	$\begin{gathered} F T / S T \\ \hline \text { (in) } \end{gathered}$
P1/S	25	16	0.375		6	32	2.5	2	40	22	25	0.75	0.438	14	1.25	2	8.5	0.438
P1/S/L	39			37.5														
$\frac{P 1 / D}{\text { P1/D/L }}$	25			37.5						30	36			23		2.75	12.5	
P2/S	25	18	0.375		6	34	2.5	2	40			0.75	0.438		1.25			0.438
P2/S/L	39			37.5						22	27			15		2	8.5	
P2/D P2/D/L	25			37.5						30	36			23		2.75	12.5	
P3/5	25	20	0.375		6	36	2.5	2	40			0.75	0.438		1.25			0.438
P3/S/L	39			37.5						22	29			16		2	8.5	
$\frac{P 3 / D}{}$	25									30	36			23		2.75	12.5	
P3/D/L	39			37.5		38	2.5	2	40	30	36	0.75			1.25	2.5		0.438
P4/S/L	39	22	0.375	37.5	8								0.438	17			12.5	
P4/D	25																	
P4/D/L	39			37.5										23				
P5/S	25	24	0.375		8	40	2.5	2	40	30	36	0.75	0.5		1.25	2.5	12.5	0.5
P5/S/L	39			37.5										18				
P5/D	25																	
P5/D/L	39			37.5										23				
P6/S	25	24	0.5		8	42	2.5	2.25	45	30	36	0.75	0.625	18	1.5	2.5	12	0.625
P6/S/L	39			37.5														
$\frac{P 6 / D}{}{ }^{\text {P6/D/L }}$	25 39			37.5										23				
P7/S	25	26	0.5		8	44	2.5	2.25	45	30	36	0.75	0.625		1.5	2.5	12	0.625
P7/S/L	39			37.5										19				
P7/D	25													23				
P7/D/L	39			37.5														

NOTE

1. Work this Index with Index 649-031.

DRILLED SHAFT												
Drilled Shaft ID			$\begin{gathered} D A \\ (f t) \\ \left(\begin{array}{c} 0 \end{array}\right. \end{gathered}$	$\begin{gathered} D B \\ (f t) \\ \left(\begin{array}{c} 1 \end{array}\right. \end{gathered}$	RA	RB		c	$\begin{aligned} & R D \\ & \text { (in) } \end{aligned}$		RE	$\xrightarrow[\text { (in) }]{\text { RF }}$
DS/12/4.0			12	4.0	11	14			12			
DS/12/4.5			12	4.5	11	16		8	12			
DS/14/4.5			14	4.5	11	16		0	8			
DS/14/5.0			14	5.0	11	18		0	8			
DS/16/4.5			16	4.5	11	16		0	8			
DS/16/5.0			16	5.0	11	18		0	8			
DS/18/5.0			18	5.0	11	18		0	8			
DS/20/5.0			20	5.0	11	18		0	6		10	9
DS/25/5.0			25	5.0	11	18		0	6		10	9
LUMINAIRE AND CONNECTION												
$\begin{gathered} \angle A \\ (f t) \end{gathered}$	$\begin{aligned} & \angle B \\ & (f t) \end{aligned}$	$\begin{aligned} & \angle c \\ & \stackrel{L i n}{ } \end{aligned}$	$\underset{(i n)}{L D}$	LE	$\begin{gathered} \stackrel{L F}{(f t)} \\ (f) \end{gathered}$	$\begin{aligned} & \angle G \\ & (i n) \end{aligned}$	$\begin{aligned} & L H \\ & (i n) \end{aligned}$	$\begin{aligned} & \text { Lin) } \\ & \text { (in) } \end{aligned}$		$\begin{aligned} & L K \\ & (i n) \\ & \left.()^{\prime}\right) \end{aligned}$	$\begin{gathered} \left.\hline \begin{array}{c} L L \\ \text { (deg) } \end{array}\right) \end{gathered}$	$\begin{array}{\|l\|} \hline U G \\ (f t) \end{array}$
40	10	3	0.125	0.5	8	0.5	0.75	0.2		0.25	0	37.5

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 18 \end{gathered}$		$\begin{array}{cc} \text { FY 2020-21 } \\ \text { STANDARD PLANS } \end{array}$	STANDARD MAST ARM ASSEMBLIES	$\begin{gathered} \text { INDEX } \\ 649-030 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 1 \end{aligned}$

GENERAL NOTES:
Shop Drawings: This Index is considered fully detailed, only submit shop drawings
2. Prior to Fabrication: Verify the installed foundation elevation will result in the required signal elevation and adjust the Pole height as needed.
3. Details for Signal and Sign locations, Signal Head attachment, Sign attachment, Redestrian Head attachment, and Foundation Conduit are not shown for simplicity.
4. Materials:
a. Less than 3 and Backing Rings:
b. Greater than or equal to $3 / /_{6}^{\prime \prime}$: ASTM A572 Grade $50,55,60$ or 65 c. ASTM A595 Grade A (55 ksi yield) or Grade B (60 ksi yield) B. Steel Plates: ASTM A36
C. Weld
C. Weld Metal: E70XX
D. Bolts, Nuts and Washers:
a. High Strength Hex Holts: ASTM F3125, Grade A325, Type 1
b. Nuts: ASTM A563 DH Heavy-Hex
c. Washers: ASTM F436 Type 1, one under turned element
E. Anchor Bolts. Nuts and Washers:
a. Anchor Bolts: ASTM 1554 Grade 55
b. Nuts: ASTM A563 Grade A Heavy-Hex (5 per anchor bolt)
F. Threaded Bars/Studs: ASTM A36 or ASTM A307
F. Threaded Bars/Studs: ASM A A M
G. Handhole Frame: : ASTM A709 or ASTM A36, Grade 36
H.
H. Handhole Cover: ASTM A1011 Grade 50, 55, 60 or 65
I. Aluminum Pole Caps and Nut Covers ASTM B26 (319-F)
I. Aluminum Pole Caps and Nut Covers: AS
J. Stainless Steel Screws: AISI Type 316
K. Concrete: Class IV (Drilled Shaft) for all environmental classifications.
L. Reinforcing Steel: Specification 415
$\frac{\text { Fabrication: }}{\text { A. Welding: }}$
a. Specification 460-6.4 and
b. AASHT LRFD Specification for Structural Supports for
Highway Signs, Luminaires, and Traffic Signals Section 14.4.4

Highway Signs, Lumi
B. Poles and Mast
B. Poles and Mast Arms.
a. Round or 12-sided (Min.)
b. Taper pole diameter at 0.14 inches per foot
c. Upright poles must be a single section. For arms and upright
poles, circumferential welds and laminated sections are not
permitted.
d. Arms may be either one or two sections. See Sheet 4 for
e. Fabricate Iongitudinal se
penetration or fusion welds exceptith 60 percent minimum

1. Use a full-penetration groove weld within 6 inches of the circumferential tube-to-plate connection.
2. Use full-penetration groove welds on the female end section of telescopic (i.e., slip type) field splices for a minimum
length of one length of one and one-half times
female section plus 6
f. Locate longitudinal seams weld along the:
3. Lower quadrant of the arms.
4. Same side of the pole as the arm connections
g. Face handhole perpendicular from arm on single arm poles,
perpendicular from the first arm of double arms poles facing
perpendicu raffic or see special instructions on the Mast Arm
Tabulation Sheet.
n. Provide a 'J' or 'C' ho
support (See Sheet 6)
i. First and Second arm camber angle $=2$
j. Bolt holes diameters as follows:
5. Bolts (except Anchor bolts): Bolt diameter plus $1 / 6^{\prime \prime}$ prior to galvanizing.
6. Anchor Bolts: Bolt diameter plus $1 / 2 "$ (Max.).
7. Coatings: A. All Nuts, Bolts, Washers and Threaded Bars/Studs: ASTM F2329 A. All Nuts, Bolts, Washers and Threaded Bars/Studs: ASTM
B. All other steel items including plate washers ASTM A123

Aluminum Identification Tag not to exceed $2^{\prime \prime} \times 4^{4 \prime}$. Secure to pole
by $1 / 8^{\prime \prime}$ stainless steel rivets or screws. Fabricators to provide
by" stainless steel rivets or screxs. Fabricators to provide
details for approval. Identification Tag located on inside of pole details for approval. Identification Tag located on inside of pole
is ible from hanhhole, or on outside of pole inside Terminal
Compartment. Tag to be stamped with the follow ind Compartment. Tag to be stamped with the following information
$\frac{\text { Standard Design }}{\text { inancial Project }}$
Pole Type
Arm Type
Wanufacturer's Name
Pole Base (F of of of Steel)
Pole Base (F_{y} of
Arm (F_{y} of Steel)
Special Design
Financial Project ID
Manufacturer's Name
Manuf acturer's Name
Pole Base (F_{y} of Steel
Arm (Fy of Steel)
Pole Wall Thickness
Pole Wall Thickness (in.)
Arm Wall Thickness (in.)

Foundation
Foundation
(Drille St Shat)
(See Sheet 2)

Single Arm Shown, Double Arm Simila (Luminaire Arm Not Shown)

- MAST ARM ASSEMBLY -
A. Foundation: Specification 455 Drilled Shaft, except that payment is
included in the cost of the Mast Arm.
B. Install Pole vertically.
C. Place structural grout pad with drain between top of foundation and bottom of
baseplate in accordance with Specification 649-7.
D. Attach Sign Panels and Sith Specifification centered on the the elevation of the Mast Arm.
E. Wire Access holes are $11 / 2$ or less in diameter

ELEVATION AND NOTES
LAST
REVISION
11/01/18

D DESCRIPTION:
11/01/18
FDO 2020-21
STANDARD PLANS

NOTES:

1. A transformer base is required for both conventionally-powered
and solar-powered applications (conventional power shown).
2. Install the RRFB in pairs, one on either side of approach traffic.
3. Install controller on the backside of post from approach traffic.
4. Install a $30^{\prime \prime} \times 30^{\prime \prime}$ w11-2 sign on two-lane roadways and a
$36^{\prime \prime} \times 36^{\prime \prime}$ w11-2 sign for multilane roadways.
5. Install push button and R10-25 sign in accordance with Index 665-00
6. Engage all threads on the transformer base and post unless the
aluminum post is fully seated into base.
7. Meet the requirements of Specification 646 for aluminum poles
and transformer bases
8. Install a concrete slab around all pull boxes. The minimum slab dimension is $4^{\prime \prime}-0^{\prime \prime}$ by $4^{\prime}-0^{\prime \prime}$. In urban areas where space is
9. For assemblies connected to conventional power, provide single pole non-fused watertight breakaw
in the frangible transformer base.
10. When wire entry holes are drilled in the sign column, use bushing or rubber grommet to protect conductors.
11. For solar-powered applications, orient solar panel to face South
for optimal exposure to sunlight. For solar-powered applications,
for optimal exposure to sunlight.

NOTES:

1. $\frac{\text { Materials: }}{\text { A. Sign pa }}$
A. Sign pane/s, wind beams and associated hardware: See Index $700-020$
B. Sign ad ustable hangers. wire rope
B. Sign ad justable hangers, wire rope clamps and associated hardware: See APL
c. Wire and additional hardware requirements: See Specification 634
2. Type B and CAttachments:
A. Extend wind beams to within $6^{\prime \prime}$ of the sign edge.
B. Number of sign hangers
a. Sign width < 4^{\prime} - $0^{\prime \prime}$ ": 0 ne
b. $4^{\prime}-0^{\prime \prime} \leq$ sign width $\leq 7^{\prime}-0^{\prime \prime}: T$: \quad.
Cumber of wind beams required based on sign depth:
a. Sign depth $<3^{\prime}-6^{\prime \prime}:$ One
b. $3^{\prime}-6^{\prime \prime} \leq$ Sign depth $\leq 7^{\prime}-0^{\prime \prime}$. $T w$
3. Type D Attachments.

Maximum sign width $=3^{\prime}-0^{\prime \prime}$
4. Align the bottom edges of signs to approximately the same elevation.
5. Use a minimum of 2 bolts with a minimum spacing of $2^{\prime \prime}$ for overlapped connection of the adjustable hangers.
=SIGN MOUNTING DETAIL=

TYPICAL INSTALLATIONS FOR SIGN PANEL(S) MOUNTED ON SPAN WIRE

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 18 \end{gathered}$	\|rent	$\text { FDOT } \begin{gathered} \text { FY 2020-21 } \\ \text { STANDARD PLANS } \end{gathered}$	SPAN WIRE MOUNTED S IGN DETAILS	index $659-010$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 1 \end{aligned}$

GENERAL NOTES:

1. Lowering device to be shipped ready for pole attachment to include 100 ft . of composite power and signal cable
prewired to lowering device at the factory.
2. The lowering device manufacturer shall supply both a portable lowering tool with a manual hand crank and a half-inch
chuck variable-speed reversible industrial-duty electric drill that matches the winch's manufacturer-recommended chuck variable-speed reversibe industrial-duty electric drivinat matches the wuired.
revolutions per minute. One lowering tool per every 10 lowering devices is required
3. The lowering device manufacturer shall provide an on-site installation inspection and operator instruction and
certification. This ensures the product is assembled correctly and that all necessary persons are trained in the certireation. onis ensures the product is assembled correctly atd that all necessary persons are trained in the
proper, safe operation of the syster. Berore erecting the first pole et he contractor must contact the lowering device
supplier and schedule a manufacturer's representative to be on-site. supplier and schedule a manufacturer's representative to be on-site.
4. Design camera mounting arm and connection to tenon according to FDOT Structures Manual (current edition).

CAMERA LOWERING DEVICE DETAIL
5. Camera to be mounted to camera junction box and stabilizing weight via $1 \frac{1}{2}$ " Standard NPT Pipe Thread.
6. Use air terminal extension when the pole top junction box is wider than top of pole.
7. The stainless steel device lowering cable shall be installed inside the pole within a $1 \frac{1}{4}$ " diameter PVC conduit.
8. All communication and power cables must be neatly bundled and secured.
9. Use a Camera Lowering Device listed on the Approved Product List (APL).
10. See Index 641-020 for concrete pole details and Index 649-020 for steel pole details.

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		DESCRIPTION:	FDOT	FY 2020-21 STANDARD PLANS	CAMERA MOUNTING DETAILS	$\begin{gathered} \text { INDEX } \\ 659-020 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 2 \end{aligned}$

1. Verify the pole type, the dimensions of the pole at the point of installation of the camera mount, and angle with respect
roadway before manufacturing camera mount assembly.
2. Design camera mounting arm and connection to the pole according to
FDOT Structures Manual (current edition).
. No field welding shall be permitted.
3. Mounting bracket arm shall be level after installation
4. The contractor shall submit shop drawings for the proposed fixed mounting arm, sianed and sealed by a Professional Enineer
registered in the State of Florida, to the Engineer for review and approval.
5. See Index 641-020 for concrete pole details and Index 649-020 for

- Galvanized pipe connections and conduit entry points shall be sealed in
accordance with Specification 630 .

GENERAL NOTES

1. If the loop lead-in is 75 , or less from the edge of the loop
detector to controller cabinet, continue the twisted pair to the detector to controller cabinet, continue the twisted pair to the
cabinet. If the loop lead-in is greater than 7 ' continue the twisted pair an Intermediate Pullbox, splice to shielded lead-i
wire and continue to the controller cabinet.
2. Provide sufficient saw-cut width to allow unforced placement of
loop wires or lead-in cables into the saw-cut. Except across exp wnsion or joints, saw-in cables into the saw-cut. Except across
standard depth of of $3^{\prime \prime}$, but no more
than 4 below the top of the rimal surface
3. On resurfacing or new roadway construction projects, install the
loop wires and lead-in cables in the asphalt structural course prior to the placement of the asphalt friction course. Place the
loop wires and lead-in cables in a saw cut in the structural course
4. Use nonmetallic hold down material to secure loop wires and
lead-ins to the boltom of saw-cuts. Place the hold down Material approximately of saw-cuts intervals around loops and $24^{\prime \prime}$
5. The minimum distance between the twisted pairs of loop lead-in
wire is $6^{\prime \prime}$ from the loop to $12^{\prime \prime}$ from the pavement edge or curb.
6. Splice Connections in pull boxes with UL listed, watertight, conductor and place a third enclosure over the exposed end of the shielded cable. As an alternate, a larger diameter enclosure
that will accommodate both the splices of the conductors and the that will accommodate both the splices of the co
exposed end of the shielded cable may be used.
7. Do not disturb more than a $6^{\prime \prime} X{ }^{6^{\prime \prime}}$ area of asphalt. Restore
asphalt as directed by the Engineer.
8. Alternative installations may be approved by the State Traffic
Operations Engineer.

PLAN

NOTES:

1. Cut a slot in the edge of the roadway of
sufficient size and depth to snugly place suricient size and depth to snuar
2. Install the conduit at least $6^{\prime \prime}$ into the 2" below the top of the roadway surface
3. The departure angle of the conduit from
the roadway is between 30° to 45°.
elevation

INSTALLATION WITHOUT CURB \& GUTTER

alternative 1

3. Place the top of the rigid conduit approximately $2^{\prime \prime}$ below
the roadway surface.
4. Fill the hole with loop sealant to the level of the
roadway surface.
5. Use a nonmetallic material to prevent excessive loop
sealant from entering the rigid conduit.
alternative 2

	$\begin{gathered} \text { FY 2020-21 } \\ \text { STANDARD PLANS } \end{gathered}$	$\mathbb{V E H I C L E}$ LOOP \mathbb{N} STALLATION DETAILS	$\begin{gathered} \text { INDEX } \\ 660-001 \end{gathered}$	SHEET 1 of 2

CABINET BACKPLANE DETAIL

- ROADWAYS WITH PAVED SHOULDERS

\qquad

NOTES

3. Twist loop leads at the rate of 8 to 16 twists per foot. Loops that are within 150° of the cabinet, extend the twisted pair loop wire directly to the cabinet. For distances over $150^{\prime \prime}$ \#14. IMSA $50-2$ shielded lead
must be spliced to the loop wire twisted pair at the first pull box to which the loop wire is pulled.
4. Marking will consist of two rounds of contrasting colored tape, one color for the lane number and the second color
for the lead loop location in the lane. The first band closest to the cabinet will represent the lane number, one for the lead loop location in the lane. The first band closest to the cabinet will represent the lane number, on
round of tape will be for lane 1 and two rounds will be lane 2, etc. The lead loop in lane one would have one round of tape and a second round of a contrasting colored tape for the lead loop in the lane. The trailing loo
5. See Index 635-001 for pull box and apron details.
6. All splices will be performed using splice kits designed for direct burial. Splice kits will include screw on wire
connectors and a housing with sufficient sealant to fully encapsulate the spliced connections. Taped splices are connectors and
not permitted.
7. Use a chalk line or string and paint to layout the position of the sensor and lead-in cable slots. Ensure saw cuts
do not deviate more than 0.5 inches from the chalk line. Use a single blade or ganged blade saw wide enough ts do not deviate more than 0.5 inches from the chalk line. Use a single blade or ganged blade saw wide enough to
cut the axle sensor slot at full width in a single pass. Cutting two slots and chipping out roadway material between cut the a xx sensor
them is not allowed.
8. All sensor slots and any cuts in the roadway will be thoroughly blown out to ensure there is no dust or debris prior
to installation of sensors or leads. 9. Install Exit Windows at least 2^{\prime} apart.
lane layout for taMS inductive loop and axle sensor

EXIT WINDOW
\qquad

EXIT WINDOW \qquad

CURB \& GUTTER ROADWAYS $=$ \qquad

END VIEW
(Axle Sensor Slot
$\overline{ }$

	INDEX	sheet
	$695-001$	5 of 7

