

NOTES

RAFFIC RAILINGS OR PARAPETS:
If there is a Traffic Railing or Parapet on the wall, align Wall Joints with V-Grooves, and Wall Expansion Joints with Barrier Open Joints.
FOUNDATION:
Prepare the soil below the footing in accordance with the requirements for spread footings in Specification Section 455.

* Shear Key is required only when specified in the Plans.

REINFORCING STEEL BENDING DIAGRAMS
$\xrightarrow{\text { Total Length }} \underset{\sim}{\longrightarrow}$

BARS G1

KEYWAY \& WALL JOINT DETAIL (TOP VIEW)

GENERAL NOTES

 C-I-P Gravity Walls constructed as extensions of reinforced concrete retaining walls, except walls of proprietar reinforced concrete retaining wall.2. Concrete for Gravity Wall shall be Class NS per Section 347. Concrete for Scheme 3 Junction Slab and Traffic Railing shall be Class II
the plans.
3. Reinforcing steel shall meet the requirements of Specification Section 931 (Grade 40 or 60). Smooth or Deformed Welded Wire Reinforcement (WWR) may be substituted on an equal area basis. Do not increase bar wire spacing for Grade 60 reinforcing stee
or WWR.
4. When required, for ad junct guiderail, see Index 515-070 or 515-080 as appropriate. For adjunct Type B fence see Index 550-002.
Joint Seal: Organic Felt bond breaker in accordance with
Specification Section 400 or Type D-5 geotextile fabric in Specification Section 400 or Type D-5 geotextile fabric
accordance with Specification Section 985. Mop all contact surfaces of concrete and Organic Felt or geotextile fabric with cut-back asphalt. Stop Organic Felt or geotextile fabric $6^{\prime \prime}$ below top of wall.
5. Provide a co
. Prall heights 3 ft . and higher. Wrap drainage conshed rock drain for Type D-3 geotextile fabric in accordance with Specification, Section
 at 10 ft . max. spacing (when Drainage Layer is required). Locate outermost edge of Drain Pipe a minimum of $2^{\prime}-0^{\prime \prime}$ from wall joints.
6. Cost of reinforcing steel, face texture, finish, joint seal,
drain pipes, drainage layer, galvanized mesh and geotextile drain pipes, drainage abric to be included in the Contract unit Price for Concrete Class NS, Gravity Wall. Cost of concrete for Junction Slab in Scheme 3, to be included in Contract Unit Price for Concrete Traffic Railing Barrier With Junction Slab. Adjunct railings or fences to be paid for separately.

EYEBOLT AND CHAIN FOR LOCKING GRATES TO INLETS

Note: Cost of pipe, fittings and sandbagging to be included in the contract unit price for inlets.
 Key SECTION
Note: See Slab Designs Index 425-010 TYPE 7

2' Dia. (1-Piece Cover)
3' Dia. (2-Piece Cover)

Brick Ad justment or Grade Ring Permitted
(Min. $0^{\prime \prime}$ Max. $12^{\prime \prime}$)

MANHOLE TOPS

NOTES (TOPS)

1. Manhole top Type 7 slabs shall be of Class II concrete. Concrete as specified in ASTM C478 may be used for precast units; see General
Note 3 .
2. Manhole top Type 7 slabs may be of cast-in-place or precast construction. The optional key is for precast tops and in lieu of dowels. Frame and slab openings are to be omitted when top is used over a junction box.
3. Manhole top Type 8 may be of cast-in-place or precast concrete construction or brick construction. For concrete construction, the concrete and steel reinforcement shall be the same as the supporting wall unit. An eccentric cone may be used.
4. Manhole tops shall be secured to structures by optional construction joints as shown on Sheet 3.
5. Frames can be adjusted a maximum $12^{\prime \prime}$ height with brick or precast ASTM C478 grade rings.
6. Substitution of manhole top Type 8 for manhole top Type 7 is allowed provided that minimum dimensions shown above are not reduced.
7. Substitution of Manhole top Type 7 for Type 8 is allowed if the minimum thickness (h) above pipe opening cannot be maintained with
manhole top Type 8.

DESIGN NOTES

1. Manhole top Type 8 should be specified in the plans when depths shown above can be maintained.

FILTER FABRIC WRAP ON GROUTED PIPE TO STRUCTURE JOINT
 Segments may be inverted. Opening for pipe shall be the ipe od plus $6^{\prime \prime \prime}\left(\pm 2^{\prime \prime}\right.$ tolerance). If h can not be attained,
then a top or bottom slab must be attached to the segment
as shown below then a top or bott
as shown below.

	${ }^{\text {H }}$
$\mathrm{H} \geq \mathrm{H}$ (min.)	
Minimum Value For H	
H (min.)	Box Or Riser Diameter
$2^{\prime}-0^{\prime \prime}$	$>6^{\prime}-0^{\prime \prime}$

TOP SLABS TO WALLS

WALL JOINTS

BOTTOM SLABS TO WALLS

1. One or more types of joints may be used in a single structure, except brick wall
structure. Brick wall construction is permitted on circular units only.
2. All grouted joints are to have a maximum thickness of $1^{\prime \prime}$
3. Keyways are to be a minimum of $11 / 2^{\prime \prime}$ deep.
4. Joint dowels are en be \#4 bars, 12 long with a minimum of 6 bars per joint rectangular structures. Bars may be either Adhesive Bonded Dowels in accordance
 the remainder to extend into the secondary cast. Welded wire reinforcement may be
substituted for the dowel bar in accordance with the equivalent steel area table on
sheet Sheet 4.
. Minimum cover on dowel reinforcing bars is $2^{\prime \prime}$ to outside face of structure,
5. Joints between wall segments and between wall segments and top or bottom slabs may an sealed
Section 430 of the Specifications or by non-shrink grout, in accordance with Section Section 430 of the Specifif
934 of the Specificications.
6. Insert products approved by the Engineer may be used in lieu of dowel embedment.

OPTIONAL CONSTRUCTION JOINTS

(note: not applicable around manhole and riser openings)
REBAR STRAIGHT END EMBEDMENT FOR TOP AND BOTTOM SLABS

WALL REINFORCING SPLICE DETAILS

Kiser or Inlet Opening

Top or Bottom Segment: $h \geq 2^{\prime \prime}$
(H (min.) Tabulated Above Do Not Apply) NOTE: h may be less than $6^{\prime \prime}$ when approved by the Engineer, but not for inlet segments at finish grade elevation

COMPARATIVE SIDE VIEWS
MINIMUM DIMENSIONS FOR BOX AND RISER SEGMENTS

EXAMPLE TABLE OF EQUIVALENT STEEL AREA

example table of equivalent steel area								
SChedule	GRADE 60 REINFORCING BAR		equivalent grade 40 REINFORCING BAR		EQUIVALENT 65 KSI SMOOTH welded wire reinforcement		EQUIVALENT 70 KSI DEFORMED WELDED WIRE REINFORCEMENT	
	Bar Size \& Spacing	$\begin{gathered} \hline \text { Steel } \\ \text { Area } \\ \left(i n^{2} / f t\right) \end{gathered}$	Bar Size \& Spacing	$\begin{array}{\|c\|} \hline \text { Min. Steel } \\ \text { Area } \\ \left(i n^{2} / f t\right) \\ \hline \end{array}$	Style Designation	$\begin{array}{c\|} \hline \text { Min. Steel } \\ \text { Area } \\ \text { (in } / \text { /ft }) \\ \hline \end{array}$	Style Designation	Min. Steel Area (in $2 / f t)$
A	$\begin{aligned} & \text { \#3 @ 61/2" Ctrs. } \\ & \text { \#4 @ 12" Ctrs. } \end{aligned}$	0.20	\#3 @ 41/2" Ctrs. \#4 @ 8" Ctrs. \#5 @ 12" Ctrs.	0.30	$3^{\prime \prime} \times 3^{\prime \prime}-W 4.6 \times W 4.6$ $4^{\prime \prime} \times 4^{\prime \prime}-W 6.2 \times W 6.2$ $6^{\prime \prime} \times 6^{\prime \prime}-W 9.2 \times W 9.2$	0.1846	$\begin{aligned} & 3^{\prime \prime} \times 3^{\prime \prime}-D 4.3 \times D 4.3 \\ & 4^{\prime \prime} \times 4^{\prime \prime}-D 5.7 \times D 5.7 \end{aligned}$ $6^{\prime \prime \times} \times 6^{\prime \prime}-D 8.6 \times D 8.6$	0.1714
B	$\begin{aligned} & \text { \#3 @ } 5 \text { ¹2." Ctrs. } \\ & \text { \#4 @ } 10^{\prime \prime} \text { Ctrs. } \end{aligned}$	0.24	\#3 @ $3^{11 / 2}$ Ctrs \#4 @ 612" Ctrs \#5 @ 10" Ctrs	0.36	$3^{\prime \prime} \times 3^{\prime \prime}-W 5.5 \times W 5.5$ $4^{\prime \prime} \times 4^{\prime \prime}-$ W7.4xW7.4 6"x6"-W $11.1 \times$ W11.1	0.2215	$\begin{gathered} 3^{\prime \prime} \times 3^{\prime \prime}-D 5.1 \times D 5.1 \\ 4^{4} \times 4^{\prime \prime}-D 6.9 \times D 6.9 \\ 6^{\prime} \times 6^{\prime \prime-D 10.3 \times D 10.3} \end{gathered}$	0.2057
Special 1	$\begin{aligned} & \text { \#3 @ 5" Ctrs.. } \\ & \text { \#4 @ 9" Ctrs. } \end{aligned}$	0.267	\#3 @ $3^{\prime \prime}$ Ctrs. \#4 @ 6" Ctrs. \#5 @ 9" Ctrs.	0.40	$\begin{gathered} 3^{\prime \prime} \times 3^{\prime \prime}-W 6.2 \times W 6.2 \\ 4^{4 \prime} \times 4^{\prime \prime}-W 8.2 \times W 8.2 \\ 6^{\prime \prime} \times 6^{\prime \prime}-W 12.3 \times W 12.3 \end{gathered}$	0.2465	$\begin{gathered} 3^{3 \prime \times 3^{\prime \prime}-D 5.7 \times D 5.7} \\ 4^{4} \times 4^{\prime \prime}-D 7.6 \times D 7.6 \\ 6^{\prime \prime}-D 11.4 \times D 11.4 \end{gathered}$	0.2289
c		0.37	\#4 @ 4" Ctrs. \#5 @ 612/" Ctrs. \#6 @ 911/2" Ctrs.	0.555	3"x3"-W8.5xW8.5 $4^{\prime \prime} \times 4^{\prime \prime}-$ W $11.4 \times$ W 11.4 $6^{\prime \prime} \times 6^{\prime \prime}-W 17.1 \times W 17.1$	0.3415	$\begin{gathered} 3^{\prime \prime} \times 3^{\prime \prime}-D 7.9 \times D 7.9 \\ 4^{\prime \prime} \times 4^{\prime \prime}-D 10.6 \times D 10.6 \\ 6^{\prime \prime} \times 6^{\prime \prime}-D 15.9 \times D 15.9 \end{gathered}$	0.3171
D	\#4 @ 41/2" Ctrs. \#5 @ 7" Ctrs. \#6 @ 10" Ctrs	0.53	\#4 @ 3" Ctrs. \#5 @ 41/2" Ctrs. \#6 @ $61 / 2$ " Ctrs.	0.795	$3^{\prime \prime} \times 3^{\prime \prime}-$ W $12.2 \times$ W12.2 $4^{\prime \prime} \times 4^{\prime \prime}$-W $16.3 \times$ W 16.3 $6^{\prime \prime} \times 6^{\prime \prime}$ W24.5 WW W24.5	0.4892	$3^{\prime \prime} \times 3^{\prime \prime}-D 11.4 \times D 11.4$ $4^{4} \times 4^{4}-$ D $15.1 \times D 15.1$ $6^{\prime \prime} \times 6^{\prime \prime}-\mathrm{D} 22.7 \times \mathrm{D} 22.7$	0.4543
E	\#4 @ 3" ctrs. \#5 @ $5^{\prime \prime}$ Ctrs. \#6 @ 7" Ctrs.	0.73	\#5 @ $31 / 2^{\prime \prime}$ Ctrs. \#6 @ 41/2" Ctrs. \#7 @ $61 / 2{ }^{\prime \prime}$ Ctrs.	1.095	$3^{\prime \prime} \times 3^{\prime \prime}-$ W $16.8 \times$ W16.8 $4^{4 \prime \times 4} 4^{\prime \prime}$ W22.5 WW 22.5 $6^{\prime \prime} \times 6^{\prime \prime}$-W $33.7 \times$ W 33.7	0.6738	$\begin{aligned} & 3^{\prime \prime} \times 3^{\prime \prime}-D 15.6 \times D 15.6 \\ & 4^{*} \times 4^{\prime \prime}-D 20.9 \times D 20.9 \\ & 6^{\prime \prime} \times 6^{\prime \prime}-D 31.3 \times D 31.3 \end{aligned}$	0.6257
F		1.06	\#6 @ $3^{\prime \prime}$ Ctrs. \#7 @ 41/2" Ctrs. \#8 @ 6" Ctrs.	1.59	$3^{\prime \prime} \times 3^{\prime \prime}$-W $24.5 \times$ W 24.5 $4^{\prime \prime} \times 4^{\prime \prime}$-W $32.6 \times$ W 32.6 $6^{\prime \prime} \times 6^{\prime \prime}-W 48.9 \times W 48.9$	0.9785	$\begin{aligned} & \hline 3^{\prime \prime} \times 3^{\prime \prime}-D 22.7 \times D 22.7 \\ & 4^{\prime \prime} \times 4^{\prime \prime}-D 30.3 \times D 30.3 \\ & 6^{\prime \prime} \times 6^{\prime \prime}-D 45.4 \times D 45.4 \end{aligned}$	0.9086
Special 2	$\begin{aligned} & \text { \#5 @ 3" Ctrs. } \\ & \# 6 \text { Q } 4^{\prime \prime} \text { "trs. } \\ & \# 7 @ @ 5 / 2^{\prime \prime} \text { Ctrs. } \end{aligned}$	1.24	$\begin{aligned} & \text { \#7 @ 4" Ctrs. } \\ & \text { \#8 @ 5" Ctrs. } \end{aligned}$	1.86	$3^{\prime \prime} \times 3^{\prime \prime}-$ W28.6xW28.6 $4^{4 \prime} \times 4^{\prime \prime}$-W $38.2 \times$ W 38.2 $6^{\prime \prime} \times 6^{\prime \prime}-W 57.2 \times W 57.2$	1.1446	$\begin{aligned} & 3^{\prime \prime} \times 3^{\prime \prime}-D 26.6 \times D 26.6 \\ & 4^{\prime \prime} \times 4^{\prime \prime}-D 35.4 \times D 35.4 \\ & 6^{\prime \prime} \times 6^{\prime \prime}-D 53.1 \times D 53.1 \end{aligned}$	1.0629
6	$\begin{aligned} & \# 6 \text { @ } 3 \text { 3/2" Ctrs. } \\ & \# 7 \text { @ } 5^{\prime \prime} \text { Ctrs. } \end{aligned}$	1.46	$\begin{aligned} & \text { \#7 @ 3" Ctrs. } \\ & \text { \#8 @ 4" Ctrs. } \end{aligned}$	2.19	$\begin{aligned} & 3^{\prime \prime} \times 3^{\prime \prime}-W 33.7 \times W 33.7 \\ & 4^{\prime \prime} \times 4^{\prime \prime}-W 44.9 \times W 44.9 \end{aligned}$	1.3477	$\begin{aligned} & 3^{\prime \prime} \times 3^{\prime \prime}-D 31.3 \times D 31.3 \\ & 4^{\prime \prime} \times 4^{\prime \prime}-D 41.7 \times D 41.7 \end{aligned}$	1.2514

GENERAL NOTES

1. For square or rectangular precast drainage structures, using either deformed or smooth WWR meeting the requirements of Specification Section 931, WWR shall be continuous around the box and lapped in accordance with Option 1 or 3 as shown in the Wall Reinforcing Splice Details.
2. Horizontal steel in the walls of rectangular structures shall be lap spliced in accordance with Option 1,2 or 3 as shown in the Wall Reinforcing Splice Details,
3. Welding of splices and laps is permitted. The requirements and restrictions placed on welding in AASHTO M259 shall apply.
4. Rebar straight end embedment of peripheral reinforcement may be used in lieu of ACI standard hooks for top and bottom slabs except when hooks are specifically called for in the plans or standard drawings.
5. Concrete as specified in ASTM C478, (4000 psi) may be used in lieu of Class II concrete in precast items manufactured in plant which meet the requirements in accordance with Specification Section 449.
6. Precast opening for pipe shall be the pipe $O D$ plus $\sigma^{\prime \prime}\left(\pm 2^{\prime \prime}\right.$ tolerance). Mortar used to seal the pipe into the opening will be of such a mix that shrinkage will not cause leakage into
mortar construction to seal openings less than $21 / 2^{\prime \prime}$ wid
7. For pay item purposes, the height used to detern a drainage structure is greater than io feet shall be computed using . the elevation of the top of the manhole lid,
the
. the outside top elevation of a junction box less the flow line elevation of the lowest pipe or to top of sump floor.

NOTES FOR PRECAST OPTIONS AND

EQUIVALENT REINFORCEMENT SUBSTITUTION

1. Details for optional precast inlet construction up to depths of 15^{\prime} are shown on the inlet indexes.
2. When precast units are used in conjunction with Alt. "B" Structure Bottoms, Index 425-010, the interior di
dimensions
3. Concrete which meets the requirements of ASTM C478 or Class IV must be used for precast structures constructed with $6^{\prime \prime}$ wall or slab thickness.
4. Reinforcement can be either deformed bar reinforcement or welded wire reinforcement. Bar reinforcement other than 60 ksi may be used, however only two grades are recognized; Grade 40
and Grade 60 . Smooth welded wire reinforcement, will be recognized as having a design strength of 65 ksi and deformed welded wire reinforcement will be recognized as having a design strength
of 70 ksi. The area of reinforcement required may be adjusted in accordance with the Equivalent Steel Area Table provided For bars and spacings not given, the steel area required can be determined by the following equations:

Grade 40 Steel Area $=A_{s} 40=\frac{60}{40} \times A_{s} 60$
Smooth Welded Wire Reinforcement Steel Area $=A_{S} 65=\frac{60}{65} \times A_{S} 60$
Deformed Welded Wire Reinforcement Steel Area $=A_{s} 70=\frac{60}{70} \times A_{s} 60$
When a reduced area of reinforcement is provided, any maximum bar spacing shown must also be reduced as determined by the following equations, unless otherwise shown
Max. Grade 40 Bar Spacing $=$ Grade 60 Bar Spacing
Max. Smooth Welded Wire Spacing $=$ Grade 60 Bar Spacing $\times 0.86$
When an increased area of reinforcing is provided, then the maximum bar spacing may be increased by the squared ratio of increased steel area, but not to exceed $12^{\prime \prime}$:
Max. Bar Spacing Provided \leq Max. Bar Spacing Required $\times\left(\frac{\text { Steel Area Provided }}{\text { Min. Steel Area Required }}\right)^{2}$ In no case will reinforcement with wires smaller than W3.1 or D4.0, or spacings greater than
$8^{\prime \prime}$ be permitted. Bar reinforcement shall show the minimum yield designation grade mark or either the number 60 or one (1) grade mark line to be acceptable at the higher value. either the number $\begin{aligned} & \text { Maximum bar spacing shall not be greater than two (2) times the slab thickness with a }\end{aligned}$ maximum spacing of $12^{\prime \prime}$ or three (3) times the wall thickness, with a maximum spacing
of $18^{\prime \prime}$ for vertical bars and $12^{\prime \prime}$ for horizontal bars. Wires smaller than W3.1 or D4.0 are permitted in the walls of ASTM C 478 round structure bottoms and round risers.
5. Fiber-reinforced concrete may be substituted for conventional steel reinforcement in accordance fiver State Drainage Engineer.

DESIGNER NOTE: Use only when round structures are not practical,
engineer of record approval required.

PICTORIAL VIEW

NOTE: 1. Submit Shop Drawings of corner openings for approval by the Engineer of Record
2. h_{2} may be less than $1^{\prime}-0^{\prime \prime}$ when a minimum $1^{\prime}-0^{\prime \prime}$ deep segment, $8^{\prime \prime}$ slab or curb inlet is provided above the corner opening.
3. For inlet segments at finish grade elevation substitute a \#8 Bar for the top corner bar when $1^{\prime}-0^{\prime \prime} \leq h_{2}<2^{\prime}-0$

RECTANGULAR SEGMENT WITH PIPE OPENING AT CORNER

PLAN VIEW FOR SKEWS $\leq 45^{\circ}$ (Not Centered)

PLAN VIEW FOR SKEWS > 45° (Not Centered)

ROUND STRUCTURE BOTTOMS (ALTERNATE A) \& ROUND RISERS- TABLE 1 Wall Thickness ($t_{1} \& t_{2}$) and Vertical \& Horizontal Areas of Reinforcement (A_{s})									
Type	Structure/Riser Diameter (ft)	Cast-In-Place Items Class II Concrete			Precast Items				
					Class II Concrete			ASTM C478	
		t_{1}	t_{2}	As	t_{1}	t_{2}	As	t_{1} or t_{2}	$A_{2}{ }^{* * *}$
		Riser (in.)	Bottom (in.)	(in. ${ }^{2} / \mathrm{ft}$.)	Riser (in.)	$\underset{\substack{\text { Bottom } \\ \text { (in.) }}}{ }$	(in./ft.)	(in.)	(in. ${ }^{2}$ /ft.)
P	$3^{\prime \prime}-6{ }^{\prime \prime}$	6	8	0.20	6	8	0.20	4**	0.105
P	$4^{\prime}-0^{\prime \prime}$	6	8	0.20	6	8	0.20	5**	0.120
J	$5^{\prime}-0^{\prime \prime}$	-	8	0.20	-	8	0.20	6**	0.150
J	$6^{\prime}-0^{\prime \prime}$	-	8	0.20	-	8	0.20	6	0.180
J	$7^{\prime \prime}-0^{\prime \prime}$	-	8	0.20	-	8	0.20	7	0.210
J	$8^{\prime}-0^{\prime \prime}$	-	8	0.20	-	8	0.20	8	0.240
J	$10^{\prime}-0^{\prime \prime}$	-	10	0.40\#\#	-	10	0.40\#\#	10	0.300
J	$12^{\prime}-0^{\prime \prime}$	-	10	0.40\#\#	-	12	0.40\#\#	12	0.360

TABLE 1 NOTES:
each face, $12^{\prime \prime}$ max, bar spacing **Modified minimum wall thickness.
$A_{2}=0.40$ sq. in. for riser section height equal or less than $2^{\prime}-0^{\prime \prime}(2$ hoop min.) $A_{2}=0.60$ sq. in. for riser section height more than $2^{\prime}-0^{\prime \prime}$ up to $4^{\prime} 0^{\prime \prime}(3$ hoop min.) Areas of reinforcing for precast items are based on Grade 60 reinforcing Area of vertical reinforcing may be reduced in accordance with ASTM C478.

SQUARE \& RECTANGULAR STRUCTURES (ALTERNATE B) - TABLE 2				
Type	Wall Length (ft)	$\begin{gathered} \text { Max. } \\ \text { Depth } \\ (f t) \end{gathered}$	Wall Thickness (ts)	
			$\begin{aligned} & \text { (in.) } \\ & \text { (in. } \end{aligned}$	Precast (in.)
P	$\leq 3^{\prime}-6^{\prime \prime}$	40	$\begin{aligned} & 6 \text { Riser } \\ & 8 \text { Bottom } \\ & \hline \end{aligned}$	6
J	$4^{\prime}-0^{\prime \prime}$	40	8	6
J	$5^{\prime}-0^{\prime \prime}$	22	-	6
J	$6^{\prime}-0^{\prime \prime}$	15	-	6
J	5'-0" to $9^{\prime \prime}-0^{\prime \prime}$	40	8	8
J	$10^{\prime}-0^{\prime \prime}$	26	8	8
J	$10^{\prime}-0^{\prime \prime}$ to $12^{\prime}-0^{\prime \prime}$	40	10	9
J	$16^{\prime}-0^{\prime \prime}$	35	-	9
J	$16^{\prime}-0^{\prime \prime}$	40	10	10
J	$20^{\circ}-0^{\prime \prime}$	25	-	9
J	$20^{\prime}-0^{\prime \prime}$	30	10	10

TABLE 2 NOTES:
See Table 8 for Reinforcing Schedule.

1. Standard structure bottoms $4^{4}-0^{\prime \prime}$ diameter and smaller (Alt. A) and $3^{\prime \prime}-6^{\prime \prime}$ square (Alt. B) are designated Type P. Larger standard structure bottoms are designated Type J. Risers are permitted for all structures. Round risers are designated Type A, square risers are designated Type B.
2. Walls of circular structures (Alt. A) constructed in place may be of brick or reinforced concrete. Precast and rectangula structures (Alt. B) shall be constructed of reinforced concrete only. 3. Wall thickness and reinforcement are for either reinforced cast-in-place or precast concrete units except that precast
circular units may be furnished with walls in accordance with ASTM C478 (see modified wall thicknesses in Table 1).
3. Top and bottom slab thickness and reinforcement are for precast and cast-in-place construction. All concrete shall be of Class II concrete, except use Class IV concrete when shown in the Plans, for special applications of structures located in extremely aggressive environments. Concrete as specified in ASTM C478 (4000 psi) may be used in lieu of Class II concrete for precast items manufactured in accordance with Specifications Section 449
4. All reinforcement shown is Grade 60 steel, deformed bar. Equivalent area Grade 40 steel or equivalent area smooth or deformed welded wire reinforcement in accordance with Specification Section 931 may be substituted according to Index 425-001, unless otherwise noted.
5. Alt. A or Alt. B structure bottoms may be used in conjunction with curb inlet tops Types 1, 2, 3, 4, 5, 6, 9, and 10, and any manhole or junction box unless otherwise shown in the plans or other standard drawings. Alt. B structure bottoms may b standard drawings.
6. Rectangular structures may be rotated as directed by the Engineer in order to facilitate connections between the structure walls and storm sewer pipes.
7. Except when ACI hooks are specifically required, reinforcement in top and bottom slab shall be straight embedment.
8. All reinforcement must have $2^{\prime \prime}$ minimum cover except for 3^{\prime} - $6^{\prime \prime}$ diameter precast circular units manufactured under ASTM C478, keyed construction otherwise shown. Additional bars used to restrain hole formers for precast structures with grouted pipe connections,may be left flush with the hole surface. Cut or bend reinforcement at pipe openings to maintain cover. Exposed ends of reinforcing at precast pipe openings and groute joints must be removed ond below conc structures shall be lapped a minimum of 30 bar diameters or by standard hooks at corners.
9. The corner fillets shown are necessary for rectangular structures used with circular risers and inlet throats and when used on skew with rectangular risers, inlets and inlet throats. Fillets will be required in the top slab of the Alt. A structure bottoms when used with the Alt. B risers. Each fillet shall be reinforced with two \#5 bars.
10. Inlet walls, throats, risers or manhole tops shall be secured to structures as shown on Index 425-001 Optional Construction Joints.
11. Structures with depths over 14' below the mean high water table are to be checked for flotation by the designer of the drainage project
12. Units larger than specified standards may be substituted at the contractor's option when these units will not cause or increase the severity of utility conflicts. Such larger units shall be furnished at no additional cost to the Department
Larger Alt. A units cannot replace Alt. B units without approval of the Engineer. This note applies to this Index only.
13. For manhole and junction box tops, for frames and covers, and, for supplementary details and notes see Index 425-001.
14. Type J structure bottoms must have a minimum $6^{\prime}-0^{\prime \prime}$ wall height when possible, for maintenance access.

TABLE 3-MINIMUM STRUCTURE SIZES FOR SINGLE PIPE CONNECTION PER SIDE				
	RECTANGULAR Side Dimension (L)		ROUND	
			Diameter (D)	
	Single Pipe Per Side	$\begin{array}{\|c\|} \hline \text { Note } \\ \text { Number } \end{array}$	$\begin{array}{\|c\|} \hline \text { Single Pipete } \\ \text { or } \\ \theta=180^{\circ} \\ \hline \end{array}$	$\begin{aligned} & \text { 2to } 4 \\ & \text { Pipes } \\ & \theta=90^{\circ} \end{aligned}$
$18^{\prime \prime}$	$3^{\prime}-66^{\prime \prime}$		$3^{\prime \prime}-6^{\prime \prime}$	$4^{\prime \prime}-0^{\prime \prime}$
$24^{\prime \prime}$	$3^{\prime}-6^{\prime \prime}$		$3^{\prime \prime}-6^{\prime \prime}$	$5^{\prime}-0^{\prime \prime}$
$30^{\prime \prime}$	$3^{\prime \prime} 6^{\prime \prime} / 4^{\prime}-0^{\prime \prime}$	2	$4^{4}-0^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$
$36^{\prime \prime}$	$4^{\prime \prime}-0^{\prime \prime} / 5^{\prime \prime}-0^{\prime \prime}$	3	$5^{\prime}-0^{\prime \prime}$	$7^{\prime}-0^{\prime \prime}$
$42^{\prime \prime}$	$5^{\prime}-0^{\prime \prime}$		$6^{\prime}-0^{\prime \prime}$	$7^{\prime}-0^{\prime \prime}$
$48^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$		$6^{\prime}-0^{\prime \prime}$	$8^{\prime}-0^{\prime \prime}$
$54^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$		$7^{1}-0^{\prime \prime}$	$10^{\prime}-0^{\prime \prime}$
$60^{\prime \prime}$	$7{ }^{\prime}-0^{\prime \prime}$		$7^{\prime \prime}-0^{\prime \prime}$	$10^{\prime \prime}-0^{\prime \prime}$
$66^{\prime \prime}$	$7^{\prime \prime}-0^{\prime \prime} / 8^{\prime \prime}-0^{\prime \prime}$	4	$8^{\prime}-0^{\prime \prime}$	$12^{2}-0^{\prime \prime}$
72"	$8^{\prime}-0^{\prime \prime}$		$8^{\prime}-0^{\prime \prime}$	$12^{2}-0^{\prime \prime}$
$78^{\prime \prime}$	$9{ }^{9}-0^{\prime \prime}$		$10^{\circ}-0^{\prime \prime}$	$12^{\prime \prime}-0^{\prime \prime}$
$84^{\prime \prime}$	$9^{\prime}-0^{\prime \prime}$		$12^{2}-0^{\prime \prime}$	N/A

TABLE 3 NOTES:

1. For Round Strutche
. For Round Structures sizes with variable angles between pipes and variable pipe sizes, refer to the FDOT Storm
Drain Handbook.
2. For $3^{\prime \prime}$ - $6^{\prime \prime}$ Precast Square Structure Bottoms, $30^{\prime \prime}$ Pipes with similar invert elevations are not permitted in adjacent walls. Use $4^{4}-0^{\prime \prime}$ Side Dimensions when $30^{\prime \prime}$ pipe openings are required on adjacent walls and
difference in f low lines is less than $3^{\prime}-0^{\prime \prime}$
3. For 4'-0" Precast Square Structure Bottoms, 36" Pipe with similar invert elevations are not permitted in adjacent walls. Use $5^{\prime \prime}-0^{\prime \prime}$ Side Dimensions when $36^{\prime \prime}$ pipe openings are required on adjacent walls and the
is less than $3^{3}-0$
4. For $7^{\prime}-0^{\prime \prime}$ Precast Square Structure Bottoms, $66^{\prime \prime}$ Pipes with similar invert elevations are not permitted in adjacent walls. Use $8^{\prime \prime}-0^{\prime \prime}$ Side Dimensions when $66^{\prime \prime}$ pipe openings are required on adjacent walls and t.
difference in flow lines is less than $44^{\prime}-0^{\prime \prime}$.

TABLE 4-MINIMUM SIZES FOR MULTIPLE PARALLEL PIPE CONNECTIONS FOR RECTANGULAR STRUCTURE BOTTOMS				
$\begin{aligned} & \text { PIPE } \\ & \text { SIZE } \end{aligned}$	$\begin{gathered} \text { PIPE } \\ \text { SPACING } \\ \text { (S) } \end{gathered}$	MINIMUM WALL LENGTH (L) FOR NUMBER OF PARALLEL PIPES		
		2	3	4
$18^{\prime \prime}$	$2^{\prime}-10^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$8^{3}-6^{\prime \prime}$	$11^{\prime}-0^{\prime \prime}$
$24^{\prime \prime}$	$3^{\prime \prime}-5^{\prime \prime}$	$6^{\prime}-6{ }^{\prime \prime}$	$10^{\prime}-0^{\prime \prime}$	$13^{\prime}-6^{\prime \prime}$
$30^{\prime \prime}$	$4^{\prime}-3^{\prime \prime}$	$8{ }^{\prime \prime}-0^{\prime \prime}$	$12^{\prime \prime} 6^{\prime \prime}$	$16^{\prime}-6^{\prime \prime}$
$36^{\prime \prime}$	$5^{\prime}-1{ }^{\prime}$	$9^{\prime \prime}-6^{\prime \prime}$	$14^{4}-6^{\prime \prime}$	$19^{\prime}-6^{\prime \prime}$
$42^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$11^{\prime}-0^{\prime \prime}$	$17^{\prime}-0^{\prime \prime}$	
$48^{\prime \prime}$	$6^{\prime}-9{ }^{\prime \prime}$	$12^{2}-6^{\prime \prime}$	19^{-010}	-
$54^{\prime \prime}$	$7^{\prime \prime}-8^{\prime \prime}$	14^{-010}		-
$60^{\prime \prime}$	$8^{\prime \prime}-6^{\prime \prime}$	$15^{-0} 0^{\prime \prime}$	-	-
$66^{\prime \prime}$	$9^{\prime}-0^{\prime \prime}$	$16^{\prime}-6^{\prime \prime}$	-	-
$72^{\prime \prime}$	$10^{\prime}-0^{\prime \prime}$	$18^{\prime \prime} 0^{\prime \prime}$	-	-
$78^{\prime \prime}$	$10^{\prime}-9^{\prime \prime}$	$19^{\prime}-0^{\prime \prime}$	-	-
$84^{\prime \prime}$	$11^{\prime}-8^{\prime \prime}$	$20^{\prime}-6^{\prime \prime}$	-	

TABLE 4 NOTES:
Minimum wall lengths based on precast structures, using
concrete pipe with maximum skew angles per Table 5.
.Wall lengths exceeding $20^{\circ}-0^{\prime \prime}$ require special designs

TABLE 5-MAXIMUM PIPE SKEW FOR PRECAST ROUND OPENINGS													
	WALLTHICKNESS	PIPE SIZE											
		$18^{\prime \prime}$	24"	$30^{\prime \prime}$	$36^{\prime \prime}$	42"	$48^{\prime \prime}$	$54^{\prime \prime}$	$60^{\prime \prime}$		$72^{\prime \prime}$	$8^{\prime \prime}$	84
	$8^{\prime \prime}$	19°	17°	16°	16°	15°	14°	14°	13°	13°	13°	12°	12°
	$6^{\prime \prime}$		20°	18°	17°	17°	16°	15°	15°	14°	14°	13°	13°

These values are based on $2^{\prime \prime}$ clearance for precast structures.
Larger skews are possible for Cast-In-Place Structures
elliptical pipe openings when approved by the Engineer.

MAXIMUM PIPE SKEW FOR PRECAST ROUND OPENINGS PLAN VIEW

multiple parallel pipe connections detail PLAN VIEW

PRECAST ROUND STRUCTURES WITH multiple pipe connections

Structure sizes for pipe connections

LAST		
REVISION		
$11 / 01 / 17$	苞	DESCRIPTION:

$\begin{array}{cc}\text { FDOT } & \text { 2020-21 } \\ \text { STANDARD PLANS }\end{array}$

SLAB DESIGNS - SQUARE AND RECTANGULAR STRUCTURES (TABLE 6)
(all slabs 8" thick except as noted - reinforcing parallel to short way and long way)
SLAB DESIGNS - ROUND

SHORT-WAY		LONG-WAY	
$\begin{gathered} \text { SLAB } \\ \text { DEPTH } \end{gathered}$	SCHEDULE (Bars A)	$\begin{gathered} \text { SLAB } \\ \text { DEPTH } \end{gathered}$	schedule (Bars B)
SIZE: 3'-6" $^{\text {x U UNLIMITED }}$			
$\geq 0.5^{\prime}<8^{\prime}$	B10	$\geq 0.5^{\prime}<24^{\prime}$	B10
$8^{\prime}<13^{\prime}$	B5.5	24'-40	B5.5
$13^{\prime}<31^{\prime}$	C6.5		
$31^{\prime}-40^{\prime}$	D7		
SIZE: 4 ' \times UNLIMITED			
$\geq 0.5^{\prime}<7^{\prime}$	B5.5	$\geq 0.5^{\prime}<15^{\prime}$	B10
$7^{\prime}<19^{\prime}$	C6.5	$15^{\prime}<29^{\prime}$	B5.5
$19^{\prime}<31^{\prime}$	D7	29'-40'	C6.5
$31^{\prime}-40^{\prime}$	E5		
SIZE: $5^{\prime} \times 5^{\prime}$			
$\geq 0.5^{\prime}<3^{\prime}$	C6.5	$\geq 0.5^{\prime}<3^{\prime}$	C6.5
$3^{\prime}<7^{\prime}$	B5.5	$3^{\prime}<13^{\prime}$	C6.5
$7^{\prime}<22^{\prime}$	C6.5	$13^{\prime}<22^{\prime}$	D7
$22^{\prime}<29^{\prime}$	D7	$22^{\prime}<29^{\prime}$	D4.5
29'-40'	E5	29'-40'	E5
SIZE: $5^{\prime} \times 6^{\prime}$			
$\geq 0.5^{\prime}<12^{\prime}$	C6.5	$\geq 0.5^{\prime}<3^{\prime}$	C6.5
$12^{\prime \prime}<26^{\prime}$	D7	$3^{\prime}<9^{\prime}$	B5.5
$26^{\prime}-40^{\prime}$	E5	$9^{\prime}<23^{\prime}$	C3.5
		$23^{\prime}<35^{\prime}$	D4.5
		$35^{\prime}-40^{\prime}$	E5
SIZE: $5^{\prime} \times{ }^{7}$			
$\geq 0.5{ }^{\prime}<10^{\prime}$	C6.5	$\geq 0.5{ }^{\prime}<10^{\prime}$	B5.5
$10^{\prime}<20^{\prime}$	D7	$10^{\prime}<31^{\prime}$	C3.5
$20^{\prime}<34^{\prime}$	E5	$31^{\prime}-40^{\prime}$	D4.5
$34^{\prime}-40^{\prime}$	F5		
SIZE: $5^{\prime} \times 8^{\prime}$			
$\geq 0.5^{\prime}<7^{\prime}$	C6.5	$\geq 0.5^{\prime}<8^{\prime}$	B10
$7^{\prime}<13^{\prime}$	D7	$8^{\prime}<17^{\prime}$	B5.5
$13^{\prime}<24^{\prime}$	E5	$17^{\prime}<25^{\prime}$	C6.5
$24^{\prime}-40^{\prime}$	F5	25'-40'	C3.5
SIZE: $5^{\prime} \times 9^{\prime}$			
$\geq 0.5^{\prime}<8^{\prime}$	C6.5	$\geq 0.5^{\prime}<14^{\prime}$	B10
$8^{\prime}<14^{\prime}$	D7	$14^{\prime}<24^{\prime}$	B5.5
$14^{\prime}<25^{\prime}$	E5	$24^{<}<34^{\prime}$	C6.5
25'-40'	F5	34'-40'	C3.5
SIZE: 5' x UNLIMITED			
$\geq 0.5^{\prime}<8^{\prime}$	C6.5	$\geq 0.5^{\prime}<14^{\prime}$	B10
$8^{\prime}<14^{\prime}$	D7	$14^{\prime}<24^{\prime}$	B5.5
$14^{\prime}<25^{\prime}$	E5	$24^{\prime}<34^{\prime}$	C6.5
25'-40'	F5	34'-40'	C3.5

SHORT-WAY		LONG-WAY	
$\begin{gathered} \text { SLAB } \\ \text { DEPTH } \end{gathered}$	schedule (Bars A)	$\begin{gathered} \text { SLAB } \\ \text { DEPTH } \end{gathered}$	sChedule (Bars B)
SIZE: $6^{\prime} \times 6^{\prime}$			
$\geq 0.5^{\prime}<13^{\prime}$	C6.5	$\geq 0.5{ }^{\prime}<10^{\prime}$	C3.5
13' $<23^{\prime}$	D7	$10^{\prime}<18^{\prime}$	D4.5
$23^{\prime}-40^{\prime}$	E5	$18^{\prime}<27^{\prime}$	E5
		$27^{\prime}<33^{\prime}$	E3
		33'-40'	F5
SIZE: $6^{\prime} \times 7^{\prime}$			
$\geq 0.5^{\prime}<8^{\prime}$	C6.5	$\geq 0.5^{\prime}<8^{\prime}$	C6.5
$8^{\prime}<16^{\prime}$	D7	$8^{\prime}<12^{\prime}$	C3.5
$16^{\prime}<28^{\prime}$	E5	$12^{\prime}<21^{\prime}$	D4.5
28'-40'	F5	$21^{\prime}<28^{\prime}$	E5
		$28^{\prime}<35^{\prime}$	E3
		$35^{\prime}-40^{\prime}$	F5
SIZE: $6^{6} \times 8^{\prime}$			
$\geq 0.5^{\prime}<6^{\prime}$	C6.5	$\geq 0.5^{\prime}<6^{\prime}$	B5.5
$6^{\prime}<13^{\prime}$	D7	$6^{\prime}<11^{\prime}$	C6.5
$13^{\prime}<22^{\prime}$	E5	$11^{<}<17^{\prime}$	C3.5
$22^{\prime}<35^{\prime}$	F5	$17^{\prime \prime}<22^{\prime}$	D4.5
35'-40'	65	$22^{\prime}<32^{\prime}$	E5
		32'-40'	E3
SIZE: $6^{\prime} \times 9^{\prime}$			
$\geq 0.5^{\prime}<8^{\prime}$	D7	$\geq 0.5^{\prime}<8^{\prime}$	B5.5
$8^{\prime}<14^{\prime}$	E5	$8^{\prime}<14^{\prime}$	C6.5
$14^{\prime}<24^{\prime}$	F5	$14^{\prime}<21^{\prime}$	C3.5
24'-34'	65	21' < 25^{\prime}	D4.5
		25'-34	E5
SIZE: $6^{\prime} \times$ UNLIMITED			
$\geq 0.5^{\prime}<8^{\prime}$	D7	$\geq 0.5^{\prime}<8^{\prime}$	B5.5
$8^{\prime}<14^{\prime}$	E5	$8^{\prime}<14^{\prime}$	C6.5
$14^{\prime}<24^{\prime}$	F5	$14^{\prime}<21^{\prime}$	C3.5
24'-34'	65	$21^{\prime}<25^{\prime}$	D4.5
		25'-34'	E5
SIZE: $7^{\prime} \times 7^{\prime}$			
$\geq 0.5^{\prime}<8^{\prime}$	C6.5	$\geq 0.5^{\prime}<4^{\prime}$	C6.5
$8^{\prime}<15^{\prime}$	D7	$4^{\prime}<7^{\prime}$	C3.5
$15^{\prime}<26^{\prime}$	E5	$7^{\prime}<11^{\prime}$	D4.5
$26^{\prime}-40^{\prime}$	F5	$11^{\prime}<22^{\prime}$	E3
		22' < 32^{\prime}	F3.5
		32'-40'	63.5
SIZE: $7^{\prime} \times 8^{\prime}$			
$\geq 0.5^{\prime}<5^{\prime}$	C6.5	$\geq 0.5^{\prime}<5^{\prime}$	C6.5
$5^{\prime}<11^{\prime}$	D7	$5^{\prime}<8^{\prime}$	C3.5
11 $1^{\prime}<19^{\prime}$	E5	$8^{\prime}<13^{\prime}$	D4.5
$19^{\prime}<30^{\prime}$	F5	$13^{\prime}<22^{\prime}$	E3
30'-40'	65	$22^{\prime}<30^{\prime}$	F3.5
		$30^{\circ}-40^{\prime}$	63.5
SIZE: $7^{7} \times{ }^{\prime \prime}$			
$\geq 0.5^{\prime}<9^{\prime}$	D7	$\geq 0.5^{\prime}<7^{\prime}$	C6.5
$9^{\prime}<15^{\prime}$	E5	$7^{\prime}<10^{\prime}$	C3.5
$15^{\prime}<25^{\prime}$	F5	$10^{\prime}<14^{\prime}$	D4.5
25'-34'	65	$14^{\prime}<21^{\prime}$	E5
		$21^{\prime}<29^{\prime}$	F5
		29'-34'	F3. 5

SLAB AND WALL DESIGN table NOTES 1. Size is the inside dimension(s) of a structure.
2. Slab reinforcement is appropriate for top, intermediate, and
bottom slabs. bottom slabs.
3. Bottom Slabs for precast $3^{\prime}-6^{\prime \prime} \times 3^{\prime}-6^{\prime \prime}$ rectangular structures at 15^{\prime} depth or less, may be $6^{\prime \prime}$ thick.
4. Slab depth is measured from finished grade to top of slab.
5. Wall depth is measured to the top of the bottom slab for boxes and to the top of the intermediate slab for risers.
6. Wall height is the distance between top of lower slab to bottom of upper slab. Maximum wall height is 12 ' for wall
lengths exceeding 5^{\prime}, or 10^{\prime} for wall lengths exceeding 12'.

$\begin{gathered} \text { SLAB } \\ \text { DEPTH } \end{gathered}$	SLAB THICKNESS	$\begin{gathered} \text { REINF. } \\ \text { (2-WAY) } \\ \text { SCHEDULE } \end{gathered}$
SIZE: $3^{\prime \prime}$-6" DIAMETER		
$2^{\prime}-15^{\prime}$	$6^{\prime \prime}$ Precast	C6.5
$0.5{ }^{\prime}<30^{\prime}$	$8^{\prime \prime}$	A6
$30^{\prime}-40^{\prime}$	$8^{\prime \prime}$	B5.5
SIZE: 4-0" DIAMETER		
$\geq 0.5^{\prime}<19^{\prime}$	$8^{\prime \prime}$	A6
$19^{\prime}<30^{\prime}$	$8^{\prime \prime}$	B5.5
$30^{\circ}-40^{\prime}$	$8^{\prime \prime}$	C6.5
SIZE: 5'0" DIAMETER		
$\geq 0.5^{\prime}<15^{\prime}$	$8^{\prime \prime}$	B5.5
$15^{\prime}<26^{\prime}$	$8^{\prime \prime}$	C6. 5
$26^{\prime}<35^{\prime}$	$8^{\prime \prime}$	D7
$35^{\prime}-40^{\prime}$	$8^{\prime \prime}$	D4.5
SIZE: $6^{\prime}-0^{\prime \prime}$ DIAMETER		
$\geq 0.5^{\prime}<9^{\prime}$	$8^{\prime \prime}$	B5.5
$9^{\prime}<15^{\prime}$	$8^{\prime \prime}$	C6.5
$15^{\prime}<22^{\prime}$	$8^{\prime \prime}$	C3.5
$22^{\prime}<30^{\prime}$	$8^{\prime \prime}$	D4.5
30'-40'	$8^{\prime \prime}$	E5
SIZE: 7'-O" $^{\prime \prime}$ DIAMETER		
$\geq 0.5^{\prime}<8^{\prime}$	$8^{\prime \prime}$	C3.5
$8^{\prime}<16^{\prime}$	$8^{\prime \prime}$	D4.5
$16^{\prime}<23^{\prime}$	$8^{\prime \prime}$	E5
$23^{\prime}<27^{\prime}$	$8^{\prime \prime}$	E3
$27^{\prime}-40^{\prime}$	$8^{\prime \prime}$	F3.5
SIZE: $8^{\prime}-0^{\prime \prime}$ DIAMETER		
$\geq 0.5^{\prime}<10^{\prime}$	$8^{\prime \prime}$	D4.5
$10^{\prime}<16^{\prime}$	$8^{\prime \prime}$	E5
$16^{\prime}<19^{\prime}$	$8^{\prime \prime}$	E3
$19^{\prime}<29^{\prime}$	$8^{\prime \prime}$	F3.5
29'-40'	$10^{\prime \prime}$	F5
SIZE: 10'-0" DIAMETER		
$\geq 0.5^{\prime}<12^{\prime}$	$10^{\prime \prime}$	D4.5
$12^{\prime}<20^{\prime}$	$10^{\prime \prime}$	E5
$20^{\prime}<28^{\prime}$	$10^{\prime \prime}$	F5
28'-40'	$10^{\prime \prime}$	63.5
SIZE: 12'-0" DIAMETER		
$\geq 0.5{ }^{\prime}<8^{\prime}$	$10^{\prime \prime}$	D4.5
$8^{\prime}<13^{\prime}$	$10^{\prime \prime}$	E5
$13^{\prime}<18^{\prime}$	$10^{\prime \prime}$	F5
$18^{\prime}<26^{\prime}$	$10^{\prime \prime}$	63.5
$26^{\prime}-40^{\prime}$	$12^{\prime \prime}$	63.5

7. Wall lengths exceeding $6^{\prime}-0^{\prime \prime}$ require two layers of reinforcing
(See Table 8) with $2^{\prime \prime}$ of cover from the horizontal bars to the inside and outside faces for each layer.
8. Wall lengths exceeding the dimensions or depths shown in Table 8, or $12^{\prime}-00^{\prime \prime}$ diameter require a special design.
9. Wall thickness and reinforcing for rectangular structures is based on the longer wall length.
10. Reinforcing schedules with larger areas of steel may be substituted for schedules with smaller bar or wire spacing, A6. See Index 425-001 for allowable bar spacing adjustments when larger areas of reinforcing are substituted.

Wall designs - Rectangular structures (table 8)

VERTICAL REINFORCING			HORIZONTAL REINFORCING			
$\begin{gathered} \hline \text { WALL } \\ \text { DEPTH } \\ \hline \end{gathered}$	SCHEDULE		$\begin{gathered} \hline \text { WALL } \\ D E P T H \\ \hline \end{gathered}$	SCH	DULE	
SIZE: 3^{\prime}-6' \& RISERS						
$\geq 1.17^{\prime}-40^{\prime}$	A12		$\geq 1.17^{\prime}<10^{\prime}$	B10		$6^{\prime \prime} / 8^{\prime \prime}$
			$10^{\prime}<18^{\prime}$	B5.5		$6^{\prime \prime} 18^{\prime \prime}$
			$18^{\prime}<29^{\prime}$	C6.5		$6^{\prime \prime} / 8^{\prime \prime}$
			29'-40'	C3.5		$6^{\prime \prime} / 8^{\prime \prime}$
SIZE: $4^{\prime}-0^{\prime \prime}$						
$\geq 1.17^{\prime}-40^{\prime}$	A12		$\geq 1.17^{\prime}<6^{\prime}$	B10		$6^{\prime \prime} / 8^{\prime \prime}$
			$6^{\prime}<10^{\prime}$	B5.5		$6^{\prime \prime} / 8^{\prime \prime}$
			$10^{\circ}<20^{\prime}$	C6.5		$6^{\prime \prime} 18^{\prime \prime}$
			$20^{\prime}<28^{\prime}$	C3.5		$6^{\prime \prime} 18^{\prime \prime}$
			28' - 40^{\prime}	D4.5		$6^{\prime \prime} / 8^{\prime \prime}$
SIZE: $5^{\prime}-0^{\prime \prime}$						
$\geq 1.17^{\prime}-40^{\prime}$	A12		$\geq 1.17^{\prime}<5^{\prime}$	B5.5		$6^{\prime \prime} / 8^{\prime \prime}$
			$5^{\prime}<9^{\prime}$	C6.5		$6^{\prime \prime} / 8^{\prime \prime}$
			$9^{\prime}<15^{\prime}$	C3.5		$6^{\prime \prime} 88^{\prime \prime}$
			$15^{\prime}<22^{\prime}$	D4.5		$6^{\prime \prime} 18^{\prime \prime}$
			22'-40'	E3		$8^{\prime \prime}$
SIZE: $6^{\prime}-0^{\prime \prime}$						
$\geq 1.17^{\prime}<26^{\prime}$	A12		$\geq 1.17^{\prime}<9^{\prime}$	C3.5		$6^{\prime \prime} / 8^{\prime \prime}$
			$9^{\prime}<15^{\prime}$	D4.5		$6^{\prime \prime} / 8^{\prime \prime}$
			$15^{\prime}<26^{\prime}$	E3		$8^{\prime \prime}$
	Inside Outside			Inside Outside		
$26^{\prime}-40^{\prime}$	A12	A12	$26^{\prime}-40^{\prime}$	D7	D7	$8^{\prime \prime}$
SIZE: $7^{\prime}-0^{\prime \prime}$						
Inside Out side				Inside Outside		
$\geq 1.17^{\prime}<25^{\prime}$	A12	A12	$\geq 1.17^{\prime}<7^{\prime}$	B10	B10	$8^{\prime \prime}$
$26^{\prime}-40^{\prime}$	B10	B10	$7^{\prime}<10^{\prime}$	B5.5	B5.5	$8^{\prime \prime}$
			$10^{\prime}<20^{\prime}$	C6.5	C6.5	$8^{\prime \prime}$
			$20^{\prime}<30^{\prime}$	D7	D7	$8^{\prime \prime}$
			$30^{\prime}-40^{\prime}$	E5	E5	$8^{\prime \prime}$
SIZE: $8^{\prime}-0^{\prime \prime}$						
	Inside Outside			Inside Outside		
$\geq 1.17^{\prime}<20^{\prime}$	A12	A12	$\geq 1.17^{\prime}<6^{\prime}$	B5.5	B5.5	$8^{\prime \prime}$
20'-40	C6.5	C6.5	$6^{\prime}<13^{\prime}$	C6.5	C6.5	$8^{\prime \prime}$
			$13^{\prime}<22^{\prime}$	D7	D7	$8^{\prime \prime}$
			$22^{\prime}<31^{\prime}$	E5	E5	$8^{\prime \prime}$
			31'-40'	F5	F5	$8^{\prime \prime}$
SIZE: $9^{\prime}-0^{\prime \prime}$						
	Inside Outside			Inside Outside		
$\geq 1.17^{\prime}<12^{\prime}$	A12	A12	$\geq 1.17^{\prime}<8^{\prime}$	C6.5	C6.5	$8^{\prime \prime}$
$12^{\prime}<28^{\prime}$	C6. 5	C6.5	$8^{\prime}<15^{\prime}$	D7	D7	$8^{\prime \prime}$
28' -40^{\prime}	D7	D7	$15^{\prime}<23^{\prime}$	E5	E5	$8^{\prime \prime}$
			$23^{\prime}-40^{\prime}$	F5	F5	$8^{\prime \prime}$
SIIE: $10^{\prime}-0^{\prime \prime}$						
	Inside Outside			Inside Outside		
$\geq 1.17^{\prime}<10^{\prime}$	B10	B10	$\geq 1.17^{\prime}<10^{\prime}$	D7	D7	$8^{\prime \prime}$
$10^{\prime}<21^{\prime}$	C6.5	C6.5	$10^{\prime}<17^{\prime}$	E5	E5	$8^{\prime \prime}$
$21^{\prime}<26^{\prime}$	D7	D7	$17^{\prime}<26^{\prime}$	F5	F5	$8^{\prime \prime}$
$26^{\prime}-40^{\prime}$	C6.5	C6. 5	$26^{\prime}-40^{\prime}$	F5	F5	$10^{\prime \prime}$

VERTICAL REINFORCING			HORIZONTAL REINFORCING			
$\begin{gathered} \hline \text { WALL } \\ D E P T H \\ \hline \end{gathered}$	SCHEDULE		$\begin{gathered} \hline \text { WALL } \\ \text { DEPTH } \end{gathered}$	SCH	DULE	
SIZE: 10'-0"1 (Precast Only)						
	Inside Outside			Inside	Outside	
$26^{\prime}-40^{\prime}$	D7	D7	$26^{\prime}-40^{\prime}$	F5	F5	$9^{\prime \prime}$
SIZE: $12{ }^{\prime}-0^{\prime \prime}$						
	Inside Out side		Inside 0 Otside			
$\geq 1.17^{\prime}<14^{\prime}$	B10	B10	$\geq 1.17^{\prime}<10^{\prime}$	C6.5	C6.5	10^{11}
$14^{\prime}<25^{\prime}$	C6.5	C6.5	$10^{\prime}<17^{\prime}$	D7	D7	$10^{\prime \prime}$
$25^{\prime}-40^{\prime}$	D7	D7	$17^{\prime}<24^{\prime}$	E5	E5	$10^{\prime \prime}$
			24'-40'	F5	F5	$10^{\prime \prime}$
SIZE: $12^{\prime}-0^{\prime \prime}$ (Precast Only)						
	Inside Out side			Inside Outside		
$\geq 1.17^{\prime}<12^{\prime}$	B10	B10	$\geq 1.17^{\prime}<10^{\prime}$	D7	D7	$9^{\prime \prime}$
$12^{\prime}<24^{\prime}$	C6.5	C6.5	$10^{\prime}<17^{\prime}$	D4.5	D4.5	$9^{\prime \prime}$
$24^{\prime}-40^{\prime}$	D7	D7	$17^{\prime}<23^{\prime}$	E5	E5	$9^{\prime \prime}$
			$23^{\prime}<32^{\prime}$	F5	F5	$9{ }^{\prime \prime}$
			$32^{\prime}-40^{\prime}$	65	65	$9^{\prime \prime}$
SIZE: $16^{\prime}-0^{\prime \prime}$						
Inside Outside			Inside Outside			
$\geq 1.17^{\prime}<11^{\prime}$	C6.5	C6.5	$\geq 1.17^{\prime}<13^{\prime}$	D7	D7	$10^{\prime \prime}$
$11^{\prime}<20^{\prime}$	D7	D7	$13^{\prime}<20^{\prime}$	E5	E5	$10^{\prime \prime}$
$20^{\prime}<28^{\prime}$	E5	E5	$20^{\prime}<28^{\prime}$	F5	F5	$10^{\prime \prime}$
$28^{\prime}-40^{\prime}$	F5	F5	28'-40'	65	65	$10^{\prime \prime}$
SIZE: 16'-0" (Precast Only)						
Inside Outside				Inside Out side		
$\geq 1.17^{\prime}<10^{\prime}$	C6.5	C6.5	$\geq 1.17^{\prime}<9^{\prime}$	D7	D7	$9^{\prime \prime}$
$10^{\prime}<18^{\prime}$	D7	D7	$9^{\prime}<13^{\prime}$	D4.5	D4.5	$9^{\prime \prime}$
$18^{\prime}<25^{\prime}$	E5	E5	$13^{\prime}<19^{\prime}$	E5	E5	$9^{\prime \prime}$
25' - 35'	F5	F5	$19^{\prime}<27^{\prime}$	F5	F5	$9^{\prime \prime}$
			27' - 35'	65	65	$9^{\prime \prime}$
SIZE: $20^{\prime}-0^{\prime \prime}$						
Inside Outside				Inside Outside		
$\geq 1.17^{\prime}<10^{\prime}$	C6.5	C6.5	$\geq 1.17^{\prime}<8^{\prime}$	D7	D7	$10^{\prime \prime}$
$10^{\prime}<17^{\prime}$	D7	D7	$8^{\prime}<12^{\prime}$	E5	E5	$10^{\prime \prime}$
$17^{\prime}-30^{\prime}$	E5	E5	$12^{\prime}<20^{\prime}$	F5	F5	$10^{\prime \prime}$
			20' - 30^{\prime}	65	65	$10^{\prime \prime}$
SIZE: $20^{\prime}-0^{\prime \prime \prime}$ (Precast Only)						
	Inside Outside			Inside Outside		
$\geq 1.17^{\prime}<8^{\prime}$	C6.5	C6.5	$\geq 1.17^{\prime}<8^{\prime}$	D4.5	D4.5	$9^{\prime \prime}$
$8^{\prime}<13^{\prime}$	D7	D7	$8^{\prime}<12^{\prime}$	E5	E5	$9^{\prime \prime}$
13' - 25^{\prime}	E5	E5	$12^{\prime}<19^{\prime}$	F5	F5	$9^{\prime \prime}$
			19'-25'	65	65	$9^{\prime \prime}$

REINFORCING SCHEDULE				
SCHEDULE	GRADE 60 BARS OR 65 KSI \& 70 KSI WELDED WIRE REINFORCING			
	$\begin{gathered} \text { GRADE } 60 \\ \text { AREA } \\ \left(\text { in. }^{2}\right. \text { /ft.) } \end{gathered}$	maximum Spacing		
		GR 60 (in.)	WWR EQUIV. AREA*	
			$\underset{(i n .)}{65 \text { KSI }}$	$\begin{gathered} 70 \mathrm{KSI} \\ \text { (in.) } \end{gathered}$
A12	0.20	12	8	8
A6	0.20	6	5	4/2/2
B10	0.24	10	8	71/2
B5.5	0.24	51/2	5	4
C6.5	0.37	$61 / 2$	6	5
C3.5	0.37	$31 / 2$	3	21/2
D7	0.53	7	6	5
D4.5	0.53	4/2	4	31/2
E5	0.73	5	4	4
E3	0.73	3	3	3
F5	1.06	5	4	4
F3.5	1.06	31/2	3	3
65	1.45	5	4	4
6.3.5	1.45	$31 / 2$	3	3
H4	1.75	4	3	3

*Equivalent Area Welded Wire Reinforcing may be substituted in accordance with Index 425-001.

WALL REINFORCING SPLICE DETAILS

PLAN (INLET TYPE 2 SYMMETRICAL ABOUT \&)

INLETS TYPES 1 AND 2

DIMENSIONAL SECTION
\#6 Bars Unless
\#6 Bars @ 9"ctrs.

PLAN (INLET TYPE 4 SYMMETRICAL ABOUT q)

SECTION BB (INLET TYPE 4 SYMMETRICAL ABOUT q)

INLETS TYPES 3 AND 4

DIMENSIONAL SECTION

REINFORCING SECTION
REINFORCING SECTION
3'-6" DIA. STRUCTURE BOTTOM (SECTION AA)
 To Be Paid \qquad
 F.L. of Gutter
$1+$
$1+1$

DIMENSION \& REINFORCING HALF SECTION
TYPES A \& E CURB (HALF SECTION AA) (TYPE E GUTTER SHOWN)
TRANSVERSE SECTIONS FOR INLETS TYPES 1, 2, $3 \& 4$

INLETS TYPES 2 AND 4
SLAB REINFORCING

GENERAL NOTES

1. The finished grade and slope of the inlet tops are to conform with the finished cross slope and grade of the
proposed sidewalk and/or border
2. When inlets are to be constructed on a curve, refer to the plans to determine the radius and, where hecessary, modify the inlet details accordingly. Bend steel when necessary.
3. All steel in inlet top shall have $1 \frac{1}{4} 4^{\prime \prime}$ minimum cover unless otherwise shown. Inlet tops shall be either cast-in-place or precast concrete.

For precast units the rear wall and apron may be precast as a separate piece from the top slab.
Provide a minimum of $7 \sim \# 4$ dowels in accordan with Index 425-001 "OPtIonal CONSTRUCTION JoInts".
5. For supplemental details see Index 425-00
6. Only round concrete support post will be acceptable.
7. These inlets are designed for use with standard curb of pedestrian crosswars.
8. For structure bottoms see Index 425-010.
9. Inlet to be paid for under the contract unit price for inlets (Curb) (Type_), Each.
LAST
REVISION
R1/

REVISION
11/01/17
FDOㄷT $\begin{gathered}\text { FY 2020-21 } \\ \text { STANDARD PLANS }\end{gathered}$
425-020

SECTION DD (End View Of Inlet)

SECTION FF

SECTION HH
(Type 5 Inlet Only)

CRoss references:
For General Notes See Sheet 1
For Location of Sections DD
Thru HH See Sheet 1. \qquad
PRECAST DETAILS

$\begin{aligned} & \text { LAST } \\ & \text { REVISION } \\ & 11 / 01 / 17 \end{aligned}$	\|	$\begin{gathered} \text { FY 2020-21 } \\ \text { FDOTANDARD PLANS } \end{gathered}$	$\mathbb{C U R B}$ INLET TOPS TYPES 5 AND 6	$\begin{gathered} \text { INDEX } \\ 425-021 \end{gathered}$	SHEET 2 of 5

ALTERNATE REINFORCING STEEL DETAILS FOR WELDED WIRE REINFORCEMENT (WWR)

WELDED WIRE REINFORCEMENT PIECE NO. 1

PLACEMENT SCHEMATIC FOR WELDED
Wire reinforcement piece no. 1

WELDED WIRE REINFORCEMENT
PIECE NO. 2
Lacement schematic for welded WIRE REINFORCEMENT PIECE NO. 2

CONVENTIONAL REINFORCING STEEL BENDING DIAGRAMS

MARK	size	TYPE 5 InLet		TYPE 6 InLet	
		no.	Length	No.	Length
A (Precast)	4	25	$3^{\prime}-1{ }^{\prime \prime}$	38	$3^{\prime \prime}-1{ }^{\prime \prime}$
A (C-I-P)	4	25	$2^{\prime}-1 \frac{1}{1 / 2}$	38	$2{ }^{\prime}-1 \frac{1}{2 / 1}$
B	4	6	$10^{\prime}-3^{\prime \prime}$	6	15'-9"
c	4	25	11" to $1^{\prime \prime}-11^{\prime \prime}$	38	11" to 1'-11"
D	4	4	$10^{\prime}-3^{\prime \prime}$	4	15'-9"
E	4	16	4'-11/2"	30	$4^{4}-111 / 2^{\prime \prime}$
F	4	3	$6^{\prime}-0{ }^{\prime \prime}$	6	$6^{\prime}-0^{\prime \prime}$
H	4	4	$4^{\prime}-6{ }^{\prime \prime}$	4	$4^{\prime}-6{ }^{\prime \prime}$
J	4	4	$3^{\prime \prime}-0^{\prime \prime}$	4	$3^{\prime \prime}-0^{\prime \prime}$
K (Fillet)	4	2	$2^{\prime}-3^{\prime \prime}$	2	$2^{\prime \prime} 3^{\prime \prime}$
L (Precast)	4	1	$1^{\prime}-4{ }^{\prime \prime}$	0	---
L (C-I-P)	4	10	$1^{\prime}-44^{\prime \prime}$	9	$1^{\prime}-4{ }^{\prime \prime}$
s	4	7	$3^{\prime \prime}-2^{\prime \prime}$	7	$3^{\prime \prime}-2^{\prime \prime}$

Reinforcing steel notes:
BAR 4A

1. All bar dimensions in the bending
diagrams are out to out.
2. Bars 4 A and $4 E$ may be combined into
a single bar.
3. Welded Wire
Welded Wire Reinforcement consists of
Smooth or Deformed wire meeting the requirements of Specification Section 931.

WELDED WIRE REINFORCEMENT
PIECE NO. 3
LAST
REVISION

REVISION
11/01/17
11/01/17

PLACEMENT SCHEMATIC FOR WELDED WIRE REINFORCEMENT PIECE NO. 3

TOP VIEW

LONGITUDINAL SECTION

\#4 Bars Continuous

- \#4 Bar ${ }^{\# 4}$ Bars, $6^{\prime \prime}$ cc, Top \& Bottom
 \#5 Bars, With Hooks. $6^{\text {" }} \mathrm{cc}$, Bottom

B

\#4 Bars, $12^{\prime \prime} \mathrm{cc}$ Or 4x4-W4.0 \times eni.orcement
Welded Wire Reinforcer $40^{\prime \prime} \times 20^{\prime \prime}$
Top \& Bottom

TOP VIEW
\#5 Bar Top \&

FRAME AND GRATE

TOP VIEW

EFFICIENCY CURVE

ransverse section

SECTION

GRATE DETAIL

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	\|ras		FY 2020-21 STANDARD PLANS	$\mathbb{C U R B}$ INLET TOP TYPE 9	$\begin{gathered} \text { INDEX } \\ 425-024 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 1 \end{aligned}$

SECTION

Approximate Debris Free Capacity (0.02 Pavement Cross Slope)

DETAIL A AIL

DETAIL B

GRATE DETAIL

 LOW SIDE SUPERELEVATION
PAVEMENT WARP FOR S low side superelevation shoulders in high side transition
SAVEMENT WARP FOR SHELEVATION

One layer ASTM D6380 Class S, Type III Organic Felt bond breaker between inlet and barrier, including footings.
Joint width 1" max. Seal with backer rod and Department-approved pavement joint sealant. See Section BB For Other Barrier Shape.

BARRIER WITH STEM
AND FOOTING

INLET SECTIONS EXAMPLE BARRIER TYPES

Note: Alt. B Structure Bottom Only. See Index 425-010 inlet with structure bottom

Concrete Barrier (Typ.)

SECTION B-B

GENERAL NOTES

1. Where called for in the Plans, use this inlet in conjunction with median or shoulder barrier per Index 521-001 or a barrier with junction slab and wall coping per Index 521-610. The inlet is
suitable for bicycle and occasional pedestrian traffic, with roller bar installation (see INSET B), but should not be placed in a designated pedestrian travel way.
2. Inlets located in embankments constructed with earth anchored retaining wall shall be designed with minimum depths to reduce adverse impact on the anchorage system. Runs of pipe paralle|
to and near anchored wall shall be avoided wherever practical. Special coordination must be to and near anchored wall shall be avoided wherever practical. Special coordination must be
exercised during the design and construction of storm water systems within anchored wall systems.
3. Inlet bottoms and/or tops may be either precast or cast-in-place. Whether cast as a single unit or as multiple segments, and whether precast or cast-in-place, the upper $2^{\prime}-3^{\prime \prime}$ of the inlet shal be reinforced in accordance with sections CC, DD and EE.
4. All exposed edges and corners shall be $3 / 4$ " chamfer or tooled to $1 / 4$ " radius.
5. When Alternate 6 grate is specified in the plans, the grate is to be hot-dip galvanized after fabrication. Field installation of the filler bar called for in Inset B will not be permitted, thereby requiring tolerance adjustment during fabrication and/or casting, or, matching grate to structure prior to galvanizing.
6. All reinforcing is Grade 60 bars. See Index $425-001$ for equivalent area of welded wire fabric
7. All dimensions are for both precast and cast-in-place inlets unless otherwise noted
8. For supplemental details see Indexes 425-001 and 425-010.
9. Inlets to be paid for under the contract unit for Inlets (Concrete Barrier), Ea

TABLE 1: HORIZONTAL WALL REINFORCING SCHEDULE

WALLDEPTH	schedule	$\begin{gathered} \text { AREA } \\ \left(i n i_{2}^{2} / f t .\right) \end{gathered}$	MAX. SPACING	
			baRS	WWR
O'-5'	A12	0.20	$12^{\prime \prime}$	$8^{\prime \prime}$
$5^{\prime}-10^{\prime}$	A6	0.20	$6^{\prime \prime}$	$5^{\prime \prime}$
10'-15'	A4	0.20	$4^{\prime \prime}$	$3^{\prime \prime}$
10'-15'	B5.5	0.24	51/2	$5^{\prime \prime}$

Index	Sheet
$425-031$	1 of 2

I \bar{C}
\sqrt{B}

TOP SLAB REINFORCING DIAGRAM

SECTION AA
alt. A structure bottom for inlet type s

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	\|	$\begin{gathered} \text { FY 2020-21 } \\ \text { STANDARD PLANS } \end{gathered}$	GUTTER INLET TYPE S	$\begin{gathered} \text { INDEX } \\ 425-040 \end{gathered}$	SHEET 3 of 3

NOTE: Alt. B Structure Bottom Only. See Index 425-010 for structure bottom details and hole reinforcement INLET ${ }^{\text {(For Pipes } 30^{\prime \prime} \text { Dia. And Larger) }}$ WITH STRUCTURE BOTTOM
RECOMMENDED MAXIMUM PIPE SIZES Inlet Inside Wiath \qquad Pipe Size $\frac{24^{\prime \prime}}{30^{\prime \prime}}$

OPTIONAL BAR SPACING

TWO REQUIRED PER INLET
$5^{\prime \prime}$ Steel Grate: Main Bars $5^{\prime \prime} x^{1 / 4} 4^{\prime \prime}$
Intermediate Bars $1 \frac{1}{2} 2^{\prime 1} 1_{4}$
Reticuline Bars $1^{11 / 4} x^{3} / 6^{\prime \prime}$

GENERAL NOTES

1. This inlet is suitable for village swales, ditches, or other areas subject to heavy wheel
loads, minimum debris. This inlet may be placed in loads, minimum debris. This inlet may be placed in areas subject to occasional pedestrian
traffic such as landscaped areas and pavement areas where pedestrians can walk around raffic such as landscaped foas and pawe areas where pedestrians can walk around
2. When alternate " G " grate is specified in plans, the grate is to be hot dip galvanized after fabrication.
3. All reinforcing is Grade 60 bars with $2^{\prime \prime}$ min. cover unless otherwise noted. See Index 425-001 for equivalent area of welded wire fabric. Cut or bend bars out of way of pipe to clear pipe $1 \frac{112 " .}{}$
4. All exposed edges and corners shall be $3 / /^{\prime \prime}$ chamfer or tooled to $1 / /^{\prime \prime}$ radius.
5. All dimensions are for both precast and cast-in-place inlets unless otherwise noted.
6. For supplementary details see Index 425-001.
7. Inlet to be paid for under the contract unit price for Inlets (Gutter Type V), EA HORIZONTAL WALL REINFORCING
SCHEDULE (TABLE 1)

WALL DEPTH	SCHEDULE	AREA (in.2/ft.)	MAX. SPACING	
$0^{\prime}-5^{\prime}$	$A 12$	0.20	BARS	WWR
$5^{\prime}-9^{\prime}$	$A 6$	0.20	$2^{\prime \prime}$	$8^{\prime \prime}$
$9^{\prime}-12^{\prime}$	$A 4$	0.20	$4^{\prime \prime}$	$5^{\prime \prime}$
$9^{\prime}-15^{\prime}$	$B 5.5$	0.24	$5^{\prime \prime} z^{\prime \prime}$	$3^{\prime \prime}$

(CAST-IN-PLACE INLET SHOWN WITHOUT GRATE; PRECAST INLET SIMILAR)

(Pipe Opening Shown) (CAST-IN-PLACE INLET)
(CAST-IN-PLACE INLET SHOWN
PRECAST INLET SIMILAR)

Index	sheet
$425-041$	1 of 2

TOP SLAB REINFORCING DIAGRAM

SECTION AA
ALT. A STRUCTURE BOTTOM FOR INLET TYPE V

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		$\begin{gathered} \text { FY 2020-21 } \\ \text { FTANDARD PLANS } \end{gathered}$	GUTTTER INLET TYPE V	index 425-041	SHEET 2 of 2

TOP SLAB REINFORCING DIAGRAM

TOP SLAB REINFORCING SCHEDULE

SCHEDULE	GRADE 60 (BAR) OR 65 KSI \& 70 KSI (WIRE FABRIC) In.2/ft.
A	0.20
B	0.24
C	0.37
D	0.53
E	0.73
F	1.06
G	1.45

TOP SLAB WITH CENTERED OPENING		
$\begin{gathered} \text { SLAB } \\ \text { DEPTH } \end{gathered}$	$\begin{gathered} \text { SLAB } \\ \text { THICKNESS } \end{gathered}$	REINFORCING (2 WAYS) SCHEDULE
SIZE: $4^{4}-0^{\prime \prime}$		
$\geq 0.5^{\prime}-40^{\prime}$	91/2/	c
SIZE: $5^{\prime}-0^{\prime \prime}$		
$\geq 0.5^{\prime}<30^{\prime}$	91/2"	c
$30^{\prime}-40^{\prime}$	91/2"	D
SIZE: $6^{\prime}-0^{\prime \prime}$		
$0.5^{\prime}<8^{\prime}$	9 $1 /{ }^{1 /}$	B
$8^{\prime}<18^{\prime}$	$91 / 2^{\prime \prime}$	c
$18^{\prime}<30^{\prime}$	91/2"	D
$30^{\prime}<37{ }^{\prime}$	91/2"	E
$37{ }^{\prime}-40^{\prime}$	91/2"	6
SIZE: $8^{\prime}-0^{\prime \prime}$		
$\geq 0.5^{\prime}<9^{\prime}$	$11^{1 / 2}{ }^{\prime \prime}$	C
$9<15^{\prime}$	111/2"	D
$15^{\prime}<23^{\prime}$	111/2"	E
$23^{\prime}<33^{\prime}$	111/2"	E
$33^{\prime}-40^{\prime}$	$11^{1 / 2}{ }^{\prime \prime}$	6

SECTION AA

SECTION BB

GENERAL NOTES

$\stackrel{\rightharpoonup}{B}$

SECTION AA
single slot

c

1. The general purpose of the inlet top designs are
a. For ditches, medians or other areas subject to heavy wheel loads. This inlet may be placed in areas subject to occasional pedestrian traffic such as landscaped suitable for bicycle traffic.
. Provide full grate and horizontal slot designs for new construction
c. Provide full grate and horizontal slot designs for replacing the vertical slot tops on existing Inlets Type B and Type x that are in locations subject to occasional pedestrian traffic.
2. All reinforcing is Grade 60 bars with $2^{\prime \prime}$ min. cover unless otherwise noted. See Index 425-001 for equivalent area of welded wire fabric. Bars to be cut or bent for min. 11/2 learance around pipe
3. All exposed edges and corners shall be $3 / 4^{\prime \prime}$ chamfer or tooled to $1 / 4^{\prime \prime}$ radius.
4. When Alternate G grates are specified in the plans, the grates are to be hot-dip galvanized after fabrication
5. Cost for constructing traversable tops on new inlet boxes shall be included in the contract unit price for Inlets (DT BOT) (Type B), EA., and shall include the cost for
surrounding concrete inlet pavement. Existing Inlets Type B and Inlets Type X that are converted to traversable inlet tops shall be paid for under the contract unit price for Inlets (DT BOT) (Type B) (Partial), EA. Unit price and payment shall be full compensation or inlet conversion and shall include the removal and disposal of any existing concrete inlet pavement; the removal and stockpiling or disposal of sufficient material from the
existing inlet box to facilitate construction of the required inlet top; construction of the existing inlet box to facilitate construction of the required inlet top; construction of the
required inlet conversion; backfill construction; construction of concrete inlet pavement; reusing, supplementing, transferring or replacing grates as required by plans or as directed by the Engineer; any required earthwork for ditch restoration within 30^{\prime} of the inlet; and, restoration of disturbed turf.
6. Ditch pavement shall be paid for, separate from the inlet and concrete inlet pavement, by pavement types and units as called for in the plans.
7. Sod will be paid for under the contract unit price for Performance Turf, SY
B. For supplementary details see Index 425-001.
8. All dimensions are for both precast and cast-in-place inlets unless otherwise noted.

DESIGN NOTES

1. The type of top (single or double slots) depends on the approach ditch configuration and the hydraulic requirements of the site. The designer will stipulate in the plans the type of top to be constructed at each individual inlet location.
2. On existing inlets, conversion grates shall be constructed at the original grate elevations unless other elevations are called for in the plans. When plans call for the intet top to be constructed to support storm water detention, details for ditch modifications and underdrains shall be shown in the plans.

MAINTENANCE NOTES

Traversable inlet tops that are constructed by maintenance contract or by maintenance forces may reuse the existing grates that are determined by the Maintenance Engineer to be functionally sound, and their reuse is so directed by the Maintenance Engineer. Existing grates approved for reuse and new grates may be mixed, matched or replaced as directed by the Maintenance Engineer.
TRAVERSABLE TOPS FOR INLETS TYPE B AND
FOR CONVERSIONS OF EXISTING INLETS TYPE B AND TYPE X

$\begin{aligned} & \text { LAST } \\ & \text { REVISION } \\ & 11 / 01 / 17 \end{aligned}$	\|	$\begin{gathered} \text { FY 2020-21 } \\ \text { FDOTANDARD PLANS } \end{gathered}$	DITCH BOTTOM INLET TYPE B	INDEX 425-051	SHEET 2 of 3

TOP SLAB REINFORCING DIAGRAM

TOP SLAB REINFORCING SCHEDULE	
SCHEDULE	$\begin{gathered} \text { GRADE } 60 \text { (BAR) } \\ \text { OR } 65 \mathrm{KSI} \mathrm{\&} \& \\ 70 \mathrm{KSI} \text { (WIRE FABRIC) } \\ \text { In'2/ft. } \\ \hline \end{gathered}$
A	0.20
B	0.24
c	0.37
D	0.53
E	0.73
F	1.06
6	1.45

TOP SLAB WITH CENTERED OPENING

TOP SLAB WITH CENTERED OPENING		
$\begin{gathered} \text { SLAB } \\ \text { DEPTH } \end{gathered}$	$\begin{gathered} \text { SLAB } \\ \text { THICKNESS } \end{gathered}$	REINFORCING (2 WAYS) SCHEDULE
SIZE: $6^{\prime}-0^{\prime \prime}$		
$0.5^{\prime}<8^{\prime}$	91/2"	B
$8^{\prime}<18^{\prime \prime}$	91/2"	c
$18^{\circ}<30^{\prime}$	91/2"	D
$30^{\prime}<37^{\prime}$	91/2"	E
$37^{\prime}-40^{\prime}$	91/2"	${ }^{6}$
SIZE: $8^{\prime}-0^{\prime \prime}$		
$\geq 0.5{ }^{\prime}<9^{\prime}$	111/2"	c
$9^{\prime}<15^{\prime}$	111/2"	D
$15^{\prime}<23^{\prime}$	111/2"	E
$23^{\prime}<33^{\prime}$	111/2"	E
33'-40'	111/2"	${ }^{6}$

alt. A structure bottom for inlet type b

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		$\begin{gathered} \text { FY 2020-21 } \\ \text { FDOTY } \\ \text { STANDARD PLANS } \end{gathered}$	DITCH BOTTOM INLET TYPE B	$\begin{gathered} \text { INDEX } \\ 425-051 \end{gathered}$	SHEET 3 of 3

PLAN

SECTION
horizontal wall reinforcing SCHEDULES (TABLE 1)

WALLDEPTH	SChedule	$\begin{gathered} \text { AREA } \\ \left(i n_{2}^{2} / f t .\right) \end{gathered}$	MAX. SPACING	
			bARS	WWR
${ }^{\prime}$ '-15'	A12	0.20	12"	$8^{\prime \prime}$

TYPE C
Recommended Maximum Pipe Size:
$2^{\prime \prime}-0^{\prime \prime}$ Wall $-18^{\prime \prime}$ Pipe
$3^{\prime}-1^{\prime \prime}$ Wall - $24^{\prime \prime}$ Pipe $18^{\prime \prime}$ where an $18^{\prime \prime}$ pipe enters a $2^{\prime}-0^{\prime \prime}$ wall)

PLAN

SECTION
horizontal wall reinforcing SCHEDULES (TABLE 2)

WALL DEPTH	SCHEDULE	AREA (in.2/ft.)	MAX. SPACING	
			WWR	
$0^{\prime}-6^{\prime}$	$A 12$	0.20	$12^{\prime \prime}$	$8^{\prime \prime}$
$6^{\prime}-10^{\prime}$	$A 6$	0.20	$6^{\prime \prime}$	$5^{\prime \prime}$
$10^{\prime}-13^{\prime}$	$A 4$	0.20	$4^{\prime \prime}$	$3^{\prime \prime}$
$10^{\prime}-15^{\prime}$	$B 5.5$	0.24	$51^{\prime \prime}$	$5^{\prime \prime}$

TYPE D
Recommended Maximum Pipe Size:
$3^{\prime \prime}-1^{\prime \prime}$ Wall-24" Pipe
$4^{\prime}-1^{\prime \prime}$ Wall $-36^{\prime \prime}$ Pipe

SECTION
horizontal wall reinforcing SCHEDULES (TABLE 3)

WALL DEPTH	SCHEDULE	AREA (in.2/ft.)	MAX. SPACING	
$0^{\prime}-5^{\prime}$	A12		$12^{\prime \prime}$	$8^{\prime \prime}$
$0^{\prime}-7.5^{\prime}$	$A 6$	0.20	$6^{\prime \prime}$	$5^{\prime \prime}$
$7.5^{\prime}-10^{\prime}$	$B 5.5$	0.24	$5^{\prime \prime} / z^{\prime \prime}$	$5^{\prime \prime \prime}$
$10^{\prime}-15^{\prime}$	$C 6.5$	0.37	$6^{\prime \prime} z^{\prime \prime}$	$6^{\prime \prime}$

TYPE E
Recommended Maximum Pipe Size:
3^{3}-0" Wall - 24" Pipe
$4^{4}-6^{\prime \prime}$ Wall $-36^{\prime \prime}$ Pipe
,

HORIZONTAL WALL REINFORCING
SCHEDULES (TABLE 4)

wall DEPTH	schedule	$\begin{gathered} \text { AREA } \\ \left(i n .2^{2} / f t .\right) \end{gathered}$	max. SPACING	
			bARS	wWR
$0^{\prime}-5^{\prime}$	B5.5	0.24	5 ${ }^{1 / 2}$	$5^{\prime \prime}$
$5^{\prime}-7^{\prime}$	C6.5	0.37	6/2/2	$6^{\prime \prime}$
7'-15'	D4.5	0.53	$41 /{ }^{1 /}$	$4^{\prime \prime}$

TYPE H (2 \& 3-GRATE INLET) Recommended Maximum Pipe Size.
$1-24^{\prime \prime}$ Pipe
Or $2-24^{\prime \prime}$ Pipe ($5=3^{\prime}-5^{\prime \prime}$)

horizontal wall reinforcing SCHEDULES (TABLE 5)

WALLDEPTH	SCHEDULE	$\begin{gathered} \text { AREA } \\ \left(i n . .^{2} / f t .\right) \end{gathered}$	MAX. SPACING	
			BARS	wWR
$0^{\prime}-5^{\prime}$	C3.5	0.37	$3{ }^{1 / 2}{ }^{\prime \prime}$	3
$5^{\prime}-10^{\prime}$	D4.5	0.53	$4^{1 / 2}{ }^{\prime \prime}$	$4^{\prime \prime}$

TYPE H (4-GRATE INLET)
Recommended Maximum Pipe Size:
GENERAL NOTES
$8^{\prime}-9^{\prime \prime}$ wall - 1-78" Pipe
See Sheet 3 of 7 .
or $2-30^{\prime \prime}$ Pipe ($5=4^{\prime}-3^{\prime \prime}$)

PLAN VIEW

PLAN

$\angle 5 \times 31 / 251 / 16$
$\angle 5 \times 31 / 2 \times 5 / 16-C$
STEEL GRATE
$5^{\prime \prime}$ Steel Decking, Weight 630 Lbs. Main Bars $5^{\prime \prime} \times 1 / 4^{\prime \prime}$
Intermediate Bars $1^{1 / 1 / 2} \times 1 / 4^{\prime \prime}$, Reticuline Bars $1 \frac{114}{}{ }^{\prime \prime} \times 3 / 6^{\prime \prime}$

SECTION BB

TYPE G

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		$\begin{gathered} \text { FY 2020-21 } \\ \text { STANDARD PLANS } \end{gathered}$	DITCH BOTTOM INLET TYPES \mathbb{F} AND G	$\begin{gathered} \text { INDEX } \\ 425-053 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 2 \end{aligned}$

INLET LENGTHS (L) LESS THAN OR EQUAL TO 9' (SINGLE LAYER WALL REINFORCING)

PLAN

SLAB REINFORCEMENT

SLAB SECTION

SECTION BB

1. For additional details see Index 425-052
2. Inlet to be paid for under the contract unit price for Inlets (Ditch Bottom Type C Moafirea), EA Handrail to be paid for under the contract unit price for Pipe Handrail, (Material), LF.

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		FDOTY	FY 2020-21 STANDARD PLANS	BACK OF SIDEWALK DRAINAGE

PLAN

Notes:

Pipe Size (in)	C	Concrete Class I (CY)	Sand-Cement Riprap (CY)
15	$4^{\prime}-9^{\prime \prime}$	2.3	1.1
18	$5^{\prime}-3^{\prime \prime}$	2.6	1.3
24	$6^{\prime}-3^{\prime \prime}$	3.3	1.8

2. Grading back of sidewall k varies and shall be done as directed by the Engineer.
3. Grading back of sidewalk varies and shall be done as directed by the Engineer.
4. Concrete quantities shown are for maximum wall heights, and shall be basis for estimate and payment.
5. Riprap quantities shown are for estimate purposes only. Cost of riprap to be included in cost of the endwall.
6. Endwalls to be paid for under the contract unit price for Concrete Class I (Endwalls), CY. Handrail to be paid for
under the contract unit price for Pipe Handrail, (Material), LF. under the contract unit price for Pipe Handrail, (Material), LF

YARD DRAIN ITEM INCLUDES:

1. $15^{\prime \prime} \times 15^{\prime \prime} \times 12^{\prime \prime}$ Concrete or PVC Tee 4' long.
2. Grate diameter $=14-1 / 4$

Thickness $=2-1 / 2^{\prime \prime}$
Light Duty Cast Iron, see Specification Section 962.
3. $12^{\prime \prime}$ pipe as necessary
4. 0.04 Cubic yards concrete for slab.

Notes:

1. Yard drains to be located outside the R/W. Drainage area should not exceed 750 SF (grate flow 0.1 Cfs).
2. Yard drains may be constructed at the option of the property owner as shown on the plans.
3. Cost of plugs and collars to be included in the cost for $15^{\prime \prime}$ pipe. For collar and plug details see Index 430-001
4. Yard drains to be paid for under the contract unit price for Yard Drains, EA.

SHALLOW DITCHES
Notes:

Note
Miter to slope.

1. To be constructed at locations as directed by the Engineer,
2. Either cast iron pipe or PVC rigid conduit, U.L. listed for direct sunlight exposure, Schedule 40, may be used.
for under the contract unit price for either Cast Iron Soil Pipe (Standard) (4")
LF or PVC Pipe For Back of Sidewalk Drainage (4"), LF

ENDWALL

SECTION AA
 cost of The Inlet.

FLUME W/O SIDEWALK INLET (CLOSED FLUME) TYPE II SIngle barrel flume depicted

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		DESCRIPTION:	FDOTY	FY 2020-21 STANDARD PLANS	CLOSED FLUME INLET	$\begin{gathered} \text { INDEX } \\ 425-061 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 3 \end{aligned}$

DIMENSIONS				
Skimmer Height as Specified in the Plans	Inches Bolt Hpacing			
D				
12	$33 / 16$	3	28	3
14	$33 / 16$	3	28	4
16	$33 / 16$	3	28	5
18	$33 / 16$	3	28	6
20	$43 / 16$	4	31	6
22	$43 / 16$	4	31	7
24	$43 / 16$	4	31	8
26	$43 / 16$	4	31	9
28	$43 / 16$	4	31	10
30	$53 / 16$	5	31	10
32	$53 / 16$	5	31	11
34	$53 / 16$	5	31	12
36	$63 / 16$	6	31	12
38	$63 / 16$	6	31	13
40	$63 / 16$	6	31	14

1/4" Thick × $11 /{ }^{\prime \prime}$ Wide
FLAT BAR

FRONT PANEL

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	\|	STANDARD PLANS	SKIMMER FOR OUTLET CONTROL STRUCTURES	$\begin{gathered} \text { INDEX } \\ 425-070 \end{gathered}$	SHEET 2 of 2

NOTES:

1. These details are for construction field expediency to resolve utility conflicts that cannot be remedied by relocation. For
conflicts determined during design, use the construction shop drawings for structure details.
2. Concrete used in conflict structures shall be as specified in ASTM C478. 4000 psi may be used in lieu of Class I concrete.
3. Maximum opening for pipe shall be the pipe $O D$ plus $6^{\prime \prime}$. Mortar used to seal the pipe into the opening will be of such mix that
shrinkage will not cause leakage into or out of the structure.
4. If the conflict structure is round or there are multiple inlet or 4. If the conplet structure is round or there are multiple inlet or
5. If during construction or the plans design process it is determined that a potable water supply line must pass though a storm drain
structure, it must be in compliance with Chapter $62-555.314$ (3) F.A.C. and shown on the desion or construction plans and submitted
to the Florida Department of Environmental Protection (FDEP) to the Florida Department of Environmental Protection (FDEP)
Administrator For Drinking Water in the respective FDEP District for review and comment. This index and rulectivation provide accepted methods for addressing conflicts when and where they cannot be reasonably avoided. To be submitted along with the
plans shall be a justification describing inordinate cost and the impracticality of avoidance. If identified, properly justified, and accomplished in accordance with this index, approval is
granted. Upon request, the Utility Agency Owner (UAO) must granted. Upon request, the Utility Agency owner (UAO) must
provide support data on the cost of relocation or adjustment to the FDO for submittal to the FDEP. See the following web site
for District FDEP Drinking Water Contacts: for District FDEP Drinking Water Contacts www.dep.state.fl.us/water/drinkingwater/index.htm and click on
"Organization" on the menu to the right.

DESIGNER'S NOTES:

"Sumped" conflict manholes shall not be used unless the system is the sump is completely blocked

section longitudinal to carrier pipe
= UTILITY CONFLICT CONDITION I

SECTION LONGITUDINAL TO CARRIER PIPE
 (Pressure Or Fluid Carrier Installations)

SECTION B-B

UTILITY CONFLICT PIPES THRU STORM DRAIN STRUCTURES

LONGITUDINAL SECTION

PLAN

SECTION BB

SAFETY MODIFICATION FOR INLETS IN BOX CULVERTS

| $\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$ | \|c|c|c | DESCRIPTION: | | FY 2020-21
 STANDARD PLANS | S AFE TY MODIFICATIONS FOR INLET IN BOX CULVERTS | $\begin{gathered} \text { INDEX } \\ 425-090 \end{gathered}$ | $\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 1 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

NOTES:

. Fill or excavate variable slopes during normal grading operations.
2. Minimum distance as required to comply with safety criteria.
3. Use Larger Value of Either

L=10xH (No Maximum)
$L=10 \times$ Ditch offset (Maximum $L=100^{\prime}$)
4. Slope to normal slope if possible. Slope not to be steeper than 1:2. See side elevation (extended) below if 1:2 slope must go beyond toe of normal slope.
5. 1:2 slope if necessary to go beyond normal toe of slope and maintain ditch width by moving out back slope.

PLAN

SIDE ELEVATION (TYPICAL)
= FRONT SLOPES at drainage structures

TABLE OF CONTENTS:	
Sheet	Description
1	Limits of Variable Front Slopes at Drainage Structures
2	Round and Elliptical Concrete Pipe Joint
3	Filter Fabric Jacket, Concrete Jacket, and Pipe Plug
4	Concrete Collars
5	Pipe End Guard
6	Retaining Wall Concrete Gutter and Drains

LIMITS OF VARIABLE FRONT SLOPES AT DRAINAGE STRUCTURES

SCHEDULE OF BELL REINFORCEMENT

$\begin{aligned} & \text { Nominal } \\ & \text { Pipe } \\ & \text { Diameter } \end{aligned}$Diameter	$\begin{gathered} \text { Design } \\ \text { Bell } \\ \text { Reinforcement } \end{gathered}$	Maximum Reinforcement Under Tolerance
	in ${ }^{2}$ per foot	in^{2} per foot
$15^{\prime \prime}$	0.07	0.010
$18^{\prime \prime}$	0.07	0.010
$24^{\prime \prime}$	0.09	0.010
$30^{\prime \prime}$	0.12	0.010
$36^{\prime \prime}$	0.14	0.010
$42^{\prime \prime}$	0.16	0.010
$48^{\prime \prime}$	0.19	0.011
$54^{\prime \prime}$	0.21	0.012
$60^{\prime \prime}$	0.23	0.0135
$66^{\prime \prime}$	0.26	0.015
$72^{\prime \prime}$	0.28	0.0165
$78^{\prime \prime}$	0.30	0.018
$84^{\prime \prime}$	0.33	0.0195
$90^{\prime \prime}$	0.35	0.021
$96^{\prime \prime}$	0.37	0.0225
102"	0.40	0.024
$108^{\prime \prime}$	0.42	0.0255

NOTES:

1. Allowable Tolerance for the last full wrap of reinforcing when using single elliptical cage
2. Extend the last full wrap of reinforcing to the shoulder point and meet ASTM C-76 requirements.
3. All circunferential steel located above this line and within the 175 L is defina as bell reinforcement.

PREFORMED PLASTIC JOINT

PRofile rubber gasket

NOTES:

1. Filter Fabric Jacket is required on both type of joints.
2. Details shown before pull-up.

end elevation

stub end elevation

SIDE ELEVATION

NOTES:

1. The collar may be formed by any method approved by the Engineer.
2. Install $1 / 2^{\prime \prime} \times 16^{\prime \prime}$ dowels in adhesive bond material.
3. Stub Pipes maximum diameter:
$1 / 2$ of a round main line pipe diameter, or $1 / 2$ the height of elliptical main line pipes.
4. Opening by Pipe Manufacturer.
5. Install riser reinforcement using \#5 Bars @ 18" centers vertically and $6^{\prime \prime}$ centers horizontally. Bend pipe steel to riser.
6. Reinforced concrete top required when inlet: manhole or junction box riser is less than 4 feet in diameter; or when $3^{\prime}-6^{\prime \prime}$, alt. b inlet,
manhole or junction box riser is used; or when rectangular inlet is used.
7. See Index 425-001 for optional construction joints,

isometric view \qquad GUARD

SIDe elevation

SECTION A-A

SECTION B-B
elevation

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$		$\begin{gathered} \text { FY 2020-21 } \\ \text { FTANDARD PLANS } \end{gathered}$	MIS CELLANEOUS DRAINAGE DETAILS	$\begin{array}{\|l\|l\|} \hline \text { INDEX } \\ 430-001 \end{array}$	SHEET 6 of 6

GENERAL NOTES:

1. Use Class I concrete.
2. Reinforcing steel: All bars are size \#4. Spacing's shown are center to center. Laps to be $1^{1-5 " ~ m i n i m u m . ~ C o v e r ~ i s ~} 2^{\prime \prime}$ except as noted. Square welded wire fabric (two cages max.) In
an equivalent cross sectional area (0.20 sq. in.) may be an equivalent cross sectional area
substituted for bar reinforcement.
3. Endwall may be cast in place or precast concrete. Construct precast units to dimensions shown, or as shown in approved
shop drawings. Use Index $425-001$ for opening and grouting shop ar
details.
4. Quantities shown are for estimating purposes only.

TABLE OF CONTENTS:	
t	Description
	General Notes and Contents
	Dimensional and Reinforcing Details

U-TYPE CONCRETE ENDWALLS 15" TO 30" PIPES WITH GRATES
(24" Pipe Shown)

$\overline{\bar{Z}}$ FRONT SLOPE TRANSITION AT ENDWALL

\qquad REINFORCING DETAIL \qquad

			ABLE	2	
	DIM	SION	AND	QUANTITI	
	$\begin{aligned} & \hline \text { Pipe } \\ & \text { Dia. } \end{aligned}$	$\begin{gathered} A_{(F t .)} \end{gathered}$	$\begin{gathered} B \\ (F t) \end{gathered}$	Class I Conc (CY)	Reinf. Steel (lbs.)
Slope	$15^{\prime \prime}$	5.67	2.38	0.85	56
	$18^{\prime \prime}$	6.67	1.875	1.01	73
	$24^{\prime \prime}$	8.67	1.875	1.65	97
	$30^{\prime \prime}$	10.67	1.875	2.33	129

ELEVATION END VIEW

- TYPE 1 AND TYPE 2 GRATE DETAILS=

NOTES:

1. Install grate bars evenly spaced across dimension D.
2. All bars and grate bars are $1 / 2^{\prime \prime} \times 2^{\prime \prime}$.

TABLE 3

${ }^{\text {Pipe }}$ D Dia.	Grate Bars Reqd.		$\begin{aligned} & \text { Grate } \\ & \text { wt. (lbs.) } \end{aligned}$	Grate Reqd.		Grate Wt. Wtal (lbs.)
	Type No. 1	Type No. 2		Type No. 1	Type No. 2	
	2	0		2	0	
$18^{\prime \prime}$	0	3	33.69	0	3	101.08
$24^{\prime \prime}$	0	4	43.63		4	174.52
$30^{\prime \prime}$	0	5	53.55	0	5	267.75

SIDE VIEW

TOP VIEW
TYPE 1

TYPE 2 $\underline{\square}$

SECTION A-A

grate, SEAT, WELD \& CHAIN DETAIL

general notes:

1. Use Class I concrete
2. Construct Baffles only when called for in Plans.
3. See Sheet 5 when steel grating is required on endwall.
4. All reinforcing \#4 bars with 2" clearance except as noted

Channel section C 3×6 may be substituted for C 4×5.4 channel
6. Endwall may be cast in place or precast concrete. Construct precast units to dimensions shown, or as shown in approved shop drawings. Submit requests for shop drawing approvals to the Engineer. Use Index 425-001 for opening and grouting etails.
7. Quantities shown are for estimating purposes only.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Endwalls for 1:2 Slopes With Baffles
3	Endwalls for 1:2 Sopes without Baffles and Bending Bar Diagram
4	Endwalls for 1:3, 1:4, and 1:6 Slopes
5	Steel Grate Option

U-TYPE CONCRETE ENDWALLS $\bar{\square}$

PLAN

PLAN

front View

elevation

NOTE.
See Sheet 3 for Bar Bending Diagram.
LEGEND:
$H=$ Horizontal Bars
$V=$ Vertical Bars
$B=$ Bent Bars
D $=$ Dowels or Diagonal Bars

BACK VIEW

ENDWALLS FOR 1:2 SLOPES WITH BAFFLES

Sta./Off set Location
PLAN

PLAN

side view

LEGEND:
H = Horizontal Bars
$v=$ vertical Bars
$B=$ Bent Bars
D $=$ Dowels or Diagonal Bars

BACKWALL SECTION
DIMENSIONS AND QUANTITIES FOR ONE U-ENDWALL

Pipe		L	Ht	w	 cu. Yd	$\begin{aligned} & \text { Reinf. } \\ & \text { Steel } \\ & \text { lbs. } \end{aligned}$
Dia.	$\begin{gathered} \text { Area } \\ \text { Sq. Ft. } \end{gathered}$					
$15^{\prime \prime}$	1.23	$3^{\prime \prime}$	$1^{1}-7{ }^{1} / 2^{\prime \prime}$	3'-7"	0.89	39
$18^{\prime \prime}$	1.77	$3^{\prime \prime}-9^{\prime \prime}$	1'-101/2"	$3^{\prime \prime}-10^{\prime \prime}$	1.05	43
$24^{\prime \prime}$	3.14	4'-9"	$2^{\prime}-4^{17} 2^{\prime \prime}$	$4^{\prime \prime}-4{ }^{\prime \prime}$	1.40	55
$30^{\prime \prime}$	4.91	$5^{\prime}-9^{\prime \prime}$	$2^{\prime}-10{ }^{1 / 2 \prime}$	$4^{\prime \prime}-10^{\prime \prime}$	1.88	64

ENDWALL WITHOUT BAFFLES $=$
\qquad

BENDING DIAGRAM
ENDW ALLS FOR 1:2 SLOPES WITHOUT BAFFLES AND BAR BENDING DIAGRAM

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$		$\begin{gathered} \text { FDOT } \\ \text { 2020-21 } \\ \text { STANDARD PLANS } \end{gathered}$	U-TYPE CONCRETE ENDWALLS BAFFLES \& GRATE OPTIONAL 15 " TO 30 " PIPE	index 430-011	SHEET 3 of 5

NOTE:

1. Reinforcing similar to Sheets 2 and 3 .
2. See Sheet 3 for Bar Bending Diagram

$$
\text { 1:3 SLOPES } \longrightarrow
$$

24" AND 30" PIPE

- 1:4 SLOPES

24" AND 30" PIPE
1:6 SLOPES
(side
REINFOR A And Backwall Sections Shown)
$\overline{\text { Show }}$ DETAIS

DIMENSIONAL DETAILS

ENDW ALLS WITH AND WITHOUT BAFFLES FOR 1:3, 1:4, AND 1:6 SLOPES
U-TYPE CONCRETE ENDWALLS BAFFLES
\& GRATE OPTIONAL 15" TO 30" PIPE
30-011

GENERAL NOTES:

1. Use Class I concrete.
2. Chamfer all exposed edges $3 / 4$.
3. See Index 550-002 for details of Type B fencing
4. Quantities shown are for estimating purposes only

Pipe		DIMENSION TABLE																Concrete(CY)	$\begin{aligned} & \text { Reinf } \\ & \text { Steei } \\ & (1 b) \end{aligned}$	Sand-Cement Riprap(Nom.) (CY)
		Feet - Inches											Inches							
		w	Ht	L	a	b	c	d	e	f	9	m	n	p	s	t	k			
$30^{\prime \prime}$	4.91	-0	6-3	10-8	4-7	6-1	3-4	-4	1-2	2-6	3-0	1-11	6	$61 / 2$	7	7	3	6.72	736	10.6
$36^{\prime \prime}$	7.07	10-5	7-3	12-4	5-3	7-1	3-10	1-7	1-3	3-0	3-6	2-3	7	71/2	8	8	3	10.34	1,072	13.6
$42^{\prime \prime}$	9.62	11-10	8-0	14-0	6-0	8-0	4-5	1-9	1-6	3-0	3-11	2-6	8	$8^{1 / 2}$	9	8	4	14.82	1,429	17.5
$48^{\prime \prime}$	12.57	13-3	9-0	15-8	6-9	8-11	4-11	2-0	1-7	3-0	4-5	2-10	9	91/2	10	8	4	20.36	2,000	22.1
$54^{\prime \prime}$	15.90	14-8	9-9	17-4	7-4	10-0	5-5	2-2	1-10	3-0	4-11	3-0	10	101/2	10	8	4	27.19	2,659	27.2
$60^{\prime \prime}$	13.63	16-1	10-9	19-0	8-0	11-0	5-11	2-5	1-11	3-0	5-4	3-4	11	111/2	11	8	6	34.49	3,552	32.5
$66^{\prime \prime}$	23.76	17-3	11-6	20-6	8-8	11-10	6-5	2-7	2-1	3-0	5-9	3-7	12	121/2	12	8	6	42.82	4,472	38.3
$72^{\prime \prime}$	28.27	18-6	12-3	22-0	9-3	12-9	6-11	2-9	2-3	3-0	6-2	3-9	12	121/2	12	8	6	50.68	5,426	44.5

NOTES

1. All bar dimensions are measured out to out
2. All Bars are size \#4 unless otherwise noted
3. Install reinforcing steel with a minimum of $Z^{\prime \prime}$ cover.
4. Bars B6 and B7 (N.S. and F.S.) equivalent in size to
5. Bars $V_{1} V_{2}, V_{3}, V_{4}, V_{5}, H_{1}, H_{2}, H_{3}, H_{4}$, and H_{5} are straight bars.

BENT BARS TABLE												
Pipe	B_{1}		B_{2}		B_{3}		B_{4}		B_{5}		B_{10}	
	$\begin{aligned} & \text { Size } \\ & \text { (No.) } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { Spacing } \\ & (\text { Ft.-In. }) \end{aligned}\right.$	$\begin{array}{\|l\|l\|} \hline \text { Size } \\ \text { (No.) } \end{array}$	$\begin{aligned} & \text { Spacing } \\ & \text { (Ft.-In.) } \end{aligned}$	$\begin{aligned} & \text { Size } \\ & \text { (No.) } \end{aligned}$	$\begin{array}{\|l\|l} \text { Spacing } \\ \text { (Ft.-In.) } \end{array}$	$\begin{aligned} & \text { Sizize } \\ & \text { (No. } \end{aligned}$	$\begin{aligned} & \text { Spacing } \\ & \text { (Ft.-In.) } \end{aligned}$	$\begin{aligned} & \text { Size } \\ & \text { (No. } \end{aligned}$	$\begin{aligned} & \text { Spacing } \\ & (\text { (Ft.-In.) } \end{aligned}$	$\begin{aligned} & \text { Size } \\ & \text { (No.) } \end{aligned}$	$\left\lvert\, \begin{array}{\|c\|c\|c\|} \hline \text { Spacing } \\ \text { (Ft.In.) } \end{array}\right.$
30"	4	0-91/2	4	1-6	5	0-11	4	0-91/2	5	0-51/2	4	0-91/2
$36^{\prime \prime}$	5	1-0	4	1-6	5	0-10	5	1-0	5	-5	5	1-0
$42^{\prime \prime}$	5	0-11	4	1-6	6	1-1	5	$0-1$	6	0-61/2	5	O-1
$48^{\prime \prime}$	5	0-91/2	4	1-0	6	1-0	5	0-91/2	6	0-6	5	0-91/2
$54 "$	5	0-81/2	4	0-10	7	1-1	5	0-81/2	7	0-61/2	5	0-81/2
$60^{\prime \prime}$	6	0-10	5	1-1	7	1-0	6	0-10	7	0-6	6	0-10
$66^{\prime \prime}$	6	0-81/2	5	0-111/2	7	0-11	6	0-81/2	7	0-51/2	6	0-81/2
$72^{\prime \prime}$	6	$0-71 / 2$	5	0-10	7	0-10	6	$0-71 / 2$	7	0-5	6	0-71/2

$B A R B_{4}$
BENDING DIAGRAM \qquad

FGEND:

H = Horizontal Bars
V = Vertical Bars
$B=$ Bent Bars
$D=$ Dowels or Diagonal Bars

REINFORCING DETAILS AND BENDING DIAGRAM

\qquad

GENERAL NOTES:

1. Provide flared end sections meeting the requirements of ASTM C76 with the exception that dimensions and reinforcement meet the criteria in the table on sheet 2. Circumferential reinforcement may consist of either one cage or two cages of steel. Use concrete compressive strength of 4000 psi
2. Connections between the flared end section and the pipe culvert may be any of the following types unless otherwise shown on the plans.
a. Joints meeting the requirements of Section 449 of the Standard Specifications (0-Ring Gasket). Flared and section joint dimensions and tolerances shall be identical or compatible to those used in the pipe alvert joint. When pipe culvert and flared end section manufacturers are torent, the manufacturer of the flared end sections must certify the compatibility of joint designs.
b. Joints sealed with preformed plastic gaskets. Use gaskets that meet the requirements Specification 942-2 of the Standard Specifications and the minimum sizes for gaskets as specified for equivalent sizes of elliptical pipe.
r. Reinforced concrete jackets, as detailed on sheet 2. When non-coated corrugated metal pipe is called for in the Plans, use bituminous coated pipe in the jacketed area as specified on Index 430-001 Construct concrete jacket as specified in Index 430-001.
3. Toe walls are to be cast-in-place using Class I Concrete.
. On skewed pipe culverts place the flared end sections in line with the pipe culvert. Warp the side slopes as reauired to fit the flared end sections.
4. Quantities shown are for estimating purposes only.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Straight Flare and Optional Shape Details

FLARED END SECTION

$\begin{gathered} \text { Pipe } \\ \text { Dia. } \end{gathered}$	T	$\begin{gathered} \text { Reinf. } \\ \text { seq. in. } \\ \text { Per Fooot } \end{gathered}$	$\begin{gathered} \hline \text { Bell } \\ \text { or } \\ \text { Spigot } \end{gathered}$	A	в	c	D	E	P	R 1	R 2	FLAT	h	$\begin{gathered} \text { Toe Wall } \\ \text { Class I } \\ \text { Conc. (CY.) } \end{gathered}$
$12^{\prime \prime}$	$2^{\prime \prime}$	0.07	$1^{1 / 2}$	$4^{\prime \prime}$	$2^{\prime \prime}-0^{\prime \prime}$	$4^{1}-0^{7} 8^{\prime \prime}$	$6^{\prime}-078^{\prime \prime}$	$2^{\prime \prime}-0^{\prime \prime}$	1915/16 ${ }^{10}$	$10^{1 / 81}$	$9^{\prime \prime}$	31/2"	$12^{\prime \prime}$. 06
$15^{\prime \prime}$	21/4"	0.07	$2^{\prime \prime}$	$6^{\prime \prime}$	$2^{\prime}-3^{\prime \prime}$	$3^{\prime}-10^{\prime \prime}$	$6^{\prime}-1{ }^{\prime \prime}$	$2^{\prime}-6^{\prime \prime}$	$24^{5} 16^{\prime \prime}$	$121 / 2^{\prime \prime}$	11^{11}	$3^{1 / 2}{ }^{1 \prime}$	$12^{\prime \prime}$. 07
$18^{\prime \prime}$	$21 / 2^{\prime \prime}$	0.07	21/210	$9^{\prime \prime}$	$2^{\prime \prime}-3^{\prime \prime}$	$3^{\prime \prime}-10^{\prime \prime}$	$6^{\prime}-1^{\prime \prime}$	$3^{\prime \prime}-0^{\prime \prime}$	29"	151/2"	$12^{\prime \prime}$	$4^{\prime \prime}$	$15^{\prime \prime}$	11
$21^{\prime \prime}$	23/4"	0.07	21/4"	$9^{\prime \prime}$	$2^{\prime \prime}-11^{\prime \prime}$	$3^{\prime \prime}-2^{\prime \prime}$	$6^{\prime}-11^{\prime \prime}$	$3^{\prime \prime}-6^{\prime \prime}$	31/8/8	$16{ }^{1 / 8}$	$13^{\prime \prime}$	$4{ }^{\prime \prime}$	$15^{\prime \prime}$	12
$24^{\prime \prime}$	$3^{\prime \prime}$	0.07	21/2"	91/2"	$3^{\prime}-71 / 2^{\prime \prime}$	$2^{\prime \prime}-6^{\prime \prime}$	$6^{\prime}-1{ }^{1 / 2}$	$4^{\prime \prime}-0^{\prime \prime}$	$33^{3} / 6^{\prime \prime}$	$16^{13 / 166^{\prime \prime}}$	$14^{\prime \prime}$	$4^{1 / 2}{ }^{\prime \prime}$	$18^{\prime \prime}$	17
$27^{\prime \prime}$	$31 / 4^{\prime \prime}$	0.148	21/2"	$10^{1 / 2} 1$	$4^{\prime}-0^{\prime \prime}$	$2^{\prime \prime}-1 \frac{1}{2 / \prime \prime}$	$6^{\prime}-11 / 2^{\prime \prime}$	$4^{\prime}-6^{\prime \prime}$	$36^{\prime \prime}$	$18 \% 1{ }^{\prime \prime}$	141/2"	$4^{1 / 2}{ }^{\prime \prime}$	$18^{\prime \prime}$. 19
$30^{\prime \prime}$	$31 / 2^{\prime \prime}$	0.148	$3^{\prime \prime}$	$1^{\prime}-0^{\prime \prime}$	$4^{\prime}-6^{\prime \prime}$	$1^{1}-73 / 4{ }^{1 /}$	$6^{\prime}-1{ }^{3 / 4} 4^{\prime \prime}$	$5^{\prime}-0^{\prime \prime}$	$37^{\prime \prime}$	$181 / 2^{\prime \prime}$	$15^{\prime \prime}$	$5^{\prime \prime}$	$21^{\prime \prime}$. 24
$36^{\prime \prime}$	$4^{\prime \prime}$	0.148	$3^{1 / 2} 2^{\prime \prime}$	1^{1}-3"	5'-3"	$2^{\prime}-10^{3} /^{\prime \prime}$	$8^{-1}-1 / 4^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	47 ${ }^{13 / 1 / 6^{*}}$	$244^{5} / 1^{\prime \prime}$	$20^{\prime \prime}$	51/2"	$21^{\prime \prime}$	29
$42^{\prime \prime}$	$41 / 2^{\prime \prime}$	0.148	33/4"	$1^{\prime}-9{ }^{\prime \prime}$	$5^{\prime}-3^{\prime \prime}$	$2^{\prime}-11^{\prime \prime}$	$8^{\prime}-2^{\prime \prime}$	6^{\prime} '6"	$537 / 8^{\prime \prime}$	$27^{1 / 2}{ }^{\prime \prime}$	$22^{\prime \prime}$	51/2"	$24^{\prime \prime}$. 36
$48^{\prime \prime}$	$5^{\prime \prime}$	0.148	$41 / 4^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$2^{\prime}-2^{\prime \prime}$	$8^{\prime}-2^{\prime \prime}$	$7^{\prime}-0^{\prime \prime}$	561/2"	$28^{1 / 21}$	$22^{\prime \prime}$	53/4"	$24^{\prime \prime}$. 39
$54^{\prime \prime}$	5 ${ }^{1 / 2}$	0.174	$4 \frac{3}{4}{ }^{4}$	$2^{\prime}-3^{\prime \prime}$	5'-5"	$2^{2-11^{\prime \prime}}$	$8^{\prime}-4^{\prime \prime}$	7^{\prime}-6"	$651 / 2^{\prime \prime}$	331/8"	$24^{\prime \prime}$	$6^{1 / 4} 4^{\prime \prime}$	$24^{\prime \prime}$. 42
$60^{\prime \prime}$	$6^{\prime \prime}$	0.174	$5^{\prime \prime}$	$2^{\prime \prime}-6^{\prime \prime}$	$5^{\prime}-0^{\prime \prime}$	$3^{\prime \prime}-3^{\prime \prime}$	$8^{\prime}-3^{\prime \prime}$	$8^{\prime}-0^{\prime \prime}$	721/2"	$36^{11 / 16^{\prime \prime}}$	$24^{\prime \prime}$	$6{ }^{3 / 4}$	$24^{\prime \prime}$	44
$66^{\prime \prime}$	$61 / 2^{\prime \prime}$	0.174	51/2"	$2^{\prime}-0^{\prime \prime}$	$6^{\prime}-6^{\prime \prime}$	$1^{\prime}-9^{\prime \prime}$	$8^{\prime}-3^{\prime \prime}$	$8^{\prime}-6^{\prime \prime}$	72"	361/8"	$24^{\prime \prime}$	71/4 ${ }^{\prime \prime}$	$24^{\prime \prime}$	47
$72^{\prime \prime}$	$7{ }^{\prime \prime}$	0.17	$6^{\prime \prime}$	$2^{\prime \prime}-0^{\prime \prime}$	$6^{\prime}-6^{\prime \prime}$	$1{ }^{1}$ -	$8{ }^{\prime}$	$0^{\prime \prime}$	$77^{13 / 166^{6}}$	$388^{15 / 6}{ }^{\prime \prime}$	$24^{\prime \prime}$	7\%/4"	$24^{\prime \prime}$. 50

SECTION A-A

SECTION B-B

$\overrightarrow{\text { Pipe (See Note 2) }}$ 2) Flared End
SECTION E-E

END VIEW

SECTION C-C

SECTION D-D

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$		$\begin{gathered} \text { FDO 2020-21 } \\ \text { STANDARD PLANS } \end{gathered}$	FLARED END SECTION

GENERAL NOTES

1. Unless otherwise designated in the plans, concrete pipe mitered end sections may be used with any type of cross drain pipe; corrugated steel pipe mitered end sections may be used with any type of cross dra of cross drain pipe except steel pipe. When bituminous coated metal pipe is specified for cross drain pipe, construct the mitered end sections with like pipe or concrete pipe. When the mitered end section pipe is dissimilar to the cross drain pipe, construct a concrete jacket in accordance with Index 430-001
2. Use either corrugated metal or concrete mitered end sections for corrugated polyethylene pipe (HDPE), polyvinyl-chloride pipe (PVC), steel reinforced polyethylene pipe (SRPE), and polypropylene pipe (PP). When used in conjunction with corrugated mitered end sections, make connection using either a formed
metal band specifically designated to join HDPE, PVC, SRPE, or PP pipe, with metal pipe. When used in conjunction with a concrete mitered end sections, construct concrete jacket in accordance with Index 430-001
3. Class NS concrete cast-in-place reinforced slabs are required for all sizes of cross drain pipes. Construct slabs at $5 \frac{1}{2}$ " thick, unless $3^{\prime \prime}$ thickness is called for in the Plans.
4. Select lengths of concrete pipe that avoid excessive connections in the assembly of the mitered end section.
5. Repair corrugated metal pipe galvanizing that is damaged during beveling and perforating.
6. When existing multiple cross drain pipes are spaced other than the dimensions shown in this Index, sections separately as single pipe or collectively as multiple pipe end sections as directed by the Engineer.
7. Saddle Slope:

Saddle Slope:
1:4 Miter - Slope to \mathbb{q} of pipe for round pipes less than or equal to $18^{\prime \prime}$ diameter and 1:1 for round pipes greater than or equal to $24^{\prime \prime}$ diameter. slope to the span line for pipe arch
1.2 Miter - Slope to \mathbb{Q} of pipe for round pipes less than or equal to $18^{\prime \prime}$ diameter and 1:2 for round pipes greater than or equal to 24" diameter.
(ical pipes $29^{\prime \prime} \times 45^{\prime \prime}$ or smaller and 1:1 for pipes $34^{\prime \prime} \times 53^{\prime \prime}$ or larger Slope 1:1 for all pipe arch sizes.
8. Quantities shown are for estimating purposes only.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Single and Multitile Concrete Pipe
3	Concrete Pipe Dimensions and Quantities
4	Single and Multiple Corrugated Metal Pipe
5	Corrugated Metal Pipe Dimensions and Quantities
6	Concrete Pipe Connections and Corrugated Metal Pipe (CMP) Anchor Detail

SLOPE AND DITCH TRANSITIONS

TABLE 1
Single and multiple concrete pipe dimensions and quantities

		Dia.	Rise	Span	x	A	B	c	E	F	G	H	M				N	5 ${ }^{2} /{ }^{\prime \prime}$ CONC. SLAB (CY) (See General Note 3)				$3^{\prime \prime}$ CONC. SLAB (CY) (See General Note 3)				SOdDING (SY)			
													Single	be	Triple	Quad.		Single	Double	Triple	Quad.	Single	Double	Triple	Quad.	Single	Double	Triple	d.
		15"			$2^{2-7{ }^{\prime \prime}}$	${ }^{1.92^{\prime}}$	$2.18{ }^{\prime}$	4.10^{\prime}	2.06^{\prime}	5	1.22'	$2.9{ }^{\prime}$	4.63^{\prime}	7.21^{\prime}	${ }^{9.79}$	${ }^{12.37{ }^{\prime}}$	1.19'	0.38	0.58	0.77	${ }^{0.96}$	0.27	0.41	0.54	${ }^{\text {Preb }}$	Pipe	Pipe	$\frac{\text { Pipe }}{} 27$	Pipe
		$18^{\prime \prime}$			$2^{\prime \prime}-10^{\prime \prime}$	${ }^{1.97}$	$2.74{ }^{\prime}$	4.71^{1}	2.56^{\prime}	6^{\prime}	1.41^{\prime}	3.4 ${ }^{\text {+ }}$	4.92^{\prime}	$7.75{ }^{\prime}$	10.58'	13.42'	1.21^{1}	0.44	0.65	0.87	1.09	0.31	0.45	0.60	0.75	22	25	28	31
		$24^{\prime \prime}$			$3^{\prime \prime}-5^{\prime \prime}$	$2.06{ }^{\prime}$	3.85'	$5.91{ }^{1}$	3.56	$7{ }^{\prime}$	$1.73{ }^{\prime}$	3.4 ${ }^{\text {+ }}$	5.50^{\prime}	$8.92{ }^{\prime}$	12.33'	15.75'	1.25'	0.54	0.83	1.12	1.42	0.39	0.59	0.79	1.00	24	28	32	35
		$30^{\prime \prime}$			$4^{\prime \prime}-3^{\prime \prime}$	$2.15{ }^{\prime}$	4.95'	7.10^{\prime}	4.56'	$8^{\prime \prime}$	2.00^{\prime}	3.4 ${ }^{\text {+ }}$	$6.08{ }^{\prime}$	10.33'	14.58^{\prime}	18.83'	${ }^{1.29^{\prime}}$	0.66	1.09	1.50	1.91	0.46	0.76	1.04	1.32	26	31	35	40
		$36^{\prime \prime}$			5'-1"	2.25	$6.08{ }^{\prime}$	8.33	5.56'		$2.24{ }^{\prime}$	3.4 ${ }^{\text {+ }}$	$6.67{ }^{\prime}$	11.75^{\prime}	16.83'	21.92'	1.33'	0.81	1.38	1.95	2.51	0.55	0.94	1.33	1.71	28	34	39	45
		$42^{\prime \prime}$			$6^{\prime}-0^{\prime \prime}$	$2.34{ }^{4}$	$7.21{ }^{1}$	9.55^{\prime}	6.56'	10^{\prime}	$2.45{ }^{\prime}$	3.4 ${ }^{4}$	7.25^{\prime}	13.25'	19.25^{\prime}	25.25'	$1.38{ }^{\text {b }}$	0.97	1.70	2.45	3.19	0.66	1.15	1.66	2.15	30	37	43	50
		$48^{\prime \prime}$			$6^{\prime}-9^{\prime \prime}$	2.43^{\prime}	8.33'	10.76 ${ }^{\prime}$	7.56^{\prime}	11^{\prime}	2.65^{\prime}	3.4'	7.83'	14.58^{\prime}	21.33'	28.08'	1.42'	1.13	2.04	2.93	3.84	0.76	1.37	1.96	2.57	32	39	47	54
		$54^{\prime \prime}$			$7^{\prime}-8^{\prime \prime}$	2.52^{\prime}	${ }^{\text {9.44' }}$	11.96'	8.56'	12'	$2.83{ }^{\prime}$	3.4'	8.42'	$16.08{ }^{\prime}$	23.75'	31.42'	1.46^{\prime}	1.31	2.44	3.58	4.72	0.87	1.62	2.38	3.14	34	42	51	59
		$60^{\prime \prime}$			$8^{\prime \prime-6^{\prime \prime}}$	2.62^{\prime}	10.56	13.18'	9.56'	14	3.00^{\prime}	4.4'	9.00^{\prime}	17.50^{\prime}	26.00'	34.50^{\prime}	1.50^{\prime}	1.51	2.89	4.28	5.68	0.99	1.90	$\stackrel{1}{2.81}$	3.73	36	45	55	64
		$66^{\prime \prime}$			$9^{\prime}-2^{\prime \prime}$	2.71^{\prime}	${ }^{11.68}{ }^{\prime}$	14.39'	10.56'	15'	$3.18{ }^{\prime}$	4.4'	$9.58{ }^{\prime}$	18.75'	27.92'	37.08'	1.54'	1.68	3.25	4.84	6.43	1.11	2.15	3.21	4.27	38	48	58	68
		$72^{\prime \prime}$			10'0 ${ }^{\prime \prime}$	2.80^{\prime}	12.80°	15.60°	11.56'	16^{\prime}	3.30'	4.4'	10.16'	20.16^{\prime}	30.16'	40.16	1.58'	1.89	3.74	5.59	7.45	1.24	2.46	3.68	4.90	40	51	62	73
	$\begin{gathered} \text { 1:4 } \\ \text { slope } \end{gathered}$	$15^{\prime \prime}$			$2^{\prime \prime-7^{\prime \prime}}$	2.27^{\prime}	${ }^{4.09}$	$6.36{ }^{\prime}$	4.03'	8^{\prime}	1.22^{\prime}	4.0^{\prime}	$4.63^{\prime \prime}$	7.21^{\prime}	${ }^{9.79^{\prime}}$	${ }^{12.37}$	${ }^{1.19}$	0.57	0.87	1.15	1.44	0.40	0.61	0.80	1.00	23	26	29	32
		$18^{\prime \prime}$			$2^{\prime \prime}-10^{\prime \prime}$	2.36	5.12'	$7.48{ }^{\prime}$	5.03'	9^{\prime}	1.41^{\prime}	4.0'	4.92^{\prime}	$7.75{ }^{\prime}$	10.58^{\prime}	13.42'	1.21^{1}	0.66	0.99	1.31	1.65	0.47	0.69	0.91	1.14	25	28	31	35
$\stackrel{\circ}{\ddagger}$		24"			$3^{\prime \prime}-5^{\prime \prime}$	2.53'	$7.18{ }^{\prime} \triangle$	9.71^{1}	7.03' \triangle	11^{\prime}	$1.73{ }^{\text { }}$	4.0	5.50^{\prime}	8.92'	12.33'	15.75'	1.25'	0.85	1.30	1.75	2.20	0.60	0.90	1.21	1.52	28	32	36	
5		$30^{\prime \prime}$			$4^{\prime}-3^{\prime \prime}$	2.70^{\prime}	9.25'	11.95'	9.03'	13^{\prime}	2.00^{\prime}	4.0^{\prime}	$6.08{ }^{\prime}$	10.33^{\prime}	$14.58{ }^{\prime}$	18.83'	1.29^{\prime}	1.10	1.74	2.39	3.05	0.76	1.19	1.63	2.07	31	36	41	46
		36"			$5^{\prime \prime}-1^{\prime \prime}$	2.87^{\prime}	11.31°	14.18^{\prime}	11.03 ${ }^{\prime}$	15	$2.24{ }^{\prime}$	4.0'	6.67^{\prime}	11.75^{\prime}	16.83'	21.92'	1.33^{\prime}	1.32	2.21	3.08	3.96	0.89	1.48	2.05	2.63	34	40	46	52
		$42^{\prime \prime}$			$6^{\prime}-0^{\prime \prime}$	$3.05{ }^{\prime}$	$13.37{ }^{\prime}$	16.42^{\prime}	13.03'	17^{\prime}	$2.45{ }^{\prime}$	4.0 ${ }^{\prime}$	7.25^{\prime}	13.25'	19.25'	25.25'	$1.38{ }^{\prime}$	1.58	2.76	3.91	5.09	1.05	1.82	2.57	3.34	38	44	51	58
		$48^{\prime \prime}$			$6^{\prime}-9^{\prime \prime}$	3.22'	15.43^{\prime}	18.65'	15.03^{\prime}	19'	$2.65{ }^{\text {2 }}$	4.0^{\prime}	$7.83{ }^{\prime}$	14.58'	21.33'	$28.08{ }^{\prime}$	1.42^{\prime}	1.85	3.30	4.73	6.17	1.21	2.15	3.07	4.00	41	48	56	63
		$54^{\prime \prime}$			$7^{\prime \prime}-8^{\prime \prime}$	3.39^{\prime}	17.49'	20.88'	17.03'	27^{\prime}	$2.83{ }^{\prime}$	4.0 ${ }^{\prime}$	8.42^{\prime}	16.08^{\prime}	23.75'	31.42'	1.46^{\prime}	2.14	3.95	5.77	7.58	1.39	2.55	3.72	4.88	44	52	61	69
		$60^{\prime \prime}$			$8^{\prime \prime}-6^{\prime \prime}$	3.56'	19.55'	23.111	19.03'	23^{\prime}	3.00^{\prime}	4.0 ${ }^{\prime}$	9.00^{\prime}	17.50'	26.00^{\prime}	34.50^{\prime}	1.50^{\prime}	2.45	4.66	6.87	9.07	1.59	3.02	4.44	5.86	47	56	66	75
		$66^{\prime \prime}$			$9^{\prime \prime}-2^{\prime \prime}$	3.73'	21.62'	25.35'	21.03'	25'	$3.18{ }^{\prime}$	4.0'	$9.58{ }^{\prime}$	18.75'	27.92'	37.08'	1.54'	2.88	5.54	8.18	10.84	1.91	3.66	5.40	7.15	49	59	69	80
		$72^{\prime \prime}$			$10^{\prime \prime}-0^{\prime \prime}$	$3.91{ }^{\prime}$	23.68'	27.59'	23.03'	27	3.30'	4.0 ${ }^{\prime}$	10.16	20.16^{\prime}	30.16^{\prime}	40.16 ${ }^{\prime}$	1.58'	3.54	6.61	9.87	13.13	2.12	4.18	6.24	8.30	52	63	74	85
	Slope		$12^{\prime \prime}$	$18^{\prime \prime}$	$2^{\prime}-10^{\prime \prime}$	${ }^{1.97}{ }^{\prime}$	1.62^{\prime}	3.59^{\prime}	${ }^{1.566^{\prime}}$	4^{\prime}	1.50'	$2.4{ }^{4}$	4.92'	7.75'	$10.58{ }^{\prime}$	13.42'	1.21^{1}	0.30	0.49	0.67	0.85	0.19	0.33	0.45	0.57	21	24	27	
			$14^{\prime \prime}$	$23^{\prime \prime}$	$3^{\prime \prime}-4^{\prime \prime}$	$2.01{ }^{\prime}$	1.99^{\prime}	4.00^{\prime}	${ }^{1.89}{ }^{\prime}$		$1.90{ }^{\prime}$	$3.1{ }^{1}$	$5.38{ }^{\prime}$	$8.71{ }^{1}$	12.04	15.38'	$1.23{ }^{\text { }}$	0.37	0.59	0.81	1.02	0.25	0.40	0.55	0.69	22	26	29	33
			$19^{\prime \prime}$	30"	$4^{\prime}-0^{\prime \prime}$	2.11^{1}	$2.92{ }^{\prime}$	5.03'	2.73'	6^{\prime}	2.37^{\prime}	3.3'	$6.04{ }^{\prime}$	10.04'	14.04'	18.04'	1.27^{\prime}	0.50	0.80	1.09	1.39	0.34	0.55	0.75	0.95	24	28	33	
			$24^{\prime \prime}$	$38^{\prime \prime}$	5'-0"	2.20^{\prime}	3.85'	6.05^{\prime}	3.56'	7	$2.85{ }^{\prime}$	3.4'	$6.79{ }^{\prime}$	${ }^{11.79}$	16.79'	21.79'	$1.31{ }^{1}$	0.62	1.03	1.45	1.86	0.43	0.71	1.00	1.28	26	31	37	42
			$29^{\prime \prime}$	$45^{\prime \prime}$	5'-11"	$2.34{ }^{\prime}$	4.79^{\prime}	7.13^{\prime}		8^{\prime}	3.19'	3.6'	7.50^{\prime}	13.42'	19.33'	25.25^{\prime}	$1.38{ }^{\prime}$	0.75	1.30	1.84	2.39	0.52	0.90	1.27	1.65	28	34	41	47
			34"	53"	$7^{\prime} 7^{\prime \prime}$	2.43^{\prime}	5.72'	${ }^{8.15}$	5.23'	9^{\prime}	3.57'	3.8 ${ }^{\text {b }}$	8.25'	15.25'	22.25'	29.25'	1.42'	0.90	1.61	2.32	3.03	0.62	1.11	1.60	2.09	30	37	45	53
			$38^{\prime \prime}$	60"	$7^{\prime}-10^{\prime \prime}$	2.52^{\prime}	${ }^{6.46{ }^{\prime}}$	8.98'	5.89^{\prime}	9^{\prime}	3.95'	3.11	$8.92{ }^{\text {' }}$	16.75^{\prime}	24.58'	32.42'	1.46^{\prime}	1.03	1.89	2.74	3.60	0.70	1.29	1.87	2.46	31	40	49	
			$4{ }^{\prime}$	$68^{\prime \prime}$	$8^{8}-11^{\prime \prime}$	2.62^{\prime}	7.39'	10.01^{1}	6.73'	10^{\prime}	4.28 ${ }^{\text {' }}$	3.3'	9.67 ${ }^{\text { }}$	18.58^{\prime}	27.50'	36.42^{\prime}	1.50^{\prime}	1.19	2.26	3.33	4.40	0.81	1.54	2.26	2.99	33	43	53	63
			$48^{\prime \prime}$	$76^{\prime \prime}$	$9^{\prime}-11^{\prime \prime}$	$2.71{ }^{1}$	8.33'	11.04'	7.56'	11^{\prime}	4.59'	3.4 ${ }^{4}$	10.42'	20.33'	30.25'	40.17'	1.54'	1.38	2.65	3.93	5.21	0.93	1.79	2.66	3.53	35	46	57	68
			53"1	83"	10'10 ${ }^{\prime \prime}$	${ }^{2.80}{ }^{\prime}$	${ }^{9.26^{\prime}}$	${ }^{12.060^{\prime}}$	8.39'	${ }^{12^{\prime}}$	${ }^{4.77^{\prime}}$	3.6'	${ }^{11.088^{\prime}}$	${ }^{21.755^{\prime}}$	${ }^{32.422^{\prime}}$	43.08 ${ }^{\prime}$	${ }^{1.588^{\prime}}$	1.55	3.03	4.50	5.96	1.04	2.04	3.03	4.02	37	49	61	73
			58" ${ }^{12^{\prime \prime}}$	${ }^{91^{\prime \prime}}$	${ }^{11^{1}-8^{\prime \prime}}$	2.90^{\prime}	${ }^{10.199^{\prime}}$	${ }^{13.099^{\prime}}$	$\frac{9.233^{\prime \prime}}{3}$	${ }^{13} 5^{\prime}$	$\frac{5.01^{\prime}}{1.50^{\prime}}$	${ }^{3.8}{ }^{\prime}$	11.83'	23.55^{\prime}	${ }^{35.177^{\prime}}$	46.83'	1.63'	1.75	3.47	5.20	${ }^{6.93}$	$\frac{1.17}{1.30}$	2.33	3.49	4.66	39	52	65	78
	$\begin{array}{\|c\|c} 1: 4 \\ \text { Slope } \end{array}$		$14^{\prime \prime}$	$23^{\prime \prime}$	$3^{\prime \prime} 4^{\prime \prime}$	$2.44{ }^{\text {2 }}$	${ }^{3.755^{\prime}}$	${ }^{6.19}$	${ }_{3.70^{\prime}}^{3 .}$	6^{\prime}	1.90^{\prime}	$2.3{ }^{\text {2 }}$	${ }^{5.38}$	${ }^{8.71^{\prime}}$	12.04	$15.38{ }^{1}$	${ }^{1.233^{\prime}}$	0.53	0.83	1.13	1.42	0.36	0.56	0.76	${ }_{0} 0.95$	24	28	32	35
			$19^{\prime \prime}$	30"	$4^{\prime}-0^{\prime \prime}$	${ }^{2.62}$	$5.47{ }^{\prime}$	${ }^{8.09}{ }^{\text { }}$	5.36'	8^{\prime}	2.37^{\prime}	$2.6{ }^{\text {a }}$	$6.04{ }^{\prime}$	10.04 ${ }^{\text { }}$	14.04	18.04'	${ }^{1.27^{\prime}}$	0.74	1.15	1.57	1.98	0.51	0.79	1.08	1.36	27	32	36	
总			$24^{\prime \prime}$	38"	$5^{\prime}-0^{\prime \prime}$	2.79^{\prime}	$7.18{ }^{\prime}$	${ }^{9.97}{ }^{\text { }}$	7.03^{\prime}	10^{\prime}	$2.85{ }^{\prime}$	$3.0{ }^{\circ}$	$6.79{ }^{\prime}$	${ }^{11.79}{ }^{\text { }}$	16.79'	21.79'	1.31^{1}	0.97	1.57	2.19	2.81	0.68	1.10	1.53	1.96	30	36	41	47
会			$29^{\prime \prime}$	$45^{\prime \prime}$	5'-11"	$3.05{ }^{\prime}$	8.90^{\prime}	${ }^{11.95}$	8.70^{\prime}	12^{\prime}	3.19^{\prime}	3.3'	7.50^{\prime}	13.42'	19.33^{\prime}	25.25^{\prime}	$1.38{ }^{\prime}$	1.22	2.07	2.92	3.77	0.86	1.45	2.04	2.63	33	40	46	53
			$34^{\prime \prime}$	53"	$7^{\prime \prime}-0^{\prime \prime}$	3.22'	10.62'	13.84'	10.36^{\prime}	13'	3.57^{\prime}	2.6	8.25'	15.25^{\prime}	22.25'	29.25'	1.42'	1.48	2.62	3.77	4.92	1.02	1.81	2.60	3.39	36	44	52	
			38"	60"	$7^{\text {P }}$-10"	${ }^{3.39}{ }^{\prime}$	${ }^{11.99}$	15.38 ${ }^{1}$	${ }^{11.70}$	${ }^{15^{\prime}}$	3.95'	3.3'	8.92'	$16.75{ }^{\prime}$	24.58'	32.42'	1.46^{\prime}	1.72	3.12	4.53	5.92	1.18	2.14	3.10	4.05	38	47	56	65
			$43^{\prime \prime}$	$68^{\prime \prime}$	$8^{\prime}-11^{\prime \prime}$	3.56'	13.71	17.27	${ }^{13.366^{\prime}}$	17^{\prime}	4.28 ${ }^{\prime}$	$3.6{ }^{\prime}$	$9.67{ }^{\prime}$	18.58'	27.50^{\prime}	36.42'	1.50^{\prime}	2.02	3.78	5.56	7.32	1.38	2.58	3.79	4.99	41	51	61	71
			$48^{\prime \prime}$	$76^{\prime \prime}$	$9^{\prime}-11^{\prime \prime}$	3.73'	15.43'	19.16'	15.03'	19'	4.59'	4.0'	10.42'	20.33'	30.25'	40.17'	$1.54{ }^{\text {' }}$	2.34	4.49	6.64	8.79	1.59	3.05	4.51	5.97	44	55	66	77
			53"	83"	10' $1^{\prime \prime} 8^{\prime \prime}$	3.99^{\prime}	17.15'	${ }^{21.06{ }^{\prime}}$	${ }^{16.70^{\prime}}$	20^{\prime}	4.771	3.3'	${ }^{11.088^{\prime}}$	${ }^{21.755^{\prime}}$	${ }^{32.422^{\prime}}$	43.08'	${ }^{1.583^{\prime}}$	2.66	5.17	7.66	10.16	1.80	3.50	5.19	6.88	47	59	71	83
																										50	63	76	

B $\quad E$
Dimensions permitted to allow
use of 8^{\prime} standard pipe lengths

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$	\|	$\begin{array}{cc} F Y \text { 2020-21 } \\ \text { FDOTSD } \end{array}$	CROSS DRAIN MITERED END SECTION	index 430-021	$\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 6 \end{aligned}$

tongue and groove connector detail

BELL AND SPIGOT CONNECTOR DETAIL

NOTES:

1. Use galvanized steel for all bars, bolts, nuts, and washers.
2. Two connectors required per joint, located 60° right and left
 of bottom center of pipe.
3. Bolt holes in pipe shell are to be drilled.
concrete pipe connection detail
\qquad

NOTES:

1. Anchors required for CMP only.
2. Use galvanized steel for all anchors, nuts, and washers.
3. Bend anchor where required to center in concrete slab.
4. Repair damaged surfaces after bending.
5. Space anchors a distance equal to four (4) corrugations.
6. Place the anchors in the outside crest of corrugation.
7. Place flat washers on inside wall of pipe.
8. Drill or punch holes in the mitered end pipe; burning not permitted
9. $A 6^{\prime \prime} \times 1 / 2$ bolt substitution is permitted.

CORRUGATED METAL PIPE (CMP) ANCHOR DETAIL

CONCRETE PIPE CONNECTION AND CORRUGATED PIPE ANCHOR DETAILS LAST
REVISION
11/ 11/01/19

FDDTY $\begin{gathered}\text { FY 2020-21 } \\ \text { STANDARD PLANS }\end{gathered}$

GENERAL NOTES

1. Unless otherwise designated in the plans, concrete pipe mitered end sections may be used with any type fipe drain pipe; corrugated steel pipe mitered end sections may be used with any type of side drain pipe except aluminum pipe; and, corrugated aluminum mitered end sections may be used with any type
of side drain pipe except steel pipe. When bituminous coated metal pipe is specified for side drain pipe, of side drain pipe except steel pipe. When bituminous coated metal pipe is specified for side drain pipe,
construct the mitered end sections with like pipe or concrete pipe. When the mitered end section pipe is dissimilar to the side drain pipe, construct a concrete jacket in accordance with Index 430-001.
2. Use either corrugated metal or concrete mitered end sections for corrugated polyethylene pipe (HDPE), polyvinyl-chloride pipe (PVC), steel reinforced polyethylene pipe (SRPE), and polypropylene pipe (PP). When used in conjunction with corrugated mitered end sections, make connection using either a forme with a concrete mitered end sections, construct concrete jacket in accordance with Index 430-001.
3. Use class NS concrete cast-in-place reinforced slabs for all cross drain pipes.
4. Select lengths of concrete pipe that avoid excessive connections in the assembly of the mitered end section,
5. Repair corrugated metal pipe galvanizing that is damaged during beveling and perforating.
6. When existing multiple side drain pipes are spaced other than the dimensions shown in this Index, have nonparallel axes, or non-uniform sections, either construct the mitered end sections separatel
7. Saddle Slope:

1:4 Miter - Slope to $\&$ of pipe for round pipes less than or equal to $18^{\prime \prime}$ diameter and 1:1 for round pipes greater than or equal to 24 diameter Slope to the major axis for elliptical pipes $24^{\prime \prime} \times 38^{\prime \prime}$ or smaller and 1:2 for pipes $29^{\prime \prime} \times 45^{\prime \prime}$ or larger. Slope to the span line for pipe arch $28^{\prime \prime} \times 20^{\prime \prime}$ or smaller and 1:2 for pipe arch $35^{\prime \prime} \times 24^{\prime \prime}$ or larger.

1:2 Miter - Slope to $\&$ of pipe for round pipes less than or equal to $18^{\prime \prime}$ diameter and 1:2 for round pipes Slope to the major axis for elliptical pipes $29^{\prime \prime} \times 45^{\prime \prime}$ or smaller and 1:1 for pipes $34^{\prime \prime} \times 3^{\prime \prime}$ or larger. Slope 1:1 for all pipe arch sizes.
8. Quantities shown are for estimating purposes only.

Concrete Pipe Shown Corrugated MD SECTION=

- DITCH TRANSITION \qquad

ROUND CONCRETE PIP

PERMISSIBLE PAVEMENT MODIFICATION

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$	\|	$\begin{gathered} \text { FY 2020-21 } \\ \text { FTANDARD PLANS } \end{gathered}$	SIDE DRAIN MITERED END SECTION	INDEX $430-022$	$\begin{gathered} \text { SHEET } \\ 3 \text { of } 7 \end{gathered}$

PLAN - SINGLE PIPE

elevation

Concrete Slab, $3^{\prime \prime}$ Thick Reinforced

DETAIL "B"

Single and multiple Corrugated metal pipe dimensions and quantities																										
	Dia.	Rise	Span									M					GRATE SIZES		$3^{\prime \prime}$ CONC. SLAB (CY)				SODDING (SY)			
2	D	R	5	x	A	B	c	E	F	G	H	Single	Double Pipe	Triple	$\begin{aligned} & \text { Quad. } \\ & \text { Pipe } \\ & \hline \end{aligned}$	N	STANDARD WEIGHT PIPE	STRONG PIPE	Single Pipe	Double	Triple Pipe	$\begin{array}{\|l} \text { Quad. } \\ \text { Pipe } \end{array}$	Single Pipe	$\left\|\begin{array}{c}\text { Double } \\ \text { Pipe }\end{array}\right\|$	$\begin{gathered} \text { Triple } \\ \text { Pipe } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Quad. } \\ & \text { Pipe } \end{aligned}$
-	$8^{\prime \prime}$			$2^{\prime \prime} 0^{\prime \prime}$	${ }^{2.5}{ }^{\prime}$	0.73^{\prime}	3.22^{\prime}	0.7^{\prime}	4.0^{\prime}	0.58'	3.3'	$3.75{ }^{\text {d }}$	5.75'	7.75'	9.75'	$1.04{ }^{\text { }}$			0.52	0.90	1.22	1.54		8	${ }^{\text {a }}$	9
	$10^{\prime \prime}$			$2^{\prime \prime}-2^{\prime \prime}$	2.5'	$1.34{ }^{\prime}$	$3.84{ }^{\prime}$	1.3' ${ }^{\text {' }}$	5.0^{\prime}	$0.81{ }^{1}$	$3.7{ }^{\prime}$	$3.92{ }^{\prime}$	$6.08{ }^{\prime}$	8.25'	10.41^{\prime}	$1.04{ }^{+}$			0.64	0.99	1.34	1.70	7	8	9	10
	$12^{\prime \prime}$			$2^{\prime \prime} 4^{\prime \prime}$	2.5'	$2.06{ }^{\prime}$	4.56'	2.0^{\prime}	6.0^{\prime}	1.00^{\prime}	4.0^{\prime}	$4.08{ }^{\prime}$	6.42^{\prime}	8.75'	11.08	1.04			0.68	1.09	1.48	1.88	7	8	10	11
	15"			$2^{\prime \prime-7{ }^{\prime \prime}}$	2.5'	3.09^{\prime}	5.59'	3.0'	$7.0{ }^{\prime}$	1.23^{\prime}	$4.0{ }^{\prime}$	4.33'	$6.92{ }^{\prime}$	9.50^{\prime}	$12.08{ }^{\prime}$	1.04			0.64	1.00	1.35	1.71	8	9	10	11
	$18^{\prime \prime}$			$2^{\prime \prime} 10^{\prime \prime}$	2.5	4.12	6.62^{\prime}	4.0'	8.0°	1.41^{\prime}	$4.0{ }^{\circ}$	$4.58{ }^{\text { }}$	7.42^{\prime}	10.25^{\prime}	$13.08{ }^{1}$	1.04			0.69	1.09	1.49	1.89	9	10	11	12
	$24^{\prime \prime}$			$3^{\prime \prime-5^{\prime \prime}}$	2.5'	$6.18{ }^{\prime}$	8.68'	6.0'	10.0	1.73'	$4.0{ }^{\prime}$	$5.08{ }^{\text {b }}$	8.50^{\prime}	11.92'	15.33^{\prime}	1.04			0.83	1.34	1.82	2.34	10	11	13	14
	$30^{\prime \prime}$			$4^{\prime}-3^{\prime \prime}$	2.5'	8.25'	10.75'	8.0^{\prime}	12.0^{\prime}	2.00°	$4.0{ }^{\prime}$	$5.58{ }^{\prime}$	9.83'	$14.08{ }^{\prime}$	18.33'	$1.04{ }^{\prime}$	21/2"	$3^{\prime \prime}$	0.96	1.63	2.32	2.99	11	13	15	17
	$36^{\prime \prime}$			5'-1"	2.5	10.33^{1}	12.81^{\prime}	$10.0{ }^{\prime}$	14.0	2.24	$4.0{ }^{\circ}$	$6.08{ }^{\circ}$	11.17^{\prime}	16.25'	21.33'	1.04	21/2"	$3^{\prime \prime}$	1.08	1.92	2.77	3.62	12	14	17	19
	$42^{\prime \prime}$			6'-0'0	2.5'	12.37^{\prime}	14.87^{\prime}	12.0^{\prime}	16.0	2.45^{\prime}	$4.0{ }^{\prime}$	6.58	12.58 ${ }^{\prime}$	18.58'	24.58	$1.04{ }^{\prime}$	21/2"	$31 / 2{ }^{\prime \prime}$	1.20	2.26	3.34	4.61	13	16	18	21
	$48^{\prime \prime}$			$6^{\prime}-9^{\prime \prime}$	2.5'	14.43^{\prime}	16.93'	$14.0{ }^{\prime}$	18.0^{\prime}	2.65^{\prime}	4.0^{\prime}	$7.08{ }^{\text { }}$	13.83'	20.58^{\prime}	27.33'	$1.04{ }^{\text { }}$	$2^{1 / 2}{ }^{\prime \prime}$	31/2"	1.60	3.11	4.62	6.12	14	17	20	23
	54"			$7^{\prime}-8^{\prime \prime}$	$2.5{ }^{\prime}$	$16.49{ }^{\prime}$	18.99'	16.0^{\prime}	20.0^{\prime}	2.83^{\prime}	$4.0{ }^{\prime}$	$7.58{ }^{\prime}$	15.25'	22.92^{\prime}	30.58'	$1.04{ }^{\text { }}$	$3^{\prime \prime}$	"	1.76	3.56	5.34	7.14	15	19	22	26
	$60^{\prime \prime}$			$8^{\prime}-6^{\prime \prime}$	$2.5{ }^{\prime}$	18.55'	21.05'	18.0^{\prime}	22.0^{\prime}	3.00^{\prime}	$4.0{ }^{\prime}$	$8.08{ }^{\text { }}$	16.58'	$25.08{ }^{\prime}$	33.58'	$1.04{ }^{\text {+ }}$	$3^{\prime \prime}$	$4^{\prime \prime}$	1.94	4.03	6.12	8.20	17	20	24	28
		${ }^{177^{\prime \prime}}$	$13^{\prime \prime}$	${ }^{2 \prime}{ }^{\prime \prime-6^{\prime \prime}}$	2.5'	$2.41{ }^{\prime}$	4.91'	2.33'	7^{\prime}	1.39^{\prime}	4.7^{\prime}	4.50'	${ }^{7.00{ }^{\prime}}$	${ }^{9.50^{\prime}}$	${ }^{12.000^{\prime}}$	1.04'			0.62	0.95	1.27	1.60	8	9	10	11
		$21^{\prime \prime}$	$15^{\prime \prime}$	$2^{\prime}-10^{\prime \prime}$	$2.5{ }^{\prime}$	$3.09{ }^{\prime}$	5.59'	3.00	8^{\prime}	1.76^{\prime}	$5.0{ }^{\prime}$	4.83'	7.67^{\prime}	10.50^{\prime}	$13.33{ }^{\prime}$	1.04			0.69	1.06	1.44	1.77	8	9	11	12
		$28^{\prime \prime}$	$20^{\prime \prime}$	$3^{\prime \prime} 5^{\prime \prime}$	2.5'	$4.81{ }^{1}$	7.31	4.67^{\prime}	9	2.22^{\prime}	$4.3{ }^{\prime}$	$5.42{ }^{\circ}$	8.83'	12.25'	15.67^{\prime}	$1.04{ }^{\text { }}$			0.81	1.26	1.73	2.19	9	11	12	14
		$35^{\prime \prime}$	$24^{\prime \prime}$	4'-0"	2.5'	$6.18{ }^{\prime}$	8.68'	6.00'	11^{\prime}	2.55^{\prime}	5.0'	$6.00{ }^{\prime}$	10.00^{\prime}	14.00^{\prime}	18.00^{\prime}	$1.04{ }^{\text { }}$	21/2"	$3^{\prime \prime}$	0.94	1.51	2.09	2.66	10	12	14	15
		$42^{\prime \prime}$	$29^{\prime \prime}$	$4^{4}-9^{\prime \prime}$	$2.5{ }^{\prime}$	7.90^{\prime}	10.40^{\prime}	7.67	12^{\prime}	$2.97{ }^{\prime}$	$4.3{ }^{\text { }}$	$6.58{ }^{\circ}$	11.33'	16.08^{\prime}	20.83'	1.04	21/2"	$31 / 2{ }^{1 /}$	1.06	1.76	2.46	3.16	11	13	15	17
		$49^{\prime \prime}$	33"	5'-6"	2.5'	$9.28{ }^{\prime}$	$11.78{ }^{\prime}$	9.00'	14^{\prime}	3.34'	5.0^{\prime}	$7.17^{\text { }}$	12.67^{\prime}	${ }^{18.177^{\prime}}$	23.67^{\prime}	1.04	$2^{1 / 2}{ }^{\prime \prime}$	$3^{1 / 2}{ }^{\prime \prime}$	1.19	2.02	2.84	3.68	12	14	17	19
		57"1*	$38^{\prime \prime}$	$6^{\prime} 6^{\prime \prime} 4^{\prime \prime}$	2.5'	${ }^{11.00^{\prime}}$	13.50 ${ }^{1}$	10.67^{7}	16^{\prime}	3.65'	5.3'	7.83'	14.17^{\prime}	20.50'	26.83	$1.04{ }^{\text {+ }}$	$3^{\prime \prime}$	$4^{\prime \prime}$	1.35	2.35	3.35	4.36	13	16	19	22
		64"1	$43^{\prime \prime}$	$7^{\prime \prime}-1^{\prime \prime}$	2.5' ${ }^{\prime}$	${ }^{12.777^{\prime}}$	15.21^{\prime}	${ }^{12.333^{\prime}}$	${ }^{17}{ }^{17}$	$3.81{ }^{\prime}$	${ }^{4.7}{ }^{\text {3 }}$	8.42 ${ }^{\text {a }}$	${ }^{15.50^{\prime}}$	${ }^{22.588^{\prime}}$	${ }^{29.67}$	$1.04{ }^{4}$	$3^{3 \prime \prime}$	$4^{\prime \prime \prime}$	1.50	2.70		5.03 5 5	14	17	20	24
		$71^{\prime \prime}$	$47^{\prime \prime}$	$7^{\prime}-10^{\prime \prime}$	2.5'	14.09^{\prime}	16.59	${ }^{13.67^{\prime}}$	19^{\prime}	$4.14{ }^{\prime}$	5.3'	9.00^{\prime}	16.83^{\prime}	24.67^{\prime}	32.50^{\prime}	$1.04{ }^{+}$	$3^{\prime \prime}$	$4^{\prime \prime}$	1.62	2.94	4.27	5.59	15	18	22	25

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$	\|	$\begin{gathered} \text { FDO 2020-21 } \\ \text { STANDARD PLANS } \end{gathered}$	$S \mathbb{S E E}$ DRAIN MITERED END SECTION

tongue and groove connector detail

BELL AND SPIGOT CONNECTOR DETAIL

NOTES:

1. Use galvanized steel for all bars, bolts, nuts, and washers.
2. Two connectors required per joint, located 60° right and left
 of bottom center of pipe.
3. Bolt holes in pipe shell are to be drilled

concrete pipe connection detail

\qquad

NOTES:

1. Anchors required for CMP only.
2. Use galvanized steel for all anchors, nuts, and washers.
3. Bend anchor where required to center in concrete slab.
4. Repair damaged surfaces after bending.
5. Space anchors a distance equal to four (4) corrugations.
6. Place the anchors in the outside crest of corrugation.
7. Place flat washers on inside wall of pipe.
8. Drill or punch holes in the mitered end pipe; burning not permitted 9. $A 6^{\prime \prime} \times 1 /{ }^{\prime \prime}$ bolt substitution is permitted.

CORRUGATED METAL PIPE (CMP) ANCHOR DETAIL

CONCRETE PIPE CONNECTION AND CORRUGATED PIPE ANCHOR DETAILS

NOTES:
$5 / 8^{\prime \prime} \times 3^{\prime \prime}$ bolts are standard for all grate fasteners, except when the contractor elects to use the slotted upper holes 5/8" galvanized bolt hex head bolt shown: either hex head or square head bolt may be used use only hex nuts.
3. Make the specified weld when the fabricated unit is subject to hazardous hauls and repeated handling. Tack welds are

Omit on trailing downstream ends on divided roadways.
5. Use grates only when called for in the plans on round pipes $24^{\prime \prime}$ or less in diameter, arch pipes $28^{\prime \prime} \times 20^{\prime \prime}$ or smaller
and elliptical pipes $14^{\prime \prime} \times 23^{\prime \prime}$ or smaller.

CONCRETE PIPE									
Round PIPE					ELLIPTICAL PIPE				
$\begin{aligned} & \text { pipe } \\ & \text { Dia. } \end{aligned}$	s	n	\llcorner	La	$\begin{aligned} & \text { Drain } \\ & \text { Size } \end{aligned}$	5	n	\llcorner	La
*15"	3	4	4'-0'10	$4^{\prime}-11^{\prime \prime}$	*12"x18"	2	3	$2^{\prime \prime}-10^{\prime \prime}$	$3^{\prime}-9^{\prime \prime}$
*18"	4	5	$5^{\prime}-2^{\prime \prime}$	$6^{\prime}-1{ }^{\prime \prime}$	*14"×23"	3	4	$4^{\prime}-0^{\prime}$	$4^{\prime \prime-11^{\prime \prime}}$
*24"	6	7	$7^{\prime \prime}-6^{\prime \prime}$	$8^{\prime \prime}-5^{\prime \prime}$	$19^{\prime \prime} \times 30^{\prime \prime}$	4	5	$5^{\prime}-2^{\prime \prime}$	$6^{\prime}-1^{\prime \prime}$
$30^{\prime \prime}$	7	8	$8^{\prime}-8^{\prime \prime}$	9'-7"	$24^{\prime \prime} \times 38^{\prime \prime}$	5	6	$6^{\prime}-4^{\prime \prime}$	$7^{\prime \prime}-3^{\prime \prime}$
$36^{\prime \prime}$	9	10	$11^{\prime}-0^{\prime \prime}$	11'-11"	$29^{\prime \prime} \times 45^{\prime \prime}$	7	8	$8^{\prime}-8^{\prime \prime}$	$9^{\prime}-7^{\prime \prime}$
$42^{\prime \prime}$	11	12	$13^{\prime \prime} 4^{\prime \prime}$	14-3"	$34^{\prime \prime} \times 53^{\prime \prime}$	8	9	$9^{\prime \prime}-10^{\prime \prime}$	$0^{\prime}-9^{\prime \prime}$
$48^{\prime \prime}$	13	14	$15^{-}-8^{\prime \prime}$	16'-7"	$38^{\prime \prime} \times 60^{\prime \prime}$	10	11	$12^{\prime \prime}-2^{\prime \prime}$	$13^{\prime}-1^{\prime \prime}$
$54^{\prime \prime}$	14	15	$16^{\prime}-10^{\prime \prime}$	17'-9"	$43^{\prime \prime} \times 68^{\prime \prime}$	11	12	$13^{\prime}-4^{\prime \prime}$	$14^{\prime}-3^{\prime \prime}$
$60^{\prime \prime}$	16	17	$19^{-22^{\prime \prime}}$	$20^{\prime}-1^{\prime \prime}$	$48^{\prime \prime} \times 76^{\prime \prime}$	13	14	$15^{\prime}-8^{\prime \prime}$	$16^{\prime} 7^{\prime \prime}$
					$53^{\prime \prime} \times 83^{\prime \prime}$	14	15	$16^{\prime \prime} 10^{\prime \prime}$	${ }^{17^{\prime}-9{ }^{\prime \prime}}$
					588" ${ }^{511^{\prime \prime}}$	15	16	$18^{\prime}-0^{\prime \prime}$	$18^{\prime}-11^{\prime \prime}$

Corrugated metal Pipe									
Round PIPE					ARCHED PIPE				
$\begin{aligned} & \text { Pipe } \\ & \text { Dia. } \end{aligned}$	s	n	\llcorner	La	$\begin{aligned} & \text { Drain } \\ & \text { Size } \end{aligned}$	s	n	\llcorner	La
*15"	2	3	$2^{\prime}-10^{\prime \prime}$	3'-9"	*17"*13"	1	2	${ }^{1}-8^{\prime \prime}$	$2^{1}-7^{\prime \prime}$
*18"	3	4	$4^{\prime \prime}-0^{\prime \prime}$	$4^{\prime}-11^{\prime \prime}$	*21"*15"	2	3	$2^{\prime \prime}-10^{\prime \prime}$	$3^{\prime \prime}-9^{\prime \prime}$
*24"	5	6	$6^{\prime}-44^{\prime \prime}$	$7^{\prime \prime}-3^{\prime \prime}$	*28**20"	4	5	$5^{\prime \prime}-2^{\prime \prime}$	$6^{\prime}-1^{\prime \prime}$
$30^{\prime \prime}$	7	8	$8^{\prime}-8^{\prime \prime}$	9'-7"	$35^{\prime \prime} \times 24^{\prime \prime}$	5	6	$6^{\prime}-4^{\prime \prime}$	7'-3'3
$36^{\prime \prime}$	8	9	$9^{\prime \prime}-10^{\prime \prime}$	$10^{\prime}-9^{\prime \prime}$	$42^{\prime \prime} \times 29^{\prime \prime}$	6	7	$7^{\prime \prime}-6^{\prime \prime}$	$8^{\prime}-5^{\prime \prime}$
$42^{\prime \prime}$	10	11	$12^{\prime \prime} 2^{\prime \prime}$	$13^{\prime}-1^{\prime \prime}$	$49^{\prime \prime} \times 33^{\prime \prime}$	7	8	$8^{\prime}-8^{\prime \prime}$	9'-7"
$48^{\prime \prime}$	12	13	$14^{-66^{\prime \prime}}$	15'-5"	$57^{\prime \prime} \times 38^{\prime \prime}$	9	10	$11^{\prime}-0^{\prime \prime}$	11'-11"
$54^{\prime \prime}$	14	15	$16^{\prime}-10^{\prime \prime}$	$17^{\prime}-9^{\prime \prime}$	$64^{\prime \prime} \times 43^{\prime \prime}$	10	11	$12^{\prime \prime}-2^{\prime \prime}$	$13^{\prime}-1^{\prime \prime}$
$60^{\prime \prime}$	15	16	$18^{\prime}-0^{\prime \prime}$	$18^{\prime}-11^{\prime \prime}$	$71^{\prime \prime} \times 47^{\prime \prime}$	12	13	$14^{-1-6^{\prime \prime}}$	15'-5"

* See Note 5

$$
\text { Bolt and Grate spacing } 14
$$

Galvanized Nut \& Washer, Install

Galvanized Nut \& Washer, Install
With Chamfered Face Down

SPECIAL BOLT LENGTH	
Grate Size (Std. \& X-Stg.)	Bolt Length
21/2"	$51 / 2^{\prime \prime}$
$3^{\prime \prime}$	$6^{\prime \prime}$
$31 / 2$	61/2"
$4^{\prime \prime}$	$7{ }^{\prime \prime}$

GENERAL NOTES

1. Use Class I concrete.
2. Reinforcing steel is either Grade 40 or 60 .
3. Endwalls may be cast in place or precast concrete. (Additional reinforcement necessary for handling precast units will be determined by the Contractor or the supplier).
4. Chamfer all exposed edges and corners to $3 / 4$
5. Endwall dimensions, locations and positions are for round and elliptical concrete pipe and for round and pipe-arch corrugated metal pipe. Round concrete pipe shown.
6. On outfall ditches with side slopes flatter than 1:1.5 provide 20 transtions from the endwall to the frater side slopes, fight of way permitting.
7. Construct front slope and ditch transitions in accordance with Index 430-001.
8. Quantities shown are for estimating purposes only

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Concrete Endwall Details
3	Concrete and Metal Pipe Tables
4	Spacing For Multiple Pipes

\qquad

PLAN

FRONT ELEVATION

NOTE: Keyway and Dowels are required for optional construction joint. DETAIL "A"

SIDE ELEVATION

CONCRETE ENDWALL DETAILS

LAST
REVISION
$11 / 01 / 19$

DESCRIPTION:
RE/01/19
FDOT\} $\begin{gathered}\text { FY 2020-21 } \\ \text { STANDARD PLANS }\end{gathered}$

Round concrete and corrugated metal pipe																														
-	$\underset{D}{\text { Dia. }}$	Opening Area (SF)				Dimensions											Class I Concrete (CY)Pipe And Skew Angle Of Pipe (α)													D
		Number Of Pipes				A	B	c	E	F	G	Y	\underline{x}				$\begin{array}{\|l\|} \hline \text { Single } \\ 0^{\circ} \\ \hline 10 \end{array}$	Double				Triple				Qua				
		${ }_{1}^{123}$	2	3	492								${ }^{\text {O }}$	${ }^{15^{\circ}}{ }^{\text {2 }}$	${ }^{30^{\circ}}$	${ }^{45^{\circ}}$		${ }^{\circ}{ }^{\circ}$	${ }^{15}{ }^{\circ}$	30°	${ }^{45}$					0°	15°	30°	45°	D
先	$\frac{15^{\prime \prime}}{18^{\prime \prime}}$	1.23	2.46 3.54	3.69 5.31	7.92	$\frac{1^{\prime}-11^{\prime \prime}}{2^{\prime \prime}-2^{\prime \prime}}$	$\frac{1^{\prime}-2^{\prime \prime}}{1^{\prime \prime}-3^{\prime \prime}}$	$4^{4}{ }^{\prime \prime}-0^{\prime \prime}$	${ }^{1}{ }^{\prime \prime}-10^{\prime \prime}$			${ }^{2^{\prime}-17^{\prime \prime}}$	$\frac{2^{\prime}-7^{\prime \prime \prime}}{2^{\prime}-10^{\prime \prime \prime}}$	${ }^{2} \frac{2^{\prime}-8^{\prime \prime}}{}$	${ }^{3^{\prime}-0^{\prime \prime}} 3^{3^{\prime \prime}-3^{\prime \prime}}$	$\frac{3^{\prime}+8^{\prime \prime \prime}}{4^{\prime \prime}-1}$		1.59 1.99	1.60 2.01	$\frac{1.65}{\frac{1.06}{2.06}}$	$\frac{1.74}{\frac{1.77}{2.17}}$	$\frac{1.94}{\frac{1.43}{2.4}}$	$\frac{1.96}{\frac{1.46}{2.46}}$	$\frac{2.05}{2.56}$	$\frac{2.23}{2.79}$	$\frac{2.30}{2.86}$	$\begin{aligned} & \frac{2.34}{2.91} \end{aligned}$	$\begin{aligned} & 2.47 \\ & \hline .06 \end{aligned}$	$\frac{.74}{\frac{2.74}{3.40}}$	$\frac{15^{\prime \prime}}{18^{\prime \prime}}$
	$21^{\prime \prime}$	2.41	4.82	7.23	${ }^{9.64}$	$2^{\prime}-5^{\prime \prime}$	$1^{1}-4^{\prime \prime}$	$5^{\prime}-0^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$1^{1-4 \prime}$	$1^{1}-6^{\prime \prime}$	3'-2'1	$3^{\prime}-2^{\prime \prime}$	$3^{\prime \prime}-3^{\prime \prime}$	$3^{\prime \prime}-8^{\prime \prime}$	$4^{\prime}-6^{\prime \prime}$	1.97													$21^{\prime \prime}$
	$24^{\prime \prime}$	3.14	6.28	9.42	12.56	$2^{\prime \prime}-8^{\prime \prime}$	$1^{1}-4^{\prime \prime}$	$5^{\prime \prime} 6^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$1^{1-4 \prime}$	$2^{\prime}-0^{\prime \prime}$	$3^{\prime \prime}-5^{\prime \prime}$	$3^{\prime \prime}-5^{\prime \prime}$	$3^{\prime \prime}-6^{\prime \prime}$	$3^{\prime \prime-11^{\prime \prime}}$	$4^{4}-10^{\prime \prime}$	2.24	2.82	2.84	2.9	3.06	3.39	3.43	3.57	3.87	3.97	4.03	4.24		${ }^{24}$
	$27^{\prime \prime}$	3.98	7.96	11.94	15.92	$2^{\prime}-11^{\prime \prime}$	$1^{\prime}-5^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$2^{\prime}-1^{\prime \prime}$	$1^{1}-5^{\prime \prime}$	$2^{\prime}-6^{\prime \prime}$	$3^{\prime \prime}-10^{\prime \prime}$	$3^{\prime}-10^{\prime \prime}$	$4^{4}-0^{\prime \prime}$	$4^{4}-5^{\prime \prime}$	5'-5"	${ }^{2.73}$	2.82		2.9	3.06	3.9	3.45							27
	$30^{\prime \prime}$	4.91	9.82	14.73	19.64	$3^{\prime \prime}-2^{\prime \prime}$	$1^{1}-6^{\prime \prime}$	$6^{\prime}-6^{\prime \prime}$	2'-2'	$1^{1}-6^{\prime \prime}$	$3^{\prime}-0^{\prime \prime}$	$4^{\prime \prime}-3^{\prime \prime}$	$4^{\prime \prime}-3^{\prime \prime}$	$4^{4}-5^{\prime \prime}$	$4^{4}-11^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	3.26	4.13	4.16	4.26	4.49	4.98	5.04	5.25	5.69	5.84	5.93	6.24	6.91	$30^{\prime \prime}$
	$36^{\prime \prime}$	7.07	14.14	21.21	28.28	$3^{\prime}-8^{\prime \prime}$	$1^{1}-8^{\prime \prime}$	$7^{\prime \prime}-6^{\prime \prime}$	2'-4"	$1^{1}-8^{\prime \prime}$	$4^{\prime}-0^{\prime \prime}$	$5^{\prime}-1^{\prime \prime}$	$5^{\prime \prime-11^{\prime \prime}}$	$5^{\prime}-3^{\prime \prime}$	$5^{\prime}-10^{\prime \prime}$	$7^{\prime \prime}-2^{\prime \prime}$	4.53	5.73	5.77	5.92	6.23	6.92	7.00	7.29	7.91	8.13	8.26	8.69	9.62	36"
	$42^{\prime \prime}$	9.62	19.24	28.86	38.48	$4^{\prime \prime}-2^{\prime \prime}$	$1^{\prime}-10^{\prime \prime}$	$8^{\prime}-6^{\prime \prime}$	$2^{\prime}-6^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	5'-0'1	$6^{\prime}-0^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$6^{\prime}-3^{\prime \prime}$	$6^{\prime}-11^{\prime \prime}$	$8^{\prime}-6^{\prime \prime}$	6.33	8.11	8.17	8.39	8.85	9.90	10.02	10.45	11.38	11.68	11.87	12.51	13.89	$42^{\prime \prime}$
	$48^{\prime \prime}$	12.57	25.14	37.71	50.28	$4^{\prime}-8^{\prime \prime}$	$2^{\prime \prime} 1^{\prime \prime}$	$9^{\prime}-6^{\prime \prime}$	$2^{\prime}-9^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$6^{\prime}-9^{\prime \prime}$	$6^{\prime}-9{ }^{\prime \prime}$	$7^{\prime \prime}-0^{\prime \prime}$	$7^{\prime \prime}-10^{\prime \prime}$	$9^{\prime}-7^{\prime \prime}$	8.15	10.40	10.48	10.75	11.33	12.64	12.80	13.34	14.50	14.89	15.13	15.93	17.68	
	$54^{\prime \prime}$	15.90	31.80	47.70	63.60	$5^{\prime}-2^{\prime \prime}$	$2^{\prime}-6^{\prime \prime}$	$10^{\prime}-6^{\prime \prime}$	$3^{\prime}-2^{\prime \prime}$	$2^{\prime \prime}-3^{\prime \prime}$	$7{ }^{1}-0^{\prime \prime}$	$7^{\prime \prime}-8^{\prime \prime}$	$7^{\prime \prime}-8^{\prime \prime}$	$7^{\prime \prime}-11^{\prime \prime}$	$8^{\prime}-10^{\prime \prime}$	$10^{\prime}-10^{\prime \prime}$	11.71	15.23	15.35	15.78	16.69	18.77	19.02	19.86	21.69	22.29	22.66	23.93	26.67	$54^{\prime \prime}$
宕	$15^{\prime \prime}$	1.23	2.46	3.69	4.92	$1^{\prime}-11^{\prime \prime}$	$1^{\prime}-2^{\prime \prime}$	$4^{\prime}-0^{\prime \prime}$	$1^{1-10^{\prime \prime}}$	$1^{1}-2^{\prime \prime}$	$0^{\prime}-6^{\prime \prime}$	$2^{\prime}-7^{\prime \prime}$	$2^{2}-7^{\prime \prime}$	$2^{\prime}-8^{\prime \prime}$	$3^{\prime}-0^{\prime \prime}$	$3^{\prime}-8^{\prime \prime}$	1.24	1.62	1.63	1.68	1.78	1.99	2.02	2.11	2.30	2.37	2.41	2.75	2.84	
	$18^{\prime \prime}$	1.77	3.54	5.31	7.08	$2^{\prime}-2^{\prime \prime}$	$1^{1}-3^{\prime \prime}$	$4^{\prime}-6^{\prime \prime}$	$1^{\prime}-11^{\prime \prime}$	$1^{1}-3^{\prime \prime}$	$1^{\prime}-0^{\prime \prime}$	$2^{\prime}-10^{\prime \prime}$	$2^{\prime}-10^{\prime \prime}$	$2^{\prime}-11^{\prime \prime}$	$3^{\prime}-3^{\prime \prime}$	$4^{\prime}-0^{\prime \prime}$	1.59	2.04	2.06	2.11	2.23	2.51	2.54	2.65	2.89	2.96	3.01	3.17	3.53	$18^{\prime \prime}$
	21"	2.41	4.82	7.23	9.64	$2^{\prime \prime} 5^{\prime \prime}$	$1^{1}-4^{\prime \prime}$	$5^{\prime}-0^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$1^{1}-4^{\prime \prime}$	$1^{1}-6^{\prime \prime}$	$3^{\prime \prime}-2^{\prime \prime}$	$3^{\prime \prime} 2^{\prime \prime}$	$3^{\prime \prime}-3^{\prime \prime}$	$3^{\prime}-8^{\prime \prime}$	$4^{\prime \prime-6 "}$														$21^{\prime \prime}$
	$24^{\prime \prime}$	3.14	6.28	9.42	12.56	$2^{\prime \prime}-8^{\prime \prime}$	$1^{1}-4^{\prime \prime}$	$5^{\prime}-6^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$1^{1}-4^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$3^{\prime 3}-5^{\prime \prime}$	$3^{3}-5^{\prime \prime}$	$3^{\prime \prime}-6^{\prime \prime}$	$3^{\prime \prime-11^{\prime \prime}}$	$4^{4}-10^{\prime \prime}$	2.29	2.91	2.93	3.01	3.17	3.52	3.56	3.71	4.03	4.14	4.20	4.43	4.91	$24^{\prime \prime}$
	$27^{\prime \prime}$	3.98	7.96	11.94	15.92	$2^{\prime}-11^{\prime \prime}$	$1^{1}-5^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$2^{\prime \prime} 1^{\prime \prime}$	$1^{\prime}-5^{\prime \prime}$	$2^{1}-6^{\prime \prime}$	$3^{\prime \prime}-10^{\prime \prime}$	$3^{\prime}-10^{\prime \prime}$	$4^{4}-0^{\prime \prime}$	$4^{4}-5^{\prime \prime}$	5'-5"					3.1									${ }^{27}{ }^{\prime \prime}$
	$30^{\prime \prime}$	4.91	9.82	14.73	19.64	$3^{\prime}-2^{\prime \prime}$	$1^{1-66^{\prime \prime}}$	$6^{\prime}-6^{\prime \prime}$	$2^{\prime}-2^{\prime \prime}$	$1^{1-66^{\prime \prime}}$	$3^{\prime}-0^{\prime \prime}$	4'-3"	$4^{4}-3^{\prime \prime}$	$4^{4}-5^{\prime \prime}$	$4^{4}-11^{\prime \prime}$	6'0'01	3.34	4.28	4.31	4.43	4.67	5.20	5.27	5.49	5.97	6.13	6.23	6.56	7.29	$30^{\prime \prime}$
	$36^{\prime \prime}$	7.07	14.14	21.21	28.28	$3^{\prime}-8^{\prime \prime}$	$1^{1}-8^{\prime \prime}$	$7^{\prime}-6^{\prime \prime}$	$2^{\prime \prime} 4^{\prime \prime}$	$1^{1}-8^{\prime \prime}$	$4^{\prime}-0^{\prime \prime}$	$5^{\prime}-1^{\prime \prime}$	$5^{\prime}-1^{\prime \prime}$	$5^{\prime}-3^{\prime \prime}$	$5^{\prime}-10^{\prime \prime}$	$7^{\prime}-2^{\prime \prime}$	4.64	5.95	6.00	6.15	6.49	7.25	7.34	7.65	8.33	8.57	8.71	9.18	10.20	$36^{\prime \prime}$
	$42^{\prime \prime}$	9.62	19.24	28.86	38.48	$4^{\prime}-2^{\prime \prime}$	$1^{\prime}-10^{\prime \prime}$	$8^{\prime}-6^{\prime \prime}$	2'-6"	$2^{\prime}-0^{\prime \prime}$	$5^{\prime}-0^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$6^{\prime}-3^{\prime \prime}$	$6^{\prime}-11^{\prime \prime}$	$8^{\prime} 6^{\prime \prime}$	6.49	8.43	8.50	8.73	9.23	10.38	10.52	10.98	11.99	12.32	12.52	13.22	14.73	$42^{\prime \prime}$
	$48^{\prime \prime}$	12.57	25.14	37.71	50.28	$4^{4}-8^{\prime \prime}$	$2^{\prime \prime}-1^{\prime \prime}$	$9^{9}-6^{\prime \prime}$	${ }^{\text {2 }}$ '-9"1	$2^{\prime \prime}-0^{\prime \prime}$	6'-0"	6'-9"	6'-9"	$7^{7}-0^{\prime \prime}$	$7^{\prime}-10^{\prime \prime}$	9'-7"	8.38	10.85	10.94	11.23	11.87	13.34	13.51	14.11	15.39	15.82	16.08	16.97	18.90	$48^{\prime \prime}$
	$54^{\prime \prime}$	15.90	31.80	47.70	63.60	$5^{\prime \prime}-2^{\prime \prime}$	$2^{\prime}-6^{\prime \prime}$	$10^{\prime}-6^{\prime \prime}$	$3^{\prime}-2^{\prime \prime}$	$2^{\prime}-3^{\prime \prime}$	$7^{\prime \prime}-0^{\prime \prime}$	$7^{\prime \prime}-8^{\prime \prime}$	$7^{1}-8^{\prime \prime}$	$7^{\prime}-11^{\prime \prime}$	$8^{\prime}-10^{\prime \prime}$	$10^{\prime}-10^{\prime \prime}$	11.77	15.35	15.48	15.90	16.83	18.93	19.18	20.04	21.89	22.51	22.89	24.17	26.96	$54^{\prime \prime}$

Elliptical concrete and corrugated metal pipe																																	
을	$\begin{gathered} \text { span } \\ 5 \end{gathered}$	$\left\|\begin{array}{c} \text { Rise } \\ R \end{array}\right\|$	Opening Area (SF)				Dimensions											Class I Concrete (CY) Number Of Pipe And Skew Angle Of Pipe (α)													Spar	Rise	$\begin{aligned} & \text { Approx. } \\ & \text { Equiv. } \\ & \text { Round } \end{aligned}$
			Number of Pipes				A	B	c	E		G	y					$\begin{array}{r} \text { Single } \\ \hline \end{array}$	Double ${ }^{\circ}$				Triple ${ }^{\circ}$				Quadruple						
			13			4								$0^{\circ}{ }^{\circ}$	$\frac{15}{}{ }^{\circ}$	${ }^{30^{\circ}}$	45°		0°	$\frac{15^{\circ}}{1.46}$	$\frac{30^{\circ}}{1.51}$	$\frac{45^{\circ}}{1.60}$	$\begin{array}{\|l\|} \hline 0^{\circ} \\ \hline 1.80 \\ \hline \end{array}$	$\frac{15^{\circ}}{1.82}$	30° 1.91 2.43	$\frac{45^{\circ}}{2.09}$	$\begin{array}{\|l\|} \hline 2.16 \\ \hline \end{array}$	$\frac{15}{2.20}$	$\begin{array}{r} 30 \\ \hline 2.33 \\ \hline 2.97 \\ \hline \end{array}$	$\begin{aligned} & 25 \\ & \hline 2.60 \\ & \hline \end{aligned}$	12"		
	$\frac{188^{\prime \prime}}{23^{\prime \prime}}$	${ }^{12} 14^{\prime \prime}$	1.3	$\stackrel{2.6}{3.6}$	3.9 5.4	5.2 7.2			${ }^{3}{ }^{3-9^{\prime \prime}}$	${ }^{1}$	$\frac{1^{\prime}-2^{\prime \prime}}{1^{\prime \prime}-3^{\prime \prime}}$			${ }^{2 \prime-10^{\prime \prime}}{ }^{\prime \prime-5}$	${ }^{\text {2'-11" }}{ }^{\prime \prime}$	${ }^{3} 3^{\prime \prime-} 3^{\prime \prime}$	4'-10 ${ }^{\text {4 }}$	${ }_{1}^{1.09}$	1.45		$\begin{aligned} & \hline 1.51 \\ & \hline 1.89 \end{aligned}$											$18^{\prime \prime}$ \| $15^{\prime \prime}$	
	${ }^{233^{\prime \prime}}$	$1{ }^{19}$	1.8	3.6 6.6	5.4	13.2	${ }^{1}$ '-3'31	${ }^{1}$ '-4'4	$5^{4-1 / 1 / 1 / 1}$	$2^{\prime}-0^{\prime \prime}$	$1^{1}-4^{\prime \prime}$	${ }^{1} 1-7{ }^{1 / 2}$	$4^{\prime \prime}-2^{\prime \prime}$	${ }^{\frac{3}{\prime}-2^{\prime \prime}}$	$4^{\frac{1}{\prime \prime}-4^{\prime \prime}}$	$4^{4-10^{\prime \prime}}$	$5^{\prime}-11^{\prime \prime}$	1.89	1	2.57	2.65	2.82	3.22	${ }_{3}^{2.27}$	${ }^{2.43}$	${ }^{2.77}$	${ }^{2.88}$	3.95		4.70	$19^{\prime \prime}$	30°	$24^{\prime \prime}$
	$38^{\prime \prime}$	$24^{\prime \prime}$	5.1	10.2	15.3	20.4	$2^{\prime \prime}-8^{\prime \prime}$	$1^{1}-5^{\prime \prime}$	$6^{\prime}-3^{\prime \prime}$	$2^{\prime}-1^{\prime \prime}$	$1^{1}-5^{\prime \prime}$	$2^{\prime \prime}-9^{\prime \prime}$	$5^{\prime}-2^{\prime \prime}$	$5^{\prime}-2^{\prime \prime}$	$5^{\prime}-4^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$7^{\prime \prime}-4^{\prime \prime}$	2.64	3.55	3.58	3.69	3.93	4.48	4.54	4.77	5.24	5.39	5.49	5.82	6.53	$24^{\prime \prime}$	$38^{\prime \prime}$	$30^{\prime \prime}$
	$45^{\prime \prime}$	$29^{\prime \prime}$	7.4	14.8	22.2	29.6	$3^{\prime \prime}-1^{\prime \prime}$	$1^{1}-6^{\prime \prime}$	$7^{\prime \prime}-0^{\prime \prime}$	$2^{\prime}-2^{\prime \prime}$	$1^{1}-6^{\prime \prime}$	$3^{\prime \prime}-6^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$6^{\prime}-3^{\prime \prime}$	$6^{\prime}-11^{\prime \prime}$	$8^{\prime}-6^{\prime \prime}$	3.32	4.48	4.52	4.66	4.96	5.64	5.72	6.00	6.60	6.80	6.92	7.34	8.24	$29^{\prime \prime}$	$45^{\prime \prime}$	
	$53^{\prime \prime}$	$34^{\prime \prime}$	10.2	20.4	30.6	40.8	$3^{\prime \prime}-6^{\prime \prime}$	$1^{\prime}-7^{\prime \prime}$	$7^{\prime}-11^{1 / 2}$	$2^{\prime}-3^{\prime \prime}$	$1^{1}-7^{\prime \prime}$	$4^{1}-51 / 2^{\prime \prime}$	$7^{\prime \prime}-1^{\prime \prime}$	$7^{\prime \prime}-1^{\prime \prime}$	$7^{\prime \prime}-4^{\prime \prime}$	$8^{\prime}-2^{\prime \prime}$	$10^{\prime}-0^{\prime \prime}$	4.24	5.76	5.81	6.00	6.39	7.29	7.40	7.76	8.55	8.81	8.97	9.52	10.70	34"	$53^{\prime \prime}$	$42^{\prime \prime}$
¢	$60^{\prime \prime}$	$38^{\prime \prime}$	12.9	25.8	38.7	51.6	$3^{\prime \prime}-10^{\prime \prime}$	$1^{1}-8^{\prime \prime}$	$8^{8}-9^{\prime \prime}$	$2^{\prime \prime}-4^{\prime \prime}$	$1^{1}-8^{\prime \prime}$	$5^{\prime}-3^{\prime \prime}$	$7^{\prime \prime}-11^{\prime \prime}$	7'-11"	$8^{\prime}-2^{\prime \prime}$	$9^{\prime}-2^{\prime \prime}$	$11^{\prime}-2^{\prime \prime}$	5.22	7.16	7.23	7.46	7.96	9.10	9.24	9.70	10.71	11.05	11.25	11.95	13.46	38"	60^{\prime}	$48^{\prime \prime}$
	68^{11}	$43^{\prime \prime}$	16.6	33.2	49.8	66.4	$4^{\prime \prime}-3^{\prime \prime}$	$1^{\prime \prime}-10^{\prime \prime}$	9 ${ }^{1} 81 /{ }^{1 / 1}$	$2^{\prime \prime}-6^{\prime \prime}$	$1^{\prime \prime}-10^{\prime \prime}$	$6^{\prime}-2^{1 / 2}$	$8^{\prime}-10^{\prime \prime}$	$8^{\prime}-10^{\prime \prime}$	$9^{\prime}-2^{\prime \prime}$	$10^{\prime}-2^{\prime \prime}$	12'-6"	6.63	9.01	9.09	9.38	10.00	11.39	11.56	12.13	13.36	13.77	14.02	14.88	16.73	43"	68'	$54^{\prime \prime}$
	$76^{\prime \prime}$	$48^{\prime \prime}$	20.5	41.0	61.5	82.0	$4^{4}-8^{\prime \prime}$	$2^{\prime \prime}-1^{\prime \prime}$	$10^{\prime} 8^{\prime \prime}$	2'-9"	$2^{\prime \prime}-0^{\prime \prime}$	$7^{\prime}-2^{\prime \prime}$	9'-9"	9'-9"	$10^{\prime}-1^{\prime \prime}$	11'-3"	13'-9"	8.66	11.74	11.85	12.22	13.02	14.82	15.04	15.77	17.37	17.91	18.23	19.34	21.74	$48^{\prime \prime}$	76	$60^{\prime \prime}$
	83"	53"	24.8	49.6	74.4	99.2	5'-1"	$2^{\prime \prime}-6^{\prime \prime}$	$11^{1}-7{ }^{\prime \prime}$	$3^{\prime \prime}-2^{\prime \prime}$	$2^{\prime \prime}-6^{\prime \prime}$	$8^{-1} 1^{\prime \prime}$	$10^{\prime}-7{ }^{\prime \prime}$	$10^{\prime}-7{ }^{\prime \prime}$	$10^{\prime}-11^{\prime \prime}$	$12^{\prime}-3^{\prime \prime}$	15^{-010}	12.50	16.98	16.98	17.67	18.83	21.47	21.78	22.86	25.18	25.97	26.44	28.06	31.55	53"	$83^{\prime \prime}$	$66^{\prime \prime}$
	$91^{\prime \prime}$	$58^{\prime \prime}$	29.5	59.0	88.5	118.0	$5^{\prime}-6^{\prime \prime}$	$2^{\prime \prime} 10^{\prime \prime}$	$12^{1}-6{ }^{1 / 2}$	$3^{\prime \prime}-6^{\prime \prime}$	$2^{\prime \prime} 10^{\prime \prime}$	$9^{1}-0^{1 / 2}$	$11^{\prime \prime} 4^{\prime \prime}$	$11^{\prime \prime} 4^{\prime \prime}$	11'-9"	${ }^{13^{\prime}-1^{\prime \prime}}$	$16^{\prime}-0^{\prime \prime}$	16.46	22.26	22.46	23.16	24.66	28.05	28.46	29.85	32.85	33.85	34.46	36.55	41.05	$58^{\prime \prime}$	91"	$72^{\prime \prime}$
	$17^{\prime \prime}$	$13^{\prime \prime}$	1.1	2.2	3.3	4.4	$1^{\prime \prime}-9^{\prime \prime}$	$1^{\prime \prime}-2^{\prime \prime}$	$3^{\prime \prime}-10^{\prime \prime}$	$1^{\prime}-10^{\prime \prime}$	$1^{\prime \prime}-2^{\prime \prime}$	$0^{-}-4^{4}$	$2^{\prime \prime}-6^{\prime \prime}$	$2^{\prime}-6^{\prime \prime}$	$2^{\prime}-7^{\prime \prime}$	$2^{\prime \prime-11^{\prime \prime}}$	$3^{\prime \prime}-6^{\prime \prime}$	1.16	1.47	1.48	1.52	1.60	1.78	1.80	1.88	2.04	2.09	2.12	2.23	2.48	17^{17}	13'	$15^{\prime \prime}$
	$21^{\prime \prime}$	$15^{\prime \prime}$	1.6	3.2	4.8	6.4	$1^{\prime}-11^{\prime \prime}$	$1^{1}-2^{\prime \prime}$	$4^{\prime \prime}-3^{\prime \prime}$	$1^{1}-10^{\prime \prime}$	$1^{\prime}-2^{\prime \prime}$	$0^{\prime}-9^{\prime \prime}$	$2^{\prime}-10^{\prime \prime}$	$2^{\prime}-10^{\prime \prime}$	$2^{\prime}-11^{\prime \prime}$	$3^{\prime}-3^{\prime \prime}$	$4^{4}-0^{\prime \prime}$	1.33	1.69	1.70	1.75	1.84	2.04	2.06	2.15	2.33	2.40	2.44	2.57	2.84	$21^{\prime \prime}$	$15^{\prime \prime}$	$18^{\prime \prime}$
$\stackrel{\square}{2}$	$28^{\prime \prime}$	$20^{\prime \prime}$	2.8	5.6	8.4	11.2	$2^{\prime \prime}-4^{\prime \prime}$	$1^{\prime}-3^{\prime \prime}$	$5^{\prime}-2^{\prime \prime}$	$1^{\prime}-11^{\prime \prime}$	$1^{\prime}-3^{\prime \prime}$	$1^{1}-8^{\prime \prime}$	$3^{\prime \prime}-5^{\prime \prime}$	$3^{\prime \prime-5^{\prime \prime}}$	$3^{\prime}-6^{\prime \prime}$	$3^{\prime \prime}-11^{\prime \prime}$	$4^{\prime}-10^{\prime \prime}$	1.78	2.31	2.33	2.39	2.53	2.83	2.87	2.99	3.26	3.36	3.42	3.60	4.01	$28^{\prime \prime}$	$20^{\prime \prime}$	$24^{\prime \prime}$
	35"	$24^{\prime \prime}$	4.3	8.6	12.9	17.2	${ }^{2 \prime} 8^{\prime \prime}$	${ }^{1} 1^{\prime \prime} 4^{\prime \prime}$	$5^{\text {5 }}$-111/2 ${ }^{1}$	2'-0"	${ }^{1} 1^{\prime \prime} 4^{\prime \prime}$	$2^{\prime \prime-51 / /^{\prime \prime}}$	$4^{4}-0^{\prime \prime}$	4'-0"	$4^{\prime \prime}-2^{\prime \prime}$	$4^{4}-7^{\prime \prime}$	$5^{\prime \prime}-8^{\prime \prime}$	2.34	3.03	3.05	3.14	3.32	3.72	3.77	3.93	4.29	4.40	4.47	4.72	5.25	$35^{\prime \prime}$	24^{\prime}	$30^{\prime \prime}$
	$42^{\prime \prime}$	29"	5.9	11.8	17.7	23.6	$3^{\prime \prime}-1^{\prime \prime}$	$1^{\prime}-5^{\prime \prime}$	$6^{\prime}-10^{1 / 2}{ }^{\prime \prime}$	$2^{\prime}-1^{\prime \prime}$	$1^{1}-5^{\prime \prime}$	$3^{\prime \prime} 4^{1 / 2}{ }^{\prime \prime}$	$4^{\prime}-9{ }^{\prime \prime}$	$4^{\prime}-9^{\prime \prime}$	$4^{\prime}-11^{\prime \prime}$	$5^{\prime}-6^{\prime \prime}$	$6^{\prime}-9^{\prime \prime}$	3.13	4.06	4.09	4.20	4.45	4.99	5.06	5.28	5.76	5.93	6.03	6.36	7.09	$42^{\prime \prime}$		$36^{\prime \prime}$
	$49^{\prime \prime}$	$33^{\prime \prime}$	8.4	16.8	25.2	33.6	$3^{\prime \prime}-5^{\prime \prime}$	${ }^{1}$ '-6"	$7^{1}-88^{\prime \prime}$	$2^{\prime \prime} 2^{\prime \prime}$	$1^{1}-6^{\prime \prime}$	$4^{4}-2^{\prime \prime}$	$5^{\prime \prime} 6^{\prime \prime}$	$5^{\prime}-6^{\prime \prime}$	$5^{\prime}-8^{\prime \prime}$	$6^{\prime \prime} 4^{\prime \prime}$	$7^{\prime \prime}-9^{\prime \prime}$	3.83	5.00	5.04	5.18	5.48	6.16	6.24	6.52	7.12	7.32	7.44	7.86	8.76	$49^{\prime \prime}$	$33^{\prime \prime}$	$42^{\prime \prime}$
	$57^{\prime \prime}$	$38^{\prime \prime}$	10.6	21.2	31.8	42.4	$3^{\prime \prime}-10^{\prime \prime}$	$1^{1}-7^{\prime \prime}$	$8^{\prime \prime-71 / 2^{\prime \prime}}$	$2^{\prime \prime}-3^{\prime \prime}$	$1^{1}-7^{\prime \prime}$	$5^{1}-1 / 2^{\prime \prime}$	$6^{\prime}-4^{\prime \prime}$	$6^{6}-4^{\prime \prime}$	$6^{6}-7^{\prime \prime}$	$7^{\prime \prime}-4^{\prime \prime}$	$8^{\prime}-11^{\prime \prime}$	4.87	6.31	6.36	6.53	6.91	7.74	7.84	8.18	8.93	9.18	9.33	9.85	10.96	57"		$48^{\prime \prime}$
-	$64^{\prime \prime}$	$43^{\prime \prime}$	13.2	26.4	39.6	52.8	$4^{\prime \prime}-3^{\prime \prime}$	$1^{1}-8^{\prime \prime}$	$9^{-61 / 2^{\prime \prime}}$	$2^{\prime \prime} 4^{\prime \prime}$	$1^{1}-8^{\prime \prime}$	$6^{\prime}-0^{1 / 2}{ }^{\prime \prime}$	$7^{\prime \prime-110}$	$7^{\prime \prime}-1^{\prime \prime}$	$7{ }^{\prime \prime} 4^{\prime \prime}$	$8^{\prime}-2^{\prime \prime}$	$10^{\prime}-0^{\prime \prime}$	5.88	7.64	7.70	7.91	8.37	9.40	9.52	9.94	10.86	11.15	11.33	11.97	13.33	$64^{\prime \prime}$	$43^{\prime \prime}$	$54^{\prime \prime}$
	7111	$47^{\prime \prime}$	16.9	33.8	50.7	67.6	$4^{4-7{ }^{\prime \prime}}$	$1^{\prime}-10^{\prime \prime}$	$10^{\prime \prime} 4^{\prime \prime}$	${ }^{2}-6^{\prime \prime}$	$2^{2}-0^{\prime \prime}$	$6^{\prime}-10^{\prime \prime}$	$7^{\prime \prime-10^{\prime \prime}}$	$7^{\prime \prime-10^{\prime \prime}}$	$8^{\prime}-1^{\prime \prime}$	$9^{\prime}-1^{\prime \prime}$	111-1"	7.80	10.15	10.23	10.51	11.12	12.49	12.65	13.22	14.43	14.85	15.10	15.94	17.77	$71^{\prime \prime}$	$47^{\prime \prime}$	$60^{\prime \prime}$

NOTES:

1. Dimension x is calculated as: $x=\gamma *$ SEC α
2. Select tabular quantities using skew values as follows

End Skew to Pipe Use Tabulated Value 0° to 5°
6° to 15°
16° to 30°
31° or $0 v e r$
15°
30°
45°
CONCRETE AND METAL PIPE TABLES
\square FDOT $\begin{gathered}\text { FY 2020-21 } \\ \text { STANDARD PLANS }\end{gathered}$

NORMAL PIPE

\qquad
(Multiple Pipe Shown, Single Pipe Similar)

LEGEND:
α Pipe Skew Angle
Center to Center between pipes
$\times \quad$ Center to Center along front of Headwall

GENERAL NOTES

1. Use Class II concrete
2. Reinforcing steel is either Grade 40 or 60 ,
3. Endwalls may be cast in place or precast concrete. The Contractor or the Supplier will determine the additional reinforcement necessary for handling precast units.
4. Chamfer all exposed edges and corners $3 / 4$ " unless otherwise shown. 5. Quantities shown are for estimating purposes only.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Single 60" Pipe Endwall Details
3	Double 60" $60^{\prime \prime}$ Pipe Endwall Details

\qquad

NOTES:

1. ' $^{\prime \prime}$ clearance on all reinforcement
unless otherwise shown.
2. Cut and bend B_{s} Bars as shown.
3. All bar dimensions are out to out

LEGEND:
H = Horizontal Bars
$B=$ Bent Bars
$D=$ Dowels or Diagonal Bars
 \& 60" Pipe $\stackrel{y}{1}$

PLAN
(Showing Bars In Footing)

DOUBLE 60" PIPE ENDW ALL DETAILS

GENERAL NOTES

1. Use Class II concrete.
2. Reinforcing steel is either Grade 40 or 60
3. Endwalls may be cast in place or precast concrete. The Contractor or the Supplier will determine the additional reinforcement necessary for handling precast units.
4. Chamfer all exposed edges and corners $3 / 4$ " unless otherwise shown. 5. Quantities shown are for estimating purposes only

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Single 66" Pipe Endwall Details
3	Double 66" Pipe Endwall Details

Corrugated Metal Pipe
Concrete Pipe

NOTES:

1. $2^{\prime \prime}$ clearance on all reinforcement,
unless otherwise shown.
2. Cut and bend B_{2} Bars as shown.
3. All bar dimensions are out to out.

LEGEND:
$H=$ Horizontal Bars $B=$ Bent Bars
$V=$ Vertical Bars $\quad D=$ Dowels or Diagonal Bars

SINGLE 66" PIPE ENDWALL ESTIMATED QUANTITIES					
ITEM			UNIT	RCP	CMP
Class II Concrete			Cu. Yd.	13.2	13.3
			Lb.	1,170	1,170
BILL OF REINFORCING STEEL					
MARK	SIZE	NO. REQD.			
H_{1}	4		9	$33^{\prime \prime}-8^{\prime \prime}$	
H_{2}	5		63	$4^{\prime \prime-11^{\prime \prime}}$	
V_{1}	4		20	$8^{\prime}-11^{\prime \prime}$	
B_{1}	5		34	$9^{\prime \prime-11^{\prime \prime}}$	
B_{2}	4		8	${ }^{33^{\prime}-8{ }^{\prime \prime}}{ }^{1}-8{ }^{\prime \prime}$	
D_{1}	4		4		

$\underset{\text { (Typical Section) }}{\text { SECTIION } B-B}$
 BENDING DIAGRAM

SECTION C-C
SINGLE 66" PIPE ENDW ALL DETAILS

Index	sheet
$430-032$	2 of 3

on all reinforcement
less otherwise shown.
Cut and bend B_{3} Bars as shown.
3. All bar dimensions are out to out.

EGEND:

H Horizontal Bars
= Vertical Bars
$B=$ Bent Bars
$=$ Dowels or Diagonal Bars
Corrugated Metal Pipe (Typ.)

Sta./Off set Location
(Showing Bars In Footing)

DOUBLE 66" PIPE ENDWALL DETAILS

| $\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$ | \|c|cos | $\begin{gathered} \text { FY 2020-21 } \\ \text { FDOTANDARD PLANS } \end{gathered}$ | STRAIGHT CONCRETE ENDWALLS SINGLE AND DOUBLE 66" PIIPE | $\begin{gathered} \text { INDEX } \\ 430-032 \end{gathered}$ | $\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 3 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

GENERAL NOTES

1. Use Class II concrete
2. Reinforcing steel is either Grade 40 or 60 .
3. Endwalls may be cast in place or precast concrete. The Contractor or the Supplier will determine the additional reinforcement necessar
4. Chamfer all exposed edges and corners $3 / 4$ " unless otherwise shown.
5. Quantities shown are for estimating purposes only.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Single $72^{\prime \prime}$ Pipe Endwall Details
3	Double $72^{\prime \prime}$ Pipe Endwall Details

1/18	

,

GENERAL NOTES

1. Use Class II concrete
2. Reinforcing steel is either Grade 40 or 60 ,
3. Endwalls may be cast in place or precast concrete. The Contractor or the Supplier will determine the additional reinforcement necessary for handling precast units.
4. Chamfer all exposed edges and corners $3 / 4$ " unless otherwise shown.
5. Quantities shown are for estimating purposes only

GENERAL NOTES:

1. Use Class I concrete
2. Chamfer all exposed edges and corners $3 / 4$ unless otherwise shown.
3. Quantities shown are for estimating purposes only.

TABLE OF CONTENTS:
General Notes and Contents
U-Type and 45° Endwalls

WINGED CONCRETE ENDWALLS \qquad

PLAN

FRONT ELEVATION

dimensions and estimated quantities pipe culvert endwalls with u-type wings													
dimensions							QUANTITIES IN ONE ENDWALL						
Pipe		Wall			Footing		Concrete, Class I, Total (CY)						$\begin{aligned} & \text { Steel } \\ & \text { Tie Bars } \end{aligned}$
Dia.	Area	G	Ht		F		RCP		CMP		CIP		
							Inlet	Outlet	Inlet	Outlet	Inlet	Outlet	
15"	1.2	$3^{\prime}-11^{\prime \prime}$	2'-3"	'-5	$1^{\prime}-3^{\prime \prime}$	$2^{\prime}-7^{\prime \prime}$	0.59	0.67	0.62	0.70	0.61	0.70	none
$18^{\prime \prime}$	1.8	$4^{\prime \prime}-2^{\prime \prime}$	$2^{\prime \prime}-6^{\prime \prime}$	1'-9"	1^{\prime} '-3"	$2^{\prime}-11^{\prime \prime}$	0.70	0.79	0.74	0.82	0.74	0.82	none
$24^{\prime \prime}$	3.1	$4^{-1} 8^{\prime \prime}$	3'-0'10	$2^{\prime \prime}-6^{\prime \prime}$	$1^{1}-6$	3'-8"	1.01	1.1	1.06	1.16	1.06	1.16	2-\#6 Bars $\times 2^{\prime}-0^{\prime \prime}$
$30^{\prime \prime}$	4.9	$5^{\prime}-2{ }^{\prime \prime}$	$3^{\prime}-6^{\prime \prime}$	$3^{\prime}-3^{\prime \prime}$	$1^{1}-6^{\prime \prime}$	$4^{4}-5^{\prime \prime}$	1.33	1.44	1.41	1.51	1.40	1.51	2 -\#6 Bars $\times 2^{\prime}-0^{\prime \prime}$
$36^{\prime \prime}$	7.1	$5^{5}-8^{\prime \prime}$	$4^{4}-0^{\prime \prime}$	$4^{4}-0^{\prime \prime}$	$1^{1}-9^{\prime \prime}$	$5^{\prime}-2^{\prime \prime}$	1.73	1.85	1.84	1.96	1.82	1.94	$2-\# 6$ Bars $\times 2^{\prime}-6^{\prime \prime}$
$42^{\prime \prime}$	9.6	$6^{\prime}-2^{\prime \prime}$	$4^{4}-6^{\prime \prime}$	$4^{4}-9^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$5^{\prime}-11^{\prime \prime}$	2.19	2.32	2.32	2.45			$2-\# 6$ Bars $\times 2^{\prime}-6^{\prime \prime}$
$48^{\prime \prime}$	12.6	$6^{\prime}-8^{\prime \prime}$	$5^{\prime}-0^{\prime \prime}$	5'-6"	$2^{\prime}-0^{\prime \prime}$	$6^{\prime}-8{ }^{\prime \prime}$	2.64	2.78	2.81	2.95			$2-\# 6$ Bars $\times 3^{\prime}-0^{\prime \prime}$

FRONT ELEVATION

SIDE ELEVATION

dimensions and estimated quantities pipe culvert endwalls With 45° Wings										
DIMENSIONS							QuANtities in one endwall			
Pipe		Wall				$\begin{array}{\|c\|} \hline \text { Footing } \\ \hline F \\ \hline \end{array}$	Concrete, Class I			Steel Tie Bars
Dia.	Area	Ht	G	\downarrow	M			(CY)		
D	(ft²)						RCP	CMP	CIP	
15"	1.2	$2^{\prime \prime} 3^{\prime \prime}$	$3^{\prime}-7{ }^{\prime \prime}$	$1^{1}-0^{\prime \prime}$	$1^{\prime}-3^{\prime \prime}$	$1^{\prime}-3^{\prime \prime}$	0.56	0.59	0.59	none
$18^{\prime \prime}$	1.8	$2^{\prime}-6^{\prime \prime}$	$3^{\prime}-10^{\prime \prime}$	$1^{\prime}-2^{\prime \prime}$	$1^{1}-7{ }^{\prime \prime}$	$1^{1}-3^{\prime \prime}$	0.74	0.77	0.77	none
$24^{\prime \prime}$	3.1	$3^{\prime \prime}-0^{\prime \prime}$	$4^{\prime \prime}-4^{\prime \prime}$	$1^{\prime}-5^{\prime \prime}$	$2^{\prime \prime}-1^{\prime \prime}$	$1^{1}-4{ }^{\prime \prime}$	1.01	1.06	1.06	$2-\# 6$ Bars $\times 2{ }^{\text {2-0" }}$
$30^{\prime \prime}$	4.9	$3^{\prime \prime}-6^{\prime \prime}$	$4^{\prime}-10^{\prime \prime}$	1'-9"	$2^{\prime \prime}-5^{\prime \prime}$	$1^{\prime}-6^{\prime \prime}$	1.32	1.40	1.39	$2-\# 6$ Bars $\times 22^{-0} 0^{\prime \prime}$
$36^{\prime \prime}$	7.1	4'-0'10	$5^{\prime \prime}-4{ }^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$2^{\prime}-11^{\prime \prime}$	$1^{\prime}-8^{\prime \prime}$	1.72	1.83	1.82	$2-\# 6$ Bars $\times 2{ }^{-1} 6^{\prime \prime}$
$42^{\prime \prime}$	9.6	$4^{\prime \prime}$-6"	5'-10"	$2^{\prime}-3^{\prime \prime}$	$3^{\prime \prime}-6^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	2.34	2.47		$2-\# 6$ Bars $\times 22^{-6} 6^{\prime \prime}$
$48^{\prime \prime}$	12.6	$5^{\prime}-0^{\prime \prime}$	$6^{\prime}-4^{\prime \prime}$	$2^{\prime}-6^{\prime \prime}$	$4^{\prime}-0^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	2.74	2.90		$2-\# 6$ Bars $\times 22^{\prime}-6^{\prime \prime}$

U-TYPE AND 45° ENDWALLS

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{array}$		$\begin{gathered} \text { FY 2020-21 } \\ \text { STANDARD PLANS } \end{gathered}$	WINGED CONCRETE ENDWALLS	$\begin{gathered} \text { INDEX } \\ 430-040 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 2 \end{aligned}$

GENERAL NOTES:

1. Use Class I Concrete.
2. Channel section C3 $\times 6.0$ may be substituted for the $C 4 \times 5.4$ channel.
3. All steel reinforcing bars are \#4 with $2^{\prime \prime}$ cover except as noted Spacing shown are center to center. Lap bars $1^{\prime \prime}-5^{\prime \prime}$ minimum. Welded wire fabric (two cages max.) with an equivalent cross section . 9.20 . in) may be substituted for bar reinforcement.
4. Drill $11 / 4 "$ holes $8^{\prime \prime}$ deep with a rotary drill in existing endwall for dowel bars. Thoroughly clean holes prior to installing Adhesive-Bond Dowels.
5. Quantities shown are for estimating purposes only.
6. For supplemental details, see Index 425-001.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Endwalls for $1: 4$ and $1: 6$ Slopes
3	Steel Grate

SAFETY MODIFICATIONS

LAST REVISION 11/01/19		DESCRIPTION:	FDOTY	FY 2020-21 STANDARD PLANS	SAFETY MODIFICATIONS FOR ENDWALLS	$\begin{gathered} \text { INDEX } \\ 430-090 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 3 \end{aligned}$

LEGEND:
H = Horizontal Bars
$B=$ Bent Bars

PLAN

ELEVATION

BACK VIEW
= REINFORCING DETAILS

ENDW ALLS FOR 1:4 AND 1:6 SLOPES

TABLE 2 GRATE DIMENSIONS AND QUANTITIES									
Slope	$\begin{gathered} \text { Pipe } \\ \text { Dia. } \end{gathered}$	Channels @ 5.4 Lbs./LF			Bars @ $3.4 \mathrm{lbs} / \mathrm{LF}$ (2 ea.)			Angles @ 3.2 Lbs./LF	
		Quantity	F	Ibs.	L	M-4"	lbs.	P	lbs.
1:6	15"	10	$2^{\prime}-6^{7} 8^{\prime \prime}$	139	$11^{\prime}-3^{\prime \prime}$	$3^{\prime \prime} 3^{\prime \prime}$	99	$9^{\prime \prime}-4^{\prime \prime}$	60
	$18^{\prime \prime}$	12	$2^{\prime}-97 z^{\prime \prime}$	183	$13^{\prime \prime}-3^{\prime \prime}$	$3^{\prime \prime}-6^{\prime \prime}$	114	11'-4"	73
	$24^{\prime \prime}$	15	$3^{\prime}-3^{77} 8^{\prime \prime}$	269	$16^{\prime}-3^{\prime \prime}$	$4^{\prime}-0^{\prime \prime}$	138	$14^{\prime \prime}-4^{\prime \prime}$	92
	$30^{\prime \prime}$	18	$3{ }^{3}-978^{\prime \prime}$	372	$19^{\prime}-3^{\prime \prime}$	$4^{4}-6^{\prime \prime}$	162	$17^{\prime \prime}-4^{\prime \prime}$	111
1:4	$15^{\prime \prime}$	6	$2^{2}-678^{\prime \prime}$	83	$7^{\prime \prime}-3^{\prime \prime}$	$3^{\prime}-3^{\prime \prime}$	71	$5^{\prime}-4^{\prime \prime}$	34
	$18^{\prime \prime}$	7	$2^{1}-97 / z^{\prime \prime}$	107	$8^{\prime \prime}-3^{\prime \prime}$	$3^{\prime}-6^{\prime \prime}$	80	$6^{\prime}-4^{\prime \prime}$	41
	$24^{\prime \prime}$	9	$3^{-}-378^{\prime \prime}$	161	$10^{\prime}-3^{\prime \prime}$	$4^{4}-0^{\prime \prime}$	97	$8^{\prime}-4^{\prime \prime}$	53
	$30^{\prime \prime}$	11	$3^{-}-978^{\prime \prime}$	227	$12^{\prime \prime}-3^{\prime \prime}$	$4^{4}-6^{\prime \prime}$	114	$10^{\prime}-4^{\prime \prime}$	66

PLAN

ELEVATION

Anchor Bolt Detail
DETAIL "B"

SECTION A-A

$$
\angle 21 / 2 \times 11 / 2 \times 1 / 4
$$

- STEEL GRATE DETAILS

GENERAL NOTES:

Install outlet pipes and preformed channel inverts with a slope of 0.6% or steeper toward the outlet regardless of the surface slope, unless shown different in the Plans.
2. Stub trench drain directly into drainage structures or install outlet pipes to connect trench .
3. Provide a cleanout port compatible with the manufactured system for Type I drains at the upstream end and at intervals of 50 feet maximum. Provide a cleanout port with an opening of $6^{\prime \prime}$ to $10^{\prime \prime}$ wide (transverse to the trench drain length) and $18^{\prime \prime}$ to $24^{\prime \prime}$ long. Form curbs or eparators around the cleanout when cleanouts are placed adjacent to raised curb or

Excavate trench to allow for a minimum of $6^{\prime \prime}$ of concrete to be placed under and alongside the trench drain channel system. Install concrete backfill in accordance with Specification 347 Install concrete backfill extending a minimum of $6^{\prime \prime}$ past the end of the drain opening at the end of all Type I or II units.
5. Install transverse bars spaced $4^{\prime \prime}$ to $6^{\prime \prime}$ on center for Type I Trench Drain.

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$	\|		$T R E \mathbb{N} C H \mathbb{D R A I N}$	$\begin{aligned} & \text { INDEX } \\ & 436-001 \end{aligned}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 3 \end{aligned}$

PREFORMED POLYETHYLENE CHANNEL

ROUND PIPE CHANNEL

WITHIN DROP CURB
adjacent to traffic separator

WITHIN TYPE E CURB

WITHIN TYPE F CURB

NOTES:

Opening for fixed height grates. Opening at the pipe can be $3^{\prime \prime}$.
2. The Round Pipe Channel is $15^{\prime \prime}$ in diameter, unless otherwise shown in the Plans.
3. Provide a minimum $6^{\prime \prime}$ concrete on this side of the drain.
4. Install grates on preformed polyethylene channel at driveways.

PREFORMED CHANNEL WITH REMOVABLE GRATE

NOTES:

1. Provide minimum $6^{\prime \prime}$ of concrete on this side of the drain.
2. 4" Minimum unless otherwise shown in Plans.

TYPE II - REMOVABLE GRATE

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$			$T R E \mathbb{N} C H \mathbb{D R A I N}$	$\begin{gathered} \text { INDEX } \\ 436-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 3 \end{aligned}$

gENERAL NOTES:

1. Install underdrain pipe that is either $4^{\prime \prime}$ smooth or $5^{\prime \prime}$ corrugated tubing unless otherwise shown in the Plans. The size to be furnished will be based on the nominal internal diameter of a pipe with a smooth interior wall. Except when prohibited by the Plans, the special provisions or this standard, pipe
$4^{\prime \prime}$ smooth interior equivalent to $5^{\prime \prime}$ corrugated interior
$5^{\prime \prime}$ smooth interior equivalent to $6^{\prime \prime}$ corrugated interior
$6^{\prime \prime}$ smooth interior equivalent to $8^{\prime \prime}$ corrugated interior
$8^{\prime \prime}$ smooth interior equivalent to $10^{\prime \prime}$ corrugated interior
2. Fine aggregate is quartz sand meeting the requirements of Specifications 902-4.
3. Coarse aggregate is gravel or stone meeting the requirements of Specification 901-2 or 901-3. The gradation is in accordance with Specifications 901, Grades 4, 467, 5, 56 or 57 stone unless otherwise shown restricted in the Plans.
4. Install Underdrain Type I, II, III and V in accordance with Specification 440
5. Install filter fabric Type D-3 in accordance with Specifications 985. The internal filter fabric of Type V underdrain has a permittivity of $0.7 / \mathrm{sec}$. and an AOS of \#40 sieve.

Coarse Aggregate

UNDERDRAIN TYPE I, II, AND III ASSEMBLY (Type II Shown, Others Similar)

T. See Index 120-002 for the standard location of Type I, IL, and III underdrain. The location of Type V underdrain and nonstandard locations of Type I, II, and III underdrain will be as detailed in the plans.
B. Install filter fabric joints with a overlap a minimum of 1^{\prime}. Install the internal filter fabric of Type V underdrain with an overlap into the coarse aggregate or the fine aggregate a minimum of 1 .
9. Use nonperforated pipes for underdrain outlet and make all bends using $1 / 8$ (45 deg.) elbows. Construct 90 deg. bends with two $1 / 8$ elbows separated by at least 1 ' of straight ipe. Outlet pipes stubbed into inlets or other drainage structures must be a minimum 6 bove the structure flow line. Install concrete aprons, hardware cloth, and sod for outlet pipes discharging to grassed areas as shown in Index 446-001 for Edgedrain Outlets.

\qquad
TYPE
$\bar{\square}$ TYPE $I I=$

TYPE I, II, AND III

$\begin{array}{cc}\text { FDOT } & \text { 2020-21 } \\ \text { STANDARD PLANS }\end{array}$

general notes:

1. Install light duty cast iron cover and frame in accordance with Specifications 962
2. Use Class I concrete. Use No. 3 bars (Grade 60) on $8^{\prime \prime}$ centers both ways, sides and botton
3. Furnish covers with pick holes. Do not use fitted lifts or handles.
4. Manhole Type P Alternate A, Index 425-010, Type I Frame and Cover, Index 425-001, may be used in lieu of the box detailed in this Index.

table of Contents:	
Sheet	Description
1	General Notes and Contents
2	Typical Inspection Box Instalatation
3	Ther

LAST REVISION 11/01/19	\|r	DESCRIPTION:	FDOTY	$\begin{gathered} \text { FY 2020-21 } \\ \text { STANDARD PLANS } \end{gathered}$	\mathbb{U} NDE RDRAIN INS PECTION B OX	$\begin{gathered} \text { INDEX } \\ 440-002 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 3 \end{aligned}$

GENERAL NOTES:

1. Place concrete pipe with the slots positioned on sides.
2. Alignment joints are standard (gaskets not required). Recorrugation of metal pipe ends not required
3. Install Type D-3 filter fabric in accordance with Specification 985 Lap all filter fabric joints a minimum of one (1) foot.
4. Construct the standard cross section unless other section(s) described or detailed in the plans.
5. See Index 430-001 for supplemental details.
6. Take the necessary precautions to prevent contamination of the trench with sand, silt and foreign materials.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	French Drain System
3	Concrete Slotted Pipe Options

Metal or Plastic Pipe
Coupling Band

Nonperforated Pipe

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$		DESCRIPTION:	FDOT	$\begin{gathered} \text { FY 2020-21 } \\ \text { STANDARD PLANS } \end{gathered}$	$\mathbb{F} E \mathbb{N} C H \mathbb{D R A} \mathbb{N}$	$\begin{aligned} & \text { INDEX } \\ & 443-001 \end{aligned}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 3 \end{aligned}$

NOTES

1. Construct sumps unless excluded in the Plans.
2. For additional sump bottom information see Index 425-001.
3. Construct weep holes only where called for in the Plans.
4. Only cast and ductile iron sanitary sewer, or cast iron ductile and steel water mains will be allowed to pass

Use oly steel cast or ductive iron sleaves.
6. No slots or perforations.

SECTION A-A

FRENCH DRAIN SYSTEM

$\begin{aligned} & \text { LAST } \\ & \text { REVISION } \\ & 11 / 01 / 19 \end{aligned}$	\|	STANDARD PLANS	$\mathcal{F E} \mathbb{N} C H \mathbb{D R A I N}$

SIDE VIEW

$15^{\prime \prime}$ to $30^{\prime \prime}$
SECTION A-A

SECTION B-B

SECTION C-C

SIDE VIEW

ROUND PIPE
elliptical pipe

NOTES

1. $2^{\prime}-0^{\prime \prime}$ for $8^{\prime}-0^{\prime \prime}$ joints of pipe, $2^{\prime}-6^{\prime \prime}$ for $12^{\prime}-0^{\prime \prime}$ joints of pipe
2. A curved cut is acceptab provided the control dimension is maintained.

ROUND PIPE		
$\begin{aligned} & \text { Pipe } \\ & \text { Size } \end{aligned}$	Slot Cut	
	Opening(C)	
	Min.	Max.
$15^{\prime \prime}$	12"	$14^{\prime \prime}$
18"	$12^{\prime \prime}$	$14^{\prime \prime}$
$24^{\prime \prime}$	$16^{\prime \prime}$	$18^{\prime \prime}$
$30^{\prime \prime}$	$16^{\prime \prime}$	$18^{\prime \prime}$
$36^{\prime \prime}$	$22^{\prime \prime}$	24 "
$42^{\prime \prime}$	$22^{\prime \prime}$	$24^{\prime \prime}$
$48^{\prime \prime}$	22"	$24^{\prime \prime}$
$54 "$	$24^{\prime \prime}$	26"
$60^{\prime \prime}$	$24^{\prime \prime}$	$26^{\prime \prime}$
$66^{\prime \prime}$	$24^{\prime \prime}$	$26^{\prime \prime}$
72"	$24^{\prime \prime}$	$26^{\prime \prime}$
ELLIPTICAL PIPE		
$\begin{aligned} & \text { Pipe } \\ & \text { Size } \end{aligned}$	Slot Cut	
	Opening (C)	
	Min.	Max.
$14^{\prime \prime} \times 23^{\prime \prime}$	$10^{\prime \prime}$	12"
$19^{\prime \prime} \times 30^{\prime \prime}$	$14^{\prime \prime}$	$16^{\prime \prime}$
$24^{\prime \prime} \times 38^{\prime \prime}$	$14^{\prime \prime}$	$16^{\prime \prime}$
$29^{\prime \prime} \times 45^{\prime \prime}$	$20^{\prime \prime}$	$22^{\prime \prime}$
$34^{\prime \prime} \times 53^{\prime \prime}$	$20^{\prime \prime}$	$22^{\prime \prime}$
$38^{\prime \prime} \times 60^{\prime \prime}$	$20^{\prime \prime}$	$22^{\prime \prime}$

GENERAL NOTES

1. The french Drain Skimmer is a hooded cover, mounted over an outlet in a catchbasin, that prevents oil and floating debris from exiting the basin.
2. Place neoprene gasket material between the skimmer and the catchbasin at all points of contact. Trim the gasket to extend $1 / 2$ inch beyond the joint on all sides.
3. Provide skimmer baffle, cleanout pipe and angles constructed of either galvanized steel, aluminum, polyvinyl chloride, polyethylene, fiberglass or acrylonitrite butadiene styrene. Provide hot-dip galvanized steel components, unless stainless.
4. Use Mounting hardware, hinges and latches made of stainless steel. Loss prevention device can use either stainless steel chain or riveted nylon strap.
5. Provide skimmer bodies (baffles) and cleanout pipe meeting Specificatio 943 for steel, 945 for aluminum or 948 for plastics.
6. Work this Index in accordance with Specification 425.

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Type I Skimmers
3	Type II Skimmers

NOTES:

1. Conform the backs of skimmers to the shape
of the basin walls on which they are mounted.
2. "R" is the radii required for curved back skimmers.
3. Weld Angles at all points of contact with skimmer

DIMENSION TABLE			
OUTLET PIPE	A	B	C
$18^{\prime \prime}$	$12^{\prime \prime}$	$42^{\prime \prime}$	$24^{\prime \prime}$
$24^{\prime \prime}$	$15^{\prime \prime}$	$48^{\prime \prime}$	$30^{\prime \prime}$
$30^{\prime \prime}$	$18^{\prime \prime}$	$54^{\prime \prime}$	$36^{\prime \prime}$
$36^{\prime \prime}$	$21^{\prime \prime}$	$60^{\prime \prime}$	$42^{\prime \prime}$

side elevation

SIDE ELEVATION
\qquad

NOTE:

1. Install a gasket for the cleanout with either a threaded screw-in lid or a lid secured by
four stainless steel quick-release latches.

front elevation
Side elevation

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVIIION } \\ 11 / 01 / 19 \\ \hline \end{array}$		FDOT) $\begin{gathered}\text { FY 2020-21 } \\ \text { STANDARD PLANS }\end{gathered}$	SKIMMERS FOR FRENCH DRAIN OUTLETS	$\begin{gathered} \text { INDEX } \\ 443-002 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 3 \end{aligned}$

GENERAL NOTES:

1. Do not leave trench greater than 2^{\prime} in depth overnight. Barricade trenches at all times
2. Construct concrete pavement subdrainage adjacent to the low edge of the roadway pavement and under travel lanes, auxiliary pavement and shoulders, as called for in the plans. Extend the concrete pavement subdrainage 50^{\prime} beyond and begin 50^{\prime} before the flat poi Poo overiap) when the low edge shifts between outside and inside edges of pavement
3. Install concrete pavement subdrainage on a grade parallel with the edge of pavement profile, except on profiles flatter than one-tenth percent (0.10%) install the concrete pavement subdrainage on a minimum grade of one-tenth percent (0.10%).
4. Remove adhering base material and soil from the vertical face of the concrete immediately prior to placing the filter fabric
5. Submit a procedure for holding the filter fabric in position on the vertical face of the trench for approval by the Engineer prior to placing draincrete.
6. Cap the upper end of each separate run of the concrete pavement subdrainage pipe.
7. Install outlet pipes at 500^{\prime} maximum intervals. Use elbows or $1 / 8$ bends to connect the outlet pipe to the concrete pavement subdrain pipe. Use elbows or bends of the same material as the outlet pipe.
Stub outlet pipes into existing inlets or into existing ditch pavements at an elevation above the inlet flowline or ditch bottom when directed by the Engineer. Concrete apron not required for stubbed outlets, but replacement sodding will be

Install a single outlet apron for separate outlet pipes of concrete pavement subdrainaga from opposite directions in sag vertical curves.
Install backfill consisting of cohesive soils around outlet pipes.
. Replace existing paved shoulder removed for the construction of outlet pipes with Type $S P$ asphaltic concrete at the rate of 500 LB per Sr

TABLE OF CONTENTS:	
Sheet	Description
1	General Notes and Contents
2	Edgedrain and Outlet
3	New Construction
4	Rehabilitation

NOTES

1. The edgedrain sections for DRAINCRETE SUBDRAINAGE are applicable to pavement construction identified as RIGID PAVEMENT on Index 120-001.
2. Confine the construction of draincrete edgedrain to an area in which the entire operation can be carried out in five (5) work days, unless another
construction period is called for in the plans, with sufficient time allowed for the draincrete to set before placement of pavement.
3. Install the filter fabric in accordance with Specification 514
4. Install only noncorrugated or smooth lined corrugated pipe.
5. At the Contractor's option this area may be constructed of Optional Base material (Specification 285) or special stabilized subbase.

EXISting shoulders

NOTES

1. The edgedrain sections for DRAINCRETE SUBDRAINAGE are applicable to pavement construction identified as RIGID PAVEMENT on Index 120-001,
2. Confine the construction of draincrete edgedrain to an area in which the entire operation can be carried out in five (5) work days, unless another
construction period is called for in the plans, with sufficient time allowed for the draincrete to set before placement of pavement.
3. Install the filter fabric in accordance with Specification 514
4. Install only noncorrugated or smooth lined corrugated pipe.
5. Install Filter Fabric $2^{\prime \prime}$ below bottom of pavement for cement stabilized, soil cement and econocrete subbases and $2^{\prime \prime}$ above bottom of pavement for other subbases.

BAR BENDING DIAGRAMS

STIRRUP DIMENSIONS ($T=10^{\prime \prime}$)										STIRRUP DIMENSIONS ($T=12^{\prime \prime}$)									
\varnothing	bar mark	R1	R2	R3	R4	R5	R6	R7	R8	\varnothing	bar mark	R1	R2	R3	R4	R5	R6	R7	R8
30°	S1	111/4"	93/41	${ }^{\prime}-61 /{ }^{\prime \prime}$	21/2"	$5^{\prime \prime}$	43/41	51/2"	4/41	30°	S1	111/2"	10"	$1^{\prime}-6^{\prime \prime}$	$31 / 2$	$7{ }^{\prime \prime}$	43/41	53/4"	$6^{\prime \prime}$
	52	$1^{\prime}-1 /{ }^{1 / \prime \prime}$	93/41	$1^{\prime}-8 \frac{3}{4 \prime \prime}$	21/2"	41/2"	51/2"	53/4"	41/4		52	$1^{\prime}-1 / 3 / /^{\prime \prime}$	10"	$1^{1}-8 \frac{1 / 4}{}{ }^{1 \prime}$	$31 / 2^{\prime \prime}$	6/2/21	51/4"	53/41	$6^{\prime \prime}$
	53	111/4"	$8^{\prime \prime}$	$1^{\prime}-6^{\prime \prime}$	1/1/1	$5^{\prime \prime}$	41/2"	41/2"	$5^{\prime \prime}$		53	111/2"	81/4"	$1^{\prime}-53 /{ }^{\prime \prime}$	$2^{\prime \prime}$	$7{ }^{\prime \prime}$	43/4"	41/2"	71/41
	54	111/4"	41/4"	$1^{\prime}-1{ }^{3 / 1 /}$	13/4"	$5^{\prime \prime}$	33/41	21/2"	61/4		54	111/2"	$4^{\prime \prime}$	$1^{1}-1 /{ }^{1 / 1 /}$	21/71	$7{ }^{\prime \prime}$	33/4'	21/2"	81/4"
45°	51	111/2"	$8^{\prime \prime}$	$1^{\prime}-4^{\prime \prime}$	$4^{\prime \prime}$	51/21	$61 / 2^{\prime \prime}$	$8^{\prime \prime}$	$4{ }^{\prime \prime}$	45°	S1	$1^{1}-0^{\prime \prime}$	8/21	$1^{1}-3 / 1 /{ }^{1 / 1}$	51/4"	7/21	$61 / 41$	$81 / 2^{\prime \prime}$	51/4"
	S2	$1^{\prime}-1 / 3 / 4$	$8^{\prime \prime}$	1'-53/4	$4^{\prime \prime}$	41/2"	71/21	$8^{\prime \prime}$	$4{ }^{\prime \prime}$		52	$1^{\prime}-2^{1 / 1 / 4}$	8/211	$1^{\prime}-51 /{ }^{1 / 2}$	51/4"	67/21	71/4"	$81 /{ }^{1 \prime}$	51/4"
	S3	111/2"	$63 / 41$	$1^{\prime}-4^{\prime \prime}$	21/4"	51/211	$6{ }^{3} /{ }^{\prime \prime}$	$63 / 41$	51/2		53	$1^{2}-0^{\prime \prime}$	$7{ }^{\prime \prime}$	$1^{\prime}-4^{\prime \prime}$	$3^{\prime \prime}$	71/21	63/4"	$7{ }^{\prime \prime}$	71/410
	54	11/2/2'	31/2"	$1^{\prime}-0^{\prime \prime}$	3"	51/2"	$5^{\prime \prime}$	31/2"	$7{ }^{\prime \prime}$		54	$1^{1}-0^{\prime \prime}$	31/2"	113/4"	33/4"	7/21	$5^{\prime \prime}$	3/2"	$9{ }^{\prime \prime}$
60°	S1	$1^{\prime}-0^{\prime \prime}$	$6^{\prime \prime}$	1'-03/4'	51/4"	$6^{\prime \prime}$	71/4"	101/4"	$3{ }^{\prime \prime}$	60°	S1	$1^{\prime}-0 \frac{1}{2 \prime \prime}$	6/4/4	113/4	$7{ }^{\prime \prime}$	$8^{\prime \prime}$	63/4"	103/4	$4{ }^{\prime \prime}$
	52	${ }^{1}-2^{\prime \prime}$	$6^{\prime \prime}$	$1^{\prime}-2^{3 / 4}$	51/4"	43/4"	83/41	101/2"	$3^{\prime \prime}$		52	$1^{\prime}-2^{3 / 4} /^{\prime \prime}$	61/4"	${ }^{\prime}$ '-2 ${ }^{\prime \prime}$	$7{ }^{7}$	63/41	$8^{\prime \prime}$	103/4	$4^{\prime \prime}$
	53	$1^{\prime}-0^{\prime \prime}$	43/4"	$1^{\prime}-1 \frac{1 / 2 \prime}{}$	$31 / 4{ }^{\prime \prime}$	$6^{\prime \prime}$	$8^{\prime \prime}$	83/4"	51/4		53	$1^{\prime}-0 \frac{1}{2 \prime \prime}$	$5^{\prime \prime}$	$1^{\prime}-1 \frac{1}{1 / \prime \prime}$	$4^{\prime \prime}$	$8^{\prime \prime}$	$8^{\prime \prime}$	$9^{\prime \prime}$	$7{ }^{\prime \prime}$
	54	$1^{\prime}-0^{\prime \prime}$	$21 / 2^{\prime \prime}$	10"	4/2"	$6^{\prime \prime}$	$53 / 4$	$4^{\prime \prime}$	71/2'		S4	$1^{1}-0^{1 / 2} /{ }^{\prime \prime}$	21/2"	91/2"	$51 / 21$	$8^{\prime \prime}$	51/2"	$4{ }^{1 / 11}$	91/4"

1-PIECE
BARS S1 \& S2

BARS S3 \& S4

DETAIL" "
(TYPE "B1" PILE SHOWN, TYPE "B2" PILE OPPOSITE HAND)
NOTES:

1. This drawing includes details for precast concrete corner piles for $10^{\prime \prime}$
and $12^{\prime \prime}$ thick sheet pile systems. The details apply equally to both thicknesses.
2. The bar configurations shown in Sections $A-A$ and $B-B$ shall be used for
\varnothing angles between 15° and 75°. For \varnothing angles not shown, the reinforcing bar
dimensions may be interpolated or extrapolated from the stirrup dimensions shown.
3. All bar dimensions are out-to-out.
4. Bars A are $\# 8$ and Bars 5 are $\# 4$.
5. Values for Stirrup Dimensions are shown for an to 30,4560 only
. At the Contractor's option Bars S may be fabricated as a 2 piece bar with
a minimum lap length of $1^{\prime}-4^{\prime \prime}$, as shown in Bar Bending Diagrams.
6. If Type "B1" or "B2" pile is used as a Starter Pile show togngue on both sides of pile
from Dim. X down. Show dimensions for Bars S2, S3 \& S4 in shop drawings.
. If tongue must be on the opposite side from that shown all dimensions and Bars A
S2, S3 and S4 will be the same but opposite hand
7. For Dimensions L, X and Angle Ø, see Sheet Pile Data Table in Structures Plans.

TYPE "B1" AND "B2" - VARIABLE aNGLE CORNER PILE
LAST
REVISION

1/01/16
FDE5才 $\begin{gathered}\text { FY 2020-21 } \\ \text { STANDARD PLANS }\end{gathered}$
PRECAST CONCRETE SHEET PILE WALI

BAR BENDI									
STIRRUP DIMENSIONS ($T=10^{\prime \prime}$)									
\varnothing	BAR MARK	R1	R2	R3	R4	R5	R6	R7	R8
30°	S1	11/4/4	93/41	${ }^{1}$-61/2'	21/2"	$5^{\prime \prime}$	$43 / 41$	51/2"	41/4"
	52	$1^{1}-1 /{ }^{1 / 1 / \prime}$	93/4'	$1^{-1} 88 /{ }^{\prime \prime}$	21/2"	4/2/21	51/2/1	53/4'	41/4"
	53	111/4"	$8{ }^{\prime \prime}$	1'-6"	11/4"	$5^{\prime \prime}$	41/2"	41/2"	$5^{\prime \prime}$
	54	11/1/4	41/410	$1^{1}-13 / /^{\prime \prime}$	13/4 ${ }^{1 /}$	$5^{\prime \prime}$	33/4	$21 /{ }^{\prime \prime}$	61/4"
45°	51	111/2"	$8^{\prime \prime}$	$1^{\prime \prime-4 "}$	$4^{\prime \prime}$	51/210	61/21	$8^{\prime \prime}$	$4{ }^{\prime \prime}$
	S2	$1^{1}-1 / 3 / 1 /$	$8^{\prime \prime}$	1'-53/4	$4^{\prime \prime}$	41/2"	71/2"	$8^{\prime \prime}$	$4{ }^{\prime \prime}$
	S3	111/2"	$63 / 4$	1'-4"	21/4"	51/21	63/4	63/4'	51/2"
	54	111/2"	31/2"	$1^{1}-0^{\prime \prime}$	$3^{\prime \prime}$	51/2"	$5^{\prime \prime}$	3/2"	$7{ }^{\prime \prime}$
60°	S1	$1^{\prime}-0^{\prime \prime}$	$6^{\prime \prime}$	1'-03/4'	51/4"	$6^{\prime \prime}$	71/41	101/7"	3"
	S2	1'-2"	$6^{\prime \prime}$	$1^{\prime}-23 /{ }^{\prime \prime}$	51/4"	43/4 ${ }^{11}$	83/41	101/2"	$3{ }^{\prime \prime}$
	53	$1^{1}-0^{\prime \prime}$	$43 / 41$	$1^{2}-1 \frac{1 / 2 \prime}{}$	$31 / 4{ }^{11}$	$6^{\prime \prime}$	$8^{\prime \prime}$	83/41	51/4"
	54	$1^{1}-0^{\prime \prime}$	$2{ }^{1 / 2}$	10"	41/2"	$6^{\prime \prime}$	53/4	$4^{\prime \prime}$	71/2'1

STIRRUP DIMENSIONS ($T=12^{\prime \prime}$)									
\varnothing	bar mark	R1	R2	R3	R4	R5	R6	R7	R8
30°	S1	111/2"	10"	1'-6" $^{\prime \prime}$	31/2"	$7{ }^{\prime \prime}$	43/4	53/4"	$6^{\prime \prime}$
	52	$1^{\prime}-1 / 3 / /^{\prime \prime}$	$10^{\prime \prime}$	$1^{1}-8 / 1 /{ }^{1 \prime}$	3/2"	61/2"	51/4 ${ }^{11}$	53/4"	$6^{\prime \prime}$
	S3	111/2"	81/4"	$1^{\prime}-53 / 4$	$2^{\prime \prime}$	$7{ }^{\prime \prime}$	43/4	4/2/2'	71/4 ${ }^{10}$
	54	111/2"	$4^{\prime \prime}$	$1^{1}-1 /{ }^{1 / 1}$	21/4"	$7{ }^{\prime \prime}$	33/4	$22^{1 / 1}$	81/4"
45°	S1	$1^{\prime}-0^{\prime \prime}$	$81 /{ }^{1 / 1}$	$1^{1}-3 / 1 /{ }^{11}$	51/7"	71/21	61/41	81/2"	5/4"
	S2	${ }^{1}-2{ }^{1 / 1 / 1}$	$81 /{ }^{1 / 1}$	$1^{\prime}-5 /{ }^{1 / 1}$	51/4"	61/2"	71/4	$81 / 2^{\prime \prime}$	5//411
	53	$1^{\prime}-0^{\prime \prime}$	$7{ }^{\prime \prime}$	$1^{\prime}-4^{\prime \prime}$	$3^{\prime \prime}$	71/2/1	$63 / 411$	$7{ }^{7}$	71/4 ${ }^{10}$
	54	$1^{\prime}-0^{\prime \prime}$	$31 / 2^{\prime \prime}$	113/4"	33/4"	71/211	$5^{\prime \prime}$	$31 / 2^{11}$	$9^{\prime \prime}$
60°	S1	$1^{\prime}-0{ }^{1 / 2 / \prime}$	61/4"	113/4"	$7{ }^{7}$	$8^{\prime \prime}$	$6^{3 / 41}$	103/4"	$4^{\prime \prime}$
	S2	$1^{\prime}-2^{3 / 4}{ }^{\prime \prime}$	61/4"	$1^{\prime \prime}-2^{\prime \prime}$	$7{ }^{7 \prime}$	$63 / 411$	$8^{\prime \prime}$	$10^{3 / 4}{ }^{1 /}$	$4^{\prime \prime}$
	53	$1^{1}-0 \frac{1}{2} /{ }^{\prime \prime}$	$5^{\prime \prime}$	$1^{\prime}-1 /{ }^{1 / 1 \prime}$	$4^{\prime \prime}$	$8^{\prime \prime}$	$8^{\prime \prime}$	$9^{\prime \prime}$	$7{ }^{\prime \prime}$
	54	$1^{-1} 00^{1 / 2}$	$21 / 2^{\prime \prime}$	91/2"	51/21	$8^{\prime \prime}$	51/2"	4/4/4	91/4"

\section*{| SHEET PILE DIMENSIONS | | |
| :---: | :---: | :---: |
| T (in.) | 10 | 12 |
| Y (in.) | $3^{3} / 16$ | $4^{3 / 16}$ |
| z (in.) | 3 | 4 |}

DETAIL " ${ }^{\text {D }}$
(TYPE "B1" PILE SHOWN, TYPE "B2" PILE OPPOSITE HAND)
NOTES:

1. This drawing includes details for precast concrete corner piles for $10^{\prime \prime}$
and 12" thick sheet pile systems. The details apply equally to both thicknesses.
2. The bar configurations shown in Sections $A-A$ and $B-B$ shall be used for
dimensions may be interpolated or extrapolated from the stirrup dimensions shown.
3. All bar dimensions are out-to-out.
4. Bars A are GFRP \#8 and Bars S are GFRP \#4.
5. Bars A are GFRP \#8 and Bars S are GFRP \#4.
6. Values for Stirrup Dimensions are shown for \varnothing equal to $30^{\circ}, 45^{\circ} \& 60^{\circ}$ only
7. Bars S are fabricated as a 2 piece stirrup with a minimum

Bars S are fabricated as a 2 piece stirrup with a minimum lap length of 8 ,
as shown in Bar Bending Diagrams, or a single closed bar (hoop) when approved by the Engineer
7. If Type "B1" or "B2" pile is used as a Starter Pile show tongue on both sides of pile If tongue must be on the opposite side from $52, S 3 \& S 4$ in shop drawings.
. If tongue must be on the opposite side from that shown all dimensions and Bars A,
. 52,53 and $S 4$ will be the same but opposite hand.
For Dimensions L, X and Angle \varnothing, see Sheet Pile Data Table in Structures Plans.
TYPE "B1" AND "B2" - VARIABLE ANGLE CORNER PILE

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 16 \end{gathered}$	\|	$\begin{gathered} \text { FY 2020-21 } \\ \text { FDTANDARD PLANS } \end{gathered}$	PRECAST CONCRETE SHEET PILE WALL (CFRP/GFRP \& HSSS/GFRP)

