SHEET	CONTENTS
1	Index Contents; General Notes
2	Median Barrier
3	Median Barrier - Reinforcing Details
4	Median Barrier - Sloped End Treatment
5	Median Barrier - Grade Separated
6	Median Barrier - 56" Height Section for Barrier-Mounted Sign Support Shielding - Symmetrical
7	Median Barrier - 56" Height Section for Barrier-Mounted Sign Support Shielding - Asymmetrical
8	Median Barrier - 56" Height Section for Barrier-Mounted Dual Sign Support Shielding - Min. Width
9	Median Barrier - 38" Height Split Section for Stand-Alone Sign Support Shielding
10	Median Barrier - 44" Height Split Section for Pier Shielding
11	Median Barrier - 44" Height Split Section for Pier Shielding - Details
12	Median Barrier - Connection to F-Shape
13	Shoulder Barrier
14	Shoulder Barrier - Reinforcing Details
15	Shoulder Barrier - Section Options
16	Shoulder Barrier - Section Options (Continued)
17	Shoulder Barrier - 38" Height Rear-Flush Section for Reduced Setback Pier Shielding (Low-Speed)
18	Shoulder Barrier - 44" Height Rear-Flush Section for Reduced Setback Pier Shielding
19	Shoulder Barrier - Connection to F-Shape
20	Curb and Gutter Barrier
21	Curb and Gutter Barrier - Reinforcing Details
22	Curb and Gutter Barrier - Sloped End Treatment
23	Wall Shielding Barrier - 38" Height Section - Approach and Trailing Transition
24	Wall Shielding Barrier - 38" Height Section - Guardrail Connection
25	Wall Shielding Barrier - 56" Height Section for Barrier-Mounted Sign Support Shielding
26	Reinforcing Bar Bending Diagrams

GENERAL NOTES:

1. BARRIER CONCRETE: Use Class II concrete for all barriers constructed in slightly aggressive environments, and use Class IV Concrete for all barriers constructed in moderately or extremely aggressive environments. On all exposed surfaces, apply a Class 3 surface finish in accordance with Specification 400.
2. STEEL BAR REINFORCEMENT: Where required to maintain continuity, provide lap Splices of least 18 inches for No. 4 bar and 20 inches for No. 5 bars, unless otherwise shown herein (including shorter splices as provided by the default bar bending diagrams).

The default reinforcing details shown herein, including bar shapes and lap splice positions, are intended to show required steel locations and provide for a constructible design. However, with the approval of the Engineer, alternate steel configurations may be used in the same locations shown herein, given that the equivalent strength reinforcing is provided and the cover, maximum spacing, and continuity requirements are maintained
3. OPTIONAL WELDED WIRE REINFORCEMENT: With the approval of the Engineer, steel welded wire reinforcement in accordance with Specification 415 may be substituted for the steel bars shown herein. Place the welded wire in the same locations
specified for the steel bars, and maintain the equivalent strength, cover, maximum spacing, and continuity requirements

GENERAL NOTES (CONTINUED):

4. TOP FACE LONGITUDINAL REINFORCEMENT: Unless otherwise specified, the longitudinal reinforcement shown closest to th top face of the barrier has a maximum cover of $41 / 2$,", measured from the top face of the barrier.
5. MINIMUM BARRIER LENGTH: Unless otherwise shown in the Plans, the minimum Concrete Barrier length is 40 feet.
6. CONSTRUCTION JOINTS: Install Construction Joints only as needed for discontinuous concrete casting or cold joints. Maintain continuity of steel reinforcement across Construction Joints. Construction Joints are classified herein as Transverse Joints or Longitudinal Joints.

Transverse Joints are permitted at 20 -foot or greater intervals along the barrier. For Tall Grade-Separated Sections, se Sheet 5 for additional Transverse Joint requirements.

Longitudinal Joints are only permitted where indicated in the following details and notes, with a vertical position tolerance of $\pm 1 \frac{1}{2}$ " from the locations shown
7. DOWELED Joints: As shown in the Dowel Details on Sheets $2 \& 13$, install $3 / 4$ " Doweled Joints for Concrete Barrier connections to Pier Protection Barrier and Traffic Railings. Doweled Joints are also required for expansion mitigation in Median Barrier as defined per Sheets $2 \& 5$. Doweled Joints are not permitted within Grade-Separated Median Barrier.
8. CRACK CONTROL V-GROOVES: At 20-foot intervals, place $3^{3 \prime}$ depth V-grooves that run vertically and/or transversely in the ront, top, and back faces of barriers. The V-grooves can be either molded or scored while the concrete is still plastic.
9. SUBGRADE: Compact the top 12 inches of the subgrade to at least 98% of the maximum density determined by FM 1-T 180, Method D
10. FOOTING BOTTOM CONCRETE COVER: At the bottom of barrier footings shown throughout this Index, up to 2 inches of additional concrete cover is permitted beyond what is shown herein to accommodate soil grade irregularities.
11. FINISH GRADE ELEVATION: At the barrier face location, the finish grade pavement has a vertical position tolerance of $\pm 1 /{ }^{11}$ from the locations shown herein, relative to the barrier elevation. Maintain visually smooth and even pavement at the barrier face, per the approval of the Engineer.
12. DRAINAGE InLETS: Where called for in the Plans, install corresponding inlets per Indexes 425-030 thru 425-032.
13. LIGHT POLE MOUNTING: where called for in the Plans, install aluminum light poles per Index 715-002.
14. OPAQUE VISUAL BARRIER: Where called for in the Plans, install Opaque Visual Barrier per Index 521-010
15. BARRIER END MARKERS: For all free ends of concrete barriers that are not shielded with an end treatment or connection to another barrier or traffic railing type, install a Type 3 object Marker on the end face per Specification 705.
16. BARRIER DELINEATORS: Install Barrier Delineators in accordance with Specification 705. For median barriers, mount the for shoulder barriers and split sections, mount the delineators on the top of the barrier, with the roadway side of the delineator located $2^{\prime \prime}$ from the front face of the barrier and the reflective sheeting facing traffic of the nearest approach.
17. TOLL SITES: Where called for in the Plans, substitute the steel reinforcing bars shown herein with GFRP reinforcing bars of the same size. Construct GFRP reinforcing bars in accordance with Specification 932, and use a $4 \frac{1 / 2}{}{ }^{\prime \prime}$ inner diameter for bar bends. Where required to fit pull boxes while maintaining bar spacing and concrete cover, trim GFRP bars as defined in the Plans.

At toll site locations, the use of Median Barriers on outside shoulders is permitted where called for in the Plans. Shoulder Pavement shown herein may be substituted with material for an alternate usage where defined in the Plans.

1. BARRIER RUN SEGMENT: Within the Barrier Run Segment, either the $38^{\prime \prime}$ Height Median Barrier or the
differing Median Barrier sections shown throughout the Index may be placed as required per the Plans. 2. SECTION VIEWS: For additional Views $A-A$ and $B-B$, see Sheet 3 .
2. DOWELLED JOINTS: See the General Notes on Sheet 1 for usage of joint types. Space Doweled Joints at face(s) in the barrier. Use ASTM A36 smooth round bars with hot-dip galvanization.
For the dowel connection into the first casting, the dowel may be cast-in-place for new concrete or

For the dowel connection into the second casting, use a $1^{11 / 4}$ NPS Schedule 80 PVC pipe with a sealed cap, cast-in-place as shown.
3. OPTIONAL LONGITUDINAL JOINT: When a longitudinal joint is placed above the footing, use the Optional $1 / 2^{\prime \prime} \times 51^{\prime \prime}$
be raked to proar Key shown. As a substitute for the Shear Key, the concrete footing's top surface may be raked to provide additional shear friction. Rake the fresh concrete surface so that about half approved by the Engineer.
4. TRAFFIC RAILING CONNECTIONS: Align the barrier and Traffic Railing faces and connect with the $3 / 4$ Doweled Joint.
5. GUARDRAIL CONNECTIONS: Connect Guardrail using the Transition Connections to Rigid Barrier per
Index $536-001$ in conjunction with the $16^{\prime}-0^{\prime \prime}$ End Segment for Guardrail shown herein.
6. CRASH CUSHION CONNECTIONS: Connect Crash Cushions per Index 544-001 in conjunction with the $3^{\prime}-0$. 7. CRASH CUSHION CONNECTIONS: Connect Crash
End Transition for Guardrail as shown herein.
7. FREE ENDS: When the barrier end does not terminate with a Traffic Railing Connection, Guardrail
Connection Crash Cushion Const Connection, Crash Cushion Connection, or Sloped End Treatment as called for in the Plans, terminate in
accordance with the Free End Reinforcing detail on Sheet 3 .

PLAN VIEW - 38" HEIGHT MEDIAN BARRIER FREE END REINFORCING (See Note 3)

PLAN VIEW - END SEGMENT FOR GUARDRAIL CONNECTION (See Note 3)

NOTES:

1. GENERAL: Work with the Plan and Elevation Views
on Sheet 2. on Sheet 2 .
2. BAR BENDING DIAGRAMS: For additional
information on Bars $4 V 1$ and $4 U 1$, see the details information on
on Sheet 26 .
3. PLAN VIEWS: Only top and bottom longitudinal reinforcing is shown for clarity. For all
longitudinal steel locations, see the section views.

SECTION A-A
$38^{\prime \prime}$ HEIGHT 38" HEIGHT MEDIAN BARRIER Concrete aty. $=0.20$ cY/FT
Steel aty. $=11.8 \angle B / \mathrm{FT}$

VIEW B-B REDUCED SECTION
OF END TRANSITION FOR GUARDRAIL (End of Barrier)

MEDIAN BARRIER - REINFORCING DETAILS

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 18 \end{gathered}$	\|ra	DESCRIPTION:		$\begin{gathered} \text { FY 2020-21 } \\ \text { STANDARD PLANS } \end{gathered}$	CONCRETE BARRIER	$\begin{gathered} \text { INDEX } \\ 521-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 26 \end{aligned}$

PLAN - SLOPED END TREATMENT
(Only Top \& Bottom Longitudinal Bars Shown for Clarity
See Section Views for All Longitudinal Steel Locations)

SECTION C-C BEGIN TRANSITION REINFORCING
Height Varies Linearly per Elevation View)

SECTION D-D INTERMEDIATE TRANSITION REINFORCING
(Height Varies Linearly per Elevation View)

NOTES:

1. GENERAL: Install Sloped End Treatment only
where called for in the plans.
2. JoINTS: Construction or Doweled Joints are not
permitted within the Sloped End Treatment permitted. within the Sloped End Treatment
segment.

VIEW E-E END TRANSITION

FDOTY	FY 2020-21 STANDARD PLANS	CONCRETE BARRIER	$\begin{gathered} \text { INDEX } \\ 521-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 4 \text { of } 26 \end{aligned}$

SHORT GRADE-SEPARATED SECTION FOR $Y \leq 9^{\prime \prime}$

NOTES:

1. GENERAL: Install the Grade-Separated sections where shown in the Plans and as required to
accommodate vertical offsets in pavement of Height Y. Doweled Joints are not permitted within Grade-Separated sections.
2. CONNECTIONS BETWEEN DIFFERENT SECTIONS: Connect Short Grade-Separated sections and Tal Grade-Separated sections using a continuous pour or Transverse Joist, where lognitudinal steel
that aligns within the adjacent section is maintained continuously between sections or has a full that aligns within the adjacent section is maintained continuously between sections or has a full
lap splice with the adjacent section's Iongitudinal steel. Connect Short Grade-Separated sections lap splice with the adjacent section's longitudinal steel. Connect Short Grade-s
and $38^{\prime \prime}$ Height Median Barrier sections of Sheet 2 using a $3 / 4$ Doweled Joint.
3. SHORT GRADE-SEPARATED SECTIONS: Bars $4 C 1$ and the two uppermost longitudinal bars may be
omitted for segments where $Y<2$ 2".

4. TALL GRADE-SEPARATED SECTIONS: For the vertical and transverse steel reinforcement shown in the Tall Grade-Separated Sections, bar bending diagrams are not provided due to varying section
dimensions and Longitudinal Joint locations. Use any combination of spliced reinforcing steel to dimensions and Longitudinal woint locations. Use any combination of spliced reinf orcing steel to
position the reinforcement with the same cover, spacing, continuity, and equivalent strength shown herein, as approved by the Engineer.

Longitudinal Joints are permitted between the vertical limits shown, and must remain level and at
a consistent height per each continuous casting of concrete. Longitudinal loints may chan a consistent height per each continuous casting of concrete. Longitudinal Joints may change
elevations at Transverse Joint locations. Field bending of bars is permitted at Longitudinal Joint locations.
Transverse Joints between Tall Grade-Separated Sections do not require continuous steel across i. The barrier length on both sides is at least 40 feet, where each segment has continuous steel reinforcement.
ii. The barrier's vertical steel spacing is reduced to 4" o.c. for a total of 12 spaces on both
sides of the joint.

Grade separation Heights of $Y \leq 9^{\prime \prime}$ are permitted on a limited basis using the Tall
Grade separation Heights of $Y \leq 9^{\prime \prime}$ are permitted on a limited basis using the Tall
Grade-Separated sectiont this is to accommodate asses where maintaining the spread footing
through lower height segments is more practical than changing to the Short Grade-Separated
section lon
through
section.

TALL GRADE-SEPARATED
TOE FOOTING SECTION
FOR $Y \leq 4-0$

ALL GRADE-SEPARATED HEEL FOOTING SECTION $F O R Y \leq 4^{\prime}-0^{\prime \prime}$

MEDIAN BARRIER - GRADE-SEPARATED

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 18 \end{gathered}$	\|		FY 2020-21 STANDARD PLANS	$\mathbb{C O N C R E T E ~ B ~ A R R I E R ~}$	$\begin{gathered} \text { INDEX } \\ 521-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 5 \text { of } 26 \end{aligned}$

PLAN
(See Note 3)
 BEGIN TRANSITION

SECTION C-C END TRANSITION (56" Height Section)

SECTION D-D
(Reinforcing Steel Not
Shown for Clarity)

NOTES:

1. PROJECT-SPECIFIC DESIGN: For the base plate, anchor bolts, foundation design, and additional reinforcing required
barrier, see the project-specific design in the Plans.
2. BARRIER REINFORCING: Maintain the 38 " Height Median Barrier's
longitudinal steel reinforcing continuously through the barrier height transition and pedestal. Provide the Additional No. 4 Bars and taper as required to maintain a $4 \frac{4}{2} /{ }^{\prime \prime}$ maximum cover from the
top of the barrier.

For the vertical and transverse reinforcement requirements show in Sections A-A through C-C, bar bending diagrams are not
provided due to varying section dimensions. Use any combination provided due to varying section dimensions. Use any combination
soliced reinforcing steel toos tion then teinforcment with the
same cover spacing continuity and equivalent strength shown same cover, spacing, continuity, and
herein, as approved by the Engineer.
3. PLAN VIEW: Only top and bottom longitudinal reinforcing is shown
for clarity. For all longitudinal reinforcing locations, see the Section Views.

MEDIAN BARRIER - 56" HEIGHT SECTION
FOR BARRIER-MOUNTED DUAL SIGN SUPPORT SHIELDING - MINIMUM WIDTH

44" HEIGHT SPLIT SECTION (Opposite Side of Median Similar by Opposite Hand)

Concrete aty. $=0.30 \mathrm{CY} / \mathrm{FT}$
Steel Qty.

NOTES:

1. GENERAL: Work with the Plan and Elevation views on Sheet 10 .
2. LONGITUDINAL REINFORCING CONTINUITY: Maintain all longitudinal steel reinforcing shown in Section C-C continuously into Section D-D (spliced where required). The additional longitudinal reinforcing shown in Section D-D does not
require continuity into Section C-C, and it starts $3^{3 \prime}$ from the construction joint or edge of concrete per the details
3. STIRRUP BARS: For the vertical and transverse reinforcement requirement shown, bar bending diagrams are not provided due to varying section dimensions. Use any combination of spliced reinforcing steel to position the reinf
the same cover, spacing, continuity, and equivalent strength shown herein, as approved by the Engineer.

MEDIAN BARRIER - 44" HEIGHT SPLIT SECTION FOR PIER SHIELDING - DETAILS

SECTION A-A
begin transition - option 'A' MATCH SINGLE-SLOPE 38" HEIGHT MEDIAN BARRIER

SECTION A-A
begin transition - OPTION 'B' MATCH SINGLE-SLOPE
36" HEIGHT TRAFFIC RAILING (Bridge Applications)

SECTION B-B INTERMEDIATE SECTION of LINEAR TRANSITION

SECTION C-C END TRANSITION MATCH 32" HEIGHT F-SHAPE SECTION

ELEVATION
(Reverse Direction Similar
by Opposite Hand)

DOWEL PLACEMENT (See Note 2)

NOTES: Constuct Conetion sertas reaired

1. GENERAL: Construct the Connection Segment as required per the Plans to connect existing
F-Shape sections to Single-Slope Median Barrier or Traftic Railing sections. Construt ' A ' or ' B ' as required to match the heights of the connecting sections.
2. DOWELED JOINT: Install Dowel Bars per the Dowel Details on Sheet 2
3. TRAFFIC RAIIING CONNECTION: For the Option 'B' connection, use a Doweled Joint per Sheet 2
and the additional Free End Reinforcing with reduced bar spacing per Sheet 3 .
4. STIRRUP BARS: For the vertical and transverse reinforcement requirements shown, bar
bending diagrams are not provided due to varying section dimensions. Use any combination of spliced reinforcing steel to position the reinforcement with the same cover, spacing,

MEDIAN BARRIER - CONNECTION TO F-SHAPE

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 18 \end{gathered}$	\|	$\begin{gathered} \text { FY 2020-21 } \\ \text { FDOTANDARD PLANS } \end{gathered}$	CONCRETE BARRIER	$\begin{gathered} \text { INDEX } \\ 521-001 \end{gathered}$	$\begin{gathered} \text { SHEET } \\ 12 \text { of } 26 \end{gathered}$

SECTION A-A

38" HEIGHT SHOULDER BARRIER (See Sheet 14 for
Reinforcing Steel Details)

NOTES:

1. BARRIER RUN SEGMENT: Either the 38" Height Shoulder Barrier or the differing Shoulder Barrier sections shown throughout the Index may be placed 1. Bithin this segment as required per the Plans.
2. SECTION VIEWS: For additional Views A-A and B-B, see Sheet 1
3. DOWELED JOINTS: See the General Notes on Sheet 1 for usage of joint types. Place steel reinforcing with a longitudinal $3^{3 \prime}$ cover adjacent to the joint
face in the barrier. Use ASTM A36 smooth round bars with hot-dip galvanization.

For the dowel connection into the first casting, the dowel may be cast-in-place for new concrete or placed into a $11 / /^{\prime \prime} \times 13^{\prime \prime}\left(\pm 1 / 2^{\prime \prime}\right)$ drilled hole for cured concrete. For drilled holes larger than $1 \frac{1}{8} \otimes$, secure the dowel with adhesive in accordance with Specification 416. No load testing is required.
For the dowel connection into the second casting, use a $1 \frac{1}{4} \|^{n}$ NPS Schedule 80 PVC pipe with a sealed cap, cast-in-place as shown.
4. TRAFFIC RALLING CONNECTIONS: Align the barrier and Traffic Railing faces and connect with the $3 / 4$ "Doweled Joint.
5. GUARDRAIL CONNECTIONS: Connect Guardrail using the Transition Connections to Rigid Barrier per Index 536-001.
6. CRASH CUSHION CONNECTIONS: Connect Crash Cushions per Index 544-001 in conjunction with the $3^{\prime \prime}-0^{\prime \prime}$ End Transition for Guardrail as shown herein.
7. FREE ENDS: When the barrier end does not terminate with a Traffic Railing Connection, Guardrail Connection, or Crash Cushion Connection as called for in
the Plans, terminate in accordance with the Free End Reinforcing Note on Sheet 14.

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 18 \end{gathered}$		DESCRIPTION:		FY 2020-21 STANDARD PLANS	CONCRETE BARRIER	$\begin{gathered} \text { INDEX } \\ 521-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 13 \text { of } 26 \end{aligned}$

NOTES:

1. GENERAL: Work with the Plan and Elevation Views
on Sheet 13 . The Section Option footings shown on on Sheet 13. The Section option footings shown on
Sheet 15 may be substituted where called for in the Plans.
2. FREE END REINFORCING: Where shown in the pans, terminate the $38{ }^{\prime \prime}$ Height Barrier section
with a transverse vertical end face. Reduce the spacing of Bars 5 V2 and 54 to $6^{\prime \prime}$ for 5 Spaces,
placed with 3 " cover from the barrier's end face.
3. BAR BENDING DIAGRAMS: For additional details for bars 5 V 2 and $5 \mathrm{J3}$,
Diagrams on Sheet 26

PLAN VIEW - END SEGMENT FOR GUARDRAIL CONNECTION (Longitudinal Steel Not Shown for Clarity)

SHOULDER BARRIER - REINFORCING DETAILS
 (Where Required For
Barrier Inlet Locations) Barrier Inlet Locations)

Concrete aty. $=0.29$ CY/FT
Steel aty. $=46.6 \mathrm{LB} / \mathrm{FT}$

FRONT-FLUSH SECTION - PLAN VIEW (Not Applicable for Trench Footing Sections)

NOTES:

1. GENERAL: Install the differing Section options as required
2. CONNECTIONS

CONNECTIONS BETWEEN DIFFERENT SETTIONS: Connect
differing Shoulder Barrier sections using a continuous pour or Transverse Joint, where longitudinal steel that
aligns within the ad jacent section is mainalined continuously between sections. Alternatively, a Doweled Joint may be used as shown on Sheet 13.
3. FLUSH RETAINING SECTION COMBINATION: Where Barrier
Inlets are required in retaining segments, install the
 the $2^{\prime}-0^{\prime \prime}$ Extended Heel as shown in the Retaining Sectio
Use longer lateral reinforcing bars of $2^{\prime}-10^{\prime \prime}$ length to Use longer lateral reinfor
maintain the cover shown.

44" HEIGHT SECTION
(For Use Adjacent to Rear-Flush Section on Sheet 18)
Concrete oty $=0.34 \mathrm{CY} / \mathrm{FT}$
Steel oty.

FRONT-FLUSH SECTION
(For Use Adjacent to Rear-Flush
Section on Sheet 18, as Required for Barrier Inlets)

Concrete aty. $=0.30 \mathrm{CY}$ /FT
Steel atty $=52.6 \mathrm{LB/FT}$

NOTE:

1. GENERAL: See the applicable Notes on Sheet 15 .

| $\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 19 \end{gathered}$ | \|c|cher | $\begin{gathered} \text { FY 2020-21 } \\ \text { STANDARD PLANS } \end{gathered}$ | CONCRETE B ARRIER | index 521-001 | $\begin{gathered} \text { SHEET } \\ 16 \text { of } 26 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

SECTION A-A ABOVE-GROUND HAZARD
EMBEDDED IN FOOTING

PLAN - ROUND PIER EXAMPLE REAR-FLUSH SECTION
WITH 3" WIDTH REDUCTION
(See Section View for All
Longitudinal Steel Locations)

PLAN - SQUARE PIER EXAMPLE
REAR-FLUSH SECTION
(See Section View for All
Longitudinal Steel Locations)

PLAN - SQUARE PIER EXAMPLE REAR-FLUSH SECTION
WITH WiOn VIOCTION
(See Section View for All
Longitudinal Steel Locations)

SECTION B-B ABOVE-GROUND HAZARD EMBEDDED IN FOOTING
\& BARRIER

NOTE:

1. PIERS: The piers shown herein are example shapes only; see
the Plans for the project-specific dimensions. The details

SHOULDER BARRIER - 38" HEIGHT REAR-FLUSH SECTION FOR REDUCED SETBACK PIER SHIELDING
(DESIGN SPEED $\leq 45 \mathrm{MPH}$)

NOTES:

1. GENERAL: Work with the Plan and Elevation Views
on Sheet 20 .
2. FREE END REINFORCING: Where Shown in the
Plans, terminate the 38 " Curb $\&$ Gutter Barrier section with a transverse vertical end face. Reduce the spacing of Bars $5 V 2$ and 5 Su to to $6^{\prime \prime}$ for
5 Spaces, placed with $3^{\prime \prime}$ cover from the barrier's 5 Spaces,
end face.
3. BAR BENDING DIAGRAMS: For additional details 3. BAR bars $5 V 2$ and 5 at, see the Bar Bending
fiagrams on Sheet 26 .

PLAN VIEW - END SEGMENT FOR GUARDRAIL CONNECTION (Longitudinal Steel Not Shown for Clarity)

CURB AND GUTTER BARRIER
REINFORCING DETAILS

LAST REVIIION 11/O1/18	3	DESCRIPTION:		FY 2020-21 STANDARD PLANS	CONCRETE B ARRIER	$\begin{gathered} \text { INDEX } \\ 521-001 \end{gathered}$	$\begin{gathered} \text { SHEET } \\ 21 \text { of } 26 \end{gathered}$

SECTION E-E INTERMEDIATE TRANSITION Footing (Height Varies Linearly Per Elevation View)

End Similar by Opposite Hand)

NOTES:

1. GENERAL: Install a Sloped End Treatment only where called for in the Plans, using either a $100^{\prime}-0^{\prime \prime}$ length or $25^{\prime}-0^{\prime \prime}$ length treatment as specified in the Plans. The $10^{\prime \prime}-0^{\prime \prime}$ length option is shown
additional trimmed Bars $5 \mathrm{~L} \& 5 \mathrm{~V}$ at the same $9^{\prime \prime}$ longitudinal spacing
2. BAR BENDING DIAGRAMS: For additional details on Bars $5 V 2 \& 5 U 4$, see the Bar Bending Diagrams on Sheet 26 .

PLAN
See Section A-A for Barrier Reinforcing)

SECTION B-B FLUSH SEGMENT
4. FREE ENDS: Where shown in the Plans, terminate the Single-Faced Section with a transverse end face. Place a stirrup bar with a $3^{\prime \prime}$
Iongitudinal bars with a $3^{\prime \prime}$ cover from the end face.
5. CONCRET OR FLLWABLE FILL: Use Class NS Concrete in accordance with
Specification 347 or Non-Excavatable Flowable Fill in accordance with Specification

NOTES

1. TAPER SEGMENTS AND OFFSET SEGMENT: The plan view shown is an example only, show ing general geometry for the taper segments and off set segment. For the actual
segment lengths and corresponding taper rates required, see the barrier placement information in the Plans.
2. OVERHEAD SIGN SUPPORT: The overhead sign support shown is an example only; see
the Plans for the project-specificic dimensions and requirements if applicable.
3. CONNECTION TO SHOULDER BARRIER SECTIONS: Connect to Shoulder Barrier sections using a continuous pour or Transverse Joint, where longitudinal steel that aligns
within the ad acent section is maintained within the adjacent section is maintained continuously between sections or has a full
lap splice with the adjacent section's longitudinal steel.

WALL SHIELDING BARRIER 38" HEIGHT SECTION -

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 18 \end{gathered}$			$\begin{gathered} \text { FY 2020-21 } \\ \text { STANDARD PLANS } \end{gathered}$	$\mathbb{C O N C R E T E ~ B A R R I E R}$	$\begin{gathered} \text { INDEX } \\ 521-001 \end{gathered}$	$\begin{gathered} \text { SHEET } \\ 23 \text { of } 26 \end{gathered}$

BILL OF REINFORCING STEEL		
MARK	SIZE	LENGTH
$C 1$	4	$3^{\prime}-8^{\prime \prime}$
$C 2$	5	$3^{\prime \prime}-0^{\prime \prime}$
$U 1$	4	$5^{\prime}-1^{\prime \prime}$
$U 2$	4	$7^{\prime}-8^{\prime \prime}$
$U 3$	5	$9^{\prime}-7^{\prime \prime}$
$U 4$	5	$5^{\prime}-9^{\prime \prime}$
$V 1$	4	$6^{\prime}-4^{\prime \prime}$
$V 2$	5	$6^{\prime}-3^{\prime \prime}$
$V 3$	4	$5^{\prime}-10^{\prime \prime}$

BAR $4 U 2$

BAR 4V1

BAR 4C1

BAR 4V3

NOTES:

1. Work with the Standard Bar Bending Details
. ar bar
2. All bar dimensions in the bending diagrams
3. Use standard inner diameters for bar bending
unless otherwise shown.

BAR 504

BAR 5V2

BAR 5C2

BAR 5U3

REINFORCING BAR BENDING DIAGRAMS

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 18 \end{gathered}$	2	DESCRIPTION:	$F D \bar{T}\}$	FY 2020-21 STANDARD PLANS	CONCRETE BARRIER	$\begin{gathered} \text { INDEX } \\ 521-001 \end{gathered}$	$\begin{gathered} \text { SHEET } \\ 26 \text { of } 26 \end{gathered}$

