Index 455-001 Series Concrete Piles

Design Criteria

AASHTO LRFD Bridge Design Specifications; Structures Detailing Manual (SDM); Structures Design Guidelines (SDG)

Design Assumptions and Limitations

Index 455-001 is the lead standard for the Square Prestressed Concrete Pile standard series which includes Indexes 455-001 through 455-031. Use this standard with Indexes 455-002, 455-003, 455-012, 4555-014, 455-018, 455-020, 455-024, 455-030 and 455-031.

Standard piles are designed to have 1000 psi uniform compression after prestress losses without any applied loads to offset tensile stresses that occur during typical driving.

The piles are designed to have 0.0 psi tension using a load factor of 1.5 times the pile self weight during pick-up, storage and transportation as shown in the "Table of Maximum Pile Pick-Up and Support Lengths" on the standard.

Plan Content Requirements

In the Structures Plans:

Show and label the piles on the Foundation Layout, End Bent, Intermediate Bent, Pier, Footing, Typical Section and other sheets as required.

Complete the following "Data Table" in accordance with SDG 3.5 and SDM 11.4 and include it in the contract plans with the "Foundation Layout" sheets. Modify table and notes as required to accommodate the required number of piles, piers and/or bents, use of Test Piles and instrumentation. When not enough space is available on one plan sheet, continuations of the Data Table and/or separate pile cut-off elevation tables are acceptable. See Introduction I.3 for more information regarding use of Data Tables.

For projects without Test Piles change data table column heading "TEST PILE LENGTH (ft.)" to "PILE ORDER LENGTH (ft.)".
<table>
<thead>
<tr>
<th>PILE NUMBER</th>
<th>PILE SIZE (in)</th>
<th>NOMINAL BEARING RESISTANCE (tons)</th>
<th>NOMINAL UPLIFT RESISTANCE (tons)</th>
<th>MINIMUM TIP LENGTH (ft.)</th>
<th>TEST PILE LENGTH (ft.)</th>
<th>REQUIRED REINFORCEMENT ELEVATION (ft.)</th>
<th>REQUIRED PREFERRED ELEVATION (ft.)</th>
<th>FACTORED DESIGN LOAD (tons)</th>
<th>FACTORED DESIGN UPLIFT LOAD (tons)</th>
<th>TOTAL SCOUR RESISTANCE (tons)</th>
<th>NET SCOUR RESISTANCE (tons)</th>
<th>100-YEAR SCOUR ELEVATION (ft.)</th>
<th>COLUMN (C)</th>
<th>COMPLIES (Y/N)</th>
<th>PILE 1</th>
<th>PILE 2</th>
<th>PILE 3</th>
<th>PILE 4</th>
<th>PILE 5</th>
<th>PILE 6</th>
<th>PILE 7</th>
</tr>
</thead>
</table>

Factorial Design Load x Net Scour Resistance x Drag Factor

UPLIFT RESISTANCE - The ultimate side friction capacity that must be obtained below the 100-year scour elevation to resist pullout of the pile. Specify only when design requires uplift capacity.

TOTAL SCOUR RESISTANCE - An estimate of the ultimate static side friction resistance provided by the soil from the pile toe to the elevation of the limiting scour depth.

NET SCOUR RESISTANCE - An estimate of the ultimate static side friction resistance provided by the soil from the pile toe to the elevation of the required scour depth.

100-YEAR SCOUR ELEVATION - Estimated elevation of scour due to the 100-year storm event.

PILE INSTALLATION NOTES (Note Date 7-01-13):

Contractor to verify location of all utilities prior to any pile installation activities.

Minimum Tie Elevation is required for general stability.

When a required jetting elevation is shown, the jet shall be lowered to the elevation and continue to operate at this elevation until the pile driving is completed. If jetting or performing elevations differ from those shown on the table, the Engineer shall be responsible for determination of the required driving resistance.

No jetting will be allowed without the approval of the Engineer.

The Contractor should not anticipate being allowed to jet piles below the 100-year scour elevation or required jet elevation, whichever is deeper.

At each Bury, pile driving is to commence at the center of the Bury and proceed outward.
Payment

<table>
<thead>
<tr>
<th>Item number</th>
<th>Item Description</th>
<th>Unit Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>455-34-ABB</td>
<td>Prestressed Concrete Piling</td>
<td>LF</td>
</tr>
</tbody>
</table>
Design Aids

12'' SQUARE PRESTRESSED CONCRETE PILE INTERACTION DIAGRAM

- *(4) 0.6'' Dia, Grade 270 LRS*
- *(8) 1/2'' Dia (Spec), Grade 270 LRS*
- *(8) 1/2'' Dia, Grade 270 LRS*
- *(8) 7/16'' Dia, Grade 270 LRS*
- *(12) 3/8'' Dia, Grade 270 LRS*

Design Assumptions:
- Concrete compressive strength $f_c = 6$ ksi.
- Modulus of elasticity of prestressing strands, $E_p = 28,500$ ksi.
- Resistance factor for axial, $\phi_{axial} = 0.75$ & for flexure, $\phi_{flexure} = 1.0$.
- All piles assumed to have spirals.
- Strand sizes and strand patterns used to create interaction curves correspond with those indicated in Index 455-012.
14" SQUARE PRESTRESSED CONCRETE PILE INTERACTION DIAGRAM

Design Assumptions:
- Concrete compressive strength $f_c = 6$ ksi.
- Modulus of elasticity of prestressing strand, $E_P = 28,500$ ksi.
- Resistance factor for axial, $\phi_{axial} = 0.75$ & for flexure, $\phi_{flexure} = 1.0$.
- All piles assumed to have spirals.
- Strand sizes and strand patterns used to create interaction curves correspond with those indicated in Index 455-014.
18" SQUARE PRESTRESSED CONCRETE PILE INTERACTION DIAGRAM

Design Assumptions:
- Concrete compressive strength $f_c = 6$ ksi.
- Modulus of elasticity of prestressing strand, $E_p = 28,500$ ksi.
- Resistance factor for axial, $\phi_{axial} = 0.75$ & for flexure, $\phi_{flxure} = 1.0$.
- All piles assumed to have spirals.
- Strand sizes and strand patterns used to create interaction curves correspond with those indicated in Index 455-018.
Design Assumptions:
- Concrete compressive strength $f_c = 6$ ksi.
- Modulus of elasticity of prestressing strands, $E_p = 28,500$ ksi.
- Resistance factor for axial, $\phi_{axial} = 0.75$ & for flexure, $\phi_{flexure} = 1.0$.
- All piles assumed to have spirals.
- Strand sizes and strand patterns used to create interaction curves correspond with those indicated in Index 455-020.
Design Assumptions:
- Concrete compressive strength $f_c = 6$ ksi.
- Modulus of elasticity of prestressing strands $E_p = 28,500$ ksi.
- Resistance factor for axial, $\phi_{axial} = 0.75$ & for flexure, $\phi_{flexure} = 1.0$.
- All piles assumed to have spiral ties.
- Strand sizes and strand patterns used to create interaction curves correspond with those indicated in Index 455-024.
30° SQUARE PRESTRESSED CONCRETE PILE INTERACTION DIAGRAM

- (20) 0.6" Dia, Grade 270 LRS
- (24) 1/2" Dia (Spec), Grade 270 LRS
- (28) 1/2" Dia, Grade 270 LRS

Design Assumptions:
- Concrete compressive strength $f_c = 6$ ksi.
- Modulus of elasticity of prestressing strands, $E_p = 28,500$ ksi.
- Resistance factor for axial, $f_{axial} = 0.75$ & for flexure, $f_{flexure} = 1.0$.
- All piles assumed to have spirals.
- Strand sizes and strand patterns used to create interaction curves correspond with those indicated in Index 455-030.
Design Assumptions:
- Concrete compressive strength $f_c = 8.5$ ksi.
- Strand Pattern: (28) 0.6" Diameter, Grade 270 LRS.
- Modulus of elasticity of prestressing strands, $E_p = 28,500$ ksi.
- Resistance factor for axial, $\phi_{axial} = 0.75$ & for flexure, $\phi_{flexure} = 1.0$.
- All piles assumed to have spiral ties.
- Refer to Design Standard Index 20631 for details of pile sections B-B and C-C.

The curve for Section C-C is limited to the axial capacity (tension and compression) of the voided section of the pile (Section B-B).