GENERAL NOTES:

Temporary barrier systems may be any of the following:
A. Type K Temporary Concrete Barrier System (Index 102-110) installed as either Free-Standing or Anchored.
B. Proprietary Temporary Barrier Systems on the Approved Product List (APL).
a. Concrete Barrier (Free-St or Anchored)
b. Steel Barrier (Anchored)
c. Water Filled Barrier (Free-Standing)
2. Where existing flexible pavement is not present, construct a minimum $2^{\prime \prime}$ thick temporary Asphalt Pad using Miscellaneous Asphalt Pavement in accordance with Specification 339 with the exception that the use of a e-emergent herbicide is not required.
3. For Barrier Delineators, see Specification 102. Mount on top of temporary barriers. Color must match adjacen longitudinal pavement marking.
4. Remove all grass debris, loose dirt, and sand for the pavement, bridge deck, or asphalt pad surface within the barrier footprint just prior to placement of the temporary barrier.
6. Ensure the setback distance is clear of any grass, construction debris, stockpiled materials, equipment, and objects.
7. Transitions are required between Type K Barrier and free-standing, anchored, back-filled or other types of temporary barrier. See Index 102-110 for transitions between Type k Barrier and permanent bridge or traffic railing Refer to the APL for transitions alrowed for Proprietary Temporary Barrier Systems.
8. Anchoring (Bolting) of temporary barrier or crash cushions is not permitted on bridge superstructures that contai post-tensioned tendons within the concrete deck (top flange of concrete box girders) or on bridge superstructures consisting of longitudinally prestressed, transversely post-tensioned, solid or voided concrete slab units.
9. Anchor abutting segments of temporary barrier terminated with a Crash Cushion as shown in Index 102-110 or the APL
10. The requirements of this Index do not apply to Temporary Low Profile Barrier, See Index 102-120.
11. Setback requirements below cover most Temporary Barrier options. Provide additional setback distance for APL products that require additional setback (deflection) space.

INSTALLATION DATA			
CONDITION	$\begin{aligned} & \text { LATERAL } \\ & \text { OFFSET } \end{aligned}$	SETBACK DISTANCE	PAVEMENT/ ASPHALT WIDTH
Anchored	2^{\prime} Min.	2^{\prime} Min.*	1' Min.
Free-standing	2^{\prime} Min.	$4^{1} \mathrm{Min}$.	4' Min.

* For Bridge Decks see Index 102-110 or APL

$\overline{\bar{Z}}$ APPROACH SHOULDER BARRIER TRANSITION ON UNDIVIDED FACILITIES

$\bar{\Longrightarrow}$ APPROACH SHOULDER BARRIER TRANSITION ON DIVIDED FACILITIES \qquad

DEPARTURE SHOULDER BARRIER TRANSITION ON UNDIVIDED FACILITIES

$\bar{\Longrightarrow}$ DEPARTURE (TRAILING) SHOULDER BARRIER TRANSITION ON DIVIDED FACILITIES $\bar{\square}$

GENERAL NOTES

Meet the requirements of Index 102-100
2. For fabrication details see Sheets 15 thru 17
3. HANDLING: Do not lift or move the Barrier Units by using Bars 6 D that extend from the ends of the units. Approximate weight of one unit equals 2.7 tons.
4. CONNECTION PIN ASSEMBLY: Use steel for Connection Pin and Top Plate assemblies in accordance with ASTM A36 or ASTM A709 Grade 36. Nondestructive testing of welds is not required. At the Contractor's option, a $\frac{3}{\prime} /{ }^{\prime \prime}$ diameter hole may be provided at the bottom of the Connection Pin, as shown, for the installation of a vandal resistance bot.
5. CONNECTION PIN INSTALLATION: Initially set Barrier Units by using a 35/8" wooden block between ends of adjacent units. Install Connection Pin between adjacent Barrier Units as shown, then pull newly placed Barrier Unit away from adjacent Barrier Unit to remove slack between Connection Pin and Bars 6 D (except as shown on Sheet 2). Do not use Barrier Units unconnected.
6. REUSE OF CONNECTION PINS AND STAKES: Connection pins and stakes may be reused if they have the structural integrity of new pins.
7. REMOVAL OF BOLTS, STAKES AND KEEPER PINS: Upon removal or relocation of Barrier Units, remove all Anchor Bolts and completely fill the remaining holes in bridge decks, approach slabs and roadway rigid pavements that are to remain with Magnesium Ammonium Phosphate Concrete in accordance with Specification 930 or with an Epoxy Resin Compound, Type F or Q, in accordance with Specification 926 . If a flexible pavement is present and is to remain, completely fill the remaining holes in the flexible pavement with hot or cold patch asphalt material.
8. Type k Anchored to Free-Standing transitions: Use the 3-3-2-1 Anchorage Transition Detail when transitioning Free-Standing and Anchored Units or when . Type K Anchored to free-Standing transtions. Use the 3-3-2-1 Anchorage

NOTES FOR THRIE-BEAM GUARDRAIL SPLICE INSTALLATIONS:

1. THRIE-BEAM GUARDRAIL: Provide Thrie-Beam Guardrail for splices meeting the requirements of specification 967 and as follows: Two panels per splice (One panel per side) of Class B (10 Gauge), or Four panels per splice (Two nested panels per side) of Class A (12 Gauge). Use a 12'-6" guardrail panel. Provide and install all other associated metallic guardrail components (Terminal Connectors, Shoulder Bolts, Hex Bolts and Nuts, Filler Plates, etc.) in accordance with Index 536-001. Install five Guardrail Anchor Bolts at each end of each splice in any of the standard seven anchor bolt holes in the Thrie-Beam Terminal Connector. If reinforcing steel is encountered when drilling holes for Guardrail Anchor Bolts in Type K Barrier Units, shift信
2. GUARDRAIL OFFSET BLOCKS: Provide and install timber Offset Blocks meeting the requirements of Specification 967. Field trim Offset Blocks as required for proper fit. Utilize Offset Blocks as shown and required in order to prevent bending or kinking of Thrie-Beam Guardrail panels.
3. CONCRETE FOR FILLING TAPERED TRAFFIC RAILING TOES: Provide concrete for filling tapered toes of Traffic Ralings as shown meeting the material requirements of Specification 346, any Class, or a commercially available pre-bagged concrete mix (3000 psi minimum compressive strength). Sampling, testing, evaluation and certification of the concrete in accordance with Specification 346 is not required. Saturate with water the surfaces upon and gainst which the concrete fill will be placed prior to placing concrete. Place and finish concrete 1 using forms of by hand methods to the general onfigurations shown so as to provide a smooth shape transition between the Type K Barrier and the adjacent traffic railing. A low slump is desirable If placing and finishing concrete by hand methods. Cure the concrete fill by application of a curing compound, or by covering with a wet tarp or burlap
for a minimum of 24 hours. Completely remove the concrete fill upon relocation or removal of the Type K Temporary Concrete Barrier.

=DETAIL OF CONNECTION BETWEEN BARRIER UNITS $=$

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		$\begin{array}{cc} F Y \text { 2019-20 } \\ \text { FDOT } \\ \text { STANDARD PLANS } \end{array}$	TYPE K TEMPORARY CONCRETE BARRIER SYSTEM	$\begin{gathered} \text { INDEX } \\ 102-110 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 17 \end{aligned}$

TYPICAL SECTION

See PTFE
See PTFE
WITH ASPHALT OVERLAY
** Wrap threads with a single
overlapping layer of PTFE
1/4/" Ø Adhesive-Bonded Anchor with Heavy Hex Nut \&
$3 / 2^{\prime \prime}$ Sq. Top Plate Washer 3/2" Sq. Top Plate Washer

WITHOUT ASPHALT OVERLAY

NOTES FOR BOLTED INSTALLATIONS
bridge deck shown, approach slab or rigid pavement similar; installation adjacent to drop-off shown, median transition installation similar.
LIMITATION OF USE: This installation technique can only be used on rigid pavement and concrete bridge decks as shown. Anchor Bolts must not be installed on both sides of the Barrier Units. Do not bolt down Barrier Units across bridge finger or modular expansion joints.

ANCHOR BOLTS, NUTS AND WASHERS: When using Adhesive-Bonded Anchor Bolts, use fully threaded rods in accordance with ASTM F 155 Grade 36. Install Anchor Bolts for through bolting in accordance with ASTM A 307 or ASTM F 1554 Grade 36. Install nuts in accordance with ASTM A 563 or ASTM A 194. Install Flat Washers in accordance with ASTM F 436 and Plate Washers in accordance with ASTM A 36

Install three (3) Anchor Bolts per Barrier Unit on the traffic side of the Barrier Units as shown, except for Transition installations, For the number and positions of Anchor Bolts required in Transition Installations see Sheets 8 and 9 and Index 102-100. Drilling through deck reinforcing steel to install Anchor Bolts is permitted. Unless otherwise shown in the Plans, at the Contractor's option
Barrier Units may be installed by through bolting (where geometrically possible) or by the use of Adhesive-Bonded Anchor Bolts. Do Barrier Units may be installed by through bolting (where geometrically possible) or by the use of Adhesive-Bonded Anchor Bolts. Do not
drill into or otherwise damage the tops of supporting beams or girders, bridge deck expansion joints or drains. Install Anchor Bolts and Nuts so that the maximum extension beyond the face of the Barrier Units is $1 / 21$. Snug tighten the Nuts on the Anchor Bolts. For through bolted installations, snug tighten the double Nuts on the underside of the deck against each other to minimize the potential for loosening.
omit one (1) Anchor Bolt within a single Barrier Unit if a conflict exists between the Anchor Bolt location and a bridge deck expansion ioint or drain. The adjacent Barrier Units must each be installed with the standard three (3) Anchor Bolts.

Omit one (1) Anchor Bolt within a single Barrier Unit as shown in the Treatment at Bridge Deck Expansion Joint Schematic if the Barrier Unit straddles a bridge deck expansion joint. The adjacent Barrier Units must each be installed with the standard three (3) Anchor Bolts.
ADHESIVE-BONDING MATERIAL SYSTEMS: When using Adhesive Bonding Material Systems for Anchor Bolts, Use Type HSHV in accordance with Specification 937 and installed them in accordance with Specification 416. Prior to installation of the Barrier Units in the Plan In lieu of the production test requirements of Specification 416, install six (6) Adhesive-Bonded Anchor Bolts in the demonstration Barrier Unit and test each Anchor Bolt with a 29,800 pound tensile proof load. Install and test additional demonstration Barrier Units when requested by the Engineer. Remove the demonstration Barrier Unit prior to testing the Anchor Bolts. Remove the test Anchor Bolt
after testing as directed by the Engineer.
$\left[\begin{array}{l}\text { Dimension as required } \\ \text { to span SIP Metal Form } \\ \text { Corrugations plus } 1 / 2 / 2 \text { Min. }\end{array}\right.$
overlap each side-

adhesive bo

SUPPLEMENTAL BOTTOM PLATE WASHER DETAIL

BOTTOM PLATE WASHER DETAIL
top plate WASHER DETAIL

$\ldots-^{33 / 4^{\prime *}}$

* To accommodate movement at Expansion Joint, set Barrier Units with 33/4" gap at locations shown.
treatment at bridge deck expansion Joint schematic

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		$\begin{gathered} \text { FY 2019-20 } \\ \text { FDOTANDARD PLANS } \end{gathered}$	$T Y P E \mathbb{K} T E M P O R A R Y C O N C R E T E ~ B A R R I E R ~ S Y S T E M ~$	$\begin{gathered} \text { INDEX } \\ \text { 102-110 } \end{gathered}$	SHEET 2 of 17

NOTES FOR STAKED INSTALLATIONS:

LIMITATION OF USE: This installation technique can only be used on flexible pavement or an Asphalt Pad as shown. Stakes must not be installed on both

STAKES: Provide steel for Stake assemblies in accordance with ASTM A 36 ASTM A 709 Grade 36. Weld in accordance with the American Welding Society are $600 \times x$ or $E 70 \times X$. Nondestructive testing of welds is not required Instal three (3) Stakes ante traffic side of Barrier unts as st
Install three (3) Stakes on the traffic side of the Barrier Units as shown, required in Transition Installations see Sheets 4,5 and 6 and Index 102-100. Install Stakes so that the Stop Plate is snug against the bottom of the Anchor ockout.

BURIED UTILITIES: Prior to installation of Stakes verify locations of all ad jacent buried utilities, drainage structures, pipes, etc. If conflicts
between Stake locations and buried elements exist, a maximum of two (2) Stakes within a single Barrier Unit may be omitted if the adjacent Barrier Stakes within a single Barrier Unit may be omitted if t
Units are installed with the standard three (3) Stakes.

adjacent to retaining wall with flowable fill back-fill
*FLOWABLE FILL: Provide Excavatable Flowable Fill in accordance with Specification 121.

flow able fill back-fill roadside installations

TYPICAL SECTION

NOTES FOR SOIL BACK-FILLED ROADWAY INSTALLATIONS: SOIL BACK-FILL MATERIAL: Provide Back-Fill Material consisting of any available clean
soil. Compact Back-Fill Material until the soil mass is firm and unvielding Provide soil. Compact Back-Fill Material until the soil mass is firm and unyielding. Provide erosion control as required to maintain the integrity of the Back Fill embankment.

GEOTEXTILE FABRIC: Provide Type D-5 Geotextile Fabric in accordance with Specification 985 to contain Back Fill Material behind Barrier Units. Geotextile Fabric may be continuous over the length and height of the installation or may be individual pieces as required to cover the Lift / Drain Slots and open vertical joints between Barrier Units.

TYPICAL SECTION WITH SOIL BACK-FILL
\qquad

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	䢒	DESCRIPTION:	FDOTY	$\begin{gathered} \text { FY 2019-20 } \\ \text { STANDARD PLANS } \end{gathered}$	TYPE K TEMPORARY CONCRETE BARRIER SYSTEM	$\begin{gathered} \text { INDEX } \\ 102-110 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 4 \text { of } 17 \end{aligned}$

- APPROACH TRANSITION FROM FREE-STANDING TO ANCHORED TYPE K TEMPORARY CONCRETE BARRIERS

$\overline{\bar{Z}}$ APPROACH TRANSITION FROM FREE-STANDING TO BACK-FILLED TYPE K TEMPORARY CONCRETE BARRIERS $\overline{<}$

trailing end transition from back-filled to free-standing type k temporary concrete barriers

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		$\begin{gathered} \text { FY 2019-20 } \\ \text { FDOTANDARD PLANS } \end{gathered}$	TYPE K TEMPORARY CONCRETE BARRIER SYSTEM	$\begin{gathered} \text { INDEX } \\ 102-110 \end{gathered}$	SHEET 5 of 17

- TRANSITION FROM FREE-STANDING TYPE K TEMPORARY CONCRETE BARRIERS TO BRIDGE TRAFFIC RAILING OR ROADWAY CONCRETE BARRIER WALL $=$

TRANSITION FROM ANCHORED TYPE K TEMPORARY CONCRETE BARRIERS TO BRIDGE TRAFFIC RAILING OR ROADWAY CONCRETE BARRIER WALL $=$

partial plan view at median traffic railing
Cross References: See Sheet 10 for Section $A-A$.
Section $B-B$ and Section $C-C$. Section B-B and Section C-C.
chored Type K Barrier \qquad

partial plan view at shoulder traffic railing
$332^{\prime \prime}$ F Shape Traffic Railing (shown);
Traffic Railings and 8' or 14' Traffic

See Thrie-Beam Guardrail Positioning Detail, Sheet 10 and Notes for Thrie-Beam Guardrail Solice Insta Noions, Sheet Anchored Type K Barrier
Vertical End Taper required for $42^{\prime \prime}$ F Shape Traffic Railing \& $8^{\prime} \& 14^{\prime}$ Traffic Railing / Noise Wall 7

partial elevation view
APPROACH TRANSITION SPLICE DETAIL $\bar{\square}$
FOR F AND NEW JERSEY SHAPE TRAFFIC RAILINGS AND 8' \& 14' TRAFFIC RAILING / NOISE WALLS (CONCRETE BARRIER WALL SIMILAR)

32" Florida Corral Traffic Railing (shown),
32" \& 42" Vertical Shape Traffic Railings (similar)

partial plan view
Cross References: Seoss References:
See Sheet 10 for Section $A-A$,
Section $B-B$ and Section $C-C$.

PARTIAL ELEVATION VIEW - FLORIDA CORRAL TRAFFIC RAILING

PARTIAL ELEVATION VIEW - VERTICAL SHAPE TRAFFIC RAILINGS
APPROACH TRANSITION SPLICE DETAIL $=$ FOR FLORIDA CORRAL AND VERTICAL

SHAPE TRAFFIC RAILINGS

PARTIAL PLAN VIEW

PARTIAL ELEVATION VIEW

> Cross References: See Sheet 10 for Section $A-A$, Section B-B and Section $C-C$.

PARTIAL PLAN VIEW

Partial ELEVATION VIEW

$$
\begin{aligned}
& \text { See Sheet } 10 \text { for Section } A-A \text {, } \\
& \text { Section } B-B \text { and Section } C-C \text {. }
\end{aligned}
$$

=TRAILING END SPLICE DETAIL= FOR F AND NEW JERSEY SHAPE TRAFFIC RAILINGS AND 8' \& 14' TRAFFIC RAILING / NOISE WALLS
 FOR FLORIDA CORRAL AND VERTICAL SHAPE TRAFFIC RAILINGS

$\begin{array}{c\|} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{array}$		DESCRIPTION:	FDOT	$\begin{gathered} \text { FY 2019-20 } \\ \text { STANDARD PLANS } \end{gathered}$	TYPE K TEMPORARY CONCRETE BARRIER SYSTEM	$\begin{gathered} \text { INDEX } \\ 102-110 \end{gathered}$	SHEET 8 of 17

PARTIAL PLAN VIEW

PARTIAL ELEVATION VIEW
Cross References:
See Sheet 10 for Section $B-B$, Section $C-C$ and Section D-D.
=TRAILING END SPLICE DETAIL= FOR 32" F AND NEW JERSEY SHAPE TRAFFIC RAILINGS WITH RAILING TRANSITION AND END POST

32" F or New Jersey Shape Traffic Railing,
Railing Transition \& End Post (Flat Slab Bridge shown, Beam or Girder Bridge similar)

PARTIAL PLAN VIEW

artial elevation view

> Cross References: See Sheet 10 for Section $B-B$. Section $C-C$ and Section E-E.
\bar{Z} APPROACH TRANSITION SPLICE DETAIL= FOR 32" F AND NEW JERSEY SHAPE TRAFFIC RAILINGS WITH RAILING TRANSITION AND END POST

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		$\begin{gathered} \text { FDO 2019-20 } \\ \text { STANDARD PLANS } \end{gathered}$	TYPE K TEMPORARY CONCRETE BARRIER SYSTEM	$\begin{gathered} \text { INDEX } \\ 102-110 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 9 \text { of } 17 \end{aligned}$

SECTION A-A
32" F Shape Median Traffic Railing (shown), Median Concrete Barrier Wall (similar)

SECTION A-A

32" F Shape Traffic Railing (shown), 42" Traffic Railing and 8' \& 14' Traffic Railing / Noise Walls (similar)

SECTION A-A
32" New Jersey Shape Concrete Barrier Wall (shown), 32" New Jersey Shape Traffic Railing \& other Narrow Traffic Railings (similar)

SECTION A-A

$$
32^{\prime \prime} \& 42^{\prime \prime} \text { Vertical Shape Traffic }
$$ Railing (shown), Florida Corral Traffic Railing (similar)

rie-Beam Guardrail Splice

SECTION D-D
Adjacent to Shoulder Traffic Railings

Adjacent to $32^{\prime \prime}$ F or New Jersey Shape Median Traffic Railing or Median Concrete Barrier Wall

* Shift Thrie-Beam Guardrail Splice
beyond Open Joint 1^{\prime} 'O" Min. (as
shown) when 3" Min. dimension

approach transition from free-standing proprietary temporary barriers to anchored type k temporary concrete barriers
\qquad Edge of Travel Way

approach and trailing end transitions from free-standing type k temporary concrete barriers to free-standing proprietary temporary barriers

* NOTE:

Where Barrier is located within Clear Zone of opposing traffic, Approach Transition is required.

LEGEND:
 $\left[\begin{array}{l}\text { Dot indicates number and } \\ \text { position of Bolts or Stakes }\end{array}\right.$ \ldots \ldots

trailing end transition from anchored type K temporary concrete barriers to free-standing proprietary temporary barriers

TYPE K-PROPRIETARY TEMPORARY CONCRETE BARRIER TRANSITIONS

APPROACH TRANSITION FROM FREE-STANDING PROPRIETARY TEMPORARY BARRIERS TO BACK-FILLED TYPE K TEMPORARY CONCRETE BARRIERS

TRAILING END TRANSITION FROM BACK-FILLED TYPE K TEMPORARY CONCRETE BARRIERS TO FREE-STANDING PROPRIETARY TEMPORARY BARRIERS
\square

- Type K-Proprietary Barrier Transition Unit (See APL) -
median approach and trailing end transitions from free-standing type K temporary concrete barriers to free-standing proprietary temporary barriers

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	20	DESCRIPTION:	FDOTY	$\begin{gathered} \text { FY 2019-20 } \\ \text { STANDARD PLANS } \end{gathered}$	TYPE K TEMPORARY CONCRETE BARRIER SYSTEM	$\begin{gathered} \text { INDEX } \\ 102-110 \end{gathered}$	$\begin{gathered} \text { SHEET } \\ 12 \text { of } 17 \end{gathered}$

APPROACH SHOULDER BARRIER ON UNDIVIDED FACILITIES

APPROACH SHOULDER BARRIER ON DIVIDED FACILITIES

\square
INTERIOR MEDIAN BARRIER
\qquad

LEGEND

- Dot Indicates Number And
- Dot Indicates Number And
Position of Bolts Or Stakes $\square \cdot{ }^{\text {Positic }}$

departure (trailing) shoulder barrier on undivided facilities (BARRIER TYPE K ON BRIDGES AND APPROACH SLABS)

departure (trailing) shoulder barrier on divided facilities (BARRIER TYPE K ON bRIDGES AND APPROACH SLABS)

CONTINUATION OF BARRIER • FROM OTHER TYPE BARRIERS TO BARRIER TYPE K

NOTE.

When subjected to reverse direction hits, construc ransition Panels from Temporary Barrier to Cras Cushions: for additiona detais refer to the applicable crash cushion drawings on the APL.

LEGEND:
Dot indicates number and position of Bolts or Stakes \cdots

unidirectional - SEPARATED TRAFFIC

bidirectional - Separated traffic

wo-way traffic with crash cushion located outside opposing lane clear zone or one-way traffic

two-way traffic with crash cushion located within opposing lane clear zone

Shielding ends with redirective crash cushions (Redirective option)

fabrication notes
In order to maintain crashworthiness of the Barrier System, do not substitute different grades, sizes, shapes or types of reinforcing steel or those shown for constructing Type K Barrier Units. Also, do not substitute different type, size, length or material grade anchor bolts, .
FAbricator PREQuALIFICATIONS:
A. The Concrete Plant that meets the requirements,
for prestressed concrete
b. Specification 105 for precast.

CONCRETE:
A. Construct Barrier Units with Class IV concrete in accordance with Specification 346 .
B. Specification $346-10.2$ through $346-10.4$ are not applicable
B. Specification 346-10.2 through 346-10.4 are not applicable

REINFORCING STEEL:
A. Use only steel reinforcing that meet ASTM A 615, Grade 60, with the exception of Bars 6D1, 6D2 and 6D3.
. Bars $601,6 D 2$ and $6 D 3$ use steel reinforcing that meets ASTM A 706 , with the exception that a $234^{\prime \prime}$ diameter pin must be used for the 180 degree bend test.
accordance with s sing farrication hot dip galvanized in accordance with Specification 962 or coated with a cold galvanizing compound At the Fabricator's optionication 562, all or part of Bars 60 .
The
F. Install Bars 6 D within $1 /{ }^{n}$ af of the plan dimensions.

At Coct placement of Bars 60 is critical for proper fit up and performance of individual Barrier Units.
Sheet 15 may be utilized in lieu of Bars 4 A and 5B.
I. All dimensions in the Bending Diagrams are out to out.
j. Install all reinforcing steel with a $2^{\prime \prime}$ minimum cover, except as noted.

LIFTING SLEEVE ASSEMBLY:
A. Inclusion of the Lifting Sleeve Assemblies is optional.
. Use steel in accordance with ASTM A 53 for the Pipe Sleeve
SURFACE FINISH:
A. Construct Barrier Units in accordance with Specification Sections 400 and 521
B. Finish the top and sides of the Barrier Units with a General Surface Finish.
C. Finish the bottom of the Barrier Units to a dense uniform surface by floating in lieu of the General Surface Finish. D. Use stationary metal forms or stationary timber forms with a form liner.

MARKING:
A. Permanently mark the top left end of each Barrier Unit by the use of an embedded and anchored metallic plate with letters
and figures a minimum of $0.5^{\prime \prime}$ tall.
B. Ink stamps are not allowed

Permanently
Type K1
Date of manufacture (day, month and year)

ELEVATION VIEW

SECTION THRU LIFT/DRAIN SLOT

Cross References:
For Section A-A
For Section $A-A$, Section $B-B$ and

ANCHOR BLOCKOUT DETAIL

SECTION D-D (Reinforcement not shown for clarity)

Measured from end of Barrier Unit to outside edge of Bars $6 D$.

Lifting sleeve ASSEMBLY DETAIL (OPTIONAL)

ALTERNATE REINFORCING STEEL DETAIL
WELDED WIRE REINFORCEMENT
 D 17.2 (Typ.
vertical bar) $3^{1 / 2 / 2^{\prime \prime}} 4^{4 / z^{\prime \prime}} 4^{41 / 2^{\prime \prime}}-3^{31 / 2^{11}}$

NO. 4 DRAIN BAR OVER DRAIN SLOTS conventional steel

Place $2 \sim$ No. 5 Bars (12^{\prime}-3" long) in bottom of Welded Wire Reinforcement cage as shown.
Match D17.2 spacing to Bars 4A in the Elevation View, Sheet 15
Field trim D17. 2 to clear drain slot by $2^{\prime \prime}$
CONFIGURATION ONE

NO. 4 DRAIN BAR OVER DRAIN SLOTS (CONVENTIONAL STEEL)

NO. 4 TYPICAL BAR CONVENTIONAL STEEL)

No. 4 Drain Bar over drain
slots
slots (Conventional Steel),
(Conventional Steel),
placed with D 19.7
placed with D 19.7
except over drain slots
NOTES:
Place $2 \sim$ No. 5 Bars ($12^{\prime}-3^{\prime \prime}$ long) tied to D 19.7 inside of bottom Welded Wire
Reinforcement cage as shown.
Field trim D19.7 to clear drain slot by $2^{\prime \prime}$
CONFIGURATION TWO

CONVENTIONAL REINFORCING STEEL BENDING DIAGRAMS

BILL OF REINFORCING STEEL			
MARK	SIZE	NUMBER	LENGTH
A1	4	10	$6^{\prime}-l^{\prime \prime}$
$A 2$	4	2	$5^{\prime}-5^{\prime \prime}$
B	5	5	$12^{\prime}-3^{\prime \prime}$ (Straight)
C	6	6	$3^{\prime}-l^{\prime \prime}$
$D 1$	6	2	$8^{\prime}-4^{\prime \prime}$
$D 2$	6	2	$7^{\prime}-6^{\prime \prime}$
$D 3$	6	2	$8^{\prime}-6^{\prime \prime}$
E	4	4	$2^{\prime}-0^{\prime \prime}$

BAR $6 C$

BAR $4 E$

STIRRUP BAR 4A1

TOP VIEW BARS 6D1, 6D2 \& 6D3
$8^{\prime \prime}$ Min. (Limit of Galvanizing) $>$

SIDE VIEW BARS 6D1, 6D2 \& 6D3

STIRRUP BAR 4A2

GENERAL NOTES

1. Pursuant to 35 United States Code, Chapter 18, also known as the Bayh Dole Act of 1980 , the non mountable curb was developed through' federal funding. The 'Portable Temporary
Low Profile Barrier For Roadside Safety' is alicensed design by the University Of Florida Low Profile Barrier For Roadside Safety' is a licensed design by the University of Florida
Any infringement on the rights of the designer shall be the sole responsibility of the user
2. This Index is provided by the Florida Department of Transportation solely for use by the
Department and its assignees. The purpose for this Index is to indicate the approval of use of the barrier on the State Highway System; to provide sufficient pictorials for
identifying the barrier unit; and, to provide general installation geometry for the barrier.
3. This legally mandated relationship is unique to federally funded University patents that
Department contractors use on Contracts. Pursuant to federal law, the University may pursue royalties for a valid patent. Only those barrier units cast by producers licensed by the University of Florida will be allowed for installation on the State Highway System
in Florida. Barrier wall units shall conform to Section 521 of the Standard specification in Florida. Barrier wall units shall conform to Section 521 of the Standard Specificalion
and shall be produced in Department-apporoved plants with quality control plans for precasting concrete barrier walls. Each barrier wall unit shall be permanently marke
with an identification that is traceable to the manufacturer, the producing precast with an identification that is traceable to the manuf acturer, the producing precast
concrete plant and the date of production. This permanent tidentification mark will serve as certification that the unit has been manufactured in accordance with University
Florida drawings and specifications, and the aporoved quality control program.
4. The low profile barrier is to be installed only with hardware and accessories furnished by
the licensed barrier prosucer. Units shall be used for no purpose interconnected segments in a run of barrier. Low profile barrier wall units shall maintain

$$
\text { 5. The low profile barrier is applicable for work zone speeds of } 45 \mathrm{mph} \text { or less }
$$

6. If the plans specify Low Profile Barrier then substitution with other barrier types is not
7. Tubular markers shall be orange in color and installed along the run of barrier at the
ends and at 50^{\prime} centers on tangents and 25' centers on radii. The markers shall be fixed to the top of the barrier by an adhesive or other method approved by the e engineer. and
Approach end thits shall be marked with a Type I objed apt marker. The cost of the tubular
markers and Type I object marker shall be included in the cost of the low profile barrier
8. Information regarding licensing, shop drawings, specifications, quality control and
certification of compliance can be obtained from the University of Florida: office of Technology Licensing, P.O. Box 115500, Gainesville, Florida, 32611-5500. Telephone: 352-392-8929, Fax: 352-392-6600. Reference UF\#11052
9. The Portable Temporary Low Profile Barrier For Roadside Safety shall be paid for under
the contract unit price for Barrier Wall (Temporary) Low Profile Concrete, LF, and will be the contract unit price for Barrier Wall (Temporary) Low Profile Concrete, LF, and will
full compensation for furnishing, installing, maintaining and removing barrier wall
10. Deflection space shall be kept clear of any grass, construction debris,
stockpiled materials, equipment, and ob jects.

bACKSIDE AND END PICTORIAL VIEWS
PORTABLE TEMPORARY LOW PROFILE BARRIER FOR ROADSIDE SAFETY

CONCAVE CONNECTION

flat face female end

BEVELED FACE MALE END

PARALLEL CONNECTION

CONVEX CONNECTION
PLAN VIEWS OF CONNECTIONS

WORK ZONE SPEED	OFFSET TO TRAVELWAY	DEFLECTION SPACE
45 MPH ORLSSS	2^{\prime} PREFIN MRRED	$9^{\prime \prime}$

END VIEWS

Notes:
LIMITATION OF USE: This installation technique
can only be used on flexible or rigid pavement. ASPHALT PAD: Where existing pavement is not
 with Specification Section 339 with the exception
with the the use of a pre-emergent herbicide is not
that that the use of a pre-emergent herbicide is
required. payment for asphalt par will be
included in the cost of the barrier.

DEFLECTION SPACE AT DROP-OFFS

PLAN VIEW OF APPROACH END OFFSET

PORTABLE TEMPORARY LOW PROFILE BARRIER FOR ROADSIDE SAFETY

maximum curvature - minimum radius
PORTABLE TEMPORARY LOW PROFILE BARRIER FOR ROADSIDE SAFETY

SHEET	CONTENTS
1	General Notes
2	Definitions Temporary Traffic Control Devices Pedestrian and Bicyclist Overhead Work Railroads Sight Distance Above Ground Hazard
3	Clear Zone Widths For Work Zones Superelevation Length Of Lane Closures Overweight/Oversize Vehicles Lane Widths High-Visibility Safety Apparel Regulatory Speeds In Work Zones
4	Flagger Control Survey Work Zones Signs
5	Work Zone Sign Supports Project Information Sign
6	Commonly Used Warning and Regulatory Signs In Work Zones
7	Manholes/Crosswalks/Joints Truck Mounted Attenuators Removing Pavement Markings Signals Channelizing Devices Channelizing Devices Consistency Portable Changeable (Variable) Message Signs (PCMS) Advanced Warning Arrow Boards
9	Drop-Offs In Work Zones
10	Business Entrance Temporary Asphalt Separator
11	Channelizing Devices Notes Temporary Barrier Notes
12	Pavement Markings
8	Pa

GENERAL NOTES:

 1. All projects and works on highways, roads and streets shall have atraffic control plan. All work shall be executed under the established plan and Department-approved procedures. This Index contains informatio specific to the Federal and State guidelines and standards for the preparation of traffic control plans and for the execution of traffic
control in work zones, for construction and maintenance operations and utility work on highways, roads and streets on the State Highway System. Certain requirements in this Index are based on the high
volume nature of State Highways. For highways, roads and street volume nature of State Highways. For highways, roads and streets
off the State Highway System, the local agency (City/County) having jurisdiction may adopt requirements based on the minimum requirements provided in the MUTCD.
2. Indexes 102-601 through 102-670 are Department-specific typical applications of commonly encountered situations. Ad just device location or number thereof as recommended by the Worksite Traffic Supervisor and approved by the Engineer. Devices include, but are not limited to Flaggers, portable temporary signals, signs, pavement markings, and channelizing devices. Comply with MUTCD or applicable Department criteria for any changes and document the reason for the change.
3. Except for emergencies, any road closure on State Highway System shall comply with Section 335.15, F.S.

DEFINITIONS

Regulatory Speed (In Work Zones)
The maximum permitted travel speed posted for the work zone is indicated by the regulatory speed limit signs. The work zone speed must be shown or noted in the
plans. This plans. This speed should be used as the minimum design speed to determine r
lengths, departure rates. flare rates. lenoths of need clear zone widths, taper lengths, crash cushion requirements, marker spacings, supereeleveation and other similar features.

Advisory Speed

The maximum recommended travel speed through a curve or a hazardous area Travel Way
The portion of the roadway for the movement of vehicles. For traffic control any other permanent or temporary surface intended for use as a lane for the movement of vehicular traffic.
a. Travel Lane: The designated widths of roadway pavement marked to carry through traffic and to separate it from opposing traffic or traffic occupying other traffic lanes.
b. Auxiliary Lane: The designated widths of roadway pavement marked to separate speed change, turning, passing and climbing maneuvers from
through traffic. Detour, Lane Shift, and Diversion
A detour is the redirection of traffic onto another roadway to bypass the temporary traffic control zone. A lane shift is the redirection of traffic onto a
different section of the permanent pavement. A diversion is the redirection of traffic onto a temporary roadway, usually adjacent to the permanent roadway and within the limits of the right of way.

Aboveground Hazard

An aboveground hazard is any object, material or equipment other than traffic control devices that encroaches upon the travel way or that is located within the clear zone which does not meet the Department's safety criteria, i.e.,.
anything that is greater than $4^{\prime \prime}$ in height and is firm and unyielding or doesn't meet breakaway requirements.

TEMPORARY TRAFFIC CONTROL DEVICES

All temporary traffic control devices shall be ON the Department's Approved
Products List (APL). Ensure the appropriate APL number is permanently marke Products List (APL). Ensure the approprial
the device in a readily visible location.
All temporary traffic control devices shall be removed as soon as practical when they are no longer needed. When work is suspended for short periods of time, or covered.
Arrow Boards, Portable Changeable Message Signs, Radar Speed Display Trailer Portable Regulatory Signs, and any other trailer mounted device shall be delineated
with a channelizing device placed at each corner when in use and shall be moved outside the travel way and clear zone or be shielded by a barrier or crash cushion when not in use.

PEDESTRIAN AND BICYCLIST

When an existing pedestrian way or bicycle way is located within a traffic control work zone, accommodation must be maintained and provision for the disabled must be provided.
Only approved pedestrian Iongitudinal channelizing devices may be used to delineate a temporary traffic control zone pedestrian walkway.

Advanced notification of sidewalk closures and marked detours shall be provided by appropriate signs.

OVERHEAD WORK

work is only allowed over a traffic lane when one of the following
OPTION 1 (OVERHEAD WORK USING A MODIFIED LANE CLOSURE)
Overhead work using a modified lane closure is allowed if all of the following
conditions are met:
a. Work operation is located in a signalized intersection and
limited to signals, signs, lighting and utilities.
b. Work operations are 60 minutes or less,
c. Speed limit is 45 mph or less.
d. Aerial lift equipment in the work area has high-intensity, rotating, flashing
oscillating, or strobe lights operating.
e. erene.
f. Traffic control devices are placed in advance of the vehicle/equipment
.Traffic control devices are placed in advance of
closing the lane using a minimum 100 foot taper.
g. Volume or complexity of the roadway may dictate additional devices, signs,

OPTION 2 (OVERHEAD WORK ABOVE AN OPEN

TRAFFIC LANE)

Overhead work above a open traffic lane is allowed if all of the following
conditions are met:
a. Work operation is located on a utility pole, light pole, signal pole, or
b. Work appurtenances. \qquad
c. Speed limit is 45 mph or less.
d. No encroachment by any part of the work activities and equipment within an area bounded by 2 feet outside the edge of travel way and 18 feet high.
e. Aerial lift equipment in the work area has high-intensity, rotating,
flashing, oscillating, or strobe lights operating.
Volume or complexity of the roadway may dict
signs, flagmen and/or a traffic control officer
. Sins, flagne adior a traftic control oficer.
other ob jects from falling into open lanes of traffic
other objects from falling into open lanes of traffic.
h. Other Governmental Agencies, Rail facilities, or Codes may require a
h. Other Governmental Agencies, Rail facilities, or Codes may require a
greater clearance. The greater clearance required prevails as the rule.

OPTION 3 (OVERHEAD WORK ADJACENT TO AN OPEN TRAFFIC LANE)
Overhead work adjacent to an open traffic lane is allowed if all of the
following conditions are met:
a. Work operation is located on a utility pole, light pole, signal pole, or their - Wepurtenances.
b. Work operations are 1 day or less.
d. No encroa is 45 mph or less.

2 foot fachment by any part of the work activities and equipment within foot from the edge of travel way up to 18^{\prime} height.
Above 18^{\prime} in height, no encroachment by any part and equipment ar work operations of 60 minutes or less).
Aerial lift equipment in the work area has high-in
flashing, oscillating, or strobe lights operating.
f. Volume or complexity of the roadway may dictate
signs, flagmen and/or a traffic control officer. devices,
other objects from falling into open lanes of traffic.
Other Governmental Agencies, Rail facilities traffic.
greater clearane. Ageres may require a learance. The greater clearance required prevails as the rule.

OPTION 4 (OVERHEAD WORK MAINTAINING TRAFFIC WITH

 NO ENCROACHMENT BELOW THE OVERHEAD WORK AREA) Traffic shall be detoured, shifted, diverted or paced as to not encroach in the area directly below the overhead work operations in accordance with the appropriate index drawing or detailed in the plans. This option appliesto, but not limited to, the following construction activities:
a. Beam, girder, segment, and bent/pier cap p/
b. Form and falsework placement and removal.
b. Form and falsework
d. Railing construction located at edge of deck.
e. Structure demolition.

OPTION 5 (CONDUCTOR/CABLE PULLING ABOVE AN OPEN TRAFFIC LANE)
Overhead cable and/or de-energized conductor installations initial pull to proper tension shall be done in accordance with the appropriate Index or
temporary traffic control plan.
Continuous pulling operations of secured cable and/or conductors are allowed over open lane(s) of traffic with no encroachment by any part of the work
activities, materials or equipment within the minimal vertical clearance above the travel way. The utility shall take precautions to ensure that pull ropes and conductors/cables at no time fall below the minimum vertical clearance.
on Limited Access facilities, a site specific temporary traffic control plan is required. The temporary traffic control plan shall include:

路
b. During pulling operations, advance warning consisting of no less than a Changeable Message Sign upstream of the work area with alternating messages, Overhead Work Ahead" and "Be Prepared to Stop" followed by a traffic contro

RAILROADS

Railroad crossings affected by a construction project should be evaluated for traffic ontrols to reduce queuing on the tracks. The evaluation should include as a minimum raffic volumes, distance from the tracks to the intersections, lane closure or taper locations, signal timing, etc

SIGHT DISTANCE

apers: Transition tapers should be obvious to drivers. If restricted sight distance is roblem (e.g., a shap vertical or horizontal curve), the taper should begin well in curves.

Inter sections: Traffic control devices at intersections must provide sight distances for
the road user to perceive potential conflicts and to traverse the intersection safely. the road user to perceive potential conflicts and to traverse the intersection safely.

ABOVEGROUND HAZARD

Aboveground hazards (see definitions) are to be considered work areas during working hours and treated with appropriate work zone traffic control procedures. During nonworking hours, all objects, materials and equipment that constitute an aboveground hazard must be stored/placed outside the travel way and clear zone or be shielded by a barrier or crash cushion.

For aboveground hazards within a work zone the clear zone required should be based on the regulatory speed posted during construction.

CLEAR ZONE WIDTHS FOR WORK ZONES

The term 'clear zone' describes the unobstructed relatively flat area, impacted by construction, extending outward from the edge of the traffic lane. The
able below gives clear zone widths in work zones for medians and roadside conditions other than for roadside canals; where roadside canals are present, clear zone widths are to conform with the distances to canals as described i the FDOT Design Manual 215.2.

| CLEAR ZONE WIDTHS FOR | | |
| :---: | :---: | :---: | WORK ZONES

SUPERELEVATION

Horizontal curves constructed in conjunction with work zone traffic Control should have the required superelevation applied to the design he under conditions where normal crown controls curvature,

MINIMUM RADII FOR	
NORMAL	CROWN
WORK ZONE	
POSTED SPEED	MINIMUM RADIUS
MPH	feet
70	4090
65	3130
60	2400
55	1840
50	1390
45	1080
40	820
35	610
30	430
Superelevate When Smaller	
Radii is Used	

LENGTH OF LANE CLOSURES

55 MPH or tates and state highways with a posted speed of (includes taper, buffer, and work zone) in any given direction and must not close two consecutive interchanges.

OVERWEIGHT/OVERSIZE VEHICLES

Restrictions to Lane Widths, Heights or Load Capacity can greatly shall notify the Engineer who in turn shall notify the State Permits Office, phone no. (850) 410-5777, at least seven calendar days in advance of implementing a maintenance of traffic plan which will mpact the flow of overweight/oversized vehicles. Information weight) and restriction time frames. When the roadway is restored to normal service the State Permits office shall be notified immediately.

LANE WIDTHS

Lane wiaths of through roadways should be maintained through work zone travel ways wherever practical. The minimum widths for work zone lane provided in each direction, unless formally excepted by the Feder Highway Administration; 11' for freeways; and 10' for all other facilities.

HIGH-VISIBILITY SAFETY APPAREL

All high-visibility safety apparel shall meet the requirements of the International Safety Equipment Association (ISEA) and the American National Standards Institute (ANSI) for "High-Visibility Safety Apparel", and labeled as ANSI/ISEA 107-2004 or newer. The apparel background (outer) material color shall be either fluorescen
orange-red or fluorescent yellow-green as defined by the standard. The etroreflective material shall be orange, vellow, white silver, vellow-green fluorescent version of these colors, and shall be visible at a minimum distance of 1,000 feet. Class 3 apparel may be substituted for Class 2 apparel. Replace apparel that is not visible at 1,000 feet.
WORKERS: All workers within the right-of-way shall wear ANSI/ISEA Class 2 apparel. Workers operating machinery or equipment in which loose clothing could Workers inside the bucket of a bucket truck are not required to wear high-visibility safety apparel.
UTILITIES: When other industry apparel safety standards require utility workers to wear apparel that is inconsistent with FDOT requirements such as NFPA, OSHA, ANSI, etc., the other standards for apparel may prevail.
FLAGGERS: For daytime activities, Flaggers shall wear ANSI/ISEA Class 2 apparel

REGULATORY SPEEDS IN WORK ZONES

Traffic Control Plans (TCP's) for all projects must inciude specific regulatory speeds for each phase of work. This can either be the posted speed or a reduced speed if no reduction is to be made. Regulatory speeds are to be uniformly established through each phase.

In general, the regulatory speed should be established to route vehicles safely through the work zone as close as to normal highway speed as possible. The egulatory speed should not be reduced more than 10 mph below the posted speed
and never below the minimum statutory speed for the class of facility. When a speed reduction greater than 10 mph is imposed, the reduction is to be done in 10 mph per 500^{\prime} increments.
Temporary regulatory speed signs shall be removed as soon as the conditions equiring the reduced speed no longer exist. Once the work zone regulatory speeds go back into effect unless new speed limit signing is provided for in the plans.

On projects with interspaced work activities, speed reductions should be located in proximity to those activities which merit a reduced speed, and not "blanketed" for should be posted to give the motorist notice that normal speed can be resumed.

If the existing reguratory speed is to be used, consideration should be given to supplementing the existing signs when the construction work zone is between existing regulatory speed signs. For projects where the reduced speed conditions
exist for greater than 1 mile in rural areas (non-interstate) and on rural or urban interstate, additional requlatory speed signs are to be placed at no more than 1 mile intervals. Engineering judgement should be used in placement of the additional signs. Locating these signs beyond ramp entrances and beyond major intersections are examples of proper placement. For urban stuations (non-interstate), additional speed signs are to be placed at a maximum of 1000^{\prime} apart.

When field conditions warrant speed reductions different from those shown in the CP the contractor may submit to the project engineer for approval by the epartment, a signed and sealed study to justify the need for further reducing the posted speed, or, the engineer may request the District Traffic Operations Engineer (DTOE) to investigate the need. It will not be necessary for the DTOE to解 of the field engineer for temporary use while processing a request to change the egulatory speed specified in the plans when deemed necessary. Advisory speed plates cannot be used alone but must be placed below the construction warning sign for which the advisory speed is required.

For additional information, refer to the FDOT Design Manual 240

FLAGGER CONTROL

WORKERS symbor ar used, a flatager symbol or legend sign must replace the
The flagger must be clearly visible to approaching traffic for a distance sufficien to permit proper response by the motorist to the flagging instructions, and to
permit trafficic to reduce speed or to stoo as reauired before entering the work site. Flaggers shall be positioned to maintain maximum color contrast between the Flagger's high-visibility safety apparel and equipment and the work area background.

Hand-Signaling Devices
STOP/SLOW paddles are the primary hand-signaling device. The STOP/SLOW paddle shall have an octagonal shape on a rigid handle. If the STOP/sLLOW paddle placed on a rigid staff, the minimum length of the staff, measured from the bottom of the padale to the end or the starf that rests on the ground, must not be less
than 6 ft. STop/sLow paddles shall be at least 24 inches wide with letters at least 6 inches high and should be fabricated from light semiri igid material. The background of the STOP face shall be red with white eetters and border. The background of the sLow face shall be or ange with black leetters and border. When used at night-time, the STOP/SLOW paddle shall be retroreflectorized.
Flag use is limited to immediate emergencies, inter sections, and when working on the centerline or shared left turn lanes where two (2) flaggers are required and there is opposing traffic in the ad jacent lanes. Flags, when used, shall be a
minimum of 24 inches saure made of a aood grade of red material, and securel/ minimum of 24 inches syuare, made of a good grade of red material, and secuu
fastened to a staff that is approximately 36 inches in length. When used at nighttime, flags shall be rettroreflectorized red.

Flashlight, lantern or other lighted signal that will display a red warning light shall be used at night.

Flagger Stations

Flagger stations shall be located far enough in advance of the work space so that approaching road users will have sufficient distance to stop before entering the

SURVEY WORK ZONES

The SURVEY CREW AHEAD symbol or legend sign shall be the principal Advance Warning Sign used for Traffic Control Through Survey Work Zones and may replace the ROAD WORK AHEAD sign when lane closures occur, at the discretion of the
Party Chief. Party Chief. When Traffic Control Through Work Zones is being used for survey purposes only,
the END ROAD WORK sign as called for on certain 102 Series of Indexes should be omitted.

Survey Between Active Traffic Lanes

or Shared Left Turn Lanes

The following provisions apply to Main Roadway Traffic Control Work Zones. These provisions must be ad justed by the Party Chief to fit roadway and traffic conditions when the Survey Work Zone includes intersections.
A) A STAY IN YOUR LANE (MOT-1-06) sign shall be added to the Advance Warning Sign sequence as the second most immediate sign from the work area.
(B) Elevation Surveys-Cones may be used at the discretion of the Party Chief to protect prism holder and flagger(s). Cones, if used, may
intervals along the break line throughout the work zone.
(C) Horizontal Control-with traffic flow in the same direction, cones shall be used to protect the backsight tripod and/or instrument. Cones shall be placed at the
equipment, and up to 50^{\prime} intervals for at least 200^{\prime} towards the flow of traffic.
(D) Horizontal Control-with traffic flow in opposite directions, cones shall be used to protect the backsight tripod and/or instrument. Cones shall be placed at the equipment, and up to 50^{\prime} intervals for at least 200^{\prime} in both directions towards the flow of traffic.

SIGNS

SIGN MATERIALS

 Mesh signs and non-retroreflectice vinyl signs may only be used for daylightoperations. Non-retroreflectice vinyl signs must meet the requirements of Specifications Section 994.

Retroreflective vinyl signs meeting the requirements of Specification Section 994 may be used for
in the Indexes.
Rigid or Lightweight sign panels may be used in accordance with the vendor APL drawing for the sign stand to which they are attached.

INTERSECTING ROAD SIGNING

signing for the control of traffic entering and leaving work zones by way of intersecting crossroads shall be adequate to make drivers aware of work zone
conditions. When Work operations exceed 60 minutes, place the ROAD WORK AHEAD sign on the side street entering the work zone.

ADJOINING AND/OR OVERLAPPING WORK ZONE SIGNING

 Adjoining work zones may not have sufficient spacing for standard placement of signs and other traffic control devices in their advance warning areas or in somcases other areas within their traffic control zones. Where such restraints or conflicts occur or are likely to occur. one of the following methods will be employe o avoid conflicts and prevent conditions that could lead to misunderstanding on the procedure applied:
(A) For scheduled projects the engineer in responsible charge of project design
will resolve anticipated work zone conflicts during the development of the will resolve anticipated work zone conflicts during the development of the project traffic control plan. This may entail revision of plans on preceding
projects and coordination of plans on concurrent projects.
(B) Unanticipated conflicts arising between adjoining in progress highway construction projects will be resolved by the Resident Engineer for projects under his residency, and, by the District Construction Engineer for in progress projects under ad joining residencies
(C) The District Maintenance Engineer will resolve anticipated and occurring conflicts within scheduled maintenance operations.
(D) The Unit Maintenance Engineer will resolve conflicts that occur within routine nainten Winder work; and betwe mait controlled maintenanced work highway construction projects.

Sign covering and intermittent work stoppage signing Existing or temporary traffic control signs that are no longer applicable or are inconsistent with intended travel paths shall be removed or fully covered.

Sign blanks or other available coverings must completely cover the existing sign. Rigid sign in a manner to prevent movement.

Sign covers are incidental to work operations and are not paid for separately.
SIGNING FOR DETOURS, LANE SHIFTS AND DIVERSIONS Detours should be signed clearly over their entire length so that motorists can easily determine how to return to the original roadway. The reverse curve (W1-4) warning sign should be used for the advanced warning for a lane shift. A diversion should be

EXTENDED DISTANCE ADVANCE WARNING SIGN

Advance Warning Signs shall be used at extended distance of one-half mile or more whe their vehicle to a stop. Extended distance Advanced Warning Signs may be required on any type roadway, but particularly be considered on multilane divided highways where vehicle speed is generally in the higher range (45 MPH or more).

UTILITY WORK AHEAD SIGN

The UTILITY WORK AHEAD (W21-7) sign may be used as an alternate to the ROAD WORK AHEAD or the ROAD WORK XX FT (W2O-1) sign for utility operations on or adjacent to a highway

LENGTH OF ROAD WORK SIGN

The length of road work sign (G20-1) bearing the legend ROAD WORK NEXT _-_._ MILES is required for all projects of more than 2 miles in length. The number of miles entered should be rounded up to the nearest mile. The sign shall be located at begin construction

SPEEDING FINES DOUBLED WHEN WORKERS PRESENT SIGN The SPEEDING FINES DOUBLED when workers present sign should be installed on all projects, but may be omitted if the work operation is less than 1 day. The placemen
should be 500 feet beyond the ROAD WORK AHEAD sign or midway to the next sign whichever is less.

GROOVED PAVEMENT AHEAD SIGN

The GROOVED PAVEMENT AHEAD sign is required 500 feet in advance of a milled or grooved surface open to traffic. The W8-15P placard shall be used in conjunction with the GROOVED PAVEMENT AHEAD sign.

END ROAD WORK SIGN

The END ROAD WORK sign (G20-2) should be installed on all projects, but may be omitted 500 feet beyond the end of a construction or maintenance project unless other distance is called for in the plans. When other Construction or Maintenance Operations occur within 1 mile this sign should be omitted and signing coordinated in accordance with Index 102-600, ADJoIning And/or overlapping work zone signing.

PROJECT INFORMATION SIGN

The Project information sign shall be installed when called for in the plans.

TEMPORARY SIGN SUPPORT NOTES

1. All signs shall be post mounted when work operations exceed one day except for:
a. Road closure signs mounted in accordance with the vendor drawing for the Type III Barricade shown on the APL.
b. Pedestrian advanced warning or pedestrian regulatory signs mounted on sign supports in accordance with
the vendor drawing shown on the APL. Median barrier mounted signs per Index 700-013.
2. Unless shielded with barrier or outside of the Clear Zone, signs mounted on temporary supports or barricades, and barricade/sign combination must be crashworthy in
accordance with NCHRP 350 requirements and included on the Approved Products List (APL).
3. Use only approved systems listed on the Department's Approved Products List (APL).
4. Manufacturers seeking approval of U-Channel and steel square tube sign support assemblies for inclusion on the Approved Products List (APL) must submit a $A P L$,
application, design calculations (for square tube only), application, design calculations (for square tube only),
and detailed drawings showing the product meets all the requirements of this Index.
5. Provide $3 \mathrm{lb} / \mathrm{ft}$ Steel U-Channel Posts with a minimum section modulus of $0.43 \mathrm{in}^{3}$ for 60 ksi steel, a minimum section modulus of 0.37 in ${ }^{3}$ for 70 ksi steel, or a minimum section modulus of $0.34 \mathrm{in}^{3}$ for 80 ksi stee
6. Provide $4 \mathrm{lb} / f t$ Steel U-Channel Posts with a minimum section modulus of 0.56 in ${ }^{3}$ for 60 ksi steel, or a 80 ksi steel.
7. U-channel posts shall conform with ASTM A 499, Grade 60, or ASTM A 576 , Grade 1080 (with a minimum yield
strength of 60 ksi). Square tube posts shall conform with ASTM A 653, Grade 50, or ASTM A 1011, Grade 50.
8. Sign attachment bolts, washers, nuts, and spacers shall conform with ASTM A307 or A 36 .
9. For diamond warning signs with supplement plaque (up to $5 \mathrm{ft}^{2}$ in area), use $4 \mathrm{lb} / \mathrm{ft}$ posts for up to 10 ft Clear Height (measure to the bottom of diamond warning sign).
10. Install $4 \mathrm{lb} / \mathrm{ft}$ Steel U-Channel Posts with approved breakaway splice in accordance with the manufacture cetail shown on the APL.
11. The contractor may install $3 \mathrm{lb} / \mathrm{ft}$ Steel U-Channel Posts with approved breakaway splice in accordance with the manufacturer's detail shown on the APL.
12. Install all posts plumb.
13. The contractor may set posts in preformed holes to the specified depth with suitable backfill sign posts and any size base post in accordance with the manufacturer's detail shown on the APL.

ROAD

2 POST SIGN SUPPORT MOUNTING DETAILS
(SINGLE POST SIMILAR)
\qquad

$$
\begin{aligned}
& \text { ROAD } \\
& \text { WORK }
\end{aligned}
$$

 Nuts \& Washers (Typ.) eel U-Channel Posts Bottom of Sign
rex

2 POST SIGN SUPPORT MOUNTING DETAILS (SINGLE POST SIMILAR) URBAN

TYPICAL FOUNDATION DETAIL
See APL for post, splice and connection details. No bolts installed closer than $1^{\prime \prime}$ to cutting edge.

3 POST SIGN SUPPORT MOUNTING DETAILS
Where $W=48^{\prime \prime}: a=1^{\prime}-41_{2}^{\prime \prime}\left(\pm 1^{\prime \prime}\right)$
$w=72^{\prime \prime}: a=2^{\prime}-1^{\prime \prime}\left(\pm 1^{\prime \prime}\right)$

SECTION A-A
(SCHEMATIC)

POST AND FOUNDATION TABLE FOR		
WORK ZONE SIGNS		
SIGN SHAPE	SIGN SIZE (inches)	NUMBER OF STEEL U CHANNEL POSTS
Octagon	30×30	1
Triangle	$36 \times 36 \times 36$	1
	$48 \times 48 \times 48$	1
	$60 \times 60 \times 60$	2
Rectangle$(W \times H)$	24×18	1
	24×30	1
	30×24	1
	36×18	1
	36×24	1
	48×18	1
	48×24	1
	36×48	2
	48×30	2
	48×36	2
	54×36	2
	48×60	3
	60×54	3
	72×48	3
	$120 \times 60^{*}$	4*
Square	30×30	1
	36×36	2
	48×48	2
$\begin{aligned} & \text { Diamond } \\ & \text { (See Note 7) } \end{aligned}$	48×48	2
circle	360	2

Notes For Table:

1. Use $3 \mathrm{lb} / \mathrm{ft}$ posts for Clear Height up to 10^{\prime} and $4 \mathrm{lb/ft}$ posts for Clear Height up to 12^{\prime}.

* Use $4 \mathrm{lb} / \mathrm{ft}$ U-channel sign post with a mounting height of 7^{\prime} min. and 8^{\prime} max. Attach sign panel using z-bracket detail on Sheet 6 .

2. Minimum foundation depth is 4.0° for $3 \mathrm{lb} / \mathrm{ft}$ posts and 4.5^{\prime} for $4 \mathrm{lb} / \mathrm{ft}$ posts.
3. For both $3 \mathrm{lb} / f t$ and $4 \mathrm{lb} / f t$ base or sign posts installed in rock, a minimum cumulative depth of 2^{\prime} of rock layer is required.
4. The soil plate as shown on the APL vendor drawing is not required for base posts or sign posts installed in existing rock (as
defined in Note 3), asphalt roadway, shoulder pavement or soil under sidewalk.

MANHOLES/CROSSWALKS/JOINTS

Manholes extending $1^{\prime \prime}$ or more above the travel lane and crosswalks
having an uneven surface greater than $1 /{ }^{\prime \prime}$ shall have a temporary
asphalt apron constructed as shown in the diagram below.
All transverse joints that have a difference in elevation of $1^{\prime \prime}$ or more
shall have a temporary asphalt apron constructed as shown in the
diagra
Manhole or othe
above ground obstruction

The apron is to be removed prior to constructing the next lift of asphalt. The cost of the temporary asphalt shall be included in the contract unit price for Maintenance of Traffic, LS.

REMOVING PAVEMENT MARKINGS
Existing pavement markings that conflict with temporary work zone delineation shall be removed by any method approved by the conflicting pavement marking using a method that will not damag the surface texture of the pavement, unless the pavement will be restored prior to traffic use. Painting over existing pavement markings with black paint or spraying with asphalt shall not be accepted as substitute for removal or obliteration. Full pavement surface) are an acceptable alternate means to achieve removal.

SIGNALS

Existing traffic signal operations that require modification in order to carry out work zone traffic control shall be incluaded in the TCP and be approved by the District Traffic Operations Engineer.
Maintain all existing actuated or traffic responsive mode signal operations for main and side street movements for the duration of 12 hours. The contractor shall select only detection technology listed on the Department's Approved Products List (APL) and approved by the Engineer to restore detection capabilities

ADVANCE WARNING ARROW BOARDS

 n arrow board inFor shoulder work, blocking the shoulder, for roadside work near the shoulder, or for temporarily closing one lane on a two-lane, two-wa

A single arrow board shall not be used to merge traffic laterally more Alon one lane. When arrow boards are used to close multiple lanes, hen Advance Warning Arrow Boards are used at night, the intensity of the flashers shall be reduced during darkness when lower intensities are desirable.

move/merge left

move/merge right

- Minimum Required Lamps Additional Lamps Allowed

PORTABLE CHANGEABLE MESSAGE SIGNS (PCMS)
The PCMS can be used to
Supplement standard signing in construction or maintenance work
Reinforce static advance warning messages.
Provide motorists with updated guidance information
PCMS should be placed approx. 500 to 800 feet in advance of the wor zone conflicts or 0.5 to 2 miles in advance of complex traffic contro
schemes which require new and/or unusual traffic maneuvers.
If PCMS are to be used at night, the intensity of the flashers shall be
reduced during darkness when lower intensities are desirable.
For additional information refer to the FDOT Design Manual 240.

TRUCK/TRAILER-MOUNTED ATTENUATORS

Truck/Trailer-mounted attenuators (TMA) can be used for moving operations and short-term stationary operations. For moving operations, see Indexes 102-607
and 102-619. For short-term, stationary operations, see Part VI of the MUTCD

CHANNELIZING DEVICES

Part VI of the MUTCD, subject to supplemental revi isions provides in ibed in Part VI of the MUTCD, subject to supplemental revisions provided in the contract supplement channelization.

CHANNELIZING DEVICE CONSISTENCY

Barricades, vertical panes, cones,tubur markers and drums shat tangent alignment.

DROP-OFF CONDITION NOTES

1. These conditions and treatments can be applied only in work areas that fall within a properly signed work zone.
2. When drop-offs occur within the clear zone due to construction or maintenance activities, protection devices are required (See Table 1). A drop-off is defined as a drop in elevation, parallel to the adjacent travel lanes, greater than $3^{\prime \prime}$ with Slope (A:B) steeper than 1:4. In superelevated sections, the algebraic difference in
slopes should not exceed 0.25 (See Drop-off Condition Detail).
3. Drop-offs may be mitigated by placement of slopes with optional base material per Specification 285. Slopes shallower than 1:4 may be required to avoid algebraic difference in slopes greater than 0.25. Include the cost for the placement and removal of the material in Maintenance of Traffic, LSD. Use of this treatment in lieu of a temporary barrier is not eligible for CSIP consideration. Conduct daily
inspections for deficiencies related to erosion, excessive slopes, rutting or other adverse conditions. Repair any deficiencies immediately.
4. For Setback Distance, refer to the Index or Approved Products List (APL) drawing of the selected barrier.
5. For Conditions 1 and 3 provided in Table 1, any drop-off condition that is created and restored within the same work period will not be subject to the use of temporary barriers however, channelizing devices will be required.
6. When permanent curb heights are $\geq 6^{\prime \prime}$, no channelizing device will be required. For curb heights < $6^{\prime \prime}$, see Table 1 .

DROP-OFF CONDITION DETAIL

Table 1 Drop-off Protection Requirements			
Condition	$\begin{gathered} x \\ (f t) \end{gathered}$	$\begin{gathered} D \\ \text { (in.) } \end{gathered}$	Device Required
1	0-12	>3	Temporary Barrier
2	> $12-\mathrm{Cz}$	>3 to ≤ 5	Channelizing Device
3	O-Cz	> 5	Temporary Barrier
4	Remov Retain	Bridge or I/ Barrier	Temporary Barrier
5	$\begin{array}{r} \text { Remova } \\ \quad \mathrm{Br} \end{array}$	ortions of Deck	Temporary Barrier

travel lane treatment for

milling or resurfacing notes

1. This treatment applies to resurfacing or milling operations between adjacent travel lanes.
2. Whenever there is a difference in elevation between adjacent travel lanes, the W8-11 sign with "UNEVEN LANES" is required at intervals of $1 / 2$ mile maximum.
3. If D is $11 / 2$ or less, no treatment is required.
4. Treatment allowed only when D is $3^{\prime \prime}$ or less.
5. If the slope is steeper than 1:4 (not to be steeper than 1:1), the R4-1 and MOT-1-06 signs shall be used as a supplement to the w8-11; this condition should never exceed 3 miles in length.

TRAVEL LANE TREATMENT FOR milling or resurfacing detail

Table 3 Device Spacing				
Speed (mph)	Max. Distance Between Devices (ft.)			
	Tubular Markers	Vertical Pane/s or opposing Trafic Divider Lane		
	Taper	Tangent	Taper	Tangent
25	25	50	25	50
30 to 45	25	50	30	50
50 to 70	25	50	50	100

Entire Separator Shall Be
Painted Reflectorized rellow
Painted Reflectorized Yellow
Asphalt (See Note 5)
Lane Separator
(Included In Cost of Separator)
Lane Separator

PLAN

Tubular Marker
orange
Vertical Pane o/w

Dpposing Traffic Lane Divider W6-4 B/0
FIXED (SURFACE MOUNTED) CHANNELIZING DEVICES

SECTION AA

1. Temporary lane separators shall be supplemented with any of the following approved fixed (surface mounted) channelizing devices: tubular markers, vertical panels, or opposing traffic lane divider panels. Opposing traffic lane divider panels (W6-4) shall only be used as center lane dividers to separate opposing vehicular traffic on a two-lane, two-way operation. Tubular Markers, Vertical Panels and Opposing Traffic Lane Divider panels shall not be intermixed within the limits where the temporary lane separator is used. The connection between the
channelizing device and the temporary lane separator curb shall hold the channelizing device in a vertical position.
2. Reflectorized materials shall have a smooth sealed outer surface which will display the same approximate color day and night. Furnish channelizing devices having retroreflective sheeting meeting the requirements of Section 990 .
3. 12" openings for drainage shall be constructed in the asphalt and portable temporary lane separator at a maximum spacing of 25^{\prime} in areas with grades of 1% or less or 50^{\prime} in areas with grades over 1% as directed by the Engineer
4. Tapered ends shall be used at the beginning and end of each run of the temporary lane separator to form a gradual increase in height from the pavement level to the top of the temporary lane separator.
5. The Contractor has the option of using portable temporary lane separators containing fixed channelizing devices in lieu of the temporary asphalt separator and channelizing devices detailed on this sheet. The portable temporary ane separator shall come in portable sections that can be connected to maintain continuous alignment between the
separate curb sections. Each temporary lane separator section shall be 36 inches to 48 inches in total length Portable temporary lane separators shall duolicate the color of the pavement marking. Portable temporary lane separators shall be one of those listed on the Approved Products List.
6. Any damage to existing pavement caused by the removal of temporary lane separator shall be satisfactorily 6. Any damage to existing pavement caused by the removal of temporary lane separator shall be satis
repaired and the cost of such repairs are to be included in the cost of Maintenance of Traffic, LS.

$\begin{array}{\|c\|} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{array}$		$\begin{gathered} \text { FY 2019-20 } \\ \text { FDOTANDARD PLANS } \end{gathered}$	GENERAL INFORMATION FOR TRAFFIC CONTROL THROUGH WORK ZONES

CHANNELIZING DEVICE NOTES:

1. The details shown on this sheet are for the following purposes:
a. For ease of identification and
b. To provide information that supplements or supersedes that provided by the MUTCD.
2. The Type III Barricade shall have a unit length of $6^{\prime}-0^{\prime \prime}$ only. When barricades of The Type III Barricade shall have a unit tength of $6^{\circ}-0^{\prime \prime}$ only. When barricades of
greater lengths are required those lengths shall be in multiples of the $6^{\prime}-0^{\prime \prime}$ unit.
3. No sign panel should be mounted on any channelizing device unless the channelizing avice/sign combination was found to be crashworthy and the sign panel is mounted in accordance with the
Products List (APL)
4. Ballast shall not be placed on top rails or any striped rails or higher than $13^{\prime \prime}$ above the driving surface. 5. The direction indicator barricade may be used in tapers and transitions where specific
directional guidance to drivers is necessary. If used, direction indicator barricades shall be used in series to direct the driver through the transition and into the intended
travel lane.
5. The splicing of sheeting is not permitted on either channelizing devices or MOT signs.
6. For rails less than $3^{\prime}-0^{\prime \prime}$ long, $4^{\prime \prime}$ stripes shall be used
7. Cones shall:
. Be used only in active work zones where workers are present.
Be reflectorized as per the MUTCD with Department-approved
eflective collars when used at night.
8. Vehicular longitudinal channelizing devices shall not exceed $36^{\prime \prime}$ in height. For vehicular Tongitudinal channelizing devices (LCDs) less than 32" in height, the LCD shall be supplemented with approved fixed (surface mounted) channelizing devices (tubular markers, vertical panels, etc.) along the run of the LCD, at the ends, at 50^{\prime} centers o tangents, and 25 centers on radil. The cost of the fixed supplemented channelizing
devices shall be included in the cost of the LCD. LCDs less than $32^{\prime \prime}$ in height shall not be used for speeds greater than 45 mph .
9. For pedestrian longitudinal channelizing devices, the device shall have a minimum of $8^{\prime \prime}$ continuous detectable edging above the walkway. A gap not exceeding a height of $2^{\prime \prime}$ is allowed to facilitate drainage. The top surface of the device shall be a minimum height of $32^{\prime \prime}$ and have a $1 / 8 "$ or less difference in any plane at all connection points between the devices to facilitate hand trailing. The bottom and the top surface of the device shall be in the same vertical plane. If pedestrian dropoff protection is required, the device shall have a footprint or off set
of at least 2^{\prime}, otherwise the device must be at least $42^{\prime \prime}$ in height above of at least 2', otherwise the device must be at least $42^{\prime \prime}$ in height above
the walkway and be anchored or ballasted to withstand a 200 Ib lateral point load at the top of the device.
10. For Barrier Delineators, see Specification 102. Place on top of unit that retroreflective sheeting faces vehicular traffic. Color must match adjacent longitudinal pavement marking.

EMPORARY BARRIER NOTES:

1. Where a barrier is specified, any of the types below may be used in accordance with the applicable Index:

$$
\begin{array}{ll}
\frac{\text { Index }}{102-100} & \text { Description } \\
\text { Temporary Barrier } \\
\text { 102-120 } & \text { Low Profile Barriel } \\
536-001 & \text { Guardrail }
\end{array}
$$

2. Trailer Mounted Barriers may be used to provide positive protection for workers within the work areas. APL drawings may be used as a
 that are signed and sealed by the Contractor's Engineer

VEHICULAR/ PEDESTRIAN LCD

Use Barrier Delineators Per Note 11 When Placed Of The Edge Of Travel Way

PEDESTRIAN LCD

LONGITUDINAL CHANNELIZING DEVICE
102-600 11 of 12

6" Double Yellow

USE OF RPMS TO SUPPLEMENT PAINT OR REMOVABLE TAPE IN WORK ZONES 1. RPMs shall be installed as a supplement to: a
b. Edge lines in transition \& approach areas.
c. Edge lines of gore areas.
2. Placement of RPMs should be as shown in Index 706-001 with the following exceptions: RPMS shall be placed at 5 feet center to center in approach and transition areas

NOTES FOR RAISED PAVEMENT MARKERS

1. The color of the raised pavement marker under both day and night conditions shall conform supplement.
2. RPMS used to supplement lane lines are to be paid for as Raised Pavement Marker Temporary), EA. RPMs used as a temporary substitute for paint or removable tape due to equipment malfunction are to be placed at the Contractor's expense.

PLACEMENT OF PAVEMENT MARKINGS

| $\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$ | \|c|cher | $\begin{gathered} \text { FY 2019-20 } \\ \text { FTANDARD PLANS } \end{gathered}$ | GENERAL IINFORMATIION FOR TRAFIFIC CONTROL THROUGH WORK ZONES | $\begin{gathered} \text { INDEX } \\ 102-600 \end{gathered}$ | $\begin{gathered} \text { SHEET } \\ 12 \text { of } 12 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

GENERAL NOTES

1. If the work operation (excluding establishing and terminating the work area) requires that two or more work vehicles cross the offset zone in any one hour

2. No special signing is required.
3. When a side road intersects the highway within the work area, additional TTC devices shall be placed in accordance with other applicable TCZ Indexes.
4. When construction activities encroach on a sidewalk refer to Index 102-660
5. For general TCZ requirements and additional information, refer to Index 102-600

CONDITIONS

Where any vehicle, equipment WORKERS AND THEIR ACTIVITIES ARE BEHIND AN EXISTING BARRIER, MORE THAN 2' BEHIND THE CURB,
OR 15' OR MORE FROM THE EDGE of tRAVEL WAY

8^{\prime} minimum shoulder width
${ }^{1 / 3 L}=$ Length of shoulder taper in feet
W = Width of total shoulder in feet (combined paved and unpaved width)
$s=$ Posted speed limit (mph)

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	\|	DESCRIPTION:		$\begin{gathered} \text { FY 2019-20 } \\ \text { STANDARD PLANS } \end{gathered}$	TWO-LANE, TWO-WAY, WORK ON S HOULDER	$\begin{gathered} \text { INDEX } \\ 102-602 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 1 \end{aligned}$

YMBOLS

ZZ Work Are

- Channelizing Device (See Index 102-600)

『 Work Zone Sign
\square Flagger
\Longrightarrow Lane Identification + Direction of Traffic

WITHOUT TEMPORARY RAISED RUMBLE STRIPS

GENERAL NOTES:

1. Special Conditions may be required in accordance with these notes
A. Railroad Crossings.
a. If an active railroad crossing is located closer to the Work Area than
the queue length plus 300 feet, extend the Buffer Space as shown on Sheet 3.
If the gu
b. Invo the queuing of vehicles across an active railroad crossing cannot be highway-roil grade uniformed traffic control officer or flagger at the the highway-rail grade crossing, even if automatic train warning devices are in place.
B. If the Work Area encroaches on the Centerline, use the Layout for
Temporary Lane Shift to Shoulder on Sheet 3 , olly if the Existin Temporary Lane Shift to Shoulder on Sheet 3 only if the Existing
Paved Shoulder width is sufficient to provide for an 11' lane
bated between the Work Area and the Edge of Existing Paved Shoulder.
Reduce the posted speed when appropriate.
2. Temporary Raised Rumble Strips:
A. Use when both of the following conditions are met concurrently:
a. Existing Posted Speed is 55 mph or greater: b. Work duration is greater than 60 minutes.
B. Use a consistent Strip color throughout the work zone
C. Place each Rumble Strip Set transversely across the lane at locations
D. Use Option 1 or option 2 as shown on Sheet 2 . Use only one option
throughout work zone.
3. Additional one-way control may be provided by the following means:
A. Flag-carrying vehicle;
B. official vehicle;
B. Pilot vehicles;
D. Traftic signals.

When flaggers are the sole means of one-way control, the flaggers
must be in sight of each other or in direct communication at all times.
4. When a side road intersects the highway within the TTC zone, place
additional TTC devices in accordance with other applicable TCZ Indexes
5. The two channelizing devices directly in front of the work area may be omitted provided vehicles in the work area have high-intensity rotating,
6. When Buffer Space cannot be attained due to geometric constraints, us greater than 25 mph.
7. ROAD WORK AHEAD and the BE PREPARED TO STOP signs may be omitted if all of the following conditions are met:
A. Work operations are 60 minutes or less.
C. There are no sight obstructions to vehicles approaching the work area for
a distance equal to the Buffer Space shown in Table
D. Vehicles in the work area have high-intensity, rotating, flashing, oscillating, or strobe lights oper ating.
E. Volume and conmperity in F. If a railroad crossing is present, vehicles will not queue across rail tracks. F. If a railroad crossing
G. AFADS are not in use.
8. See Index 102-600 for general TCZ requirements and additional information.
9. Automated Flagger Assistance Devices (AFADs) may be used in accordance with Specifications Section 102, 990 and the APL vendor drawings.

TABLE 1									
$\begin{aligned} & \text { Post } \\ & \text { Sped } \end{aligned}$	DEVICE SPACING				Distance Between Signs				$\begin{aligned} & \text { Buffer } \\ & \text { Space } \end{aligned}$
	Maximum Spacing of Cones or Tubular Markers		Maximum Spacing of Type I or Type II Barricades/Panels/Drums						
	$\begin{aligned} & \hline \text { On a } \\ & \text { Taper } \end{aligned}$	$\begin{gathered} \hline \text { On a } \\ \text { Tangent } \end{gathered}$	$\begin{aligned} & \hline \text { On a } \\ & \text { Taper } \end{aligned}$	$\begin{gathered} \text { On a } \\ \text { Tangent } \end{gathered}$	A	B	c	D	
25	20^{\prime}	50^{\prime}	20^{\prime}	50^{\prime}	200'	200^{\prime}	200^{\prime}	100^{\prime}	155'
30	20^{\prime}	50^{\prime}	20^{\prime}	50^{\prime}	200'	200'	200^{\prime}	100^{\prime}	200'
35	20^{\prime}	50^{\prime}	20^{\prime}	50^{\prime}	200'	200'	200^{\prime}	100^{\prime}	250'
40	20^{\prime}	50^{\prime}	20°	50^{\prime}	200'	200'	$200{ }^{\prime}$	100^{\prime}	305^{\prime}
45	20^{\prime}	50^{\prime}	20^{\prime}	50^{\prime}	350^{\prime}	350^{\prime}	350^{\prime}	175'	360'
50	20°	50^{\prime}	20°	100^{\prime}	500'	500'	500'	250^{\prime}	425'
55	20^{\prime}	50^{\prime}	20°	100^{\prime}	2640^{\prime}	1500^{\prime}	1000^{\prime}	500^{\prime}	495'
60	20^{\prime}	50^{\prime}	20^{\prime}	100^{\prime}	2640^{\prime}	1500^{\prime}	1000^{\prime}	500^{\prime}	570
65	20^{\prime}	50^{\prime}	20^{\prime}	100^{\prime}	2640^{\prime}	1500^{\prime}	1000^{\prime}	500^{\prime}	645^{\prime}
70	20^{\prime}	50^{\prime}	20^{\prime}	100^{\prime}	2640^{\prime}	1500^{\prime}	1000	500^{\prime}	730^{\prime}

CONDITIONS

Where any vehicle, equipment
WORKERS OR THEIR ACTIVITIES ENCROACH THE AREA BETWEEN OUTSIDE THE EDGE OF TRAVEL WAY

LAST REVISION 11/01/17	\|

FDOTY $\begin{gathered}\text { FY 2019-20 } \\ \text { STANDARD PLANS }\end{gathered}$

YMBOLS

Zl/t Work Area

- Channelizing Device (See Index 102-600)
[] Work Zone Sign
- Flagger
\Rightarrow Lane Identification + Direction of Traffic

WITH TEMPORARY RAISED RUMBLE STRIPS

(When Required See GENERAL NOTE 2

removable polymer striping tape
\qquad OPTION - 1

MOLDED ENGINEERED POLYMER SET
\qquad OPTION - 2

TEMPORARY RAISED RUMBLE STRIPS

temporary railroad crossing buffer space extension

[^0]\qquad

GENERAL NOTES

1. The FLAGGER legend sign may be substituted for the symbol sign.
2. When vehicles in a parking zone block the line of sight to TCZ signs, the signs
shall be post mounted and located in accordance with Index 700-101.
3. If the work space extends across a crosswalk, the crosswalk should be closed using the information in Index 102-660.
4. Flaggers shall be located where they can control more than one direction of traffic.

Flaggers shall be in sight of each other or in direct communication at all times.
5. Maximum spacing between channelizing devices shall be not greater than 20^{\prime}.
6. Temporary signal phasing modifications are to be approved by the District Traffic Operations Engineer prior to the beginning of work.
7. For general TCZ requirements and additional information, refer to Index 102-600
8. For unsignalized intersections, use Temporary Raised Rumble Strips in accordance with Index 102-603. Placement of Rumble Strips and adaitional signs shoula beg at FLAGGER sign location.

DURATION NOTES

1. ROAD WORK AHEAD AND END ROAD WORK sign may be omitted if all of the following conditions are met:
a. Work operations are 60 minutes or les.
b. Speed is 45 mph or less.

Speed	Spacing (ft.)		
	A	B	
40 mph or less	200	200	
45 mph	350	350	

c. No sight obstructions to vehicles approaching the work

$$
\begin{aligned}
& \text { area for a distance equal to } A \text { plus } B \text {. } \\
& \text { Vehicles in the work area have high-int }
\end{aligned}
$$

flashing, oscillating, or strobe lights operating rotating,
e. Volume and complexity of the roadway has been considered.

CONDITIONS
Where any vehicle, equipment WORKERS OR THEIR ACTIVITIIES ENCROACH ON THE PAVEMENT
REQUIRING THE CLOSURE OF A portion of one or more traffic LANES IN AN INTERSECTION.

FDOT	FY 2019-20
STANDARD PLANS	

general notes

Use either portable signals or span wire signals and include two signal faces for each approach
2. Obtain approval from the District Traffic Operations Engineer for the installation and timing of the signals prior to the signals being placed in operation. Adjust timing based on Changing freld conditions as approved by
the Worksite Traffic Supervisor. Obtain approval from the District Traffic Operations Engineer for any timing changes that are either reoccurring or last longer than 24 hours.
3. For the maximum distance between portable distance between portable temporary traffic signals do not exceed the distance at which the signals temporary traffic signals do not exceed the distance at which the signals
can safely communicate. When the distance between signals is 0.25 miles to 0.50 miles, use a countdown timer on both signals. When the distance between signals is greater than 0.50 miles, use a combination of a pilot vehicle and manually controlled temporary traffic signals.
4. The SIGNaL AHEAD legend sign may be substituted for the symbol sign,
5. Use Type III Barricades to block haul road access when the haul road is not in operation and a flagger/signal operator is not on duty, except when the haul road is an existing properly marked road
6. Monitor temporary traffic signals by having one or more workers present during operation. In the event of a temporary traffic signal failure, maintain traffic with flaggers.
7. Use Temporary Raised Rumble Strips in accordance with Index 102-603.

SYMBOLS

ZZZ \triangle Work Area
[Work Zone Sign
■o. Temporary Traffic Signal

- Channelizing Device (See Index 102-600)
- Type III Barricade
- Stop Bar

■ Flagger
$\Longrightarrow \quad$ Lane Identification + Direction of Traffic

single lane closure • Roadway and bridges all lengths

momentary roadway closure • haul route crossing

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	\|r	DESCRIPTION:		FY 2019-20 STANDARD PLANS	TWO-LANE, TWO-WAY, WORK WITHIIN THE TRAVEL WAY - SIGNAL CONTROL	$\begin{gathered} \text { INDEX } \\ 102-606 \end{gathered}$	SHEET 4 of 4

OPTION 1: Advanced Warning Vehicle is optional and to be operated on the shoulder when feasible. If an Advance Warning Vehicle is operated in the shoulder, an approved Truck Mounted Attenuator is required on both the Advance Warning and Shadow Vehicles. If an Advance
Warning Vehicle is operated in the lane behind the Shadow Vehicle, an approved Truck Mounted Attenuator will be required on the Advance Warning Vehicle, but not required on the Shadow vehicle. The Advance Waning Arrow Board and Warning Sign is required on both the Advance warning and Shadow Vehicles.

OPTION 2: Advanced Warning Vehicle is required and must be operated in the lane behind the shadow vehicle. An approved Truck Mounted Attenuator will be required on the Advanced Warning Vehicle but not required on the Shadow Vehicle. The Advance Warning Arrow Board and Warning Sign is required on both the Advance Warning and Shadow Vehicles.

WORK IN TRAVEL WAY

(Option 2 Shown, Option 1 Similar)

SYMBOLS

VZA
Work Area
$\stackrel{\square}{\square} \quad$ Work Zone Sign
$\stackrel{\square}{\square}$ Work Ventification + Direction of Traffic
Work Vehicle With Rotating/Strobe Lights
Shadow (S) Or Advance Warning (AW) Vehicle with Advance Warning Arrow Board and Sign Message
Truck/Trailer Mounted Attenuator (TMA)

GENERAL NOTES

1. Where work activities within 2^{\prime} of the edge of travel way are incidental
(i.e., Mowing, Litter Removal), the Engineer may delete requirements for
signs and the advance warning vehicle provided vehicles in the work area
have high-intensity rotating, flashing, oscillating, or strobe lights operating.
2. If an arrow board is used, the caution mode shall be used

CONDITIONS
3. Shadow and Advance Warning Vehicle shall display rotating/strobe lights.
4. For general TCZ requirements and additional information, refer to Index 102-600

WHERE ANY VEHICLE, EQUIPMENT, WORKERS OR THEIR ACTIVITIES REQUIRE AN INTERMITTENT OR

GENERAL NOTES

1. If the work operation (excluding establishing and terminating the work area), requires that two or more work vehicles cross the offset zone in any one hour, traffic control will be in accordance with Index 102-612.
2. No special signing is required.
3. This index also applies when work is being performed on a multilane undivided highway
4. This index also applies to work performed in the median behind an existing barrier or more than 15^{\prime} from the edge of travel way, both roadways. Work performed in the median behind curb and gutter shall be in accordance with Index 102-612.

SYMBOLS

Ila Work Area

Lane Identification + Direction of Traffic
5. When a side road intersects the highway within the work area, additional traffic control devices shall be placed in accordance with other applicable TCZ Indexes.
6. When construction activities encroach on a sidewalk, refer to Index 102-660.
7. For general TCZ requirements and additional information, refer to Index 102-600.

CONDITIONS

where any vehicle, equipment WORKERS AND THEIR ACTIVITIES WORKERS AND THEIR ACTIVITIES MORE THAN 2' BEHIND THE CURB, OR 15^{\prime} OR MORE FROM THE EDGE of travel way.

* 250^{\prime} beyond the ROAD WORK AHEAD sign or
midway between signs whichever is less.

GENERAL NOTES

SYMBOLS

ZZZ work Area

- Channelizing Device (See Index 102-600)
[] Work Zone Sign
\Longrightarrow Lane Identification + Direction of Traffic

1. When a high volume of work vehicles are entering and leaving the Work Area at Speeds slower than 10 MPH below the posted speed, place an MOT-5-06 sign in the
ROAD WORK AHEAD sign location and shift the ROAD WORK AHEAD sign upstream ROAD WORK AHEAD sign location and shift the ROAD WORK AHEAD sign upstream
500 ft . 500 ft .
2. This TCZ plan also applies to work performed in the median more than 2^{\prime} but less than 15' from the edge of travelway.
3. When work is being performed on a multilane undivided roadway the signs normally mounted in the median (as shown) shall be omitted.
4. WORKERS signs to be removed or fully covered when no work is being performed.
5. SHOULDER WORK sign may be used as an alternate to the WORKER symbol sign.
6. When a side road intersects the highway within the TTC zone, additional TTC

When a side road intersects the highway within the TIC zone, additional ITC
7. For general TCZ requirements and additional information, refer to Index 102-600

DURATION NOTES

1. Signs and channelizing devices may be omitted if all of the following conditions are met
a. Work operations are 60 minutes or less.

Vehicles in the work area have high-intensity, rotating.
flashing, oscillating, or strobe lights operating

Table II

$\begin{aligned} & \text { Speed } \\ & \text { (mph) } \end{aligned}$	1/3L (ft.)			Notes
	$\begin{gathered} 8^{\prime} \\ \text { Shidr. } \end{gathered}$	$\begin{array}{c\|c} 10^{\prime} \\ \text { Shldr. } \end{array}$	$\begin{gathered} 122^{\prime} \\ \text { shidr. } \end{gathered}$	
25	28	35	42	$L=\frac{W S^{2}}{60}$
30	40	50	60	
35	55	68	82	
40	72	90	107	
45	120	150	180	L=wS
50	133	167	200	
55	147	183	220	
60	160	200	240	
65	173	217	260	
70	187	233	280	

$1 / 3 L=$ Length of shoulder taper in feet
$w=$ Width of total shoulder in feet (combined paved and unpaved width)
$s=$ Posted speed limit (mph)

CONDITIONS

WHERE ANY VEHICLE, EQUIPMENT, WORKERS OR THEIR ACTIVITIES ENCROACH THE AREA CLOSER THAN
15' BUT NOT CLOSER THAN 2' TO the edge of travel way

FDOTY	$\begin{gathered} \text { FY 2019-20 } \\ \text { STANDARD PLANS } \end{gathered}$	MULTILANE, WORK ON S HOULDER	$\begin{gathered} \text { INDEX } \\ 102-612 \end{gathered}$	SHEET 1 of 1

DISTANCE BETWEEN SIGNS			
Speed	Spacing (ft.)		
	A		
40 mph or less	200	200	200
45 mph	350	350	350
50 mph	500	500	500
mph or greater	2640	1640	1000

*The ROAD WORK 1 MLLE sign mán The ROAD WORK 1 MILE sign may be used
as an alternate to the ROAD WORK AHEAD sign and the RIGHT LANE CLOSED $1 / 2$ MILE sign may be used as an alternate to the RIGHT LANE CLOSED AHEAD sign.
**500' beyond the ROAD WORK AHEAD sign or midway between signs whichever is less.

SYMBOLS

VZ \triangle Work Area

- Channelizing Device (See Index 102-600)
[Work Zone Sign
- Advance Warning Arrow Board

GENERAL NOTES

1. Work operations shall be confined to one traffic lane, leaving the adjacent lane open to traffic.
2. On undivided highways the median signs as shown are to be omitted.
3. When work is performed in the median lane on divided highways, the channelizing device plan is inverted and left lane closed and lane ends signs substituted for the right lane closed and lane end signs.
The same applies to undivided highways with the following exceptions:
a. Work shall be confined within one median lane,
b. Additional barricades, cones, or drums shall be placed along the centerline abutting the work area and across the trailing end of the work area.
When work on undivided highways occurs across the centerline so as to encroach on both median lanes, the inverted plan is applied to the approach of both roadways.
4. Signs and traffic control devices are to be modified in accordance with INTERMITTENT WORK STOPPAGE details (sheet 2 of 2) when no work is being performed and the highway is open to traffic.
5. The two channelizing devices directly in front of the work area may be omitted provided vehicles in the work area have high-intensity rotating, flashing, oscillating, or strobe lights operating.
6. When paved shoulders having a width of 8 ft . or more are closed, channelizing devices shall be used to close the shoulder in advance of the merging taper to direct vehicular traffic to remain within the travel way. See Index 102-612 for shoulder taper formulas.
7. When a side road intersects the highway within the TTC zone, additional TTC devices shall be placed in accordance with other applicable TCZ Indexes.
8. This TCZ plan does not apply when work is being performed in the middle lane(s) of a six or more lane
highway. See Index 102-614. Highway. See Index 102-614

Table I Device Spacing			
Speed (mph) (mper	Max. Distance Between Devices (ft.) Cones or Tubular Markers	Type I I or Type II Baricades or Vertical Panels or Drums	
	Taper	Tangent	Taper
	Tangent		
25	25	50	25
30 to 45	25	50	30
50 to 70	25	50	50

Table II

Buffer Space and Taper Length

$\begin{aligned} & \text { Speed } \\ & (m p h) \end{aligned}$	Buffer Space	Taper Length (12' Lateral Transition)	
	Dist. (ft.)	$\begin{gathered} L \\ (f t .) \end{gathered}$	Notes (Merge)
25	155	125	$L=\frac{W S^{2}}{60}$
30	200	180	
35	250	245	
40	305	320	
45	360	540	$L=w S$
50	425	600	
55	495	660	
60	570	720	
65	645	780	
70	730	840	

When Buffer Space cannot be attained due to geometric constraints, the greatest attainable length shall be used,

For lateral transitions other than 12^{\prime}, us Where:
$L=$ Length of taper in feet $W=$ Width of lateral transition in feet
$S=$ Posted speed limit

DURATION NOTES

1. Temporary white edgeline may be omitted for work operations less than 3 consecutive calendar days.
2. For work operations up to approximately 15 minutes, signs, channelizing devices, arrow board, and buffer space may be omitted if all of the following conditions are met:
b. No sight obstructions to vehicles approaching the work area for a distance equal to the buffer space and the taper length combined.
c. Volume and complexity of the roadway has been considered
. The closed lane is occupied by a class 5 or larger, medium duty truck(s) with
a minimum gross weight vehicle rating (GWVR) of 16,001 lb with high-intenst rotating, flashing, oscillating, or strobe lights mounted above the cab height and operating.
3. For work operations up to 60 minutes, arrow board and buffer space may be omitted if conditions a, b, and c in DURATION NOTE rotating, flashing, oscillating, or strobe lights operating.

CONDITIONS

where any vehicle, equipment WORKERS OR THEIR ACTIVITIES ENCROACH ON THE LANE ADJACENT TO EITHER SHOULDER AND THE AREA 2' OUTSIDE THE EDGE OF TRAVEL WAY.
INDEX
$102-61$
102-613

uneven pavement
intermittent work stoppage - lane reopened to traffic

| $\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$ | \|r|cren | $\begin{gathered} \text { FY 2019-20 } \\ \text { FDOTT } \\ \text { STANDARD PLANS } \end{gathered}$ | MULTILLANE, WORIK WITHIN TRAVEL WAY MEIIAN OR OUTSIDE LANE |
| :---: | :---: | :---: | :---: |

$\begin{aligned} & \text { EXISTING } \\ & \text { POSTED } \\ & \text { SPEED } \end{aligned}$	PROPOSED WORK ZONE SPEED	REMARKS The 'Proposed Work Zone Speeds' are
MPH	MPH	control plan detailed below; however,
65	55	where the Engineer deems other speeds
55	45	are appropriate, the applicable speeds
45	35	are to be shown on the plans.

GENERAL NOTES

Work operations shall be confined to either one lane, or lane combinations as follows
a. Outside travel lane

Outside auxiliary lane
Outside travel lane and adjoining auxiliary lane
d. Inside travel lane Δ;

Inside auxiliary lane
f. Inside travel lane and adjoining auxiliary lane

See Sheet 3
the work area is confined to an auxiliary lane the work area shall be barricaded and the RIGHT (LEFT) LANE CLOSED AHEAD signs replaced by ROAD WORK AHEAD signs, and the merge symbol signs eliminated
2. When vehicles in a parking zone block the line of sight to TCZ signs, the sign hall be post mounted and located in accordance with Index 700-101
3. If the work space extends across a crosswalk, the crosswalk should be closed using the information in Index 102-660.
4. Signs are required on the median side for divided highways.
5. The two channelizing devices directly in front and directly at the end of the wor area may be omitted provided vehicles in the work area have high-intensity rotating, flashing, oscilvating, or strobe lights operating.
6. For general TCZ requirements and additional information, refer to Index 102-600

DURATION NOTES

1. For work operations up to approximately 15 minutes, signs, channelizing devices, and arrow board may be omitted if all o the following conditions are met:
a. Speed limit is 45 mph or less.
b. No sight obstructions to vehicles approaching the work area for a distance equal to twice the taper length.
c. Volume and complexity of the roadway has been considered d. The closed lane is occupied by a class 5 or larger, medium duty truck(s) with a minimum gross weight vehicle rating
(GWVR) of oscillating, or strobe lights mounted above the cab height and operating
2. For work operations up to 60 minutes, the arrow board may be omitted if conditions a, b, and c in
DURATION NOTE 1 are met, and vehicles in the work area have high-intensity, rotating, flashing, oscillating, or strobe lights operating.

SYMBOLS

Work Area
■ Work Zone Sign
© Advance Warning Arrow Boar
T Type III Barricade

- Channelizing Device (See Index 102-600)
$\Rightarrow \quad$ Lane Identification + Direction of Traffic

Right LaNe closed on far side of minor side street

1. The normal procedure is to close on the near side of the intersection any lane that
is not carried through the intersection. However, when this results in the closure of is not carried through the intersection. However, when this results in the closure of
a right lane having significant right turning movements, then the right lane may be restricted to right turns only as shown in this detail.

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		$\begin{gathered} \text { FY 2019-20 } \\ \text { FTANDARD PLANS } \end{gathered}$	MULTILANE, WORK $\mathbb{N E A R ~ I N T E R S E C T I O N ~}$ MEDIAN OR OUTSIDE LANE	$\begin{gathered} \text { INDEX } \\ 102-616 \end{gathered}$	SHEET 2 of 3

DISTANCE BETWEEN SIGNS					
Speed			Spacing (ft.)		
	A	A	C		
40 mph or less	200	200	200		
45 mph	350	350	350		

* 500' beyond the ROAD WORK AHEAD sign midway between signs whichever is less.

Table I Device Spacing				
$\begin{aligned} & \text { Speed } \\ & (m p h) \end{aligned}$	Max. Distance Between Devices (ft.)			
	Cones or Tubular Markers		Type I or Type II Barricades or Vertical Panels or Drums	
	Taper	Tangent	Taper	Tangent
25	25	50	25	50
30 to 45	25	50	30	50

Efft lane closed on far side of minor side street - Restricted turning movements

Table II		
Taper Length - Merge (12' Lateral Transition)		
Speed (mph)	L (ft.)	Notes (Merge)
25	125	
30	180	L $=\frac{\text { WS }^{2}}{60}$
35	245	
40	320	
45	540	$L=W S$

For lateral transitions other than $12^{\prime \prime}$ use formula for L shown in the notes column. Where:
$=$ Length of taper in feet
W $=$ Width of lateral transition in feet
$S=$ Posted speed limit (mph)

1. The normal procedure is to close on the near side of the intersection any lane that is not carried through the intersection. However, when this results in the closure of a left lane having significant left turning
movements, then the left lane may be reopened as a turn bay for left turns only as show in this detail.

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		$\begin{gathered} \text { FY 2019-20 } \\ \text { FTANDARD PLANS } \end{gathered}$	MULTILANE, WORK $\mathbb{N E A R ~ I N T E R S E C T I O N ~}$ MEIIAN OR OUTSIDE LANE

Erect STOP Sign And Install Removable Stop Bar
Markina Remove Or Cover Existina STOP SSian And Marking. Remove or Cover Existing STOP Sign And
Reinstall When Through Lane Reopened To Traffic

- Erect STOP Sign And Install Removable Stop Bar Marking. Remove or Cover Existing STOP Sign And
Reinstall When Through Lane Reopened To Traffic. Reinstall When Through Lane Reopened To Traffic.

WHERE ANY VEHICLE, EQUIPMENT, WORKERS OR THEIR ACTIVITIES ENCROACH ON THE PAVEMENT REQUIRING THE CLOSURE OF EITHER THE OUTSIDE AND CENTER TRAVEL LANES OR THE MEDIAN AND CENTER TRAVEL LANES,
WITH OR WITHOUT CLOSURE OF ADJOINING AUXILIARY LANES, FOR WORK AREA LESS THAN 200^{\prime} FROM INTERSECTION, FOR A PERIOD OF more than 60 minutes.

CONDITIONS

WHERE ANY VEHICLE, EQUIPMENT, WORKERS or their activities encroach on the pavement requiring the closure of either THE OUTSIDE AND CENTER TRAVEL LANES OR THE MEDIAN AND CENTER TRAVEL LANES, WITH OR WITHOUT CLOSURE OF ADJOINING
AUXILIARY LANES, FOR WORK AREA 200' o MORE FROM INTERSECTION, FOR A PERIOD of more than 60 minutes.

Table II		
Taper Length (12' Lateral Transition)		
Speed (mph)	(ft.) (Notes (Merge)
25	125	
30	180	$L=\frac{W^{2}}{60}$
35	245	
40	320	
45	540	$L=W S$

1. If the work space extends across a crossald the crosswalk should be closed using the information in Index 102-660.
2. Signs are required on the median side for divided highways.
3. The two channelizing devices directly in front and directly at the end of the work area may be omitted provided vehicles in the work area have high-intensity rotating, flashing, oscillating, or strobe lights
operating.

For lateral transitions other than 12 use formula for L shown in the notes column. Where:
$w=$ Width of lateral transition in feet
$s=$ Posted speed limit (mph)

- Channelizing Device (See Index 102-600)
[〕 Work Zone Sign
-0. Advance Warning Arrow Board
- Stop Bar
\Rightarrow Lane Identification + Direction of Traffic

4. Within the lateral transitions, the maximum spacing between cones and tubular markers shall be 25^{\prime}. The speed limit as follows ${ }^{\prime}$ 15' the speed limit as follows: 15^{\prime} up to $25 \mathrm{MPH} ; 30^{\prime}$ for $30-40 \mathrm{MPH} ; 50^{\prime}$ for 45 MPH .
Spacing for devices parallel to the travel lanes shall be 25 ' centers for cones or tubular markers and 50^{\prime} centers for Type I or Type II barricades or vertical panels or drums for 250', thereafter, cones or centers.
5. For general TCZ requirements and additional information, refer to Index 102-600.

| $\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$ | \|c|c | DESCRIPTION: | FDOT | $\begin{gathered} \text { FY 2019-20 } \\ \text { STANDARD PLANS } \end{gathered}$ | MULTILANE, WORK $\mathbb{I N}$ INTERSECTION TWO LANES CLOSED - 45 MPH OR LESS | $\begin{gathered} \text { INDEX } \\ 102-618 \end{gathered}$ | $\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 1 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

GENERAL NOTES

1. These illustrations are representative of general conditions
2. The figures illustrate closing the right shoulder or right lanes for various lane configurations. When work is required on left side of roadways, the inverted plan is to be applied. The intent of this Index is to allow passing on only one side of the work convoy.
3. Arrow boards shall not be obscured by equipment, supplies, signs, or the enclosure.
4. Vehicle-mounted signs shall be mounted with the bottom of the sign a minimum height of 48 inches above the pavement. Vehicle mounted changeable message signs may be used in lieu of truck mounted static signs. Changeable message signs shall flash Iternately to read "Left or Right Lane" or "Two Left or Two Righ
anes", "Closed Ahead", and the arrow symbol. Arrow boards shall not be used with truck mounted changeable message signs. Sign legends shall be covered or turned from view when work is not in progress.
5. On freeway facilities (interstates, toll roads, and expressways), a traffic control officer is required for all nighttime non-emergenc operations for work within the travel lane.

TES

SYMBOLS

Advance Warning (AW) Vehicle with
Arrow Board and Sign Message or Changeable Message Sign ruck/Trailer Mounted Attenuator (TMA) ane Identification And Direction of Traffic
6. If the work vehicle speed exceeds the minimum legal speed limit on limited access facilities and one half the posted speed limit on other facilities, the Engineer may delete requirements for shadow
vehicle and attenuator. The work vehicle will be required to have an arrow board and sign message.
7. Where work activities within 2^{\prime} of the edge of travel way are Incidental (i.e. Mowing, Litter Removal), the Engineer may delete
requirements for signs and the advance warning vehicle provided requirements for signs and the advance warning vehicle provided oscillating, or strobe lights operating.
8. Work, Shadow, and Advance Warning Vehicles shall have high-intensity, rotating, flashing, oscillating, or strobe lights operating.
9. Functional two-way communication is required between all vehicles in the moblle operation convoy.
10. For general TCZ requirements and additional information, refer to Index 102-600.

SCHEME APPLICATIONS

Scheme 1: Restricted Construction Limits.
Scheme 2: Unrestricted Construction Limits And Light To Moderate Traffic.

GENERAL NOTES

1. TWO-WAY TRAFFIC sign(s) shall be repeated every $1 / 4$ mile in each direction hroughout the tangent distance (T).
2. L (min.) $\underset{\text { W }^{2}}{=\text { Ws }}$ for speeds $\geq 45 \mathrm{mph}$ ${ }^{W W^{2}}=-\quad$ for speeds $\leq 40 \mathrm{mph}$
Where:
$w=$ width of lateral transition in feet.
$\mathrm{S}=$ Posted speed limit (mph).
3. Where the tangent distance (T) exceeds 250°, spacing between Type I or II barricades or vertical panels or drums may be increased to 100^{\prime} within the limits of the tangent, or post mounted delineators at 50^{\prime} centers may be substituted for
barricades, vertical panels or drums.
4. All existing pavement markings within the realignment which conflict with the revised traffic pattern are to be removed and removable pavement markings used for making new edge lines.
5. When side roads, cross roads or interchanges intersects the highway within the TTC Eone, additional TTC devices shall be placed in accordance with other applicable TC Indexes.
6. For general TCZ requirements and additional information, refer to Index 102-600.

Scheme 3: Unrestricted Construction Limits And Moderate To Heavy Traffic.
Where: Construction Limits Are The Outward Beginning or Ending of Lane Reductions.

Where: Unless A Specific Scheme Is Called For In The Plans, Scheme Selection Shall Bo Engineer

SYMBOLS

Zlla Work Area

- Channelizing Device (See Index 102-600)
[] Work Zone Sign
- Advance Warning Arrow Board
\Longrightarrow Lane Identification + Direction of Traffic

CONDITIONS
WHERE ANY VEHICLE, EQUIPMENT
WORKERS OR THEIR ACTIVITIES
WORKERS OR THEIR ACTIVITIES
REQUIRE THE CLOSURE OF ONE
ROADWAY AND THE OPPOSING
roadway is converted to WAY OF CROSSOVERS.

* The ROAD WORK 1 MILE sign may be used as an alternate to the ROAD WORK AHEAD sign MILE
sign may be used as an alternate to the RIGHT LANE CLOSED AHEAD sign.
** See Table II for L
*** 500' beyond the ROAD WORK AHEAD sign or midway between signs whichever is less.

Table I Device Spacing				
Speed (mph)	Max. Distance Between Devices (ft.) Tubular Markers	Type I or Type II Rarricades or Vertical Panels or Drums		
	Taper	Tangent		
	Tangent			
25	25	50	25	
30 to 45	25	50	30	
50 to 70	25	50	50	

- Channelizing Device (See Index 102-600)
[] Work Zone Sign
-. Advance Warning Arrow Board

Buffer Space and Taper Length				
$\begin{aligned} & \text { Speed } \\ & (m p h) \end{aligned}$	Buffer Space	Taper Length (12' Lateral Transition)		Tangent
	Dist. (ft.)	$\begin{gathered} L(f t .) \end{gathered}$	Notes (Merge)	$\begin{gathered} 2 L \\ (f t .) \end{gathered}$
25	155	125	$L=\frac{W S^{2}}{60}$	250
30	200	180		360
35	250	245		490
40	305	320		640
45	360	540	$L=w S$	1080
50	425	600		1200
55	495	660		1320
60	570	720		1440
65	645	780		1560
70	730	840		1680

When Buffer Space cannot be attained due to geometric constraints, the greatest attainable length shall be used but not less than 200 ft .
For lateral transitions other than 12', use formula for shown in the notes column.
Where:
$W=$ Width of lateral transition in feet
$s=$ Posted speed limit (mph)

DURATION

Temporary white edgeline may be omitted for work operations less than three (3) days.

GENERAL NOTES

1. Work operations shall be confined to the two outside traffic lanes, leaving the adjacent lane(s) open to traffic
2. On undivided highways the median signs as shown are to be omitted.
3. When work is performed in the median lane on divided highways, the channelizing device plan is inverted and left
lanes closed and lane ends signs substituted for the right lanes closed and lane end signs.
4. When a side road intersects the highway within the TTC zone, additional TTC devices shall be placed in accordance with other applicable TCZ Indexes.
5. For general $T C Z$ requirements and additional information, refer to Index 102-600.
6. When paved shoulders having a width of 8 ft . or more are closed, channelizing devices shall be used to close the shoulder in advance of the merging taper to direct vehicular traffic to emain within the travel way. See Index 102-612 for shoulder aper formulas.

CONDITIONS

Where any vehicle, equipment, workers OR THEIR ACTIVITIES ENCROACH ON THE OR THEIR ACTIVITIES ENCROACH ON THE
TWO LANES ADJACENT TO EITHER SHOULDER.

| $\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$ | \|l|ly | $\begin{array}{cc} \text { FY 2019-20 } \\ \text { FDOTANDARD PLANS } \end{array}$ | MULTILANE, WORK WITHIIN THE TRAVEL WAY DOUBLE LANE CLOS URE |
| :---: | :---: | :---: | :---: |

SYMBOLS

[III Work Area

- Channelizing Device (See Index 102-600)
[b Work Zone Sign
W II Work Vehicle With Rotating/Strobe LightsShadow (S) Or Advance Warning (AW)
Vehicle with Advance Warning Arrow Board and Sign Message
A- Truck/Trailer Mounted Attenuator (TMA)

GENERAL NOTES

1. Work operations shall be confined to two way left turn lane, leaving the adjacent lanes open to traffic.
2. Advance Warning vehicle will have an Advanced Warning Arrow Board in the Warning Mode.
3. When a side road intersects the highway within the TTC zone, additional TTC devices shall be placed in accordance with other applicable TCZ Indexes.

CONDITIONS
Where any vehicle, equipment WORKERS OR THEIR ACTIVITIES ARE being conducted in the two war left turn lane.

FDOTY	FY 2019-20 STANDARD PLANS	TWO WAY LEFT TURN LANE CLOS URE	$\begin{gathered} \text { INDEX } \\ 102-628 \end{gathered}$	SHEET 1 of 1

LENGTH OF ACCESS LANES (Ft.)		
Grade	D_{1}	D_{2}
2% or less	590^{\prime}	1540^{\prime}
3 to 4% Upgrade	530^{\prime}	2310^{\prime}
3 to 4% Downgrade	710^{\prime}	925^{\prime}

PLAN

general notes

SECTION AA

1. Temporary median crossovers shall be within the project limits and shall not be used for transporting materials to or from any other project. The acceleration-deceleration surfaces shall be paved. RAP material is acceptable for crossing surfacing.
2. Temporary median crossovers shall be located only in areas having adequate sight distance. On limited access facilities temporary median crossovers shall not be located on-deceleration lanes at rest areas, other access openings or other highway service areas.
3. For paving train operations at permanent crossovers, see Index 102-630.
4. All traffic control devices are to be removed when crossover will not be in use for one hour or longer
5. Trailer mounted advance warning panel may be used in lieu of advance warning vehicle
6. When a crossover is no longer needed, all temporary construction shall be immediately When a crossover is no longer needed, all temporary construs
7. Cost of construction, maintenance, removal and restoration work related to temporary crossovers shall be included in the contract unit price for Maintenance of Traffic, LS.
8. Temporary crossovers on limited access right of way and use of this Index are prohibited unless specifically permitted in the Contract Plans or Special Provisions. any temporary crossover, the Contractor must submit, in writing, a request identifying specific locations for approval by the Engineer.

SYMBOLS

9. Pipe and mitered end sections are not required when crossover is located at the high point of a crest vertical curve.
\square Work Zone Sign
\Longrightarrow Lane Identification + Direction of Traffic
\Rightarrow Temporary Pavement
TEMPORARY CROSSOVER FOR MEDIAN WIDTHS $\geq 75^{\prime}$

PHASE I

1. Maintain two-lane two-way traffic along existing facility. Install construction signing.
2. Remark existing pavement to facilitate temporary pavement construction. For lane width requirements see Index 102-600.
3. Construct temporary pavement of sufficient width to accommodate two-lane two-way traffic on the temporary pavement and a portion of the existing pavement during Phase I roadway construction. When two-lane two-way traffic can not be maintained devices shall be in conformance with 'Drop-Offs in Work Zones' of Index 102-600.

LEGEND

4. Mark the pavement in accordance with the Phase I diagram. Reroute through traffic to the temporary pavement and a portion of the existing pavement. For lane width requirements see Index 102-600
5. Construct two lanes of the proposed roadway, excluding the friction course. Side street traffic to be maintained. Through and cross traffic to be controlled in accordance with Indexes 102-604, 102-605, and 102-615. Barricading shall be in conformance with 'Drop-Offs in Work Zones', Index 102-600. When work extends through an intersection, temporarily reroute the cross traffic to other cross streets. When rerouting is not possible, provide one-lane access (minimum) for two-lane two-way cross streets and
one-lane access (minimum) each direction for four-lane two-way cross streets, in accordance with Indexes 102-604, 102-605, and 102-615.

Channelizing Device (See Index 102-600)
Type III Barricade
Work Zone Sign
Stop Bar
Lane Identification + Direction of Traffic

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	\|	$\begin{gathered} \text { FY 2019-20 } \\ \text { FDOTANDARD PLANS } \end{gathered}$	CONVERTING TWO LANES TO FOUR LANES DIVIIDED, URBAN	$\begin{gathered} \text { INDEX } \\ 102-641 \end{gathered}$	SHEET 1 of 3

PHASE II

1. Sign and mark Phase I pavement in accordance with the Phase II diagram. For lane width requirements see Index 102-600.
2. Reroute through traffic to Phase I pavement.

LEGEND

SYMBOLS

- Channelizing Device (See Index 102-600
* Type III Barricade

Work Zone Sign

- Stop Bar
\Longrightarrow Lane Identification + Direction of Traffic

3. Complete all Phase II construction, including the friction course. Side street traffic to be maintained. Through and cros traffic to be controlled in accordance with Indexes 102-604, 102-605, and 102-615. Channelizing devices shall be in conformance with 'Drop-Offs in Work Zones' of Index 102-600. When work extends through an intersection, temporarily reroute cross traffic to other cross streets. When rerouting is not possible, provide one-lane access (minimum) for two-lane two-way cross streets and one-lane access (minimum) each direction for four-lane two-way cross streets, in accordance with Indexes 102-604, 102-605, and 102-615.

Phase I Construction Phase II Construction $\square 7 /$ Phase II Construction

$\begin{aligned} & \text { LAST } \\ & \text { REVISION } \\ & 11 / 01 / 17 \end{aligned}$	\|	$\begin{array}{cc} \text { FDOT } \\ \text { STANDARD PLANS } \end{array}$	CONVERTING TWWO LANES TO FOUR LANES DIVIIDED, URBAN	INDEX 102-641	

1. Sign and mark Phase II pavement in accordance with the Phase III diagram.
2. Reroute through traffic to Phase II pavement.
3. Construct friction course over Phase I pavement. Side street traffic to be maintained. Through and cross traffic to be controlled in accordance with Index 102-604, 102-605, or 102-615. When work extends through an intersection, temporarily reroute cross traffic to other cross streets. When rerouting is not possible, provide one-lane access (minimum) for two-lane
two-way cross streets and one-lane across (minimum) each direction for four-lane two-way cross streets.

GENERAL NOTES

SYMBOLS

- Channelizing Device (See Index 102-600)

》 Type III Barricade
[] Work Zone Sign

- Stop Bar
\Longrightarrow Lane Identification + Direction of Traffic

1. All signing, pavement marking, and barricades necessary for maintenance of traffic shall conform to Index 102-600.
2. Lane widths for maintenance of two-way traffic should desirably be equal to lane widths of the existing facility, but lanes shall not be less than 10^{\prime} in width. When one-lane one-way operations are necessary, a minimum width of 12 should be maintained and traffic controlled in accordance with Index 102-604, 102-605, or 102-615
3. At signalized intersections, signals shall be directed or relocated as required to the center of relocated lanes.
4. For reflectorized raised pavement marker application, see Indexes 102-600 and 706-001.
5. Additional barricades, signing, lighting or other traffic controls for limited work areas shall be provided in accordance with other applicable TCZ Indexes as conditions warrant in each phase.
6. Provisions approved by the Engineer shall be made for the removal of storm water from the roadway(s) during construction
7. For general TCZ requirements and additional information, refer to Index 102-600.

LEGEND

\square Phase I Construction $\square \square$ Phase II Construction EXXX Phase III Construction

barrier and transition located on paved or unpaved shoulders PLAN SHOWN FOR RIGHT LANE - INVERTED PLAN FOR LEFT LANE

lane drop • plan shown for right lane merge left - inverted plan for left lane merge right

PHASE III

1. Reroute traffic to final alignment and maintain two-way traffic.
2. Remove all temporary construction items.

general notes

1. All signing, pavement marking, and barricades necessary for maintenance of traffic shall conform to Index 102-600.
2. For speed sign applications, see Index 120-600.
3. For lane width requirements see Index 102-600. When one-way one-lane operations are necessary, a minimum width of 12 shall be maintained and traffic controlled in accordance with Index 102-603, 102-606, or 102-607. Minimum width for the diversion shoulders is
4. Method of attaching temporary guardrail to the diversion structure to be approved by the Engineer. Cost of temporary guardrail systems, including end anchorage assemblies, transitions and attachment to temporary structures, are to be included in the contract unit price for Guardrail (Temporary) LF.
5. Provisions approved by the Engineer shall be made for the removal of storm water from the roadway(s) during construction
6. Only temporary crash cushions approved by the Department shall be used unless specified devices called for in the plans.
. Where the temporary structure is not required, the diversion may be constructed in accordance with Index 102-608, unless otherwise stipulated in the plans.
7. For reflective raised pavement marker application, see Indexes 102-600 and 706-001
8. For general TCZ requirements and additional information, refer to Index 102-600

TRAFFIC PACING GUIDE

 Traffic pacing is a traffic control technique to slow but not stop traffic to facilitate short duration work operations without an elaborate and difficult detour or diversion. Traffic Control Officers pace or slow the traffic to a speed that provides approximately 20-30 minutes to perform the work operation. The Department has frequently used this technique for setting bridge beams, overhead sign structures and replacing overhead sign panels.Changeable Message signs (Typical Placement and Messages)

$L=$ Length of Traffic Pacing Operation

CHANGEABLE MESSAGE SIGN MESSAGE (MAINLINE AND RAMPS)

Symbols

- Channelizing Device (See Index 102-600)
\square Marked Police Vehicle with Flashing Blue Lights
PCMS, Portable Changeable Message Sign
- To be placed the day of pacing operation
\Rightarrow Lane Identification and Direction of Traffic

NE WEEK PRIOR TO pacing operation
during day
of pacing operation
during pacing
OPERATION
\(\left.$$
\begin{array}{|c|c|}\hline \begin{array}{c}\text { EXPECT } \\
\text { DELAYS } \\
\text { ON }\end{array} & \begin{array}{c}\text { MMM } \\
\text { DD-DD } \\
\text { XAM -X AM }\end{array} \\
\hline \hline \text { ROAD } & \begin{array}{c}\text { EXPECT } \\
\text { WORK } \\
\text { TONIGHT }\end{array}
$$

\hline PERIODIC

DELAYS\end{array}\right]\)| SLOW |
| :---: |
| TRFFIC |
| AHEAD | | PREPARED |
| :---: |
| TO STOP |

mainline pacing details

STAGE ONE

1. Four police vehicles located upstream of the work area at the beginning location of the traffic pacing operation with flashing blue lights off.

StAGE TWO

Once the police vehicles are in place and the traffic control officer supervisor at the work area notifies all officers to begin the traffic pacing operation, the last three police vehicles shall turn on their flashing blue lights. The first three police vehicles shall enter the travel lanes with the second and third police vehicles immediately police vehicle (flashing blue lights off).

1. The two pace setting police vehicles THREE
2. The two pace setting police vehicles shall begin to slow to the pacing speed (20 mph is preferred, 10 mph minimum), for the duration of the traffic pacing operation
3. The lead police vehicle (flashing blue lights off) shall match the speed of the last vehicles ahead of the pacing vehicles and continue following traffic until a point approximately 500^{\prime} in advance of the work area. The lead police
vehicle shall then come to a complete stop on the right shoulder and turn on vehicle shall then come to a complete stop on the right shoulder and turn on
its flashing blue lights. If required, crash truck(s) with rear mounted impact attenuator(s) and changeable message sign(s) shall move into the travel lanes approximately 200 ft . upstream of the work area with the impact attenuators down and operating once traffic has cleared the work area.

4. When the pace setting police vehicles are within approximately two miles of the work area they shall notify the onsite traffic control officer supervisor who will
immediately inform the contractors on site supervisor of their location. Once the immediately inform the contractors on site supervisor of their location. Once the
contractors on site supervisor has been notified of the pacing vehicles location, contractors on site supervisor has been notified of the pacing vehicles location,
the contractor shall begin to clear the travel lanes of all equipment and debris in the contractor shall begin to clear
5. In case of emergency the pace setting police vehicles shall come to a complete stop once they reach the lead police vehicle. If no emergency is encountered, the crash truck(s) shall be moved from the travel lanes and the two pace setting polic vehicles shall clear the work area and immediately move to the right shoulder or an area designated by the traffic control officer supervisor and turn off the
lashing blue lights. Once the two pace setting police vehicles pass the work a the traffic control officer supervisor shall instruct the lead and last police vehicles to turn off their flashing blue lights.

	Median
	$\sqrt{1+\lambda}$
	Police Vehicle Lead Police Vehicle Loated On Shoulder Lt Beated Approx. 500' Pace Setting Police Vehicles Pacing Operation Before Work Area On Shoulder
	STAGE FOUR
	1. When the pace setting police vehicles are within approximately two miles of the work area they shall notify the onsite traffic control officer supervisor who will immediately inform the contractors on site supervisor of their location. Once the contractors on site supervisor has been notified of the pacing vehicles location, the contractor shall begin to clear the travel lanes of all equipment and debris in order to reopen all travel lanes.
	2. In case of emergency the pace setting police vehicles shall come to a complete stop once they reach the lead police vehicle. If no emergency is encountered, the crash truck(s) shall be moved from the travel lanes and the two pace setting police vehicles shall clear the work area and immediately move to the right shoulder or an area designated by the traffic control officer supervisor and turn off the flashing blue lights. Once the two pace setting police vehicles pass the work area the traffic control officer supervisor shall instruct the lead and last police vehicles to turn off their flashing blue lights.

DESIGN CONSIDERATIONS

The design shall evaluate the actual distance required for the
pacing operation based on site specific features such as: roadwa eometrics, pacing speeds, regulatory speeds, interchange
spacing, work duration, availability of traffic control officers,
traffic volumes and maximum queue length.
The starting point of a traffic pacing operation must consider the following factors: the speed of the pacing vehicles, the location ollowing factors: the speed of the pacing vehicles, the location
of entrance ramps, horizontal and vertical alignment of the facility.
In some instances, it may be necessary to close a lane at the In some instances, it may be necessary to close a lane at the
work site to position a crane(s) and the materials to be lifted.

All material to be installed shall be on-site before the traffic pacing operation begins.
It may be necessary to install temporary barrier walls to protect pre-positioned and assembled materials in the right of way

The minimum speed allowed for a pacing operation is 10 mph wit 20 mph the preferred speed.

The maximum allowed work duration is $1 / 2$ hour (30 min).
The maximum practical pacing operation length is 10 miles.
$s_{r}=$ Regulatory speed (mph)
$S_{p}=$ Pacing speed (mph)
$t_{w}=$ Work duration (min)
= Total pacing distance in mit

$$
L=\frac{t_{w}}{60} s_{p}\left(\frac{s_{p}}{s_{r}-s_{p}}+1\right)
$$

$$
L=L_{c}+L_{v}
$$

$L_{c}=$ distance paced vehicles must travel before the vehicles at regulatory speed have cleared the work zone

$$
L_{c}=\left(\frac{\frac{t_{w}}{60} \times S_{p}{ }^{2}}{S_{r}-S_{p}}\right)
$$

$L_{w}=$ distance paced vehicles
travel while work is performed

$$
L_{w}=\left(\frac{t_{w}}{60} \times S_{p}\right)
$$

$F_{H V}=$ Heavy Vehicle Factor

$$
F_{H V}=1+\left(\frac{P_{t}}{100} \times 0.5\right)
$$

$P_{t}=\%$ Trucks

TRAFFIC PACING DISTANCES (L) miles						
$S_{p}=20 ; p c p h p l \leq 1,750$						
S_{r}	t_{w} (min)					
	5	10	15	20	25	30
70	2.3	4.7	7.0	9.3	*	*
65	2.4	4.8	7.2	9.6	*	*
60	2.5	5.0	7.5	10.0	*	*
55	2.6	5.2	7.9	*	*	*
50	2.8	5.6	8.3	*	*	*

* Calculation required, for additional guidance see FDOT Design Manual 242.

NOTES FOR TABLE:

${ }_{w}$ is the total time allowed for work activity in minutes. This time starts ust after the last vehicle traveling at the pre-pacing regulatory speed lears the work area and ends just as the pacing operation reaches the work area. t_{w} must include the time required to clear the roadway of equipment, materials, and personnel.

Demand volume may not exceed 1,750 pcphpl (passenger cars per hour per lane) without a site specific design. Traffic counts can be obtained rom the office of Planning, or you may need to collect traffic counts. Hourly directional traffic volumes must be converted to pcphpl using the following:
pcphpl $=\left(\frac{\text { Hourly Directional Volume }}{\# \text { Lanes (each direction) }}\right) \times$ Heavy Vehicle Factor

SYMBOLS
ZZ $\$ Work Area

- Channelizing Device
[Work Zone Sign
(CR Required Locations For Either Temporary
- Or Permanent Curb Ramps.
\Rightarrow Lane Identification + Direction of Traffic
\backsim Pedestrian Longitudinal Channelizing Device (LCD) with
Mounted Work Zone Sign or separate Work Zone Sign
- Pedestrian Longitudinal Channelizing Device (LCD)

Temporary Sidewalk

1. When encroaching work requires a sidewalk closure for 60 mutes or greater, provide an alternate pedestrian route.
2. For spacing of vehicular Channelizing Devices, see applicable vehicular temporary traffic control Indexes.
3. Cover or deactivate pedestrian traffic signal display(s) controlling closed crosswalks.
4. For post mounted signs located near or adjacent to a sidewalk maintain a minimum 7 ' clearance from the bottom of the sign panel to the surface of the sidewalk.
5. Provide a 5^{\prime} wide temporary walkway, except where space restrictions warrant a minimum width of 4^{\prime}. Provide a $5^{\prime} \times 5^{\prime}$ passing space for emporary walkways less than 5^{\prime} in width at intervals not to exceed 200^{\prime}.

GENERAL NOTES
6. Provide a cross-slope with a maximum value of 0.02 for all temporary walkways. 7. Maintain temporary walkway surfaces and ramps that are stable, firm, slip-resistant and free of any obstructions or hazards such as holes, debris, mud, construction equipment, and stored material.

$$
\begin{aligned}
& \text { B. Remove temporary walkways in } \\
& \text { otherwise noted in the plans. }
\end{aligned}
$$

9. Meet the requirements of Index 522-002 for temporary curb ramps.
10. Place pedestrian longitudinal channelizing device(s) across the full width of the closed sidewalk. For temporary walkways, similar to the Sidewalk Diversion, place LCDS to delineate both sides of the temporary walkway.
11. For sidewalk diversions, ensure that there is sufficient R/W for placement of temporary sidewalk and pedestrian longitudinal channelizing devices.

SIDEWALK DETOUR

SIDEWALK DIVERSION

LENGTH OF ACCESS LANES (Ft.)		
Grade	D_{1}	D_{2}
2% or less	590	1540
3 to 4% Upgrade	530	2310
3 to 4% Downgrade	710	925

GENERAL NOTES

1. Access openings across limited access right of way and use of this Index are prohibited unless specifically permitted in the Contract Plans or Special Provisions. When permitted in the Contract Plans or Special Provisions and prior to construction of any opening, the Contractor must submit, in writing, a request identifying specific locations for approval by the Engineer.
2. No more than two (2) access openings will be allowed on each project.
3. Access openings shall be located only in areas having adequate sight distance and shall not be located within 1.5 miles of interchanges nor within 2000 ft. of acceleration-deceleration lanes at rest areas, other access openings or other highway service areas.
4. Access openings shall not be constructed directly opposite temporary median crossovers nor within 2000 ft. of temporary median crossovers.
5. Access openings shall be within the project limits and shall not be used for transporting materials to or from any other project. The
acceleration-deceleration surfaces shall be paved. RAP material is acceptable for driveway surfacing.
6. Any Motorist Aid Call Boxes affected by the temporary access openings shall be relocated outside the limits of access lanes and remain in use during construction. Upon removal of access lanes, call boxes shall be returned to their previous location. Temporary relocation and restoration of call boxes shall be at the contractor's expense.
7. Access openings in the limited access fence shall have gates which are to be locked during nonwork hours or periods when the access is not in active use.
8. The contractor shall take all precautions necessary to insure against entrance by livestock or unauthorized persons or vehicles
9. The contractor shall not vary from the plan detail without approval of the Engineer
10. Gates shall be removed and access opening locations shall be restored to preconstruction condition immediately upon completion of activities utilizing the completed.
11. Failure to comply with any provision of the access opening plan shall be cause for terminating use of all openings. Upon notification by the Engineer, the contractor shall cease hauling and begin restoration of affected areas. Under this condition expense of removal, restoration and of additional hauling distances shall be borne by the contractor
12. No guardrail or barrier wall will be removed for access openings.
13. Construction and removal of the access and restoring the area to preconstruction condition shall be included in the cost of Maintenance of Traffic, LS.

SYMBOLS

PCMS DISPLAYS

$$
\begin{array}{lr}
\hline \text { MESSAGE 1: SUNPASS } & \text { MESSAGE 2: } \begin{array}{l}
\text { KEEP } \\
\\
\\
\text { ONLY } \\
\text { LANE(S) }
\end{array} \\
\text { LEFT }
\end{array}
$$

$-\begin{aligned} & \text { Beginning of } \\ & \text { Lane Striping }\end{aligned}$

GENERAL NOTES

1. This Plan is to be used at Mainline Plazas Only.
2. This Plan is for Lane Closures that exceed three hours.
3. Plaza canopies which have existing DMS signs on the canopies shall display the message "LANE CLOSED" for the duration of this closure.
4. A truck/trailer mounted attenuator is required.
5. See Sheet 1 for Two or More Inside Dedicated Lanes Single Left Lane Closed Configuration.
6. Lane use control lights, signs, or signals over toll lanes shall be switched to the appropriate symbol, message, or correct color prior to the start of any lane closure. They should also be switched at project completion
7. At least 48 hours prior to any closure, other than emergencies, the plaza manager shall be notified for security and staffing.

INSIDE DEDICATED LANES

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	\|ras	$\begin{gathered} \text { FY 2019-20 } \\ \text { FDOTS } \\ \text { STANDARD PLANS } \end{gathered}$	TOLL PLAZA TRAFFIC CONTROL STANDARDS

ALL LANES CLOSED***
** Install temporary Speeding Fines Doubled sign only if there is not an existing permanent "Speeding Fines Doubled Through Toll Plaza" sign or an existing permanent "Speeding Fines Doubled through Toll" Plaza" sign or
"Speeding Fines Doubled When Workers Present" sign in place.

YMBOLS

ZZ $\triangle \lambda$ Work Area

- Channelizing Device (See Index 102-600)
[Work Zone Sign
- Advance Warning Arrow Board
\Longrightarrow Lane Identification + Direction of Traffic
Advance Warning Vehicle Equipped with
Advance Warning Arrow Board and Truck/Trailer Mounted Attenuator
P- Portable Changeable (Variable) Message Sign
— Type III Barricades and "RAMP CLOSED" sign
*** Inverted for Inside Open Road
Tolling Lanes Configuration

GENERAL NOTES

1. This Plan is to be used at Mainline Plazas Only.

2 This Plan is for lane closures of any time length.
3. Plaza canopies which have existing DMS signs on the Canopies shall display the message "LANE CLOSED" for the duration of this closure.
4. For planned lane closure, a portable changeable message sig shall be placed and shall display the message shown at a minimum of one week prior to closure. If planned lane closure is less than one week, place portable changeable message sign immediately using "prior to closure" messages.
5. A truck/trailer mounted attenuator is required
6. Lane closure configurations applicable to 2 or 3 lane open road tolling plazas.
7. At least 48 hours prior to any closure, other than emergencies, the plaza manager shall be notified for security and staffing.

EXHIBIT A
DEDICATED, CASH, OR MIXED-uSE LANES IN CENTER - ONE LANE CLOSED (This same plan can be used for any non-dedicated lane even if they are not in the center of the plaza)
** Install temporary Speeding Fines Doubled sign only if
there is not an existing permanent "Speeding Fines
Doubled Through Toll Plaza" sign or an existing
"Speeding Fines Doubled When Workers Present"
sign in place.

Beginning of Lane Striping

\qquad

EXHIBIT B
DEDICATED LANE INSIDE OR OUTSIDE - ONE LANE CLOSED (Outside Lane Closure is a Mirror Image of this Exhibit)

general notes

1. This Plan is for lane closures that exceed three hour
2. If the closed lane is a dedicated lane, Exhibit A shall be used at Ramp Plazas only. If the closed lane is a cash or mixed-use lane, Exhibit A may be used at Ramp or Mainline Plazas.
3. A truck/trailer mounted attenuator is require
4. Exhibit B shall be used at Ramp Plazas only.
5. Lane use control lights, signs, or signals over toll lanes shall be switche to the appropriate symbol, message, or correct color prior to the start of any lane closure. They should also be switched at project completion
6. At least 48 hours prior to any closure, other than emergencies, the plaza manager shall be notified for security and staffing.

MAINLINE PLAZAS \& RAMP PLAZAS

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		$\begin{gathered} \text { FY 2019-20 } \\ \text { FDOTS } \\ \text { STANDARD PLANS } \end{gathered}$	TOLL PLAZA TRAFFIC CONTROL STANDARDS

work done within travel lane - one lane closed

general notes

1. This Plan is for lane closures that are three hours or less.
2. This Plan is to be used at Ramp or Mainline Plazas.
work not done within travel lane - one lane closed

SYMBOLS

ZZII Work Area

- Channelizing Device (See Index 102-600)

『 Work Zone Sign
\Longrightarrow Lane Identification + Direction of Traffic
Advance Warning Vehicle Equipped with Advance Warning Arrow Board and Truck/Trailer Mounted Attenuator
3. This plan can be used for any lane, with appropriate modifications, even if it is not in the center of the Plaza.
4. Lane use control lights, signs, or signals over toll lanes shall be switched to the appropriate symbol, message, or correct color prior to the start of any lane closure. They should also be switched at project completion.
5. At least 48 hours prior to any closure, other than emergencies, . Ahe plaza manager shall be notified for security and staffing.
6. A Truck/Trailer Mounted Attenuator is required for all aerial work operations (lift truck). For non-aerial operations, the Truck Mounted Attenuator or additional devices may be required by the Engineer based on the work being performed.

SHORT-TERM CLOSURES

[^0]: Cross Reference:

 1. See General Not
 See General Note 1, Sheet 1 for more information
