GENERAL NOTES:
1. Obtain Superelevation by rotating the plane successively about the break points of the section until the plane has attained a slope equal to that required by the Plans. Should the rotation traverse the entire section and further superelevation be required, the remaining rotation of the plane shall be about the low edge of the inside travel lane. Crown is to be removed in the auxiliary lane on the outside of the curve only when the adjoining travel lanes require positive superelevation.

2. When positive superelevation is required, continue the slope of the pavement across the gutter on the high side.

3. Place short vertical curves at all angular profile breaks within the limits of the superelevation transition.

4. The variable superelevation transition length "L" has a minimum value of 30 feet for design speeds under 40 MPH and 75 feet for design speeds of 40 MPH or greater.

5. Roadway sections having lane arrangements different from those shown, but composed of a series of planes, are superelevation in a similar manner.

When this section is used, superelevation is established by rotating a tangent about the arc of the parabolic crown until the desired slope is attained (points A & B on sketch). The normal parabolic crown will be maintained outside the limits of the plane thus formed.
Low Speed Highways

Profile Grade Refers To This Point

SECTION 0-A to 0-D

TWO LINES EACH DIRECTION

Profile Grade Refers To This Point

SECTION 0-A to 0-E

TWO LINES EACH DIRECTION WITH MEDIAN AND AUXILIARY LANE

Note:
The sections and profiles shown are examples of superelevation transitions.
Similar schemes should be used for roadways having other sections.

EXAMPLE SUPERELEVATION SECTIONS AND PROFILES FOR LOW SPEED HIGHWAYS