GENERAL NOTES

1. Work this Index with Specification 649 .
2. This Index is considered fully detailed; only submit shop drawings for minor modifications not detailed in the Plans.
 to $1 / /^{\prime \prime}$) or ASTM A595 Grade A (55 ksi yield) or Grade B (60 ksi yield).
B. Steel Plates and Pole Cap: ASTM A36 or ASTM A709 Grade 50
C. Bolts: ASTM F3125, Grade A325, Type 1

Nuts: ASTM A563.
Washers: ASTM F-436
E. Anchor Bolts: ASTM F1554 Grade 55 with ASTM A563 Grade A heavy-hex nuts and ASTM A36 plate washers.
F. Handhole Frame: ASTM A709 Grade 36 or ASTM A36.
G. Stainless Steel Screws: AISI Type 316 .
H.
I. Reinforcing Stel. ASTM A615 Grad 6 .
J. Galvanization: Bolts, nuts and washers: ASTM F2329 All other steel including plate washer: ASTM A123
4. Fabrication:

Welding:
a. Specification 460-6.4 and
b. AASHTO RFD Specification for Structural Supports for Highway Signs, Luminaires, and Traffic Signals Section 14.4.4.
B. Poles:
a. Round or 16 -sided (Min.)
b. Ta
b. Taper pole diameter at 0.14 inches per foo
c. Fabricate Pole longitudinal seam welds (2 maximum) with 60 percent minimum penetration or fusion welds except as follows:

1. Use a full-penetration groove weld within 6 inches of the circumferential tube-to-plate connection and
2. Use full-penetration groove welds on the female end section of telescopic (i.e., slip type) field splices for a minimum
d. Pole shaft may be either one or two sections (with telescopic field splice)
e. Circumferentially welded pole shafts and laminated pole shafts are not permitted
a. 2"x 4" (Max.) aluminum tag
b. Locate on the inside of the pole and visible from the handhole
d. Include the following information on the ID Tag:
d. Incrade Financial Project ID
3. Pole Type
4. Pole Height
5. Pole Height
6. Manufacturers'
7. Manufacturers' Name
8. Yield Strength (Fy of Steel)
. Except for Anchor Bolts, bolt hole diameters are bolt diameter plus $1 / 6^{\prime \prime}$ and anchor bolt holes are bolt diameter plus $1 / 2$ " (Max) prior to galvanizing.
9. Pole Installation:
A. Do not install additional wire access holes (not shown in this Index) with a diameter that exceeds $1 \frac{1 / 2 \prime}{\prime \prime}$ in diameter.
C. Cable Supports: Electrical Cable Guides and Eyebolts.
a. Locate top and bottom cable guides within the pole aligned with each other b. Position one cable guide $2^{\prime \prime}$ below the handhole.
c. Position other cable guide 1" directly below the top of the tenon.
d. Position Park Stands $2^{\prime \prime}$ below the top of the handhole
10. Cabinet Installation:
A. Splice fiber optic cables in cabinet to preterminater patch panel.
B. Furnish and install Surge Protection Devices (SPDs) on all cabling in cabinet.
C. Furnish and install secondary SPD protection on outlets for equipment in cabinet.
D. Ensure that all electronic equipment power is protected and conditioned with SPDs.
E. Ensure that equ
E. Ensure that equipment cabinet is bonded to CCTV pole grounding system.
F. Install the pole mounted cabinet with the hinges next to the pole.
G. Sizes and types of conduits and inner ducts for network communications between the pullbox
G. Sizes and types of conduits anc inner ducts for
and cabinet are stated in the Contract Documents.
11. Lowering Device Installation:
A. Place the lowering cable that moves within the pole in an interior conduit to prevent it from tangling or interfering with any electrical wire that is in the pole. Ensure that
any electrical wire within the pole is routed securely and free from slack
B. Mount lowering device perpendicular to the roadway or as shown in the
B. Mo TV pole so that the camera can be safely lowered without requiring lane closures.
c. Coordinate all lowering device hardware requirements (including Tenon, Tenon mounting plates, parking stands, etc.) with lowering device manufacturer.

$\overline{=} A S S E M B L Y=$

ADDITIONAL SHAFT DEPTH DUE TO GROUND SLOPE		
Ground Slope	$4^{\prime}-0^{\prime \prime} \text { Shaft }$ Diameter	$5^{\prime}-0^{\prime \prime} \text { Shaft }$ Diameter
1:5	$3^{\prime \prime}-0^{\prime \prime}$	$4^{4}-0^{\prime \prime}$
1:4	$4^{4}-0^{\prime \prime}$	$5^{\prime \prime}-0^{\prime \prime}$
1:3	$5^{\prime}-0^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$
1:2	$7^{\prime}-0^{\prime \prime}$	$9^{\prime}-0^{\prime \prime}$

FOUNDATION NOTES

1. Shaft Length is based on $1^{\prime}-0^{\prime \prime}$ height above the finished grade.
2. Shaft Design Table Shaft Length is based on level ground (flatter Additional Shaft Depth Due To Ground Slope table for foundations
with slopes $1: 5$ and steeper. Use the higher value for slope dith slopes $1: 5$ and steeper. Use the higher value for slope

BASE PLATE AND ANCHOR BOLT DESIGN TABLE							
Pole Overall Height (ft)	Base Plate Diameter (in.)	Base Plate Thickness (in.)	$\begin{gathered} \text { Anchor } \\ \text { Bolt Circle } \end{gathered}$ (in.)	$\begin{gathered} \hline \text { Number } \\ \text { of } \\ \text { Bolts } \end{gathered}$	Anchor Bolt Diameter (in.)	Anchor Bolt Embedment (in.)	Minimum Anchor Bolt Projection (in.)
50	27	2.5	22	6	1.25	31	8.5
55	28	2.5	23	6	1.25	33	8.5
60	33	2.5	27	6	1.50	34	9.5
65	35	2.5	29	6	1.50	35	9.5
70	40	2.5	33	6	1.75	38	10.5

POLE DESIGN TABLE							
Pole OverallHeight (ft)	Section 1 (Top)			Section 2 (Bottom)			Joint
	Length	$\begin{gathered} \text { Wall } \\ \text { Thickness } \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \text { Base } \\ \text { Diameter } \\ \text { (in.) } \end{gathered}$	Length	$\begin{gathered} \text { Wall } \\ \text { Thickness } \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \text { Base } \\ \text { Diameter } \\ \text { (in.) } \end{gathered}$	Minimum Splice Length (in.)
50	---	---	---	$50^{\prime}-0^{\prime \prime}$	0.25	17	---
50	$25^{\prime \prime}-0^{\prime \prime}$	0.25	14	$28^{\prime \prime}-0^{\prime \prime}$	0.25	17	27
55	$30^{\prime}-0^{\prime \prime}$	0.25	15	$28^{\prime \prime}-0^{\prime \prime}$	0.3125	18	30
60	$35^{\prime}-0^{\prime \prime}$	0.25	18	$229^{\prime \prime} 0^{\prime \prime}$	0.3125	21	33
65	$33^{33^{\prime}-0^{\prime \prime}}$	0.25	19	${ }^{36^{\prime}-0^{\prime \prime}}$	0.3125	23	33 39
70	$38^{\prime}-0^{\prime \prime}$	0.25	22	$36^{\prime}-0^{\prime \prime}$	0.3125	26	39

Pole Top Or Tenon

$\overline{=} A S S E M B L Y=$

= POLE TOP PLATE $=$

$\begin{array}{cc} \text { FY 2020-21 } \\ \text { FDOT } \\ \text { STANDARD PLANS } \end{array}$	STEEL CCTV POLE	$\begin{gathered} \text { INDEX } \\ 649-020 \end{gathered}$	SHEET 5 of 6

TYPICAL
(20' Rods, 40^{\prime} Spacing)

TYPICAL MODIFIED
(20' Rods, 40^{\prime} Spacing)

Pole Plate
With Stainless With Stainles.
Steel Band With Stainle
Steel Band
side view

FRONT VIEW
= DETAIL "E"

POLE MOUNTED CABINET
STEEL CCTV POLE GROUNDING

