

SECTION ${ }^{*}$ Bar B
STANDARD APPROACH SLAB

approach slab with traffic separator

approach slab with median traffic railing

SECTION B-B
approach slab with raised sidewalk

VIEW C-C AT BEGIN OR END BRIDGE (BEAM bRIDGE SHOWN, FLAT SLAB BRIDGE SIMILAR)

BRIDGE SHOWN, FLAT SLAB BRIDGE SIMILAR)

AND RETAINING WALL $\bar{\Longrightarrow}$ APPROACH SLAB WITH RETAINING WALL DETAILS $\bar{\square}$

GENERAL NOTES:
LIVE LOAD: HL-93.
CONSTRUCTION LOADING: It is the construction Contractor's responsibility to provide for supporting construction loads that exceed AASHTO HL-93, and any construction load applied prior to 2 feet of compacted fill placed above the top slab.

SURFACE FINISH: All concrete surfaces shall receive a general surface finish.
SKEWED CONSTRUCTION JOINTS: Construction joints in barrels of culverts with skewed wingwalls may be placed parallel to the headwalls and the reinforcing steel, and the slabs
may be cut provided that the cut reinforcing steel extends beyond the construction joint enough for splices to be made in accordance with Table 1 on this sheet. The cost of construction joints and additional reinforcing shall be at the expense of the Contractor CULVERT EXTENSIONS: For cut backs and ties into existing concrete box culverts see Sheet 6 of 8 .
REINFORCING STEEL: See the "Box Culvert Data Tables" in the Contract Plans for grade and bar spacing. See the Reinforcing Bar List in the Contract Plans for bar sizes and bar bending details.

SCHEMATIC "B" - PLAN VIEW CULVERT ALIGNMENT
NOTE: For Culvert Skew see Contract Plans.

TABLE 1-MINIMUM BAR SPLICE LENGTHS						
FOR LONGITUDINAL REINFORCING						

TABLE 1 NOTE: Splice lengths are based on an AASHTO concrete class shown splice for the Specification Section 346 concrete class shown

END ELEVATION
OF CULVERT

Co: rution jons in wils ane rocting aje lor or as Construction Joints in wingwalls and footings are located as follows
For non-skewed wingwalls they are located ad jacent to the exterior face of the exterior barrel wall; when the q of wingwall and $£$ of
fore exterior barrel wall results in an acute angle see Left End Wingwall above, and when the angle is obtuse see Left Begin Wingwall above
and Detail C (Sheet 5).

OUTSIDE WALLS OF BOXES
SECTION A-A
$\overline{\bar{Z}} F$ LARED WINGWALL=

OUTSIDE WALLS OF BOXES

INTERIOR DOUBLE WALLS OF BOXES

SECTION C-C

INTERIOR SINGLE WALLS OF BOXES

DETAIL "M" - TRANSITION FOR INTERIOR DOUBLE WALLS OF BOX CULVERTS

NOTES:

1. The Box Culvert Data Tables and Reinforcing Bar List do not include the additional quantities needed for dowel connections or transitions from double walls of existing concrete box culverts; the cost for additional reinforcement and the thickened tional area shall be included in the costs
2. Cost for removal and disposal of material from existing headwalls, wingwalls and box and cost of cleaning, straightening and extending or doweling longitudinal
reinforcing steel shall be included in the cost for concrete and steel of the culvert
3. Remove existing concrete while avoiding damage to existing reinforcement. Clean and straighten existing reinforcement, lap and tie onto extension reinforcement Dowel in \#4 Bars @ 1'-0" max. spacing into wall/slab when there is a single mat of existing reinforcing steel, otherwise splice $1^{1}-6{ }^{\prime \prime}$ as shown for inside Specifications Section 416 \& 937 .
4. Provide additional transverse bars for top and bottom slab, parallel and full widt
of any skewed joint connection when shown in the Plans.
5. See Box Culvert Data Table notes in Plans for Connection Types allowed.
 =TYPE I CONNECTION DETAILS FOR CONCRETE BOX CULVERT EXTENSIONS (CUT BACK EXISTING CONCRETE)

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 01 / 01 / 12 \end{gathered}$	\|	$\begin{gathered} \text { FY 2020-21 } \\ \text { FDANDARD PLANS } \end{gathered}$	CONCRETE BOX CULVERT DETAILS	$\begin{gathered} \text { INDEX } \\ 400-289 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 6 \text { of } 8 \end{aligned}$

OUTSIDE WALLS OF BOXES
Length for
Estimated

INTERIOR DOUBLE WALLS OF BOXES

INTERIOR SINGLE WALLS OF BOXES
PLAN VIEWS

Roughened face of Existing Headwall or Wingwall (See Not Wrap Filter Fabric around,
Construction Joint (2'-0" Min.
3" Min. Cl. $3^{\prime \prime}$ Min. Cl Existing
Slab or Wall
Thickness

$-\frac{1^{\prime \prime} \text { Min. } \sim}{3^{\prime \prime} \text { Max. } C l}$
SECTION C-C

Existing
Box Culvert
Wall

NOTES:
quantiticulvert Data Tables and Reinforcing Bar List do not include the additional quantities needed for dowel connections or transitions from double walls of existing concrete wall in the transitional area shall be included in the costs for concrete and 2. Cost for the culvert extension-
2. Cost for roughening and cleaning existing headwalls, wingwalls and box, and cost of and steel
and steel of the culvert extension.
3. Remove existing concrete and reinforcing back to edge of any chamfers exceeding $1^{\prime \prime}$. Roughen and clean existing or exposed surface and coat with a Type A epoxy
bonding compound in accordance with the manufacturer's recommendations
4. Dowel in \#5 Bars @ $1^{\prime}-0^{\prime \prime}$ max. spacing horizontally into center of wall/slab. Provide
vertical dowels in footing to match size, alignment and spacing of outside ertical vertical dowels in footing to match size, alignment and spacing of outside vertical wall reinforcing. Use an Adhesive Bonding Material System in accordance with
5. Provide additional transverse bars for top and bottom slab, parallel and full width
of any skewed joint connection when shown in the Plans.
6. Remove top of existing headwall when necessary to provide $1^{\prime}-0^{\prime \prime}$ clearance below finished grade. Saw cut full width and seal with Type F-2 epoxy compound to 7. Protect exposed reinforcing.
. See Box Culvert Data Table notes in Plans for Connection Types allowed.
See Note 3$+\quad \begin{gathered}2^{\prime}-0^{\prime \prime} \text { Straight } \\ \text { Transition } \\ \text { Existing Headwall_Varies_- }\end{gathered}$
detail "M" - transition for interior double walls of box culverts
\qquad
(ADHESIVE DOWEL TO EXISTING CONCRETE)

LAST REVISION 01/01/12		$\begin{gathered} \text { FY 2020-21 } \\ \text { FDOTY } \end{gathered}$	CONCRETE BOX CULVERT DETAILS	$\begin{gathered} \text { INDEX } \\ 400-289 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 7 \text { of } 8 \end{aligned}$

LINK SLAB NOTES
. Provide a Cast-In-Place Link Slab to ensure uniform joint opening of precast box culverts when the differential except that a Link Slab is not required for differential settlements less than $1 / 2^{\prime \prime}$.

$$
\Delta Y \leq \frac{(L)^{2}}{760 \times R \times W}
$$

Where:
$\Delta Y=$ Maximum Long-Term Differential Settlement (ft.) $R=$ Exterior height of Box Culvert (ft.)
$L=$ Effective length for single curvature deflection (ft.)
2. Extend Link Slab to back face of headwalls and to limits of existing box culverts for extensions.

ESTIMATED LINK SLAB QUANTITIES		
ITEM	UNIT	QUANTITY
Class II or IV Concrete (Culvert)	CY/SF	0.0216
Reinforcing Steel (Roadway)	L./SF	1.52

NOTE: Estimated quantities are based the plan area of
precast box slabs, and are provided for information only.
No additional payment will be made for Link Slabs where hese are required for the precast box culverts.

\section*{	BILL OF REINFORCING STEEL			
MARK	SIZE	NO. REQ'D	LENGTH	
L	4	2 per Barrel/Ft.	$1^{\prime}-3^{\prime \prime}$	
M	4	As Reqd.	As Reqd.	\\ REINFORCING STEEL BENDING DIAGRAMS}

BAR 4M
DOWEL BARS 4L

NOTES:

1. All bar dimensions are out to out
2. Lap splice length for Bars $4 M$ is $1^{\prime}-4^{\prime \prime}$ minimum.
design note:
3. Link Slab required when joint openings from differential settlement exceed $1 / 8^{\circ}$

Settlement SCHEMATIC LONGITUDINAL SECTION (NEW CONSTRUCTION)

SCHEMATIC LONGITUDINAL SECTION (WIDENING)

DIFFERENTIAL SETtLEMENT COUNTERMEASURES FOR PRECAST BOX CULVERTS =

| $\begin{array}{\|c\|} \hline \text { LAST } \\ \text { REVISION } \\ 01 / 01 / 09 \end{array}$ | \|c|cher | $\begin{array}{cc} \text { FD } 2020-21 \\ \text { STANDARD PLANS } \end{array}$ | PRECAST CONCRETE BOX CULVERTS - S UPPLEMENTAL DETAILS | $\begin{gathered} \text { INDEX } \\ 400-291 \end{gathered}$ | SHEET
 5 of 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |

GENERAL NOTES:
these precast designs may be substituted for cast-in-place box culverts designed LRLD Bridge Design Specifications, 4th Edition. Designs are based on Structures Design Guidelines.
2. Loading: HL-93 \& any fill heights between the minimum \& maximum shown.
3. Only one design of precast box culvert is to be used for any installation
4. Reinforcing steel must consist of smooth or deformed welded wire reinforcement (WWR) meeting the requirements of Specification Section 931. Longitudinal reinforcement may consist of reinforcing bars meeting the requirements of
Specification Section 931. Minimum cover must be 2" for slightly or moderately aggressive environments or $3^{\prime \prime}$ for extremely aggressive environments, unless nor more than $4^{\prime \prime}$. The spacing of longitudinal wires or bars must not be more than $8^{\prime \prime}$
5. As9 longitudinal wires must have a minimum cross-sectional area of 40% of the circumferential wires, but not less than a W2.5 or D4.0 for WWR or \#3 bars for . Welding of reinforcement must be limited to the locations shown in ASTM C1577 a in accordance with ANSI/AWS D1.4 "Structural Welding Code - Reinforcing Steel"
7. For alternate reinforcing configuration Options 2 and 3 shown in Detail "A" and "B" (Sheet 1), Asl may be extended to the middle of either slab and lap spliced with As7 and As8. As4 may be lap spliced at any location or connected to As2 or As3 at corners by welding.
8. Haunch dimensions may vary between the minimum and maximum dimensions shown in the Design Tables but only one haunch dimension must be used within the box culvert installation.
9. Submittal of redesign calculations are not required for any increase to the slab and/or wall thicknes
Tables are provided.
10. For Design Earth Cover greater than 10 feet, the Contractor may interpolate the required areas of reinforcement and slab or wall thickness. Interpolated areas of reinforcement, slab or wall thickness must be approved by the Engineer.
11. Minimum length of precast box segments is 4 feet and maximum length is 16 feet.
12. See Index 400-291 for connections to wingwalls, headwalls and other general details.

SCHEMATIC OF LAP SPLICE LOCATIONS FOR OPTION 2 \& 3 REINFORCING CONFIGURATIONS

TABLE 1A - Standard precast box Culvert designs (2" Cover) - 3' \& 4' SPANS														
$\begin{gathered} \hline \begin{array}{c} \text { SPAN } \\ \text { (S) } \end{array} \quad \text { RISE } \\ \text { (R) } \\ \text { (Ft.) } \end{gathered}$	SLAB / WALL THICKNESS				DESIGNEARTH COVERABOETOP SLAB	REINFORCEMENT AREAS (sq. in./Ft.)								$\begin{array}{\|c\|} \hline \text { As1 EXT. } \\ \text { LENGTH } \\ \text { (M) } \\ \text { (in.) } \end{array}$
	$\begin{array}{\|l\|} \hline T O P \\ (T t) \\ (i n .) \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { BOT. } \\ \text { (Tb) } \\ \text { (in.) } \\ \hline \end{array}$	$\begin{gathered} \begin{array}{c} S D E \\ (T w) \\ (i n .) \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \text { HAUNCH } \\ \text { (H) } \\ \text { (in.) } \\ \hline \end{gathered}$										
						As1	As2	As3	As4	As5	As7	As8	As9	
$3^{\prime} \times 3^{\prime}$	77	7	7	4 to	0.33' - <2'	0.17	0.29	0.21	0.17	0.17	0.17	0.17		(in.)
					$2^{\prime}-<3^{\prime}$	0.13	0.28	0.21	0.09	-	-	-		31
					$3^{\prime}-<5^{\prime}$	0.09	0.17	0.17	0.09	-	-	-		31
					$5^{\prime}-10^{\prime}$	0.09	0.17	0.17	0.09	-	-	-		31
					15^{\prime}	0.09	0.17	0.17	0.09	-	-	-		31
					20^{\prime}	0.12	0.17	0.17	0.09	-	-	-		31
					25^{\prime}	0.14	0.18	0.18	0.09	-	-	-		31
				8	30^{\prime}	0.17	0.21	0.22	0.09	-	-	-		31
					35'	0.19	0.25	0.25	0.09	-	-	-		31
$4^{\prime} \times 3^{\prime}$	7	7	7	to 8	$0.33^{\prime}-<2^{\prime}$	0.19	0.38	0.26	0.17	0.19	0.17	0.19		-
					$2^{\prime}-<3^{\prime}$	0.19	0.38	0.26	0.09	-	-	-		38
					$3^{\prime}-<5^{\prime}$	0.14	0.20	0.22	0.09	-	-	-		38
					$5^{\prime}-10^{\prime}$	0.11	0.17	0.17	0.09	-	-	-		38
					15^{\prime}	0.15	0.17	0.18	0.09	-	-	-		38
					20^{\prime}	0.20	0.23	0.23	0.09	-	-	-		38
					25^{\prime}	0.24	0.28	0.29	0.09	-	-	-		38
					30^{\prime}	0.29	0.34	0.35	0.09	-	-	-		38
$4^{\prime} \times 4^{\prime}$	7	7	7	4 to 8	$0.33^{\prime}-<2^{\prime}$	0.19	0.41	0.28	0.17	0.21	0.17	0.19		-
					$2^{\prime}-<3^{\prime}$	0.19	0.41	0.28	0.09	-	-	-		38
					$3^{\prime}->5^{\prime}$	0.14	0.21	0.24	0.09	-	-	-		38
					$5^{\prime}-10^{\prime}$	0.12	0.17	0.17	0.09	-	-	-		38
					15^{\prime}	0.16	0.19	0.20	0.09	-	-	-		38
					20^{\prime}	0.21	0.25	0.25	0.09	-	-	-		38
					25^{\prime}	0.26	0.31	0.32	0.09	-	-	-		38
					30^{\prime}	0.31	0.37	0.38	0.09	-	-	-		38

LAST		
REVISION		
O7/01/15	哥	DESCRIPTION:

FDOT\} $\} \begin{gathered}F Y ~ 2020-21 \\ \text { stANDARD PLANS }\end{gathered}$

STANDARD PRECAST CONCRETE BOX CULVERTS

INDEX

TABLE 3-STANDARD PRECAST BOX CULVERT DESIGNS (2" COVER) - 7' SPANS

NOTES:

1. See Sheet 1 for Reinforcing Details and dimension locations.
2. See Sheet 2 for General Notes.
3. See Sheet 14 for Welded Wire Reinforcement Bending Diagram.

TABLE 5-STANDARD PRECAST BOX CULVERT DESIGNS (2" COVER) - 9' SPANS

NOTES

1. See Sheet 1 for Reinforcing Details and dimension locations.
2. See Sheet 2 for General Notes
See Sheet 14 for WWR Bending Diagram.
$2-2$

-292	of 14

$\begin{gathered} \hline \begin{array}{c} \text { SPAN } \\ \text { (S) } \\ \times(\text { RISE } \\ \text { (R) } \end{array} \\ (\text { Ft. }) \end{gathered}$	SLAB / WALL THICKNESS				$\begin{gathered} \text { DESIGN } \\ \text { EARTH COVER } \\ \text { ABOVE } \\ \text { TOP SLAB } \end{gathered}$	REINFORCEMENT AREAS (sq. in./Ft.)								$\begin{gathered} \text { AS1 EXT } \\ \text { LENGTH } \\ \text { (M) } \\ \text { (in.) } \end{gathered}$
	$\begin{aligned} & \text { TOP } \\ & \text { (Tt) } \\ & \text { (in.) } \end{aligned}$	$\begin{aligned} & \text { BOT. } \\ & \text { (Tb) } \\ & \text { (in.) } \end{aligned}$	$\begin{aligned} & \text { SIDE } \\ & \text { (Tw) } \\ & \text { (in.) } \end{aligned}$	HAUNCH(H)(in.)										
						As 1	As2	As3	As 4	As5	As7	As8	As9	
$3^{\prime} \times 3^{\prime}$	9	9	9	to 8	0.33' - <2'	0.22	0.24	0.22	0.22	0.22	0.22	0.22		-
					$2^{\prime}-<3^{\prime}$	0.11	0.23	0.22	0.11	-	-	-		31
					$3^{\prime}-<5^{\prime}$	0.11	0.22	0.22	0.11	-	-	-		31
					$5^{\prime}-10^{\prime}$	0.11	0.22	0.22	0.11	-	-	-		31
					15^{\prime}	0.11	0.22	0.22	0.11	-	-	-		31
					20^{\prime}	0.13	0.22	0.22	0.11	-	-	-		31
					25^{\prime}	0.16	0.22	0.22	0.11	-	-	-		31
					30^{\prime}	0.19	0.24	0.25	0.11	-	-	-		31
					35'	0.22	0.28	0.29	0.11	-	-	-		31
$4^{\prime} \times 3^{\prime}$	9	9	9	4 to 8	$0.33^{\prime}-<2^{\prime}$	0.22	0.32	0.24	0.22	0.22	0.22	0.22		-
					2^{\prime} - $<3^{\prime}$	0.17	0.31	0.24	0.11	-	-	-		38
					$3^{\prime}-<5^{\prime}$	0.13	0.22	0.22	0.11	-	-	-		38
					5' - 10'	0.13	0.22	0.22	0.11	-	-	-		38
					15^{\prime}	0.17	0.22	0.22	0.11	-	-	-		38
					20^{\prime}	0.23	0.26	0.27	0.11	-	-	-		38
					25^{\prime}	0.28	0.32	0.34	0.11	-	-	-		38
					30^{\prime}	0.33	0.39	0.40	0.11	-	-	-		38
$4^{\prime} \times 4^{\prime}$	9	9	9	to	0.33' ${ }^{\prime}$ - 2^{\prime}	0.22	0.34	0.26	022	0.22	0.22	0.22		-
					$2^{\prime}-<3^{\prime}$	0.17	0.33	0.26	0.11	-	-	-		38
					3^{\prime} - < 5^{\prime}	0.13	0.22	0.22	0.11	-	-	-		38
					$5^{\prime}-10^{\prime}$	0.14	0.22	0.22	0.11	-	-	-		38
				8	15^{\prime}	0.19	0.22	0.23	0.11	-	-	-		38
					20^{\prime}	0.24	0.28	0.30	0.11	-	-	-		38
					25^{\prime}	0.29	0.36	0.37	0.11	-	-	-		38

NOTES:

1. See Sheet 2 for General Notes.
2. See Sheet 14 for WWR Bending Diagrams.

NOTES

1. See Sheet 2 for General Notes
2. See Sheet 14 for Reinforcing Details and dimension locations.

See Sheet 14 for WWR Bending Diagrams.

	SLAB / WALL THICKNESS				DESIGN EARTH COVER ABOVE TOP SLAB	REINFORCEMENT AREAS (sq. in./Ft.)								$\begin{array}{\|c\|} \hline \text { AS1 EXT. } \\ \text { LENGTH } \\ \text { (M) } \\ \text { (in.) } \end{array}$	
	$\begin{array}{\|l\|l\|} \hline T O P \\ \text { (Tt) } \\ \text { (in.) } \\ \hline \end{array}$	$\begin{aligned} & \hline B T . \\ & (T b) \\ & \text { (in.) } \\ & \text { (in } \end{aligned}$	$\begin{gathered} \text { SIDE } \\ \text { (Tw) } \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \text { HAUNCH } \\ \text { (H) } \\ \text { (in.) } \\ \hline \end{gathered}$											
						As1	As2	As3		As5	As7	As 8	As9		
$8^{\prime} \times 4^{\prime}$	9	9	9	4 to 12	0.33' - <2'	0.52	0.66	0.57	0.22	0.24	0.42	0.52	- 50 50 45 41 41 41 41		
					$2^{\prime}-<3^{\prime}$	0.52	0.66	0.57	0.11	-	-	-			
					$3^{\prime}->5^{\prime}$	0.48	0.49	0.52	0.11	-	-	-			
					$5^{\prime}-10^{\prime}$	0.52	0.48	0.49	0.11	-	-	-			
					15^{\prime}	0.75	0.72	0.72	0.11	-	-	-			
					20^{\prime}	1.00	0.98	0.97	0.11	-	-	-			
	9	9.5	9	$\begin{gathered} 8 \text { to } \\ 12 \\ \hline \end{gathered}$	25^{\prime}	1.25	1.24	1.14	0.11	-	-	-			
	10 9	10.5	9		30^{\prime}	1.31	1.29	1.21	0.11	-					
$8^{\prime} \times 5^{\prime}$	9	9	9	4 to 12	0.33' ${ }^{\prime}$ - ${ }^{\prime}$	0.51	0.69	0.60	0.22	0.25				-	
					$2^{\prime}-<3^{\prime}$	0.51	0.69	0.60	0.11	-	-	-		50 45 	
					$3^{\prime}-<5^{\prime}$	0.46	0.52	0.56	0.11	-	-	-			
					$5^{\prime}-10^{\prime}$	0.51	0.51	0.53	0.11	-	-	-		45	
					15^{\prime}	0.74	0.77	0.78	0.11	-	-	-			
					20^{\prime}	0.97	1.05	1.05	0.11	-	-	-		41	
	9	9.5	9	$\begin{gathered} 8 \text { to } \\ 12 \end{gathered}$	25^{\prime}	1.20	1.33	1.23	0.11	-	-	-		41	
	10	10.5	9		30^{\prime}	1.26	1.38	1.30	0.11	-	-	-		41	
$8^{\prime} \times 6^{\prime}$	9	9	9	4 to 12	0.33' ${ }^{\prime}<2^{\prime}$	0.51	0.72	0.64	0.22	0.26	0.39	0.51		-	
					$2^{\prime}-<3^{\prime}$	0.51	0.72	0.64	0.11	-	-	-		50	
					$3^{\prime}-$ < 5^{\prime}	0.47	0.55	0.59	0.11	-	-	-		50	
					$5^{\prime}-10^{\prime}$	0.52	0.55	0.58	0.11	-	-	-		45	
					15^{\prime}	0.74	0.83	0.85	0.11	-	-	-		41	
					20^{\prime}	0.97	1.12	1.13	0.11	-	-	-		41	
	9	9.5	9	$\begin{gathered} 8 \text { to } \\ 12 \\ \hline \end{gathered}$	25^{\prime}	1.18	1.42	1.32	0.11	-	-	-		41	
	10	10.5	9		30^{\prime}	1.26	1.46	1.39	0.11	-	-	-		41	
$8^{\prime} \times 7^{\prime}$	9	9	9	4 to 12	0.33' ${ }^{\prime}$ - 2^{\prime}	0.52	0.74	0.67	0.22	0.26	0.40	0.52			
					$2^{\prime}->3^{\prime}$	0.52	0.74	0.67	0.11	-	-	-		55	
					$3^{\prime}-$ < 5^{\prime}	0.49	0.57	0.62	0.11	-	-	-		55	
					$5^{\prime}-10^{\prime}$	0.55	0.59	0.63	0.11	-	-	-		50	
					15^{\prime}	0.77	0.88	0.91	0.11	-	-	-		41	
					20^{\prime}	1.01	1.19	1.21	0.11	-	-	-		41	
	9	9.5	9	$\begin{gathered} 8 \text { to } \\ 12 \end{gathered}$	25^{\prime}	1.21	1.51	1.41	0.11	-	-	-		41	
	10	10.5	9		30^{\prime}	1.31	1.53	1.47	0.11	-	-	-		41	
$8^{\prime} \times 8^{\prime}$	9	9	9	4 to 12	0.33' ${ }^{\prime}$ < 2^{\prime}	0.55	0.77	0.70	0.22	0.27	0.41	0.55		-	
					$2^{\prime}-<3^{\prime}$	0.55	0.77	0.70	0.13	-	-	-		65	
					$3^{\prime \prime}-<5^{\prime}$	0.53	0.59	0.64	0.12	-	-	-		65	
					$5^{\prime}-10^{\prime}$	0.60	0.63	0.68	0.11	-	-	-		55	
					15^{\prime}	0.83	0.93	0.98	0.11	-	-	-		45	
					20^{\prime}	1.08	1.26	1.29	0.11	-	-	-		45	
	9	9.5	9	$\begin{gathered} 8 \text { to } \\ 12 \\ \hline \end{gathered}$	25^{\prime}	1.28	1.59	1.50	0.11	-	-	-		41	
	10	10.5	9		30^{\prime}	1.41	1.61	1.55	0.11	-	-	-		41	

TABLE 12B - STANDARD PRECAST BOX CULVERT DESIGNS (3" COVER) - 8' SPANS

 SPAN \times RISE (S) (Ft.)	SLAB / WALL THICKNESS				DESIGN EARTH COVER ABOVE TOP SLAB	REINFORCEMENT AREAS (sq. in./Ft.)								$\begin{gathered} \text { As1 EXT. } \\ \text { LENGTH } \\ \text { (M) } \\ \text { (in.) } \end{gathered}$	
	$\begin{aligned} & \text { TOP } \\ & \text { (Tt) } \\ & \text { (in.) } \end{aligned}$	$\begin{aligned} & \text { BOT. } \\ & \text { (Tb) } \\ & \text { (in.) } \end{aligned}$	$\begin{gathered} \text { SIDE } \\ \text { (Tw) } \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \text { HAUNCH } \\ (H) \text { (H.) } \\ \text { (in.) } \end{gathered}$											
						As1	As2	As3	$\frac{A s 4}{0.24}$	$\begin{aligned} & \text { As5 } \\ & \hline 0.24 \end{aligned}$	$\frac{A s 7}{0.32}$	$\frac{A 58}{0.41}$	As9		
8×4	10	10	10	to 12	0.33' - <2'	0.42	0.56	0.49					- 50 50 45 41 41 41 41		
					$2^{\prime}->3^{\prime}$	0.42	0.56	0.49	0.12	-	-	-			
					$3^{\prime \prime}-<5^{\prime}$	0.38	0.42	0.46	0.12	-	-	-			
					$5^{\prime}-10^{\prime}$	0.41	0.38	0.39	0.12	-	-	-			
					15^{\prime}	0.59	0.56	0.57	0.12	-	-	-			
					20^{\prime}	0.78	0.75	0.76	0.12	-	-	-			
					25^{\prime}	0.97	0.96	0.96	0.12	-	-	-			
	10	10.5	10	8 to 12	30^{\prime}	1.15	1.16	1.10	0.12	-	-	-			
$8^{\prime} \times 5^{\prime}$	10	10	10	$\begin{gathered} 4 \\ \text { to } \\ 12 \end{gathered}$	$0.33^{\prime}-<2^{\prime}$	0.40	0.58	0.52	0.24	. 034	0.31	0.40		-	
					$2^{\prime}-<3^{\prime}$	0.40	0.58	0.52	0.12	-	-	-		50	
					3^{\prime} - < 5^{\prime}	0.37	0.45	0.48	0.12	-	-	-		45	
					$5^{\prime}-10^{\prime}$	0.41	0.41	0.43	0.12	-	-	-		45	
					15^{\prime}	0.58	0.60	0.62	0.12	-	-	-		41	
					20^{\prime}	0.76	0.81	0.81	0.12	-	-	-		41	
					25^{\prime}	0.94	1.03	1.03	0.12	-	-	-		41	
	10	10.5	10	8 to 12	30^{\prime}	1.10	1.24	1.24	0.12	-	-	-		41	
$8^{\prime} \times 6^{\prime}$	10	10	10	4 to 12	0.33' ${ }^{\prime}$ - 2^{\prime}	0.40	0.60	0.55	0.24	0.24	0.30	0.40		-	
					2^{\prime} - < ${ }^{\prime}$	0.40	0.60	0.55	0.12	-	-	-		50	
					$3^{\prime}-5^{\prime}$	0.37	0.47	0.51	0.12	-	-	-		50	
					$5^{\prime}-10^{\prime}$	0.42	0.43	0.46	0.12	-	-	-		45	
					15^{\prime}	0.58	0.64	0.67	0.12	-	-	-		41	
					20^{\prime}	0.76	0.86	0.88	0.12	-	-	-		41	
					25^{\prime}	0.94	1.09	1.11	0.12	-	-	-		41	
	10	10.5	10	8 to 12	30^{\prime}	1.09	1.32	1.26	0.12	-	-	-		41	
8×7	10	10	10	4 to 12	$0.33{ }^{\prime}-<2^{\prime}$	0.41	0.63	0.58	0.24	0.24	0.30	0.41		-	
					$2^{\prime}->3^{\prime}$	0.41	0.63	0.58	0.12	-	-	-		55	
					$3^{\prime}-<5^{\prime}$	0.39	0.49	0.53	0.12	-	-	-		55	
					$5^{\prime}-10^{\prime}$	0.44	0.46	0.50	0.12	-	-	-		50	
					15^{\prime}	0.61	0.68	0.72	0.12	-	-	-		45	
					20^{\prime}	0.78	0.91	0.94	0.12	-	-	-		41	
					25^{\prime}	0.97	1.16	1.18	0.12	-	-	-		41	
	10	10.5	10	8 to 12	30^{\prime}	1.11	1.40	1.34	0.12	-	-	-		41	
$8^{\prime} \times 8^{\prime}$	10	10	10	to 12	$0.33^{\prime}-<2^{\prime}$	0.44	0.64	0.60	0.24	0.24	0.31	0.44		-	
					$2^{\prime}-<3^{\prime}$	0.44	0.64	0.60	0.12	-	-	-		65	
					$3^{\prime \prime}-<5^{\prime}$	0.42	0.51	0.56	0.12	-	-	-		65	
					$5^{\prime}-10^{\prime}$	0.47	0.50	0.55	0.12	-	-	-		55	
					15^{\prime}	0.65	0.72	0.77	0.12	-	-	-		45	
					20^{\prime}	0.84	0.96	1.01	0.12	-	-	-		45	
					25^{\prime}	1.03	1.22	1.26	0.12	-	-	-		41	
	10	10.5	10	8 to 12	30^{\prime}	1.16	1.47	1.42	0.12	-	-	-		41	

NOTES:

1. See Sheet 2 for General Notes
. See Sheet 7 for Reinforcing Details and dimension locations.
2. See Sheet 14 for WWR Bending Diagrams.

NOTES

1. See Sheet 2 for General Notes. 2. See Sheet 7 for Reinforcing Details and dimension locations 3. See Sheet 14 for WWR Bending Diagrams.

$\begin{gathered} \text { SPAN } \left.\begin{array}{c} \text { RISE } \\ (S) \\ (R) \\ (F .) \end{array}\right) . \end{gathered}$	SLAB TOP (Tt) (in.)		(thic	KNESS HAUNCH (H) (in.)	$\begin{gathered} \text { DESIGN } \\ \hline \text { EARTH COVER } \\ \text { ABOOLE } \\ \text { TOP SLAB } \end{gathered}$	REINFORCEMENT AREAS (sq. in./Ft.) (sq. in./Ft.)								$\begin{gathered} A \leq 1 E X T T \\ L E N G T H \\ \text { (M) } \\ \text { (in) } \end{gathered}$
						As 1	As2	As3	As4	As5	As7	As8		
$10^{\prime} \times 5^{\prime}$	10	10	10	$\begin{aligned} & 4 \\ & \text { to } \\ & 12 \end{aligned}$	$0.33^{\prime}-<2^{\prime}$	0.60	0.73	0.61	0.24	0.24	0.50	0.57		
					$2^{\prime \prime}-<3^{\prime}$	0.60	0.73	0.61	0.12	-	-			58
					$3^{\prime}-<5^{\prime}$	0.57	0.64	0.58	0.12	-	-			53
					$5^{\prime}-10^{\prime}$	0.65	0.60	0.60	0.12	-	-			52
					15^{\prime}	0.94	0.90	0.89	0.12	-	-	-		47
	10	10	10	$\begin{aligned} & \text { to } \\ & 12 \end{aligned}$	20^{\prime}	1.24	1.23	1.19	0.12	-	-			47
		11.5	10		25^{\prime}	1.39	1.37	1.28	0.12	-	-			47
	12.5	12.5	10		30°	1.38	1.43	1.41	0.12					47
$10^{\prime} \times 6^{\prime}$	10	10	10	$\begin{aligned} & 4 \\ & \text { to } \\ & 12 \end{aligned}$	$0.33^{\prime}-<2^{\prime}$	0.58	0.75	0.64	0.24	0.24	0.48	0.56		
					$2^{\prime \prime}-3^{\prime}$	0.58	0.75	0.64	0.12					58
					$3^{\prime \prime}-<5^{\prime}$	0.56	0.67	0.62	0.12	-	-	-		52
					$5^{\prime}-10^{\prime}$	0.64	0.64	0.65	0.12	-	-	-		52
					${ }^{15}$	0.92	0.96	0.95	0.12	-	-			47
	10	10	10	$\begin{aligned} & 8 \\ & \text { to } \\ & 12 \\ & \hline \end{aligned}$	20^{\prime} 25^{\prime}	1.21 1.25 1	1.31	1.27	0.12	$-$	-			47
	$\begin{array}{\|l\|} \hline 11 \\ \hline 12.5 \end{array}$	$\begin{aligned} & 11.5 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$		25^{\prime} 30^{\prime}	1.35 1.35	1.44 1.51 1	1.36 1.49	0.12	-	$-$			47 47
$10^{\prime \prime} \times 7^{\prime}$	10	10	10	$\begin{aligned} & 4 \\ & \text { to } \\ & 12 \end{aligned}$	$0.33^{\prime}-<2^{\prime}$	0.57	0.78	0.67	0.24	0.24	0.48	0.57		
					$2^{\prime \prime}-<3^{\prime}$	0.57	0.78	0.67	0.12	-				58
					$3^{\prime \prime}-<5^{\prime}$	0.58	0.70	0.65	0.12	-	-			58
					$5^{\prime}-10^{\prime}$	0.65	0.68	0.70	0.12	-	-	-		52
					15^{\prime}	0.92	1.02	1.02	0.12	-	-	-		47
	10	10	10	$\begin{aligned} & 8 \\ & \text { to } \\ & 12 \end{aligned}$	20°	1.21	1.35	1.35	0.12	-	-		$\stackrel{\square}{\circ}$	47
		11.5	10		25^{\prime}	1.33	1.52	1.44	0.12	-	-			47
	12.5	12.5	10		30°	1.38	1.58	1.57	0.12	-	-			47
$10^{\prime} \times 8^{\prime}$	10	10	10	$\begin{gathered} 4 \\ \text { to } \\ 12 \end{gathered}$	0.33' $3^{\prime \prime}$ - $2^{\prime \prime}$	0.58	0.80	0.70	0.24	0.26	0.48	-		
					$2^{\prime \prime}-3^{\prime}$	0.58	0.80	0.70	0.12		-			64
					$3^{\prime}-<5^{\prime}$ $5^{\prime}-10^{\prime}$	0.60 0.67 0.0	0.72 0.72	0.68 0.75	0.12	-	$-$		$\stackrel{\circ}{\circ}$	58 58
					${ }^{15}$	0.95	1.08	1.08	0.12	-	-			${ }_{4}^{52}$
	10	10	10	8	20°	1.24	1.45	1.44	0.12	-	-			47
	11	11.5	10	to	25°	1.36	1.59	1.52	0.12	-	-			47
	12.5	12.5	10	12	30^{\prime}	1.45	1.64	1.64	0.12	-				47
$10^{\prime} \times 9^{\prime}$	10	10	10	$\begin{aligned} & 4 \\ & \text { to } \\ & 12 \end{aligned}$	0.33' - <2'	0.61	0.82	0.73	0.24	0.26	0.50	0.61		
					$2^{\prime \prime}-<3^{\prime}$	0.61	0.82	0.73	0.14					70
					$3^{\prime}-<5^{\prime}$	0.64	0.75	0.73	0.13	-	-			64
					$5^{\prime}-10^{\prime}$	0.72	0.77	0.80	0.12	-	-	-		58
					15°	1.00	1.13	1.15	0.12	-	-	-		52
	$\frac{10}{11}$	$\begin{gathered} 10 \\ \hline 12.5 \end{gathered}$	$\frac{10}{10}$	$\begin{aligned} & 8 \\ & \text { to } \end{aligned}$	20° 25^{\prime}	1.30 1.42 1	1.53 1.66	1.52	0.12	-	$-$	-		47
	12.5	12.5	10	12	30°	1.57	1.70	1.72	0.12	-	-	-		47
$10^{\prime} \times 10^{\prime}$	10	10	10	$\begin{gathered} 4 \\ \text { to } \\ 12 \end{gathered}$	$0.33^{\prime}-<2^{\prime}$	0.66	0.84	0.75	0.24	0.27	0.52	0.65		
					$2^{\prime \prime}-<3^{\prime}$	0.66	0.84	0.75	0.20					79
					$3^{\prime}-<5^{\prime}$	0.70	0.77	0.79	0.19	-	-	-		70
					$5^{\prime}-10^{\prime}$	0.79	0.81	0.87	0.18	-	-	-		64
					${ }^{15}$	1.09	1.19	1.23	0.15	-	-	-		52
	10	10	10	$\begin{aligned} & 8 \\ & \text { to } \\ & 12 \\ & \hline \end{aligned}$	20^{\prime}	1.40	1.61	1.61	0.14	-	-	-		52
	11	11.5	10		${ }^{25}$	1.53	1.74	1.68	0.14	-	-	-		47
	12.5	12.5	10.5		30°	1.60	1.71	1.74	0.14	-	-	-		47

ITES

1. See Sheet 2 for General Notes

See Sheet 7 for Reinforcing Details and dimension locations.
3. See Sheet 14 for WWR Bending Diagrams.

TABLE 16 - STANDARD PRECAST BOX CULVERT DESIGNS (3" COVER) - 12' SPANS

SPAN \times RISE (S) (R) (Ft.)	SLAB / WALL THICKNESS				DESIGNEARTH COVERABOVETOP SLAB	REINFORCEMENT AREAS (sq.in./Ft.)								As1 EXT LENGTH (M) (in.)
	$\begin{aligned} & \hline \text { TOP } \\ & \text { (Tt) } \\ & \text { (in.) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { BoT. } \\ & \text { (Tb) } \\ & \text { (in.) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SIDE } \\ & \text { (Tw) } \\ & \text { (in.) } \\ & \hline \end{aligned}$	HAUNCH (H) (in.)										
						As1	As2	As3	As4	As5	As7	As8	As9	
$12^{\prime} \times 4^{\prime}$	12	12	12	$\begin{gathered} 4 \\ \text { to } \\ 12 \end{gathered}$	$0.33^{\prime}-<2^{\prime}$	0.59	0.64	0.51	0.29	0.29	0.52	0.55		-
					$2^{\prime}-<3^{\prime}$	0.60	0.64	0.51	0.15	-	-	-		73
					$3^{\prime}->5^{\prime}$	0.60	0.61	0.51	0.15	-	-	-		66
					5' - 10^{\prime}	0.81	0.61	0.61	0.15	-	-	-		66
					15^{\prime}	1.04	0.80	0.77	0.15	-	-	-		59
					20^{\prime}	1.37	1.08	1.03	0.15	-	-	-		59
	13	13	12	$\begin{aligned} & 8 \text { to } \\ & 12 \end{aligned}$	25^{\prime}	1.58	1.26	1.21	0.15	-	-	-		59
	14.5	14.5	12		30^{\prime}	1.63	1.38	1.34	0.15	-	-	-		53
$12^{\prime} \times 6^{\prime}$	12	12	12	$\begin{gathered} 4 \\ \text { to } \\ 12 \end{gathered}$	$0.33^{\prime}-<2^{\prime}$	0.56	0.70	0.57	0.29	0.29	0.47	0.52		-
					$2^{\prime}-<3^{\prime}$	0.56	0.70	0.57	0.15	-	-	-		66
					$3^{\prime}->5^{\prime}$	0.56	0.67	0.57	0.15	-	-	-		59
					$5^{\prime}-10^{\prime}$	0.74	0.69	0.70	0.15	-	-	-		59
					15^{\prime}	0.94	0.90	0.88	0.15	-	-	-		53
					20^{\prime}	1.23	1.22	1.17	0.15	-	-	-		53
	13	13	12	$\begin{gathered} 8 \text { to } \\ 12 \end{gathered}$	25^{\prime}	1.40	1.42	1.37	0.15	-	-	-		53
	14.5	15	12		30^{\prime}	1.44	1.54	1.48	0.15	-	-	-		53
$12^{\prime} \times 8^{\prime}$	12	12	12	$\begin{aligned} & 4 \\ & \text { to } \\ & 12 \end{aligned}$	$0.33^{\prime}-<2^{\prime}$	0.55	0.75	0.63	0.29	0.29	0.45	0.53		-
					$2^{\prime}-<3^{\prime}$	0.55	0.75	0.63	0.15	-	-	-		66
					$3^{\prime}-<5^{\prime}$	0.55	0.73	0.63	0.15	-	-	-		59
					$5^{\prime}-10^{\prime}$	0.73	0.77	0.79	0.15	-	-	-		59
					15^{\prime}	0.93	1.00	0.99	0.15	-	-	-		53
	12	12	12	$\begin{aligned} & 8 \\ & \text { to } \\ & 12 \\ & \hline \end{aligned}$	20^{\prime}	1.21	1.35	1.31	0.15	-	-	-		53
	13	13.5	12		25^{\prime}	1.35	1.55	1.48	0.15	-	-	-		53
	14.5	15	12		30^{\prime}	1.40	1.67	1.62	0.15	-	-	-		53
$12^{\prime} \times 10^{\prime}$	12	12	12	$\begin{aligned} & 4 \\ & \text { to } \\ & 12 \end{aligned}$	$0.33^{\prime}-<2^{\prime}$	0.57	0.80	0.68	0.29	0.29	0.46	0.57		-
					$2^{\prime}-<3^{\prime}$	0.57	0.80	0.68	0.15	-	-	-		73
					$3^{\prime}->5^{\prime}$	0.59	0.77	0.68	0.15	-	-	-		66
					$5^{\prime}-10^{\prime}$	0.78	0.85	0.89	0.15	-	-	-		59
					15^{\prime}	0.98	1.10	1.11	0.15	-	-	-		53
	12	12	12	$\begin{aligned} & 8 \\ & \text { to } \\ & 12 \\ & \hline \end{aligned}$	20^{\prime}	1.26	1.47	1.45	0.15	-	-	-		53
	13	13.5	12		25^{\prime}	1.39	1.68	1.63	0.15	-	-	-		53
	14.5	15	12		30^{\prime}	1.48	1.79	1.76	0.15	-	-	-		53
$12^{\prime} \times 12^{\prime}$	12	12	12	$\begin{aligned} & 4 \\ & \text { to } \\ & 12 \end{aligned}$	$0.33^{\prime}-<2^{\prime}$	0.65	0.84	0.73	0.29	0.29	0.50	0.65		-
					$2^{\prime}-<3^{\prime}$	0.65	0.84	0.73	0.23	-	-	-		93
					$3^{\prime}-<5^{\prime}$	0.68	0.81	0.75	0.22	-	-	-		80
					5' - 10'	0.90	0.94	1.01	0.21	-	-	-		73
					15^{\prime}	1.12	1.20	1.24	0.18	-	-	-		59
	12	12	12	$\begin{aligned} & 8 \\ & \text { to } \\ & 12 \end{aligned}$	20^{\prime}	1.42	1.60	1.61	0.16	-	-	-		59
	13	13.5	12		25^{\prime}	1.57	1.81	1.78	0.16	-	-	-		53
	14.5	15	12.5		30^{\prime}	1.63	1.86	1.85	0.15	-	-	-		53

NOTES:

1. See Sheet 2 of 14 for General Notes.
2. See Sheet 7 of 14 for Reinforcing Details and dimension locations.

WWR PIECE NO. 1
(2 Reqd. per segment)

As4 (3 Wires Min.)

WWR PIECE NO. 4 (Tongue Reinforcement)

WWR PIECE NO. 3 $(2$ Reqd. per segment) $\overline{=}$ TYPE 2 BOX SECTION (DESIGN EARTH COVER 2' OR GREATER) $\overline{=}$
Read per segment

WWR PIECE NO. 2
(2 Reqd. per segment)

WWR PIECE NO. 4
2 WWR PIECE NO. 3
(2 Reqd. per segment)
(DESIGN EARTH COVER LESS THAN 2') $=$
inforcement notes.

1. Reinforcement bending dimensions are out-to-out.
2. See General Notes 4, 5 and 6 on Sheet 2 .
3. See Tables 1 thru 16 for dimensions M, , , S, Tb, Tt and Tw.

Dimension "A" is determined by the Manufacturer in accordance with
the requirements of Detail "B" on Sheets 1 and 7 .

TYPICAL SECTION TYPE D, E\& AA PAD

TYPICAL SECTION TYPE $F, G \& A B$ PAD

TYPICAL SECTION TYPE H PAD

TYPICAL SECTION TYPE J\& K PAD

Bottom Flange of
Prestressed Beam

PARTIAL PLAN (Beam \& Bearing Skew $=0^{\circ}$)

PARTIAL PLAN (Beam \& Bearing Skew $>0^{\circ}$) (Use Index 450-511)

PARTIAL PLAN WITH SQUARED END BEAM (Use Index 450-512) (Beam Skew $>0^{\circ}$; Bearing Skew $=0^{\circ}$)

LAST REVISION 07/01/15	\|	$\begin{gathered} \text { FY 2020-21 } \\ \text { STANDARD PLANS } \end{gathered}$	COMPOSITE ELASTOMERIC BEARING PADS - PRESTRESSED FLORIDA-I \& AASHTO TYPE III BEAM

Bars $5 K$ spaced perpendicular
to end of beam @ $3^{1 / 2 / 2^{\prime \prime}}$
to end of beam @ $31 / 2$.
Skewed Bars $5 Z, 4 \mathrm{M} 1$
Skewed Bars 5Z, 4M1 or
4M2 placed with Bars 5 K

Bars 5 K spaced along \& Bean
@ 3". Bars 4M1 or 4M2 place
4M2 placed with Bars 5 K *
$6^{\text {" }}$ Chamfer -
Bars 52 (shown

* For number of Bars, spacing and placement details see Index $450-036$
thru 450-096. See Sheet 1 for Conventional Reinforcement, Sheet 2 for WWR.

2 in this area, for skewed beam ends
PARTIAL PLAN VIEW (SHOWING TOP FLANGE) End 1 Shown, End 2 Similar
(Bars 5A, 5 Y \& Strands N not shown for clarity)
Bars 5 K spaced perpendicular lo end of beam @ $31 / 2^{\prime \prime}$. Skewed Bars 5Z, 3D1 or 3D2, 3C1
$3 C 2$ placed with Bars $5 \mathrm{~K} *$

Bars 5 K spaced along 4 Beam @
$3^{\prime \prime}$. Bars 301 or $302,3 C 1$ or $3 C 2$
$3 C 2$ placed with Bars 5 K
3". Bars 3D1 or 302, 3 C1 or $3 C 2$
placed with alternate Bars $5 K^{*}$
\rightarrow
dotted, Typ.)
(doted, Typ.)
with alternate Bars $5 K * 7$
Rotate and flare Bars 4M1 or 4M2 and additional Bar 4M1 or 4M2 equally as required to maintain a $1^{\prime}-0^{\prime \prime} \pm$ Max. spacing
along end of bars. Clip to maintain cover.

1 \sim Additional Bar 301 or 302 for Skews $\leq 10^{\circ}$ or
$2 \sim$ Additional Bars 301 or 302 for Skews $>10^{\circ}$ 2~ Additional Bars 301 or 302 for Skews $>10^{\circ}$
(shown dashed rotate and space (shown dashed) rotate and space equally between
last Bar $3 D 1$ or $3 D 2$ and first Bar $3 D 3$ as shown Bars 5K (Typ.) \& Beam
Bars 52 (show Bars 52 (shown
dotted, Typ.)

$6^{\prime \prime}$ Chamfer

Bars 301 or 302

vWR not permitted for Bars
(Pairs)
\qquad
or $3 D 2$ in this area for skewed beam end ON THRU WEB (SHOWING BOTTOM FLANGE) (END 1 Shown, END 2 Similar)
(Bars 5Y, Strands, and Embedded Bearing Plate "A" not shown for clarity)

TYPICAL SECTION after protecting
\qquad

These dimensions are
measured perpendicula to the end of beam

END VIEW

SECTION A-A FOR CONVENTIONAL REINFORCING (Showing Bars 5K, 5Y \& $5 Z$ Only)

$\frac{\text { Spacing }}{\text { or 4M2 }}$ | Spacing Bars $5 Z$ | $3 / 3^{11 *}$ | $\left.\right\|_{4}$ sp. @ $312^{12 *}$ |
| :--- | :--- | :--- |

\qquad S1 sp.@ V1
CONVENTIONAL REINFORCING BAR BENDING DETAILS

BILL OF REINFORCING STEEL				
MARK	$\begin{aligned} & \text { NOTE } \\ & \text { NUMBERS } \end{aligned}$	SIZE	NUMBER REQUIRED	LENGTH (NOTE 2)
A	-	5	8	$16^{\prime}-0^{\prime \prime}$
C1	$7,8 \& 9$	3	11 (End 1)	Varies
C2	$7,8 \& 9$	3	11 (End 2)	Varies
D1	$7,8,9 \& 10$	3	22 (End 1)	Varies
D2	$7,8,9 \& 10$	3	22 (End 2)	Varies
D3	$9 \& 10$	3	See Table	$4^{\prime}-3^{\prime \prime}$
K	5, 6, 8, 9 \& 10	5	See Table	$4^{\prime}-2^{\prime \prime}$
M1	$7 \& 9$	4	9 (End 1)	Varies
M2	$7 \& 9$	4	9 (End 2)	Varies
M3	9	4	See Table	$3^{\prime}-8^{\prime \prime}$
N	$4 \& 12$	$3 / 8{ }^{\prime \prime} \varnothing$ Strand	4	Dim. L
Y	$8 \& 9$	5	12	$2^{\prime}-6^{\prime \prime}$
z	5,6, 8, $9 \& 10$	5	10	$3^{\prime}-8^{\prime \prime}$

BENDING DIAGRAMS (See Note 2)

BARS 5A, 4M1, 4M2 BARS 3C1 \& $3 C 2$ (
BARS $5 K \& 5 Z$ BARS 3D1, 3D2 \& $3 D 3$
A. Work this Index with Index 450-010 - Typic Florida-I Beam Details and Notes and the Structures Plans.
B. For referenced notes, see Index 450-010

For Dimensions A, B, C, D, L, R\&V1 and number of spaces S1 thru S4, see Florida-I
Beam - Table of Beam Variables in Structures Beam - Table of Beam Variables in Structures
Plans.

Dim. $L=$ Beam Casting Lengt
Overall Length of Beam along \& Beam including length increase as required for Beam placed
on grade and Dim. R to compensate for elastic and time dependent shortening effects) Direction of Stationing

(Overall Length of Beam along \& Beam including length increase as required for Beam placed | on grade and Dim. R to compensate for elastic and time dependent shortening effects) |
| :---: |

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$	\|rasin

FDOㄷT | FY 2020-21 |
| :---: |
| STANDARD PLANS |

alternate reinforcing steel (wWr) Details

These dimensions are
measured perpendicula oo the end of beam

END VIEW
(Flanges No (End 1 Shown, End 2 Similar)

CONVENTIONAL REINFORCING BAR BENDING DETAILS

BILL OF REINFORCING STEEL				
MARK	$\begin{aligned} & \text { NOTE } \\ & \text { NUMBERS } \end{aligned}$	SIZE	NUMBER REQUIRED	LENGTH (NOTE 2)
A	-	5	8	19'-0'01
C1	$7,8 \& 9$	3	13 (End 1)	Varies
C2	$7,8 \& 9$	3	13 (End 2)	Varies
D1	7,8,9\&10	3	26 (End 1)	Varies
D2	$7,8,9 \& 10$	3	26 (End 2)	Varies
D3	$9 \& 10$	3	See Table	$4^{\prime}-3^{\prime \prime}$
K	5, 6, 8, 9 \& 10	5	See Table	$4^{\prime}-11^{\prime \prime}$
M1	$7 \& 9$	4	11 (End 1)	Varies
M2	7 \& 9	4	11 (End 2)	Varies
M3	9	4	See Table	$3^{\prime \prime}-8^{\prime \prime}$
N	$4 \& 12$	$3 / 88^{\prime \prime}$ ¢ Strand	4	Dim. L
Y	$8 \& 9$	5	12	$3^{\prime \prime}-3^{\prime \prime}$
z	5, 6, 8, 9 \& 10	5	10	$4^{\prime \prime}-5^{\prime \prime}$

BENDING DIAGRAMS (See Note 2)

BARS $5 K \& 5 Z$ BARS 3D1, 3D2 \& 3D3
NOTES:
A. Work this Index with Index 450-010 - Typical Florida-I Beam - Table of Beam Variables in Structures Plans.
B. For referenced notes, see Index 450-010.
C. For Dimensions A, B, C,, R For Dimensions A, B, C, D, L, R\& V1 and
number of spaces Si thru S4, see Florida-Beam - Table of Beam Variables in Structures Plans.
Dim. L = Beam Casting Lengt

SECTION A-A FOR CONVENTIONAL REINFORCING (Showing Bars 5K, 5Y \& 5 Z Only)

ELEVATION

FDOF | FY 2020-21 |
| :---: |
| STANDARD PLANS |

苞
alternate reinforcing steel (wWR) details

These dimensions are
measured perpendicular
o the end of beam

SECTION A-A FOR CONVENTIONAL REINFORCING (Showing Bars $5 K, 5 Y \& 5 Z$ Only)

> ELEVATION AT END OF BEAM (End 1 Shown End 2 Simary) (End 1 Shown, End 2 Similar)

Dim. $L=$ Beam Casting Length

CONVENTIONAL REINFORCING BAR BENDING DETAILS

BILL OF REINFORCING STEEL				
MARK	NOTE NUMBERS	SIZE	NUMBER REQUIRED	LENGTH (NOTE 2)
A	-	5	8	22'-0"
C1	$7.8 \& 9$	3	14 (End 1)	Varies
C2	$7,8 \& 9$	3	14 (End 2)	Varies
D1	7, 8, 9\& 10	3	28 (End 1)	Varies
D2	$7,8,9 \& 10$	3	28 (End 2)	Varies
D3	$9 \& 10$	3	See Table	$4^{\prime \prime}-3^{\prime \prime}$
K	5, 6, 8, 9\& 10	5	See Table	$5^{\prime}-8^{\prime \prime}$
M1	$7 \& 9$	4	12 (End 1)	Varies
M2	$7 \& 9$	4	12 (End 2)	Varies
M3	9	4	See Table	$3^{\prime}-8^{\prime \prime}$
N	$4 \& 12$	$3 / 8{ }^{\prime \prime} \varnothing$ Strand	4	Dim. L
Y	$8 \& 9$	5	12	$4^{\prime}-0^{\prime \prime}$
z	5, 6, 8, 9\& 10	5	10	$5^{\prime}-2^{\prime \prime}$

BENDING DIAGRAMS (See Note 2)

BARS 5A, 4M1, 4M2 $4 M 3 \& 5 Y$

BARS $5 K \& 5 Z$ BARS $3 D 1,3 D 2 \& 3 D 3$

NOTES

A. Work this Index with Index 450-010 - Typical Forida-I Beam Details and Notes and the Structures Plans.
B. For referenced notes, see Index 450-010,

Cor Dimensions A, B, C, D, L, R \& V1 and
number of spaces S1 thru S4 se FIorid number of spaces S1 thru S4, see Florida-I
Beam - Table of Beam Variables in Structures Beam -
Plans.

alternate reinforcing steel (WWR) details

These dimensions are
o the end of beam

END VIEW

SECTION A-A FOR CONVENTIONAL REINFORCING (Showing Bars 5K, 5Y \& $5 Z$ Only)
elevation at end of beam
(Elanges Not Shown for Claria)

Dim. $L=$ Beam Casting Length
(
(Overall Length of Beam along \& Beam including length ingrease as required for Beam placed
on grade and Dim. R to compensate for elastic and time dependent shortening effects)
Spacing Bars 5K (Symmetrical
alternate reinforcing steel (wWr) Details

PARTIAL PLAN VIEW (SHOWING TOP FLANGE) (End 1 Shown, End 2 Similar)
(Bars 5A, $4 Y \&$ Strands N not shown for clarity)

For number of Bars, spacing and
placement details see Sheet 3. See
Sheet 3 for Conventional Reinforcement,
Sheet 4 for WWR

PARTIAL SECTION THRU WEB (SHOWING BOTTOM FLANGE)
(End 1 Shown, End 2 Similar)
Bars $4 Y$ \& Strands not shown for clarity

TYPICAL SECTION AFTER PROTECTING
SHOWING CUT STRAND RECESS LIMITS

BUILD-UP DIAGRAM FOR TANGENT SPANS (ALONG \& BEAM) (CASE 1)

BUILD-UP DIAGRAM FOR SAG VERTICAL CURVE \& HORIZONTAL CURVE SPANS (ALONG \& BEAM) (CASE 2)

BUILD-UP DIAGRAM FOR CREST VERTICAL CURVE SPANS - CONTROL AT \& SPAN (ALONG q BEAM) (CASE 3)

Begin Spa

A End Span CONTROL AT BEGIN OR END SPAN
(ALONG \& BEAM) (CASE 4)

BEAM CAMBER AND BUILD-UP NOTES:

The build-up values given in the Data Table* are based on theoretical beam cambers. The Contractor shall monitor beam cambers for the purpose of predicting
camber values at the time of the deck pour. If the predicted cambers based
on field measurements differ more than $+/-1 / 2$ " from the theoretical "Net Beam
Camber @ 120 Days" shown in the Data Table*, obtain approval from the Engineer to modify the build-up dimensions as required. When the measured beam cambers notify the Engineer a minimum of 21 days prior to casting.

Dim. "A" includes the weight of the Stay-In-Place Formwork.

DEAD LOAD DEFLECTION DIAGRAM

BUILD-UP OVER BEAMS
(Florida-I Beam Shown
AASHTO Type II Similar

$$
\begin{aligned}
& \text { * NOTE: } \\
& \text { Work this Index with the Build-up and Deflection } \\
& \text { Data Table for Florida-I and AASHTO Type II Beams } \\
& \text { in Structures Planc }
\end{aligned}
$$ in Structures Plans.

CASE 2

CASE 3

BEAM NOTES

1. Work this Index with the Florida-U Beam Standard Details (Index 450-248, 450-254, 450-263 and 450-272) and the Table of Beam Variables in Structures Plans. 2. All bar bend dimensions are out-to-out
2. Concrete cover: 2 inches minimum Maximum aggregate size is a No 67 .

Concrete face may be sloped with a maximum 1:24 draft to facilitate formwork removal.
5. Strands N: 3/s \varnothing minimum, stressed to 10,000 lbs. each.
6. Tie Bars $5 K$ to the fully bonded strands in the bottom row (see "STRAND PATTERN" on the
7. Table of Beam Variables sheet in Structures Plans).

Engineer may approve the use of deformed WWR in lieu of Bars 6A1, 4A2, 5B, 4C, 3 , $5 \mathrm{E}, 4 \mathrm{~F}, 4 \mathrm{G}, 4 \mathrm{H}, 5 \mathrm{~K}, 5 \mathrm{~L}$ and 4 M . The spacing and sizes of deformed WWR must match the 5E, 4F, 4G, 4H, 5K, 5 L and 4M. The spacing and sizes of deformed WWR
reinforcing sizes shown on the Florida-U Beam Standard Details sheets.
8. For Beams with vertically beveled end conditions, where "Dim. P" exceeds 1", place Bars 5E, and the first Bars $4 F$ and 5 K parallel to the end of the beam. Fan the remaining Bars 4F and 5K within the limits of "Dim. B" (End Diaphragm) at equal spaces until vertical
9. Embedment of Safety Line Anchorage Devices are permitted in the top flange to
accommodate fall protection systems. See shop drawings for details and spacing of any
anchorage devices or other required embedded hardware.
10. Intermediate diaphragms must be cast and concrete release strength obtained prior to

1. Place drains pipes adjacent to each web
web at each beam end (four drains per beam.
A. Drain Pipe: 2" NPS Schedule 80 PVC.
B. Cover, wrap and secure wire screen around the end of the pipe prior to casting.

Extend screen a minimum of $1^{\prime \prime}$ down the pipe sides.
c. Provide removable pipe plugs during casting. Remove plugs from the inside of pipes after casting.
Protection of Strands:
A. Provide a $2^{\prime \prime}$ deep recess around all strands (including dormant) or strand groups. Extend the recessed blockout to the web face and bottom of the flange for the
B. Aftem row of strands. ${ }^{\text {bions }}$. ${ }^{1 / 2}$ " from recessed surface and fill the blockout to protect strands with Type F-2 or Q Epoxy Compound in accordance with
specification Section 926.
13. Use Stay-In-Place metal deck forms inside the beams.
14. Prior to deck placement, provide temporary blocking under each web at both ends of
every beam. Ensure the temporary blocking is adequate to resist movements and every beam. Ensure the temporary blocking is adequate to resist movements and
rotations during deck placement. Leave temporary blocking and bracing in place for minimum of four days after the deck is placed.
15. Based on the deck forming system and deck placement sequence, evaluate and provide
any required temporary bracing between the \cup Beams.

(Showing Vertical Bevel of Beam End)

工TEMPORARY BLOCKING OF BEAM ENDS $=$
\qquad
\qquad

END VIEW AT END DIAPHRAGM

$$
\begin{aligned}
& \text { Bars } 5 \mathrm{~K} \\
& \text { (Typ.) }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Bars } 5 \mathrm{~K} \\
\text { (Typ.) }
\end{array} \quad \text { Void Face Beam }
\end{aligned} \quad \begin{aligned}
& \text { Bars } 4 \mathrm{M} \\
& \text { (Typ.) }
\end{aligned}
$$

NOTES
For referenced notes see Index 450-210.

Vertical Face of the Top
Flange and Web and
Underside of the Top
Underside of
Flange (Typ.)

SECTION CBC

TOP VIEW OF SKEWED END DIAPHRAGM AND STIRRUP TRANSITION ZONE
(Bars 3D2 Not Shown For Clarity)

Spacing Bars 5K (Along \& of Beam
(Bars 4F and 4M ar
Bars 5 K as shown)
(Bars
TOP VIEW OF END DIAPHRAGM (Bars 3D1 And 3D2 Not Shown For Clarity)
-

END VIEW AT END DIAPHRAGM

SECTION C-C

referenced notes see Index 450-210.

Vertical Face of the Top
Flange and Web and
Flange (Typ.)
Spacing Bars 5K (Along \& of Beam) (Bars 4 F and 4 M are Paired with
Bars 5 K as shown)
TOP VIEW OF END DIAPHRAGM
(Bars 3D1 And 3D2 Not Shown For Clarity)

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 16 \end{gathered}$		$\begin{gathered} \text { FDO 2020-21 } \\ \text { STANDARD PLANS } \end{gathered}$	FLORIDA-U $54 \mathbb{B E A M}-\mathrm{STANDARD} \mathbb{D E T A I L S}$

CONVENTIONAL REINFORCING STEEL BENDING DIAGRAMS

INTERMEDIATE DIAPHRAGM

之 DESCRIPTION:

LAST
REVISION
REVISION
11/01/16
FDOT\} FY 2020-21 $\begin{gathered}\text { STANDARD PLANS }\end{gathered}$

Conventional reinforcing steel bending diagrams						
BILL OF REINFORCING STEEL FOR ONE BEAM ONLY					$s 5 B$	
MARK	SIZE	NO. REQD.	LENGTH			
A1	6	4	Dim. L-4"			$\begin{gathered} \dot{o} \\ \dot{y} \\ \hline \end{gathered}$
A2	4	12	Dim. L-4"			
B	5	12	$4^{\prime \prime} \mathbf{7}^{\prime \prime}$			
c	4	20	5'-3"			
D1	3	180	$1^{\prime}-6{ }^{\prime \prime}$			
D2	3	30	$4^{\prime}-6{ }^{\prime \prime}$			
E	5	24	$5^{\prime}-9^{\prime \prime}$			
F	4	20	$6^{\prime}-4^{\prime \prime}$			$6^{\prime \prime}$
G	4	See Table	$4^{\prime}-6{ }^{\prime \prime}$		L-4" (Min. Lap Splice $\left.=2^{\prime}-0^{\prime \prime}\right)$	
H	4	See Table	$4^{\prime}-9^{\prime \prime}$		L-4" ${ }^{\prime \prime}$ Min. Lap Splice $\left.=1^{\prime}-4^{\prime \prime}\right)$	Bars SE
K	5	See Table	$8^{\prime}-6^{\prime \prime}$	$3 \mathrm{D2}$	$4^{4}-6^{\prime \prime}$	
L	5	24	$16^{\prime}-2^{\prime \prime}$			
M	4	See Table	$3^{\prime}-11^{\prime \prime}$		Bars 6A1, 4A2 and 3D2	
N	$3 / 8 / \varnothing$ Strand	2	Dim. L-3"		, ${ }^{\text {a }}$ a	

END VIEW at end diaphragm

SECTION C-C

Bars 5K as shown)
TOP VIEW OF END DIAPHRAGM
(Bars 3D1 And 3D2 Not Shown For Clarity)

DESCRIPTION:

CONVENTIONAL REINFORCING STEEL BENDING DIAGRAMS

(ALONG \& FLANGE) (CASE 1)

BUILD-UP DIAGRAM FOR SAG VERTICAL CURVE \& HORIZONTAL CURVE SPANS (ALONG \& FLANGE) (CASE 2)

BEAM CAMBER AND BUILD-UP NOTES

The build-up values given in the Data Table* are based on theoretical beam cambers. he Contractor shall monitor beam cambers for the purpose of predicting
camber values at the time of the deck pour. If the predicted cambers based
Camber @ 120 Days" Shown in the Data Table*, obtain approval from the Engineer to modify the build-up dimensions as required. When the measured beam cambers
create a conflict with the bottom mat of deck steel, notify the Engineer a minimum of 21 days prior to casting.

Dim. "A" includes the weight of the Stay-In-Place Formwork.

DEAD LOAD DEFLECTION DIAGRAM (ALONG \& BEAM)

* 1/2" Pad Type K

CROSS REFERENCE:
See Sheet 1 for dimension H and Notes.

LAST REVISION O7/01/14			$\mathbb{B E A R I N G}$ PLATES (TYPE 1) - PRESTRESSED FLORIDA-II AND AASHTO TYPE II BEAMS

* $1 / 2$ " for Pad Type K

CROSS REFERENCE:
See Sheet 1 for Notes.

| LAST
 REVISION
 07/01/14 | 全䆩 DESCRIPTION: | $\begin{array}{cc} \hline \text { FY 2020-21 } \\ \text { FDOT } \\ \text { STANDARD PLANS } \end{array}$ | BEARING PLATES (TYPE 2) - PRESTRESSED FLORIDA-I AND AASHTO TYPE II BEAMS | InDEX $450-512$ | SHEET 2 of 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | Prestressed Concrete Pile Standards (Index 455-012 thru 455-030), the High Moment Capacity Square Prestressed Concrete Pile (Index 455-031) and the Pile Data Table in

2. the Structu
A. Piles: Class V (Special), except use Class VI for High Moment Capacity Pile
B. High Capacity Splice Collar: Class V (Special).
C. Silica Fume: See "GENERAL NOTTE" in the Structures Plans for locations where the use of silica fume, metakaolin or ultra-fine flyash is required.
Concrete strength it time of prestress transfar:
3. Concrete strength at time of prestress transfer:
A. Piles: 4,000 psi minimu
B. High Moment Capacity Piles: 6,500 psi minimum
4. Carbon-Steel Reinforcing:
A. Bars: Meet the requirements of Specification Section 415.
B. Prestressing Strands: Meet the requirements of Specification Section 933.
C. Protect all strands permanently exposed to the environment and not embed rnder finl strands permanently exposed to the environment and not embedded 5. Spiral Ties:
A. Tie each wrap of the spiral strand to a minimum of two corner strands.
5. Pile Splices: furn required for spiral splices.

Epoxy Compound in accordance with Specification Section 962. Use an Epoxy Bonding Compound or an Epoxy Mortar as recommended by the Manufacturer.

typical pile shape FOR MOLD FORMS

DETAIL SHOWING TYPICAL COVER

NOTES
2. Prestressing strands, spiral ties and/or reinforcement are not shown for clarity.
3. In cases where pile splices are desired due to length limitations in shipping and/or handling, the "Drivable Preplanned Prestressed Precast Splice Detail" shall be used
Mechanical Pile Splices contained on the Approved Products List (APL) may also be used.
4. When preformed dowel holes are utilized, the $1^{1 "}$ spiral tie pitch shall be continued to $4^{\prime}-0^{\prime \prime}$ below the head of the pile, See Index 455-018, 455-020\& $455-024$. Preformed holes shall utilize either removable preforming material or stay-in-place corrugated galvanized steel ducts. Stay-in-place ducts shall be fabricated from galvanized sheet
steel meeting the requirements of ASTM A653, Coating Designation G90, 26 gauge. Ducts shall be 2" diameter with a minimum corrugation (rib) height of 0.12 in. Ducts shall steel meeting the requirements of ASTM A653, Coating Designation G90, 26 gauge. Ducts shall be $2^{\prime \prime}$ diameter
be fabricated with either welded or interlocked seams. Galvanizing of welded seams will not be required.
5. For tension piles where top of Prestressed Pile is less than 3 feet below Pile Cut-off Elevation, extend No. 10 Dowels into cap beyond Pile Cut-off Elevation to achieve development as approved by the Engineer
C-I-P Concrete Bent Cap, P
or Footing

\qquad $\sqrt{\frac{D}{-}}$

UNFORESEEN REINFORCED C-I-P PILE BUILD-UP DETAIL

NON-DRIVABLE UNFORESEEN REINFORCED PRECAST PILE BUILD-UP DETAIL
 Z DES ミDESCRIPTION:

DRIVABLE UNFORESEEN PRESTRESSED PRECAS PILE SPLICE DETAIL

DRIVABLE PREPLANNED PRESTRESSED PRECAST PILE SPLICE DETAIL DETAIL A

- Full epoxy compound joint
Epoxy compound to fill hole with
dowels in place $13 /$ " $^{\prime \prime}$ D Drilled or
preformed holes preformed holes
(see Splice Details) (see Splice Details)

TYPICAL SPLICE BEFORE BONDING
\square

SECTION B-B (Showing Voided Pile Solid Pile Similar)

ANTENNA TOP VIEW

ANTENNA END VIEW

SECTION A-A
(Strand Pattern with even number of strands per face)

NOTES:

1. For piles $18^{\prime \prime}$ and larger installed for bridge foundations, provide EDC Instrumentation in accordance with Specification Section 455.
2. Attach Tip Gauge extension cable to the underside of the strand shown in Section A-A. Secure cable to strand with nylon wire ties spaced a maximum of 6 ft . along cable.

LAST REVISION $07 / 01 / 15$		$\begin{gathered} \text { FDO 2020-21 } \\ \text { STANDARD PLANS } \end{gathered}$	SQUARE PRESTRESSED CONCRETE PILES - EDC INS TRUME NTATION	$\begin{gathered} \text { INDEX } \\ 455-003 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 1 \end{aligned}$

W3.4 Spiral Ties -

ELEVATION

ALTERNATE STRAND PATTERNS

$4 \sim 0.6^{\prime \prime} \emptyset$. Grade 270 LRS, at 44 kips
$8 \sim 1 / 2$ " \varnothing (Special), Grade 270 LRS, at 25 kips
8 ~ 1/2" 0 (Special), Grade, 270 LRS, at
$8 \sim 1 / 2 . "$, Grade 270 LRS, at 24 kips
$8 \sim$ V/h" ${ }^{\prime \prime}$, Grade 270 LRS, at 23 kips
$12 \sim 30$, Grade 270 LRS, at 16 kips

SECTION D-D
(See Non-Drivable Unforeseen Reinforced Precast Pile Splice Detail)

SECTION E-E
See Drivable Unforeseen Prestressed Precast Pile Splice Detail)

PILE SPLICE REINFORCEMENT DETAILS
NOTES:

1. Work this Index with Index 450-001 - Typical Details and Notes for Square Prestressed Concrete Piles and Index 455-002 Square Prestressed Concrete Pile Splices.
2. Any of the given Alternate Strand Patterns may be utilized. The strands shall be located as follows: Place one strand at each corner and place the remaining
strands equally spaced between the corner strands. The total strand pattern shall be concentric with the nominal concrete section of the pile.

ELEVATION

ALTERNATE STRAND PATTERNS

8~0.6" \varnothing, Gr
8 ~ $1 / 2^{\prime \prime} \varnothing$ (Special), Grade 270 LRS, at 31 kips
$8 \sim 1 / 2 " \emptyset$, Grade 270 LRS, at 31 kips
$12 \sim 7 / 16^{\prime \prime} 0$, Grade 270 LRS, at 21 kips
$16 \sim 3 / 8^{"} \varnothing$, Grade 270 LRS, at 16 kips

SECTION D-D
(See Non-Drivable Unforeseen Reinforced Precast Splice Detail)

SECTION E-E
See Drivable Unforeseen Prestressed Precast Splice Detail)

PILE SPLICE REINFORCEMENT DETAILS
NOTES:

1. Work this Index with Index 455-001 - Typical Details and Notes for Square Prestressed Concrete Piles and Index 455-002 - Square
stressed Concrete Pile Splices.
2. Any of the given Alternate Strand Patter

The strands shall be located as follows.
Place one strand at each corner and place the remaini
strands equally spaced between the corner strads.
strands equally spaced between the corner strands. The total strand pattern shall be concentric with the nominal concrete section of the pile.

** See Note 4 on Index 455-002

ALTERNATE STRAND PATTERNS

12~1/2" 0 (Special) Grade 270 LRS, at 34 kips
~ $~ 1 / 2$ / \varnothing G Grade 270 LRS at 26 kips
16 ~ $1 / 20$, Grade 270 LRS, at 26 kips
20 ~ $1 /$ r" 0 Ø, Grade 270 LRS, at 21 kips
$24 \sim 3 / 8^{\prime \prime} \varnothing$, Grade 270 LRS, at 17 kips

NOTES:

1. Work this Index with Index 455-001 - Typical Details and Notes for

Square Prestressed Cocrete Piles
Prestressed Concrete Pile Splices.
2. Any of the given Alternate Strand Patter
ie strands shall be located as follows:
Place one strand at each corner and place the remaining
Ptace one strand at each corner and place the rem
strands equally spaced between the corner strands.
The total strand pattern shall be concentric with the nominal concrete section of the pile.

SECTION D-D
See Non-Drivable Unforeseen Reinforced Precast Splice Detail)

SECTION E-E (See Drivable Prestressed Precast Splice Detail)

PILE SPLICE REINFORCEMENT DETAILS

** See Note 4 on Index 455-002

ALTERNATE STRAND PATTERNS

$12 \sim 0.6^{\prime \prime} \emptyset$, Grade 270 LRS, at 42 kips
$16 \sim 1 / 2 \mathrm{l}$
$16 \sim 1 / 2$ ø (Special), Grade 270 LRS, at 31
$16 \sim 1 / 21$, Grade 270 LRS, at 31 kips
$24 \sim 7 / 16^{\prime \prime} \emptyset$, Grade 270 LRS, at 21 kips

SECTION A-A

NOTES.

Work this Index with Index 455-001 - Typical Details and Notes for Square Prestressed Concrete Piles and Index 455-002-Square Prestressed Concrete Pile Splices.
2. Any of the given Alternate Strand Patterns may be utilized

The strands shall be located as follows:
Place one strand at each corner and place the remaining
strands equally spaced between the corner strands.
The total strand pattern shall be concentric with the nominal
concrete section of the pile. concrete section of the pile.

SECTION D-D
(See Non-Drivable Unforeseen Reinforced Precast Pile Splice Detail)

SSee Drivable Prestressed Precast Pile Splice Detail)

pile splice reinforcement details

NOTES:

1. Work this Index with Index 455-001 - Typical Details and Notes for Square Prestressed Concrete Piles and Index 455-002 - Square
2. Any of the given Alternate Strand Patterns may be utilized.

The strands shall be located as follows:
Place one strand at each corner and place the remaining
strands equally spaced between the corner strands.
The total strand pattern shall be concentric with the nominal concrete section of the pile.

(See Non-Drivable Unforeseen Reinforced Precast Pile Splice Detail)

(See Drivable Prestressed Precast Pile Splice Detail)

ELEVATION

2-POINT PICK-UP
4-POINT SUPPORT
PILE PICK-UP DETAILS
STORAGE AND TRANSPORTATION SUPPORT DETAILS

[^0]| TABLE OF MAXIMUM PILE PICK-UP AND | | |
| :---: | :---: | :---: |
| SUPPORT LENGTHS | | |$|$| Maximum Pile Length
 (Feet) | Required Storage and
 Transportation Detail | Pick-Up
 Detail |
| :---: | :---: | :---: |
| 119 | 2, 3, or 4 point | 1 Point |
| 170 | 2, 3, or 4 point | 2 Point |

\qquad

prestressed concrete pile notes:

1. Work this Index with the Square Prestressed Concrete Pile Splices (Index 455-102), the Prestressed Concrete Pile Standards (Index 455-112, 455-114, 455-118, 455-124, 455-130, and the Pile Data Table in the Structures Plans.
A. Piles: Class V (Special)
B. Silica Fume: See "GENE

Silica Fume: See "GENERAL NOTES" in the Structures Plans for locations where the use of silica fume, metakaolin or ultra-fine flyash is required for options using stainless steel
3. Concrete strength at time of
3. A. Piles: 4,000 psi minimum
4. Reinforcing:
A. Bars:
a. Stainless Steel: Meet the requirements of Specification Section 931 for Type 304, Grade 75.
B. Prestressing Strands:

Prestressing SRTands.
a. Stainless Stelin Sevenire HSSS, UNS S32205 (Type 2205) or
strand, meeting the requirements of Specification Section 933 b. Carbon FRP: Meet the requirements of Specification Section 933.
5. Spiral Ties:

Tie each wrap of the spiral strand to a minimum of two corner strands.
B. One full turn required for spiral splices.

Compound in Fill dowel holes and form the joint between pile sections with a Type AB Epoxy an Epoxy Mortar as recommended by the Manufacturer.

3-POINT PICK-UP PILE PICK-UP DETAILS

STORAGE AND TRANSPORTATION SUPPORT DETAILS

table of maximum pile pick-up and support lengths							
	$D=$ Square Pile Size (inches)					Required Storage and Transportation Detail	Pick-Up Detail
	12	14	18	24	30		
Maximum	48	52	59	68	87	2, 3, or 4 point	1 Point
L	69	75	85	98	124	2, 3, or 4 point	2 Point
(Feet)	99	107	121	140	178	3 or 4 point	3 Point

typical pile shape FOR MOLD FORMS

detail showing
TYPICAL COVER

NOTES
2. Prestressing strands, spiral ties and/or reinforcement are not shown for clarity,
.
4. When preformed dowel holes are utilized, the $1^{\prime \prime}$ spiral tie pitch shall be continued to $4^{\prime}-0^{\prime \prime}$ below the head of the pile, See Index 455-118, 455-124. Preformed holes shall utilize either removable preforming material or stay-in-place corrugated galvanized steel ducts. Stay-in-place ducts shall be fabricated from galvanized sheet steel
teeting the requirements of ASTM A653, Coating Designation $G 90,26$ gauge. Ducts shall be $1^{1 / \prime \prime}$ diameter for CFRP Bars, and $2^{\prime \prime}$ diameter for SS Bars with a minimu meeting the requirements of ASTM A653, Coating Designation G90, 26 gauge. Ducts shall be $11 / 2$ diameter for CFRP Bars, and $2^{\prime \prime}$ diameter for SS Bars with
corrugation (rib) height of 0.12 in. Ducts shall be fabricated with either welded or interlocked seams. Galvanizing of welded seams will not be required.
5. For tension piles where top of Prestressed Pile is less than 3 feet below Pile Cut-off Elevation, extend No. 6 CFRP Bars or No. 10 SS into cap beyond Pile Cut-off Elevation to achieve development as approved by the Engineer

UNFORESEEN REINFORCED C-I-P PILE BUILD-UP DETAIL

ELEVATION

ALTERNATE STRAND PATTERNS

4~0.6" \varnothing. CFRP 7-Strand, at 42 kips
$4 \sim 1 / 2 " \emptyset$. CFRP Single-Strand, at 41 kips

SECTION D-D
(See Non-Drivable Unforeseen Reinforced Precast Pile Build-Up Detail)

SECTION E-E
See Drivable Unforesen Prestressed Precast Pile Splice Detail)

CFRP PILE SPLICE REINFORCEMENT DETAILS
NOTES:

1. Work this Index with Index 455-101 - Typical Details and Notes for Square CFRP \& SS Prestressed Concrete Piles and Index 2. Any of Squ sin 2. Any of the given Alternate Strand Patterns may be utilized.

W.0 Spiral Ties

ELEVATION

STRAND PATTERN

$8 \sim 1 / 2 " \varnothing$, HSSS at 24 kips

SECTION D-D
(See Non-Drivable Unforeseen Reinforced Precast Pile Build-Up Detail)

SECTION E-E
See Drivable Unforeseen Prestressed Precast Pile Splice Detail)

SS Pile splice Reinforcement details
NOTES:

1. Work this Index with Index 455-101 - Typical Details and Notes for Square CFRP \& SS Prestressed Concrete Piles and Index

Square CFRP \& SS Prestressed Concrete Pile Splices.
2. Any of the given Strand Patterns may be utilized.

The strands shall be located as follows:
Place one strand at each corner and place the remaining
Place one strand at each corner and place the remain
strands equally spaced between the corner strands.
The total strand pattern shall be concentric with the nominal concrete section of the pile.
455-112 2 of 2

ELEVATION

ALTERNATE STRAND PATTERNS

8~0.6" Ø. CFRP 7-Strand, at 31.5 kips
$8 \sim 1 / 2 " \varnothing$, CFRP Single-Strand, at 30.5 kips
CFRP PILE SPLICE REINFORCEMENT DETAILS

NOTES:

1. Work this Index with Index 455-101 - Typical Details and Notes for Square CFRP \& SS Prestressed Concrete Piles and Index 455-102
Square CFRP \& SS Prestressed Concrete Pile Splices
2. Any of the given Alternate Strand Patterns may be utilized.

The strands shall be located as follows:
Place one strand at each corner and equally space the
remaining strands between the corner strands
remaining strands between the corner strands
concrete section of the pile. concrete section of the pile.
frrp prestressed pile details

ELEVATION

TRAND PATTERN

SECTION D-D
(See Non-Drivable Unforeseen Reinforced Precast Pile Build-Up Detail)

SECTION E-E
See Drivable Unforeseen Prestressed Precast Splice Detail)

SS PILE SPLICE REINFORCEMENT DETAILS
NOTES:

1. Work this Index with Index 455-101 - Typical Details and Notes for Square CFRP \& SS Prestressed Concrete Piles and Index
Any of the Square CFRP \& SS Prestressed Concrete Pile Splices.
Any of the given Alternate Strand Pattern
The strands shall be located as follows:
Place one strand located as follows.
strands equally spaced between the corner strands.
The total strand pattern shall be concentric with the nominal concrete section of the pile.

INDEX	SHEET
$455-114$	2 of 2

** See Note 4 on Index 455-102

ALTERNATE STRAND PATTERNS
2 ~ 0.6" Ø, CFRP 7-Strand, at 34 kips
12 ~ $1 / 2 "$ Ø. CFRP Single-Strand, at 33 kips

NOTES:
Work this Index with Index 455-101 - Typical Details and Notes for
Square CFRP \& SS Prestressed Concrete Piles and Index 455-102
Square CFRP \& SS Prestressed Concrete Pile Splices.
2. Any of the given Strand Patterns may be utilized
The strands shall be located as follows:

The strands shall be located as follows:
Place one strand at each corner and plat
Place one strand at each corner and place the remaining
strands equally spaced between the corner strands.
The total strand pattern shall be concentric with the nominal
concrete section of the pile.

SECTION D-D
(See Non-Drivable Unforeseen Reinforced Precast Pile Build-Up Detail)

SECTION E-E
(See Drivable Prestressed Precast Splice Detail)

SECTION F-F
(See Drivable Preplanned Prestressed Precast Splice Detail)
CFRP PILE SPLICE REINFORCEMENT DETAILS

STRAND PATTERN

(See Drivable Prection E-E

(See Drivable Preplanned Predtresses Precast Splice Detail)
ss pile splice reinforcement details

NOTES:
Work this Index with Index 455-101 - Typical Details and Notes for Square CFRP \& SS Prestressed Concrete Piles and Index
455-102 - Square CFRP \& SS Prestressed Concrete Pile Splices.
2. Any of the given Strand Patterns may be utilized.
he strands shall be located as follows:
Place one strand at each corner and plater
Place one strand at each corner and place the remaining
strands equally spaced between the corner strads.
The total strand pattern shall be concentric with the nominal oncrete section of the pile.

SS PRESTRESSED PILE DETAILS

Spiral tie elevation
** See Note 4 on Index 455-102

ALTERNATE STRAND PATTERNS

16 ~ 0.6" Ø, CFRP 7-Strand, at 42 kips $16 \sim 1 / 2^{\prime \prime} \emptyset$, CFRP Single-Strand, at 41 kips

NOTES:
Work this Index with Index 455-101 - Typical Details and Notes for Square CFRP \& SS Prestressed Concrete Piles and Index
455-102 - Square CFRP \& SS Prestressed Concrete Pile Splices
2. Any of the given Strand Patterns may be utilized.

The strands shall be located as follows:
Place one strand at each corner and p
Place one strand at each corner and place the remaining
strands equally spaced between the corner strands.
The total strand pattern shall be concentric with the nominal
concrete section of the pile. concrete section of the pile.

ELEVATION
** See Note 4 on Index 455-102

STRAND PATTERN

$28 \sim 1 / 2$ ø . HSSS at 26 kips $20 \sim 0.6^{\prime \prime} \varnothing$, HSSS at 35 kips

Notes:
Work this Index with Index 455-101 - Typical Details and Notes for Square CFRP \& SS Prestressed Concrete Piles and Index
455-102 - Square CFRP \& SS Prestressed Concrete Pile Splices
2. Any of the given Strand Patterns may be utilized.
he strands shall be located as follows:
Place one strand at each corner and place
Place one strand at each corner and place the remaining
strands equally spaced between the corner strands.
The total strand pattern shall be concentric with the nominal
concrete section of the pile.

FDOT\} FY 2020-21 $\quad 24^{\prime \prime}$ SQUARE CFRP \& SS PRESTRESSED

 STANDARD PLANS

SECTION D-D
(See Non-Drivable Unforeseen Reinforced Precast Pile Build-up Detail)

(See Drivable Prestressed Precast Pile Splice Detail)

SS PRESTRESSED PILE DETAILS

Index	Sheet
$455-124$	2 of 2

2-POINT PICK-UP
PILE PICK-UP DETAILS

STORAGE AND TRANSPORTATION SUPPORT DETAILS

\left.| TABLE OF MAXIMUM PILE PICK-UP AND | | |
| :---: | :---: | :---: |
| SUPPORT LENGTHS | | |$\right]$

1. Work this Index with the Pile Data Table in the Structures Plans.
A. Piles: Class V (Special)
B. Solice: Class IV
silica fume meta "GENERAL NOTES" in Structures Plans for locations where the use of silica fume, metakaolin or
2. Concrete Strength at time of prestress transfer
3. Reinforcing:
a. Stainless Steel: Meet the requirements of Specification Section 931 for Type 304, Grade 7

Meet the requirements of Specification Section 932.
a. Stainless Steel: Seven-wire HSSS, UNS S32205 (Type 2205) or UNS S31803 Strand, meeting the requirements of Specification Section 933.
c. Spiral Tie
a. One haff turn is required for carbon steel spiral splice.
5. Pile Splices:

Specification Section 926.
. Use a Type $A B$ Epoxy Bonding Compound or Epoxy Mortar, as recommended by Une Manufacturer, to form the joint between pile sections.
B. Driving: Resume pile driving after splice concrete reaches a minimum strength of 5500 psi
6. Mark piles at the pick-up points to indicate the proper points for attaching handling lines.
455-154 1 of 3

GENERAL NOTES:

1. Furnish Strip Seal Expansion Joint Systems in accordance with Specification Section 458
ail shown is representative, minor variations depending on manufacturer
2. Refer to the Expansion below the concrete surface in accordance with Specification Section 458. 4. Refer to the Expansion Joint Data Table in the Structures Plans for joint moveme
3. Refer to Specification Section 458 for installation and fabrication requirements.

SHOP

Z DESCRIPTION:

PARTIAL PLAN VIEW OF SKEWED JOINTS

> PARTIAL PLAN VIEW OF NONSKEWED JOINTS

partial section along q joint
\qquad JOINT TREATMENT AT HIGH SIDE OF DECK \qquad (Sidewalk Cover Plate where applicable not shown for clarity)

PARTIAL PLAN VIEW OF JOINTS SKEWED GREATER THAN 6°

PARTIAL PLAN VIEW OF NONSKEWED JOINTS \& JOINTS SKEWED 6° OR LESS
Front Face of Traffic
Railing, Parapet or Post

$\underset{\substack{\text { Expansion } \\ \text { Joint Assem }}}{ }$
$\left.\begin{aligned} & \text { Joint Assembly }\end{aligned} 6^{\prime \prime} \ldots 6^{\prime \prime} \right\rvert\, 3^{\prime \prime}$ Max.
PARTIAL SECTION ALONG q JOINT
\qquad Joint treatment at low side of deck HIGH SIDE OF DECK WITH SLOPE < 1% \qquad
(Sidewalk Cover Plate where applicable not shown for clarity)

Expansion Joint Assembly
PARTIAL SECTION ALONG \& JOINT THRU TRAFFIC SEPARATOR

(TYPICAL at traffic bARRIERS AND PARAPETS)

LAST
REVISION
$11 / 01 / 19$

FDOTY
REVISION
11/01/19
FDOTT\} $\begin{gathered}\text { FY 2020-21 } \\ \text { STANDARD PLANS }\end{gathered}$
EXPANSION JOINTT SYSTEM

index	sheet
$458-100$	2 of 3

Bridge Deck, Approach
PARTIAL SECTION ALONG \& JOINT joint treatment at high side of DECK WITH SLOPES 1% OR GREATER

Bridge Deck, Approach
Slab or Raised Sidewalk
PARTIAL SECTION ALONG \& JOINT Joint treatment at low Side of deck or HIGH SIDE OF DECK WITH SLOPES < 1%

GENERAL NOTES:

1. Furnish and install Poured Joint with Backer Rod Expansion Joint Systems in accordance with Specification Sections 458 and 932 using Type D silicone sealant material.
Refer to the Structures Plans, Poured Expansion Joint Data Table for Dim. A @ $70^{\circ} \mathrm{F}$

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 07 / 01 / 13 \end{gathered}$	\|	$\begin{gathered} \text { FDOT } \\ \text { 2020-21 } \\ \text { STANDARD PLANS } \end{gathered}$	EXPANSION JOINT SYSTEM - POURED JOINT WITH BACKER ROD	$\begin{gathered} \text { INDEX } \\ 458-110 \end{gathered}$	SHEET 2 of 2

This Traffic Ralling Retrofit has been structurally evaluated to be equivalent or greater in strength to a
design which has been successfully crash tested in accordance with NCHRP Report 350 TL-4 criteria.

CONCRETE: Concrete for Transition Blocks and Curbs shall be Class II (Bridge Deck).
REINFORCING STEEL: Reinforcing steel shall be ASTM A615, Grade 60.
THRIE-BEAM GUARDRAIL: Steel Thrie-Beam Elements shall meet the requirements for Class B (10 Gauge) Guardrail of AASHTO M 180, Type II (Zinc coated). The minimum panel length for Thrie-Beam Elements shall be $12^{\prime}-6^{\prime \prime}$. Field drilled holes for Post connections shall be $3 / 4^{\prime \prime}$ by $21 / 2^{\prime \prime}$ slotted holes.
gUARDRAIL BOLTS: Guardrail bolts, nuts and washers shall be in accordance with AASHTO M180.
GUARDRAIL POSTS AND BASE PLATES: Posts and Base Plates shall be in accordance with ASTM A36 ASTM A709 Grade 36

ANCHOR BOLTS, NUTS AND WASHERS: Adhesive-Bonded Anchors and Anchor Bolts shall be fully threaded rods in accordance with ASTM F1554 Grade 105 or ASTM A193 Grade B7. At the Contractor's oplion, Anchor Bolts for through bolting may be in accordance with ASTM A449. All Nuts shall be single accordance with ASTM F436 and Plate Washers (for long slotted holes only) shall be in accordance with ASTM A36 or ASTM A709 Grade 36. After the nuts have been snug tightened, the anchor bolt threads shall be distorted to prevent removal of the nuts. Distorted threads and the exposed trimmed ends of anchors shall be coated with a galvanizing compound in accordance with the Specifications.

Coatings: All Nuts, Bolts, Anchors, Washers, Guardrail Posts, Anchor Plates and Base Plates shall be hot-dip galvanized in accordance with the Specifications. Guardrail Post Assemblies shall be hot-di fabrication

ADHESIVE-BONDED ANCHORS AND DOWELS: Adhesive Bonding Material Systems for Anchors and Dowels shall comply with Specification Section 937 and be installed in accordance with Specification section 416. The field testing proof loads required by Specification Section 416 shall be $15,000 \mathrm{lbs}$. for $7 / s^{\prime \prime} \varnothing$ anchor bolts; $55,000 \mathrm{lbs}$. for the $1 \frac{11 / 4}{}$ anchor bolts with $13^{\prime \prime}$ embedment; and $30,500 \mathrm{lbs}$
fridges on Curved Augnents: The detais
Ridges on curved alignments: The details presented in these Indexes are shown for and
POST SPACING: Posts shall be located along the length of the bridge at typical $6^{\prime}-3^{\prime \prime}$ or $3^{\prime}-11^{\prime \prime \prime}$ spaces. Utilize the Modified Post Spacing at Intermediate Deck Joints Details as required to clear deck joints.
Establish post spacing along the bridge and Roadway Guardrail Transition beginning with the Key Post. The variable post spacings located near begin and end bridge may be utilized to optimize the typical post
spacing. Variable lengths of guardrail overlap are also permitted to optimize the typical post spacing. Symmetry of post spacing is not necessary.

THRIE-BEAM EXPANSION SECTION: Thrie-Beam Expansion Sections shall be installed at locations shown
in the Plans. Install nuts for splice bolts finger-tight at 21/2" slots in thrie beam expansion sections. Nuts on the outside of the nut to prevent loosening. Tighten guardrail bolts in 33/" slots at guardrail postl(s) thea lie between the slotted expansion splice and bridge deck joint so that the bolt heads are in full contact with thrie-beam elements, but not so tight as to impede movement due to expansion.

BEARING PADS: Provide plain Neoprene pads with a durometer hardness of 60 or 70 and meeting the requirements of Specification Section 932, for ancillary structures.
ELEVATION MARKERS: Elevation Markers need not be replaced when portions of the existing traffic railin carrying existing elevation markers are removed.

BARRIER DELINEATORS: Install Barrier Delineators at the top of the guardrail offset blocks in accordance with Specification Section 705. Match the Barrier Delineators color (white or yellow) to the near edgeline.
PEDESTRIAN SAFETY TREATMENTS: Pedestrian Safety Treatment is required when called for in the Plans. See Index 536-001 for details.

BRIDGE NAME PLATE: If a portion of the existing Traffic Railing is to be removed that carries the bridge name, number and or date, or if the installation of the Traffic Ralling (Thrie Beam Retrofit) will obscure the bridge name, number and or sheeting applied to the top of the adjacent guardrail. The information must be clearly visible from the right side of the approaching travel lane. The sheeting and adhesive backing shall comply with Specification Section 994 and may comprise
of individual decals of letters and numbers.

PAYMENT: Payment will be made under Metal Traffic Railing (Thrie-Beam Retrofit) which shall include all materials and labor required to fabricate and install the barrier and lapped guardrail where necessary to maintain post spacing.
Transition Blocks and Curbs, Bridge Name Plate and Barrier Delineators and installation of Elevation Markers, where required, will not be paid for directly but shall be considered as incidental work.

PARTIAL ELEVATION OF INSIDE FACE OF RAILING

MODIFIED POST SPACING AT INTERMEDIATE DECK JOINTS DETAIL FOR INDEX 460-471, 460-475 \& 460-476

partial elevation of inside face of railing MODIFIED POST SPACING AT INTERMEDIATE DECK JOINTS DETAIL FOR INDEX 460-472, 460-473\& 460-474

PARTIAL PLAN
INTERMEDIATE JOINT SKEW DETAIL

thrie-beam expansion section

$\begin{gathered} \text { LAST } \\ \text { REVIIION } \\ 01 / 01 / 08 \\ \hline \end{gathered}$	會DESCRIPTION:	STANDARD PLANS	TRAFFIC RAILING - (THRIE-BEAM RETROFIT) TYPICAL DETAILS \& NOTES

SECTION B-B
typical section thru railing along approach slab (SCHEME 2 SHOWN, SCHEME 3 SIMILAR)

BILL OF REINFORCING STEEL			BAR BENDING DIAGRAMS
MARK	SIZE	LENGTH	$4^{\prime \prime}$
A	4	AS REQUIRED	入
D	4	$1^{\prime}-11^{\prime \prime}$	幺
L	4	$4^{\prime}-1{ }^{\prime \prime}$	
NOTES: 1. All ba 2. The Bar 4 If cur decre height	BAR mensions vertical based or increas equal	out to out. sion shown for curb height of $9^{\prime \prime}$ or more than $9^{\prime \prime}$, his dimension by difference in c	Dowel Bar 4D (Standard 180° Hook) DOWEL BAR $4 L$

Shim with washers around Anchors as required to maintain tolerance.
** Offset may vary $\pm 1^{\prime \prime}$ for Adhesive-Bonded Anchors to clear existing curb reinforcing and provide minimum edge clearance. Offset shall be consistent along length of bridge.

DETAIL "A"

typical section thru existing traffic RAILING SHOWING LIMITS OF REMOVAL (BRIDGE DECK SHOWN, WING WALL SIMILAR)

CROSS REFERENCES:
For location of Section A-A see Sheets $1,3 \&$
For location of Section $B-B$ see Sheets $3 \& 4$.
For application of Dim. A see Post Dimension Table
on Index 460-470, Sheet 3 .

LAST REVIIION 01/01/08	\|	$\begin{gathered} \text { FY 2020-21 } \\ \text { FDOT } \\ \text { STANDARD PLANS } \end{gathered}$	TRAFFIC RAILING - (THRIE-BEAM RETROFIT) NARROW CURB

Post Bolts and Match $\quad \left\lvert\, \begin{aligned} & \text { Q Post Bolts and Match Line } \\ & \text { (Approach End) (See Sheets } 3\end{aligned}\right.$ ine (Trailing End) (See Sheets 3 and 4)
Partial elevation of inside face of railing (Existing Traffic Railing not shown for clarity)
\qquad

NOTES

1. On approach end provide Index 536-002 (as shown) or other site specific treatment, see Roadway Plans. For treatment of trailing end see Roadway Plans.
2. Actual joint dimension and orientation vary. For Intermediate Deck Joints use the Modified Post Spacing at Intermediate Deck Joints Detail, Index 460-470, Sheet 2, as required
3. Areas where existing structure has been removed shall match adjoining areas and shall be finished flat by grouting or grinding as required. Exposed existing reinforcing steel shall be burned off 1 "below existing concrete and grouted over

CROSS REFERENCES:
For Section A-A see Sheet 2 .
For Traffic Railing Notes and Details see Index 460-470.

BILL OF REINFORCING STEEL			BAR BENDING DIAGRAMS
MARK	SIZE	LENGTH	
D	4	$3^{\prime}-7{ }^{\prime \prime}$	
L	4	$4^{\prime}-1^{\prime \prime}$	$\overparen{\square}$
M	4	$2^{\prime}-8{ }^{\prime \prime}$	
NOTE:		re out to out	\qquad DOWEL BAR 4D \qquad BAR $4 M$

SECTION B-B
TYPICAL SECTION THRU RAILING ALONG APPROACH SLAB (SCHEMES 5 AND 6 SHOWN, SCHEMES 3 AND 4 SIMILAR)

* Shim with washers around Anchors as required to maintain tolerance.
*) offset may vary $\pm 1^{\prime \prime}$ for Adhesive-Bonded Anchors to clear existing curb reinforcing and provide minimum edge clearance. Offset shall be consistent along length of bridge.

DETAIL " ${ }^{\prime \prime}$

VIEW C-C

CROSS REFERENCES:
For location of Section A-A see Sheets $1,3 \& 4$
For location of Section B-B see Sheet 4 .
For application of Dim. A see Post Dimension Table on Index 460-470, Sheet 3

FDOTY	FY 2020-21 STANDARD PLANS	TRAFFIC RAILING - (THRIE-BEAM RETROFIT) WIDE STRONG CURB TYPE 1	$\begin{gathered} \text { INDEX } \\ 460-472 \end{gathered}$	$2 \text { of } 4$

SECTION B-B

typical section thru railing along approach slab (SCHEMES 5 AND 6 SHOWN, SCHEMES 3 AND 4 SIMILAR)

* Shim with washers around Anchor Bolts and Anchors as required to maintain tolerance

Offset may vary $\pm 1^{\prime \prime}$ for Adhesive-Bonded Anchors and Anchor Bolts to clear existing curb reinforcing and provide minimum edge clearance. Offset shall be consistent along length of bridge.

$$
\begin{aligned}
& \text { Control Line } \\
& \text { Front of Curb } \\
& \text { along Bridge }
\end{aligned}
$$

DETAIL " A "

VIEW C-C

GROSS REFERENCES
For location of Section A-A see Sheet 1,3 and 4. For location of Section A-A see Sheet 1,
For location of Section B-B see Sheet 4 .
For location of View $C-C$ see Sheet 3 .
For Traffic Railing Notes and Details see Index 460-470 For application of Dim. A see Post Dimension Table

SECTION A-A
typical section thru railing on bridge deck

SECTION B-B (SCHEME 2)
typical section thru railing along approach slab

[^1]

DETAIL " A "

CROSS REFERENCES:
For location of Section A-A see Sheet 1 and 3.
For location of Section B-B see Sheet 3
For application of Dim. A see Post Dimension Table
on Index $460-470$, Sheet 3 .

typical section thru existing traffic RAILING SHOWING LIMITS OF REMOVAL (BRIDGE DECK SHOWN, WING WALL SIMILAR)

MARK	SIZE	LENGTH
L	4	$4^{\prime}-1{ }^{\prime \prime}$
BAR BENDING DIAGRAM		
DOWEL BAR $4 L$		

NOTE: All bar dimensions are out to out.

FDOT | FY 2020-21 |
| :---: |
| STANDARD PLANS |

SECTION A-A
typical section thru railing on bridge deck

*Shim with washers around Anchors as required to maintain tolerance.
*) Offset may vary $\pm 1^{\prime \prime}$ for Adhesive-Bonded Anchors to clear existing curb reinforcing and provide to clear existing curb reinforcing and provide
minimum edge clearance. Offset shall be consistent along length of bridge.

Control Line
Front of Curb
along Bridge \qquad

DETAIL "A"

VIEW C-C

CROSS REFERENCES:
For location of Section A-A see Sheet $1,3 \& 4$.
For location of Section B-B see Sheet 4
For location of View C-C see Sheet 3 .

For application of Dim. A see Post Dimension Table
on Index 460-470, Sheet 3

FDOT	FY 2020-21 STANDARD PLANS	TRAFFIC RAILING - (THRIE-BEAM RETROFIT) WIDE CURB TYPE 1	$\begin{gathered} \text { INDEX } \\ 460-475 \end{gathered}$	SHEET 2 of 4

SECTION A-A
typical section thru railing on bridge deck

NOTE: All bar dimensions are out to out.

BILL OF REINFORCING STEEL			BAR BENDING DIAGRAMS
MARK	SIZE	LENGTH	
D	4	$3{ }^{\prime}-7{ }^{\prime \prime}$	
L	4	$4^{\prime}-1^{\prime \prime}$	$\overparen{\infty}$
M	4	$2^{\prime}-8{ }^{\prime \prime}$	
	$3^{\prime}-8^{\prime \prime}$ WEL	$\underbrace{}_{4 L}$	

*Shim with washers around Anchors as required to maintain tolerance.
** Off set may vary ± 1 " for Adhesive-Bonded Anchors to clear existing curb reinforcing and provide along length of bridge.

DETAIL "A"

VIEW C-C

CROSS REFERENCES:
For location of Section A-A see Sheet $1,3 \& 4$.
For location of Section $B-B$ see Sheet 4 ,
For
For location of Section C-C see Sheet 3 .
For application of Dim. A see Post Dimension Table
on Index 460-470, Sheet 3 .

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVISION } \\ 07 / 01 / 08 \end{array}$	\|rin	$\begin{gathered} \text { FDOT 2020-21 } \\ \text { STANDARD PLANS } \end{gathered}$	TRAFFIC RAILING - (THRIE-BEAM RETROFIT) WIDE CURB TYPE 2

TRAFFIC RAILING RETROFIT NOTES
See Index 536-001 for component details, geometric layouts and associated notes not fully detailed herein.
CONCRETE: Concrete for Transition Blocks shall be Class II (Bridge Deck).
THRIE-BEAM PANEL: Steel Thrie-Beam Elements shall meet the requirements for Class B (10 Gauge) Guardrail of AASHTO M 180, Type II (Zinc coated). The minimum panel length for Thrie-Beam Elements shall be $12^{\prime \prime}-6^{\prime \prime}$. Field drilled holes for Post connections shall be $3 / 4^{\prime \prime}$ by $2^{1 / 2} /^{\prime \prime}$ slotted holes.

BOLTS, NUTS AND WASHERS: Bolts, nuts and round washers shall be in accordance with AASHTO M180. Plate Washers
shall be in accordance with ASTM A36 or ASTM A709 Grade 36 .
COATINGS: All Nuts, Bolts, Anchors, and Washers shall be hot-dip galvanized in accordance with the Specifications.
BRIDGES ON CURVED ALIGNMENTS: The details presented herein are shown for bridges on tangent alignments Details for bridges on horizontally curved alignments are similar

THRIE-BEAM EXPANSION SECTION: Thrie-Beam Expansion Sections shall be installed at locations shown in the Plans Install nuts for splice bolts finger-tight at $2 \frac{1}{2}$ " slots in thrie-beam expansion sections. Nuts shall fully engage bolts with a minimum of one bolt thread extending beyond the nuts. Distort the first thread on the outside of the nut to prevent loosening. Tighten bolts in $3 \frac{1}{4}$ slots at guardrall post(s) that lie between the slotted expansion splice and bridge deck joint so that the bolt heads are in full contact with thrie-beam elements, but not so tight as to impede movement due to expansion.

WOOD BLOCKS: All wood blocks, including required wedge shaped blocks shall be Pressure Treated Lumber in accordance with Specifications Section 955. Bolt holes in blocks to be centered ($\pm 1 / 44^{\prime \prime}$).
BRIDGE NAME PLATE: If a portion of the existing Traffic Railing is to be removed that carries the bridge name, number and or date, or if the installation of the Traffic Railing (Thrie-Beam Retrofit) will obscure the bridge name, number and
or date, then replace the information that has been removed or obscured, with $3^{\prime \prime}$ tall black lettering on white nonreflective sheeting applied to the top of the adjacent guardrail. The information must be clearly visible from the right side of the approaching travel lane. The sheeting and adhesive backing shall comply with Specification Section 994 and may comprise of individual decals of letters and numbers.

PAYMENT: Payment will be made under Thrie-Beam Panel Retrofit which shall include all materials and labor required to fabricate and install the retrofit railing. Transition Blocks and Curbs, Bridge Name Plate and Barrier Delineators,

thrie-beam expansion section

PLATE WASHER DETAIL

1" WOOD
BLOCK

Direction of Adjacent Traffic
thrie-beam panel splice
NOTE: All Thrie Beam Panels shall be lapped in the direction of adjacent traffic. At the Contractor's option, laps may be extended. Field drill holes in Trailing Thrie-Beam
Panel as required. Panel as required.

TYPICAL SECTION THRU CLASS B (10 GAUGE) THRIE-BEAM PANEL (EXPANSION SECTION SIMILAR)

5/8" OVAL SHOULDER BUTTON HEAD BOLT

L (in)	THREAD LENGTH (in)	APPLICATION				
$11 / 2$	Full Length	Splice Bolt				
14	4	Post Bolt		$11 / 2$	Full Length	Splice Bolt
:---:	:---:	:---:				
14	4	Post Bolt				

$-15 / 6^{1 /} R$ (Typ.)

Neutral Axis \& $q^{29} / z^{\prime \prime} \times 11^{\prime \prime}$

 q $2 / 3^{\prime \prime} \times 11 / 8^{\prime \prime}$Slots

PLAN VIEW

WEDGE SHAPED BLOCK DETAIL
Wedge Shaped Wood Block

FRONT VIEW

END VIEW A-A

\#3 STIRRUP (FIELD BEND)

NOTES
ANCHOR RODS: Steel Anchor Rods shall be ASTM A36, ASTM A709 Grade 36 or ASTM A615 Grade 60 hot-dip galvanized in accordance
with Specification Section 962 .

ADHESIVE-BONDED DOWELS: Adhesive Bonding Material Systems for Dowels shall comply with Specification Section 937 (Type HV)
and be installed in accordance with Specification Section 416 .

Adhesive Bonded Dowels are shown installed in an existing curb or sidewalk integrally reinforced with Approach Slab, Wingwall or Bridge Deck. For installations in existing detached curbs or sidewalks, install dowels in available sound concrete.

Shift bars (as needed) to install six dowels into existing bridge or approach slab mounted curb

ESTIMATED QUANTITIES PER TRANSITION BLOCK		
ITEM	UNIT	QUANTITY
Concrete Class II (Bridge Deck)	$C Y$	0.4
Reinforcing Steel	LB	61
Guardrail (Reset)	LF	12.5

HSS TUBES: HSS Tubes shall be ASTM A500 Grade B.
END CAPS AND END TAPER ASSEMBLIES: Steel plate for End Caps and End Taper Assemblies shall be ASTM A709 Grade 36 ANCHOR RODS, NUTS AND WASHERS: Adhesive Bonded anchors shall be fully shall be threaded rods in accordance with ASTM F1554 Grade 36 or ASTM A193 Grade B7. All Nuts shall be single self-locking hex nuts and in accordance with ASTM A563
or ASTM A194. Flat Washers shall be in accordance with ASTM F436. After the nuts have been snug tightened, distort the anchor rod threads to prevent removal of the nuts. Coat distorted threads and the exposed trimmed ends of anchor rods with a galvanizing compound in accordance with the Specifications.

COATINGS: Galvanize all Anchor Rods, Nuts, Bolts, Washers and HSS Tube Assemblies in accordance with the Specifications. Hot-dip HSS Tubes and Tube Assemblies after fabrication.
ADHESIVE-BONDED ANCHORS AND DOWELS: Adhesive Bonding Material Systems for Anchor Rods shall comply with Specification Section 937 and be installed in accordance w
required by Specification Section 416 shall be 10,000 lbs.

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		$\begin{gathered} \text { FY 2020-21 } \\ \text { FDOTY } \end{gathered}$	TRAFFIC RAILING - (RECTANGULAR TUBE RETROFIT)	$\begin{gathered} \text { INDEX } \\ 460-490 \end{gathered}$	SHEET 1 of 3

typical profiles for tendons with flexible filler

INLET END
(EMBEDDED ANCHORAGE SHOWN; ANCHORAG at CONCRETE SURFACE SIMILAR)
— FILLER INLET AND OUTLET DETAILS FOR BAR TENDONS \qquad (VERTICALLY ORIENTED TENDON SHOWN; HORIZONTALLY ORIENTED TENDON SIMILAR)

(1) filler outlet connection to tendon

(3) FILLING POCKET

PROCEDURE:

1. Remove Rigid Filler Pipe or drill Grout in flexible pipe.
2. Vacuum inject as required. If grout is used allow grout to cure. If flexible filler is used, replace filler displaced by inspection. Remov pipe used for vacuum injecting.
ded Plug into outlet to form a gight
roughen sides.
3. Fill pocket with epoxy grout.

TENDONS AT HIGH POINTS AND 3' FROM HIGH POINTS (FILLER OUTLET)

tendons at low points (FILLER INLET / DRAIN)
U.S. COAST GUARD NOTIFICATION: Notify the local office of the U.S. Coast Guard at least 30 days prior to beginning of construction of the Fender System.

14" SQUARE PRESTRESSED CONCRETE PILES - Provide 14" Square Prestressed Concrete Piles of
sufficient length to achieve a minimum embedment of $20^{\prime \prime}$ into soil having a blow count greater that sufficient length to achieve a minimum embedment of 20^{\prime} into soil having a blow count greater than or equal to $6(N \geq 6)$. Pile splices and build-ups are not permitted. Use only $14^{\prime \prime}$ Square Prestressed
Concrete Piles with $8-1 / 2^{\prime \prime}$ diameter Low Relaxation Strands fabricated in accordance with Index 455-01

PLASTIC LUMBER AND STRUCTURAL COMPOSITE LUMBER WALES: Provide only PIastic Lumber (Ther moplastic Structural Shapes) and Structural Composite Lumber (Reinforced Thermoplastic Structural Shapes) Wales on the plans.
PLASTIC LUMBER DECKING FOR CATWALKS: Provide Plastic Lumber decking for catwalks when called for in the
Plans in accordance with Specification Section 973 .
Install Plastic Lumber Decking according to manufacturer's recommendations using stainless steel \#10 x 3 (minimum) deck screws.
FIBERGLASS OPEN GRATING FOR CATWALKS: Provide Fiberglass Open Grating for catwalks when called for in the Plans. Fiberglass Open Grating shall be a heavy duty design suitable for exterior installations. Maximum
gap opening on the walkway surface shall be $1^{1 / 2 \prime}$. Design live loads and deflections shall be a 50 psf gap opening on the walkway surface shall be $1 / 1^{\prime \prime}$. Design live loads and deflections shall be a 50 psf
uniformly distributed load with a maximum deflection of $3 / /^{\prime \prime}$ or $L / 120$ at the center of a simple span and a concentrated load of 250 pounds with a maximum deflection of $1 / 1 /$ at the center of a simple span. Color of Fiberglass Open Grating shall be gray or black.

Install Fiberglass Open Grating according to manufacturer's recommendations using stainless steel hardware, screws, bolts, nuts and washers. Attach Fiberglass open Grating to wales and Deck Supports at $2^{\prime}-0^{\prime \prime}$ maximum spacing so as to resist pedestrian live loads and uplift forces from wind buoyancy and wave

CLEARANCE GAUGE AND LIGHT: Clearance Gauge to be furnished and installed by the Contractor. Clearance Gauge width and numeral height is dependant on visibility distance. The required visibility distance shall be determined y the with Specification Section 510 and Index 510-001.

NAVIGATION LIGHTS: Provide and install Navigation Lights in accordance with Specification Section 510,
Index $510-001$ and or project specific details. Provide and maintain Temporary Navigation Lights during Index 510-001 and/or project specific details. Provide and maintain Temporary Navigation Lights during construction until permanent Navigation Lights are operational.

BOLTS, THREADED BARS, NUTS, SCREWS AND WASHERS: Furnish Stainless steel Bolts in accordance with ASTM F593 Type 316. Furnish stainless steel Threaded Bars in accordance with ASTM A193 Grade B8M. Furnish stainless
steel Nuts in accordance with ASTM F594 Type 316. Furnish stainless steel Screws in accordance with steel Nuts in accordance with ASTM F594 Type 316. Furnish stainless steel Screws in accordance with heads and nuts. Torque Nuts on 1"diameter Bolts and Threaded Bars to 150 lb -ft. Keep threads on Bolts, Threaded Bars and Nuts free from dirt, coarse grime and sand to prevent galling and seizing during tightening.
SPLICE PLATES: Furnish Splice Plates in accordance with ASTM A240 Type 316
WIRE ROPE: Provide wire rope meeting one of the following requirements:

1. $1 / 2$ " diameter $6 \times 19,6 \times 25$ or 6×37 class IWRC Type 316 stainless steel wire rope with a minimum breaking strength of $18,000 \mathrm{lbs}$.
2. 1/2 diameter 6×19 galvanized wire rope with ultraviolet ray resistant polypropylene impregnation having an outside diameter of $5 / 8^{\prime \prime}$ with a minimum breaking strength of 22,000 Ibs. Protect all ends with heat shrinkable end caps
compatible with the rope's polypropylene that provide an effective water-tight seal.

SCHEMATIC OF FENDER SYSTEM SHOWING TREATMENT OF Single fixed bridge with nonskewed channel

SCHEMATIC OF FENDER SYSTEM SHOWING TREATMENT OF Single fixed bridge with skewed channel

SCHEMATIC OF FENDER SYSTEM SHOWING TREATMENT OF DUAL FIXED BRIDGES WITH NONSKEWED CHANNEL (PARALLEL DUAL FIXED BRIDGES SHOWN, NONPARALLEL DUAL FIXED BRIDGES SIMILAR)

SCHEMATIC OF FENDER SYSTEM SHOWING TREATMENT OF DUAL FIXED BRIDGES WITH SKEWED CHANNEL (PARALLEL DUAL FIXED BRIDGES SHOWN, NONPARALLEL DUAL FIXED BRIDGES SIMILAR)

* See Structures Plans, Plan and Elevation and Foundation
Layout Sheets for magnitude and orientation of Channel
Skw Skew Angle.

CROSS REFERENCES:
For Stations
For Stations and Offsets of referenced Control Points A, B, C and D,
Dimension "L" and Clear Channel Width see Fender System Table
For Navigation Light Details see Design Standards Index 510-001

INDEX	SHEET
$471-030$	2 of 7

PARTIAL PLAN VIEW（TYPICAL FLARE）
（FLARE AT CONTROL POINT B SHOWN，CONTROL POINTS A，C\＆D SIMILAR）Navigation Light（See Index （HANDRAIL NOT SHOWN FOR CLARITY）

Composite Lumber $10^{\prime \prime} \times 10^{\circ}$
－Wales Mark A1，A2 or A3
Plastic Lumber $6^{\prime \prime} \times 10$
Mark F1，F2 or

Mumber $6^{\prime \prime} \times 10^{\prime \prime}$
Mark $F 5$
 \qquad

 L凶ノ ब $1 ष 1 ष \mid$
 $\square \|||凶|$

LAST	Des	DESCRIPTION：
REVISION	$\hat{⿹ 勹 厶}$	
$01 / 11 / 17$	\hat{u}	

$14^{\prime \prime}$ Sq．Prestressed
Concrete Piles（Typ．）
EXPANDED PARTIAL ELEVATION VIEW

* Structural composite lumber bill of materials					
MARK	$\begin{gathered} \text { SIZE } \\ \text { (NOMINAL) } \end{gathered}$	dimensions	BOARD FT. PER EACH	NO. REQD.	QUANTITY
A1	$\begin{aligned} & 10^{\prime \prime} \times 10^{\prime \prime} \\ & \text { COMPOSITE } \\ & \text { LUMBER } \end{aligned}$	32'-0" (STRAIGHT)	266.6		
A2	$\begin{gathered} 10^{\prime \prime} \times 10^{\prime \prime} \\ \text { COMPOSITE } \\ \text { LUMBER } \end{gathered}$		266.6		
A3	$\begin{aligned} & 10^{\prime \prime} \times 10^{\prime \prime} \\ & \text { COMPOSITE } \\ & \text { LUMBER } \end{aligned}$		133.3		
A4	$\begin{aligned} & 10^{\prime \prime} \times 10^{\prime \prime} \\ & \text { COMPOSITE } \\ & \text { LUMBER } \end{aligned}$		133.3		
A5	$\begin{aligned} & 10^{\prime \prime} \times 10^{\prime \prime} \\ & \text { COMPOSITE } \\ & \text { LUMBER } \end{aligned}$		133.3		
A6	$\begin{aligned} & 10^{\prime \prime} \times 10^{\prime \prime} \\ & \text { COMPOSITE } \\ & \text { LUMBER } \end{aligned}$		133.3		

* All Plastic Lumber and Composite Lumber Dimensions and Quantities shown are based on Nominal Lumber Dimensions and may vary depending on Actual Lumber Dimension.
** Provide Fiberglass Open Grating in lieu of $2^{\prime \prime} \times 12^{\prime \prime}$ Plastic Lumber when called ing hardware shall be Stainless Steel, install per Manufacturer's recommendations. See Structures Plans for Notes and Details.

* PLASTIC LUMBER BILL OF MATERIALS					
MARK	$\begin{gathered} \text { SIZE } \\ \text { (NOMINAL) } \end{gathered}$	dimensions	BOARD FT PER EACH	$\begin{gathered} N O . \\ R E Q D . \end{gathered}$	Quantity
B	$8^{\prime \prime} \times 8^{\prime \prime}$ PLASTIC LUMBER	8" (STRAIGHT)	3.6		
c	$\begin{aligned} & 2^{\prime \prime} \times 6^{\prime \prime} \\ & \text { PLASTIC LUMBER } \end{aligned}$	16'-O" (STRAIGHT) (Trim \& Miter Ends as required)	16.0		
D	$4^{\prime \prime} \times 6^{\prime \prime}$ PLASTIC LUMBER	$4^{\prime}-4^{\prime \prime}$ (Straight)	8.7		
${ }^{*}$ E	$2^{\prime \prime} \times 12^{\prime \prime}$ PLASTIC LUMBER	2'-6" (STRAIGHT) (Miter as required, $6^{\prime \prime}$ Min. width)	5.0		
F1	$\begin{gathered} 6^{\prime \prime} \times 10^{\prime \prime} \\ \text { PLASTIC LUMBER } \end{gathered}$	$32^{\prime}-0^{\prime \prime}$ (STRAIGHT)	160.0		
F2	$6^{\prime \prime} \times 10^{\prime \prime}$ PLASTIC LUMBER		159.6		
F3	$6^{\prime \prime} \times 10^{\prime \prime}$ PLASTIC LUMBER		79.6		
F4	$6^{\prime \prime} \times 10^{\prime \prime}$ PLASTIC LUMBER		78.8		
F5	$6^{\prime \prime} \times 10^{\prime \prime}$ PLASTIC LUMBER		78.4		
F6	$6^{\prime \prime} \times 10^{\prime \prime}$ PLASTIC LUMBER		79.3		
61	$6^{\prime \prime} \times 10^{\prime \prime}$ PLASTIC LUMBER	$3^{\prime}-8^{\prime \prime}$ (StRAIGHT)	18.3		
G2	$6^{\prime \prime} \times 6^{\prime \prime}$ PLASTIC LUMBER	4'-1" (Straight)	12.3		
H1	$4^{\prime \prime} \times 4^{\prime \prime}$ PLASTIC LUMBER	Pile cutoff elev. minus nlw or mLW ELEV. PLUS 5'-6" (STRAIGHT)	$\begin{aligned} & \text { 1.3 PER } \\ & \text { LF EACH } \end{aligned}$		
H2	$2^{\prime \prime} \times 6^{\prime \prime}$ PLASTIC LUMBER	$1^{\prime}-2^{\prime \prime}$ (Straight)	1.2		

[^0]: 1. Work this Index with the Pile Data Table in the Structures Plans.

 Concrete:
 A. Piles: Class V (Special).
 B. Splice: class IV.
 C. Silica Fume: See "GENERAL NOTES" in Structures Plans for locations where the use of 3. Concrete Strength metakaolin or ultra-fine flyash is required.
 A. Piles: 6,000 psi minimu
 A. Bars: Meet the requirements of Specification Section 415
 B. Prestressing Strands: Meet the requirements of Specification Section 933.
 C. Tendons: Two seven-wire $1 / 2$ dia. (Special) Grade 270, low-relaxation strands tensioned to
 D. Protect all carbon-steel strands permanently exposed to the environment and not
 embedded under final conditions in accordance with Specification Section 450.
 a. One half turn is required for carbon-steel spiral splice.
 b. One full turn is required at the pile head and tip.
 5. Pile Splices:

 Epoxy: Type $A B$ Epoxy Compound or Mortar must meet the requirements of Specification
 Section U26.
 a. Use a Type AB Epoxy Bonding Compound or Epoxy Mor
 b. Use a Type AB Epoxy Bonding Compound as a bection
 B. Driving: Resume pile driving after splice concrete reaches a minimum strength of 5,500 psi.
 6. Mark piles at the pick-up points to indicate the proper points for attaching handling lines.

[^1]: *Shim with washers around Anchor Bolts and
 Anchors as required to maintain tolerance.
 ** Offset may vary \pm 1" for Adhesive-Bonded Anchors to clear existing curb reinforcing and provide minimum edge clearance. Offset shall be consistent along length of bridge.

