

PULL BOX

Rectangular boxes are depicted. Round fiber
optic splice boxes and lids are allowed.
FIBER OPTIC BOX
6. Conduit center line shall be aligned to top edge of box to
-
7. All boxes shall have $1^{\prime}-0^{\prime \prime}$ wide (Min.) concrete apron. Concrete for concrete aprons shall be Class NS with a minimum strength Cost of apron to be included in the cost of each box.
8. Prevent the ingress of Water, Dirt, Sand, and other foreign materials into the conduit prior to, during and after construction
using a foom-sealing material, rubber plug, or other device designed using a foam-seailing
for this application.
9. Where multiple pull boxes are placed side by side, maintain at least
$8^{\prime \prime}$ between the pull boxes.

NOTES:

1. Boxes shall not be installed in roadways or driveways.
2. Boxes shall be on the Approved Product List (APL)
3. Boxes shall be installed flush with the finished grade surface.
4. Fiber Optic splice boxes shall be provided with cable hanger racks designed to support cables and splice enclosur
Cost of racks to be included in cost of splice box
5. Fiber optic boxes shall contain only Fiber Optic Cable, Conduit,
and Locate Wire.
6. Conduit center line shall be aligned to top edge of box to
facilitate cable pulling.

GENERAL NOTES:

1. It shall be the contractors responsibility to provide a complete service assembly
.The service installation shall meet the requirements of the national electric code
and applicable local codes.
2. Shop drawings are not required for service equipment, unless noted in the plans.

A Pull Box is required at each service point, see Index 635-001

| LAST |
| :---: | :---: |
| REVISION |
| $11 / 01 / 17$ |

FDOT
FY 2018-19
STANDARD PLANS
DETAIL A
AERIAL FEED

general notes

1. Work these Index drawings with the Strain Pole Schedule in the Plans.
are necessary
2. Materials:
$\begin{array}{ll}\text { erials: } \\ \text { Concrete: } & \text { Class V Special or Class VI } \\ \text { Prestress Strands \& Spiral Reinforcing: } & \text { Specification Section } 641 \\ \text { Hand and coupler cover plates: } & \text { Non-corosivive material } \\ \text { Holt }\end{array}$
Fabrication:
A. Poper for pole width, strands, reinforcing and void: $0.081 \mathrm{in} / \mathrm{ft}$ per face.
B. Concrete Cover: 1 " minimum
C. Spiral Reinforcing: As shown, plus one turn for splices and two turns at both the tip and butt ends
D. The design dimensions for Front Face (FF) and Back Face (BF) of the poles may vary transversely
from the section shown by \pm 罍 4 to assist with removal from forms. Balance addition and subtraction

F. Cut the tip end of the prestressed strand first or simu Provide cover potas and screws for hand hole and couplers. Attach cover plates to the poles using lea
anchors or embedded threaded inserts.
a. Financial Project ID.

Financial Project ID.
Pole Manufacturer
Standard Pole Type Number
5. Support d. Pocalions are are for strand release, storage, lifting and transport. Keep BF oriented downward until

Pick-up and support locations shown may vary within a tolerance of ± 3.
Two point attachment: provide an eve bolt hole for the messenger wire
. Two point attachment: provide an eye bolt hole for the messenger wire.

(Strands Not Shown)

PEDESTAL POLE P-IIC (12 Ft.) ELEVATION
(Strands Not Shown)

NOTES:
Strands shown are continuous from Tip End to Butt End.
Elevation view scale is exaggerated vertically for clarity.
For final erection, tilt pole upright with single point attachment located a
distance of 4 Ft. (for P-IIA \& P-IIC) or 10 Ft. (for P-IIB) from the Tip End.

* Dimension may vary from $2^{1 / 1 / 4}$ to $3 / 2 / 2$ to accommodate smaller radius of optional stepped (PVC) void. The void diameter shall not be less than 2

STRAND LEGEND

- Prestressed Strand: 0.5 in. - 31 kips Before
Transfer (4 strands total)

SECTION A-A
(Typical Square Section)

NOTES:
Strands shown are continuous from Tip End to Butt End. Elevation view scale is exaggerated vertically for clarity, For final erection, tilt pole upright with single point attachment
located a distance 33.3% L from Tip End. lor

Dimension may vary from $2 / 1 / "$ to $3^{33} 4^{\prime \prime}$ to accommodate smaller radius of optional stepped (P)
diameter shall not be less than $2 / 2$."

TIP END SECTION (TOP) (For Dormant Strand Locations See Section A-A)
trand legend

- Prestressed Strand 0.5 in. -31 kips Before
Transfer $(6$ strands total)
- - Dormant Strand
0.5 in. (3 strands total)
one 24 S Splice Allowed
one 2 " Splice
Per Strand
Per Strand

NOTES:
Strands shown are continuous from Tip End to Butt End.
Elevation view scale is exaggerated vertically for clarity.
For final erection, tilt pole upright with single point attachmen
located a distance 20% L from the Tip End.
Dimension may vary from $3^{\prime \prime}$ to $4 \frac{1 / 4 \prime \prime}{}$ to accommodate smaller radius of optional stepped (PVC) void. The void diameter shall not be less than $21 / 2$ ".

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		$\begin{gathered} \text { FY 2018-19 } \\ \text { FDGT } \\ \text { STANDARD PLANS } \end{gathered}$	CONCRETE POLES	$\begin{gathered} \text { INDEX } \\ 641-010 \end{gathered}$	SHEET 5 of 8

- Prestressed Strand 0.5 in. ~ 31 kips Before
Transfer (8 strands total)
- - Dormant Strand - Dormant Strand
o.5 in. 4 strands total)
One 244 Splice Allowed One 24" Splice Allowed
Per Strand

SECTION A-A
(Typical Square Section)

NOTES:
Strands shown are continuous from Tip End to Butt End.
Elevation view scale is exaggerated vertically for clarity.
For final erection, tilt pole upright with single point attachment
located a distance $10 \% L$ from Tip End
Dimension may vary from 3" to 4l/" to accommodate
smaller radius of optional stepped (PVC) void. The void smamer radius of optional stepped shall not be less than $6 /{ }^{\prime \prime}$."

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	\|		CONCRETE POLES	INDEX $641-010$	SHEET 6 of 8

spiral reinforcing elevation

TIP END SECTION (TOP) (For Dormant Strand Locations, See Section A-A)

StRAND LEGEND

- - Prestressed Strand 0.5 in.- 31 Kips Before
Transfer (10 strands tota)
- - Dormant Strand

Dormant Strand
0.5 in. (6 strands total)
ne 241 Splice Allowed
One 24" Splice
Per Strands

notes.
Strands shown are continuous from Tip End to Butt End.
Elevation view scale is exaggerated vertically for clarity.
For final erection, tilt pole upright with single point attachment
located a distance 10% L from the Tip End.
Dimension may vary from 33^{3} " to $5^{" \prime}$ to accommodate maller radius of optional stepped (PVC) void. The void diameter shall not be less than 6 /2".

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		$\begin{gathered} \text { FY 2018-19 } \\ \text { FDOTANDARD PLANS } \end{gathered}$	CONCRETE POLES	$\begin{gathered} \text { INDEX } \\ 641-010 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 7 \text { of } 8 \end{aligned}$

PIRAL REINFORCING ELEVATION

(Strands and Reinforcing Not Shown)
1/1/2" Min (Typ.)

tip end section (top) (For Dormant Strand Locations, See Section A-A)
p.)

- . $2^{\prime \prime}$ (Typ.) Baction A-A
(Typical Square Section)

Notes:
Strands shown are continuous from Tip End to Butt End
levation view scale is exaggerated vertically for clarity.
for final erection, tilt pole upright with single point attachment located a distance 10% L from the Tip End.
Dimension may vary from $3^{3} 3^{\prime \prime}$ to $5^{\prime \prime}$ to accommodate
smaller radius of diameter shall not be less than $6 / 2 / 2$ ".

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		DESCRIPTION:	FDOTY	$\begin{gathered} \text { FY 2018-19 } \\ \text { STANDARD PLANS } \end{gathered}$	CONCRETE POLES	$\begin{gathered} \text { INDEX } \\ 641-010 \end{gathered}$	SHEET 8 of 8

gENERAL NOTES

2. This Index is considered fully detailed and no shop drawings are necessary. Submit Shop
3. Install pole plumb.
4. Provide either round or 12 -sided Poles
5. See Index 635-001 for additional details for Pull Boxes.
6. Materials:
A. Pole: Use Class VI concrete with 6 ksi minimum strength at transfer
B. Prestressing Strands.ASTM A4 Grade 60270 low relaxation
C. Reinforcing Steel: ASTM A615, Grade 60
D. Sprial Reinf orcing: ASTM A1064 Cold-Drawn
E. Bolts: ASTM F1554, Grade 55
Nuts ASTM A563, Grade A Heavy Hex
Washers: ASTM F436
F. Washers: ASTM F436 (plates and Pole Cap: ASTM A36 or ASTM A709, Grade
F. Steel plates and pole Cap: ASTM A36 or ASTM A709, Grade 50
G. Galvanization: Bolts, nuts and washers: ASTM F2329

All other steel: ASTM A123
7. Pole Fabrication:
A. Cut the tip end of the prestressed strand first or simultaneously with the butt end
B. For spiral reinforcing, one turn is required for spiral splices and two turns are required
B. For spiral reinforcing, one turn is required for spiral splices and two turns are required

E. Provided a ll miss imur cover.
F. Provide handhole and coulde
. Provide handhole and coupler cover plates made of non-corrosive materials. Attach cover
plates to poles using lead anchors or threaded inserts embedded in the poles in con junction
with round headed chrome plated screws.

ity Control Progran
Pole Manufacturer Pole Manuta
Pole Length
H. Tie ground wires to the interior of reinforcing steel as necessary to prevent displacement
I. Suring concreting operations. Handling and Erection locations shown may vary within $\pm 3^{\prime \prime}$.
8. Cabinet Installation
A. Splice fiber optic cables in cabinet to preterminater patch panel.
. Furnish and install secondary TVSS protection on outlets for equipment in cabinet.
E. Ensure that equipment cabinet is bonded to CCTV pole grounding system.
F. Install the pole mounted cabinet with the hinges next to the pole.
G. Sizes and types of conduits and innerducts for network communications between the pullbox
cabinet are stated in the Contract Documert.
9. Lowering Device Installation:
A. Place the lowering cable that moves within the pole in an interior conduit to prevent it from
tangling or interfering with any electrical wire that is in the pole. Ensure that any electrical wire within the pole is routed securely and free from slack. pole. Ensure that any electrica
B. Mount lowering arm perpendicular to the roadway or as shown in the plans. Position CCTV
B. Mount lowering arm perpendicular to the roadway or as shown in the plans. Position CCTV
pole so that the camera can be safell lowered without requiring lane closures

Cole so that the camera can be safely lowered without requiring lane closures.
c. Coordinate all lowering device hardware requirements (including Tenon, Tenon mounting plates,
parking stand, etc.) with lowering device manufacturer.
arking stand, etc.) with lowering device manufacturer.

NOTES:

1. Diameter of 12 -sided poles are measured flat to flat.
2. Total Taper applies to pole, strands and reinforcing.
3. For 12 -Sided Pole and Round Roles Option 2, Stress prestressed strand to 70% of Ultimate before transfer. For Round Pole Option 1, stress prestressed strand to 60% of Ultimate before transfer.
4. Pole Design Tables, Burial Depth is based on level ground (Flatter than 1:5). For poles within slopes 1:5 and greater, increase the burial depth in accordance with the Addition Burial Depth Due To Ground Slope table. For values in-between
those shown in the table, use the higher value.

ROUND POLE DESIGN TABLE											
$\begin{gathered} \text { Pole } \\ \text { Length } \\ \text { (ft) } \end{gathered}$	$\begin{gathered} \text { Pole } \\ \text { Height } \\ (f t) \end{gathered}$	Burial Depth (ft)	$\begin{aligned} & \text { Design } \\ & \text { Option } \end{aligned}$	Total Taper (in/ft) (See Note 2)	$\begin{aligned} & \text { Void } \\ & \text { Taper } \\ & \text { (in/ft) } \end{aligned}$	$\left\|\begin{array}{c}\text { Min. Wall } \\ \text { Thickness } \\ \text { Tip }\end{array}\right\|$ (in)	Min. Wall Thickness Butt (in)	$\begin{gathered} \text { Tip } \\ \text { Diameter } \end{gathered}$ (in)	Butt Diameter (in)	Strand Pattern	$\begin{gathered} \text { Strand } \\ \text { Diameter } \end{gathered}$
63	50	13	Option 1	0.216	0.192	3	3.76	12.15	25.76	3	$0.5{ }^{\prime \prime}$
			Option 1	0.216	0.192	3	3.83	12.15	27.05	3	$0.5{ }^{\prime \prime}$
69	55	14	Option 2	0.180	0.173	3	3.80 3.50	12.00	24.42	4	$0.5{ }^{\prime \prime}$
75	60	15	Option 1	0.216	0.192	3	3.90	12.15	28.35	3	05
75	60	15	Option 2	0.180	0.173	3	3.50	12.00	25.50	4	$0.5^{\prime \prime}$
80	65	15	Option 1	0.216	0.192	3	3.96	12.15	29.43	3	$0.5{ }^{\prime \prime}$
			Option 2	0.180	0.174	3	3.50	12.00	26.40	4	0.5 "
86	70	16	Option 1	0.216 0.180	0.192	3	${ }^{4.03}$	13.00	38.73 28.48	4	$0.5{ }^{\prime \prime}$

WITH LOWERING DEVICE

Air Terminal (See Sheet 5)

\square ASSEMBLY $=$

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$			$\begin{gathered} \text { FY 2018-19 } \\ \text { STANDARD PLANS } \end{gathered}$	CONCRETE CCTV POLE	$\begin{gathered} \text { INDEX } \\ 641-020 \end{gathered}$	SHEET 2 of 5

 3" Pitch
a
\because
1.25" Pitch ${ }_{\text {\#5 Gage Spiral }}^{\text {*einforcing }}$ Reinforcing

SPIRAL REINFORCING ELEVATION
(Strands, Holes and Fixtures Not Shown)
$=A S S E M B L Y=$

LEGEND:

- Prestressed Strand
$\Delta \begin{aligned} & \text { (4) \#5 Rebar (Shown } \\ & \text { or (6) \#4 Rebar }\end{aligned}$
\downarrow Lift Points

NOTE:
Strands and rebar show are continuous from Tip

SECTION A-A
STRAND PATTERN
(Option 1)
St

of 5

$\overline{=}$ ASSEMBLY $=$
NOTES:

1. Install all handhole and opening covers prior
to shipping.
2. Install " $1 / 2$ " $\varnothing \times 5^{\prime \prime}$ Iong stud with hex nut in
3. As an alternate, embed $4 \sim 1 / 2^{\prime \prime} \varnothing \times 18^{\prime \prime}$ stainless steel threaded rods with a
threaded nut. At top of rod, thread coupling nut. to attach of rood, thread a
stainess stel bolts.
4. Handhole frame may be Cast Aluminum 356.2.

工TENON CAP=

PLAN VIEW

elevation
=TENON COVER=

PLAN VIEW Tenon $6^{\prime \prime} 0 . D . \times 1 /{ }^{\prime \prime}$
Wall $\times 12^{\prime \prime}$ Min Long - $21 / 3 z^{\prime \prime} \varnothing$ Hole (Typ).

eye bolt option PIPE OPTION

PLAN VIEW

| $\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$ | \|r|cer | $\begin{gathered} \text { FY 2018-19 } \\ \text { FDOT } \\ \text { STANDARD PLANS } \end{gathered}$ | CONCRETE CCTV POLE | $\begin{gathered} \text { INDEX } \\ 641-020 \end{gathered}$ | SHEET 4 of 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |

NOTES:

1. Work with Index $634-001$ for grounding and span wire details. See the plans for clamp
spacing, cable sizes and forces, signals and sign mounting locations and details.
2. Shop Drawings:

This Index is considered fully detailed, only submit shop drawings for
minor modifications not detailed in the plans.
3. Materials:
A. Strain Pole and Backing Rings:
b. Greater than or equal to $3 / 15^{\prime \prime}:$ ASTM A572 Grade $50,55,60$ or 65
C. ATMM A595 Grade A (55 ksi yield) or Grade B (60 ksi yield)
B. Steel Plates: ASTM
C. Weld Metal: ETOXX
D.
D. Bolts, Nuts and WaShers:
a. High Strength Bolts: ASTM F3125, Grade A325, Type 1
b. Nuts: ASTM A563 Grade DH Heavy-Hex
c. Washers: ASTM F436 Type 1, one under turned element
C. Washers: ASTM F436 Type 1, one under turned element
E. Anchor Bolts. Nutt and Washers:
a Anchor Bolts: ASTM F155 Grade 55
a. Anchor Bolts: ASTM F1554 Grade
b. Nuts: ASTM A563 Grade A Heavy-Hex (5 per anchor bolt)
c. Plate Washers: ATM A36 (per bolt). Split-lock washers and
self-locking nuts are
F. Handhole Frame: ASTM ATO9 or ASTM ASB, Grade 36
G. Aandole Cover: ATM Aloll Grade 50, 5 , 60 or 65
H. Aluminum Pole Caps and Nut Covers: ASTM B26 (319-F
H. Aluminum Pole Caps and Nut Covers: ASTM B26 (3
I. Satailess Steel Screws. AISI Type 36
STM
J. Thraded Bars Studs. ASTM ASB or ASTM A307
K. Concrete: Class IV (Drilled Shaft) for all enviro
K. Concrete: Class IV SDrilled Ahatt) for all environmental classifications.
L. Reinforcing Steel: Specification Section 415
4. Fabrication:
A. Pole Taper: Change diameter at a rate of 0.14 inches per foot, round or
12-sided (Min.)
B. Upright splices are not permitted. Transverse welds are only permitted at the base.
C. Provide bolt hole diameters as follows:
a. Bolts (except Anchor Bolts): Bolt diameter plus $1 / 16^{\prime \prime}$, prior to galvanizing.
b. Anchor Bolts: Bolt diameter plus 1/", maximum
D. Locate handhole 180° from $2^{\prime \prime}$ wire entrance pipe
E. Identification Tag: (Submit details for approval.)
a. Locate on the inside of the pole and tag.
b. Locate on the inside of the pole and visible from the handhole.
c. Secure to pole with $1 / 8$ " diameter stainless steel rivets or screws.
d. Include the following information on the ID Tag:
2. Pole TYye
3. Pole height
2. Pole height
4. Manufacturers' Name
4. Manufacturers Name
5. Fyo Steel
6. Base Wall Thickness
F. Provide a 's' or 'C' hook at the top of the pole for signal wiring support (See Sheet 3).
G. Perform alll welding in accordance
5. Coatings:
A. All Nuts, Bolts, Washers and Threaded Bars/Studs: ASTM F2329
B. All other steel items ASTM A123
6. Construction:
A. Foundation: Specification Section 455, except that payment is included in the cost of the strain pole.
B. After installation, place wire screen between top of foundation and bottom of baseplate in accordance with Specification Section 649-6.

ELEVATION AND NOTES

GENERAL NOTES
. Work this Index with Specification 649
2. This Index is considered fully detailed and no shop drawings are necessary. Submit Shop
Drawings for minor modifications not detailed in the Plans.
3. Materials:
A. Pole: ASTM A1011 Grade 50, 55, 60 or 65 (less than $1 / 4^{\prime \prime}$) or ASTM A572 Grade 50,60 or 65 .

C. Weld Metal: E70XX
. Bolts: ASTM F3125, Grade A325, Type 1.
Nuts: ASTM A563.
Washer s: ASTM F-436
E. Anchor Bolts.: ASTM F1554 Grade 55 with ASTM A563 Grade A heavy-hex
F. Hats and hole Frame: ASTM A709 Grade 36 or ASTM AB6.
G. Handhole Cover: ASTM A1011 Grade 560 ASTM A36. 50 or 65 ,
H. Stainless Stee Screws AISI Type 316 .
H. Stainless Steel Screws: AISI Type 316
I. Reinforcing Steel: ASTM A615 Grade 60
.
J. Galvanization: BoIts, nuts and wasthers: ASTM F2329 All other steel: ASTM A123
K. Concrete: Class IV (Drilled Shatt) for all environment classifications.
4. Pole Faberication:
A. Provide either a round or 16 sided pole with a constant taper of 0.14 inches per foot
B. Pole shaft may be either One or Two sections (with telescopic field splice)
C. Up to two longitudinal seam weld s are permitted.
D. Use only circumferential welds at base.
. Use a complete penetraton weld for Iongitudinal seam welds within $6^{\prime \prime}$ of circumferential welds.
Use a complete penetraton weld on female seatiel six inches. All other areas, size the partial penetration welds to at least 60% of the pole tube
thickness.
F. Perform
(Steel) ANSI/AWS Ding in accordance with the American Welding Society Structural Welding Code
Standard
Standard Specificication for Structuran) Supports for Highway Signs, Luminaires and Traffic
Signals, Section 5.15, Welded Connections.
 Financial Project ID,
Pole Height
Manufacturer's
Manuf acturer's Name
Yield Strength (Fy of Stee)
Pole Base Wall Thickness
H. Except for Anchor Bolts, all bolt hole diameters are equal to the bolt diameter plus $1 / 16^{\prime \prime \prime}$
prior to galvanizing. Hole diameters for anchor bolts are not exceed the bolt diameter plus $1 / 2^{\prime \prime}$.
5. Pole Installation.
A. Do not install additional wire access holes (not shown in this Index) with a diameter that exceeds $11 / 2$ in diameter
B. Install Anchor Bolts in accordance with Specification 649-5
Cable Supports: Electrical Cable Guides and Eyebolts.
a. Locate top and bottom cable guides within the pole aligned with each other.
b. Position one cable guide $2^{\text {" }}$ below the handhole.
c. Position other cable guide directly below the top of the tenon.
c. Position Park Stands $2^{\prime \prime}$ below the top of the handhole.
6. Cabinet Installation:
A. Splice fiber optic cables in cabinet to preterminater patch pane
B. Furnish and install TVSS protection on all cabling in cabinet.
C. Furnish and install secondary TVSS protection on outlets for equipment in cabinet.
D. Ensure that all electronic equipment power is protected and conditioned with TVSS devices.
E. Ensure that all electronic equipment power is protected and conditioned
E. Insure that equipment cabinet is bonded to ccTV pole grounding system.
F. n.
F. Install the pole mounted cabinet with the hinges next to the pole s.
G. Sizes and types of conduits and innerducts for network communications between the pullbox

Sizes and types of conduits and innerducts for ne,
and cabinet are stated in the Contract Documents.
7. Lowering Device Installation:
A. Place the lowering cable that moves within the pole in an interior conduit to prevent it
from tangling or interfering with any electrical wire that is in the pole. Ensure that any electrical wire within the polo is electrical wire that is in the pole. En
B. Mount lowering device perpendicular to the roadway or as shown in the plans. Position
CCTV pole so that the camera cal
C. Coordinate all lowering device hardware reauirements (inclut requing Tenon, Tenon mounting plates, parking stands, etc.) with lowering device manufacturer.

$\overline{=} A S S E M B L Y=$

ADDITIONAL BURIAL DEPTH		
Ground Slope	$4^{\prime}-0^{\prime \prime} \text { Shaft }$	$5^{\prime}-0^{\prime \prime} \text { Shaft }$
1:5	$3^{\prime \prime}-0^{\prime \prime}$	$4^{4}-0^{\prime \prime}$
1:4	$4^{4}-0^{\prime \prime}$	$5^{\prime \prime}-0^{\prime \prime}$
1:3	$5^{\prime}-0^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$
1:2	$7^{\prime}-0^{\prime \prime}$	$9^{\prime}-0^{\prime \prime}$

FOUNDATION NOTES

1. Shaft Length is based on $1^{\prime}-0^{\prime \prime}$ height above the finished grade.
2. Shaft Design Table values are based on level ground (Flatter the foundation depth in accordance with the Additonal Burial Depth
Due To Ground Slope table. For values in-between those shown Due To Ground Slope table. For values in-between those show
in the table, use the higher value.

BASE PLATE AND ANCHOR BOLT DESIGN TABLE							
Pole Overall Height (ft)	Base Plate Diameter (in.)	$\begin{gathered} \hline \begin{array}{c} \text { Base Plate } \\ \text { Thickness } \\ \text { (in.) } \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \text { Anchor } \\ \text { Bolt Circle } \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Bolts } \end{gathered}$	Anchor Bolt Diameter (in.)	Anchor Bolt Embedment (in.)	Minimum Anchor Bolt Projection (in.)
50	27	2.5	22	6	1.25	31	8.5
55	28	2.5	23	6	1.25	33	8.5
60	33	2.5	27	6	1.50	34	9.5
65	35	2.5	29	6	1.50	35	9.5
70	40	2.5	33	6	1.75	38	10.5

POLE DESIGN TABLE							
Pole OverallHeight$(f t)$ (ft)	Section 1 (Top)			Section 2 (Bottom)			Joint
	Length	$\begin{gathered} \text { Wall } \\ \text { Thickness } \\ \text { (in.) } \end{gathered}$	$\begin{gathered} \text { Base } \\ \text { Diameter } \\ \text { (in.) } \end{gathered}$	Length	$\begin{gathered} \text { Wall } \\ \text { Thickness } \\ \text { (in.) } \end{gathered}$	Base Diameter (in.)	$\begin{aligned} & \text { Minimum } \\ & \text { Splice } \\ & \text { Length (in.) } \end{aligned}$
50	---	---	---	50, ${ }^{\text {co }}$	0.25	17	---
55	$25^{\prime 5}-0^{\prime \prime}$	0.25	14	$28^{\prime \prime}-0^{\prime \prime}$	0.25	17	27
60	35'-010	0.25	18	29'00'	0.3125	21	33
65	$33^{\prime \prime}-0^{\prime \prime}$	0.25	19	$36^{\prime}-0^{\prime \prime}$	0.3125	23	33
70	$38^{\prime}-0^{\prime \prime}$	0.25	22	$36^{\prime}-0^{\prime \prime}$	0.3125	26	39

Pole Top Or Tenon

$\overline{=} A S S E M B L Y=$

$\overline{=}$ POLE TOP PLATE $\overline{ }$

LAST
REVISION
11/01/17
DESCRIPTION:

FDOTY	$\begin{gathered} \text { FY 2018-19 } \\ \text { STANDARD PLANS } \end{gathered}$	STEEL CCTV POLE	$\begin{gathered} \text { INDEX } \\ 649-020 \end{gathered}$	$\begin{gathered} \text { SHEET } \\ 5 \text { of } 6 \end{gathered}$

$$
D E T A I L \text { " } C^{\prime} \overline{=}
$$

TYPICAL
(20' Rods, 40^{\prime} Spac

TYPICAL MODIFIED
(20' Rods, 40^{\prime} Spacing)
ground rod array placement

side view

FRONT VIEW
DETAIL "E"

Pole mounted cabinet

STEEL CCTV POLE GROUNDING

ARM AND BASE PLATE										
Arm IDAxx-ArmLength S-SingleArm D-DoublearmH-HeavyDut H-HeavyDuty	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Total } \\ \text { Arm } \\ \text { Length } \\ (f t) \end{array} \\ \hline \end{array}$	Arm			Arm Extension			Base Plate		
		$\begin{gathered} F A / S A \\ (f t) \end{gathered}$	$\left.\begin{gathered} F C / S C \\ (i n) \end{gathered} \right\rvert\,$	$\begin{gathered} F D / S D \\ (\text { in }) \end{gathered}$	$\begin{gathered} F E / S E \\ (f t) \end{gathered}$	$\underset{\substack{\text { (in) } \\ \text { (i/SG }}}{ }$	$\underset{\left(\begin{array}{l} \text { (in) } \end{array}\right.}{\substack{\text { S/SH }}}$	$\begin{aligned} & H T \\ & (i n) \end{aligned}$	$\begin{aligned} & \hline F_{(i / 5)} \end{aligned}$	$\begin{gathered} F K / S K \\ (i n) \end{gathered}$
A30/S	30	30	11	0.250				22	25	3
A30/S/H		30	12	0.250						
A30/D		30	11	0.250				30	36	
A30/D/H		30	12	0.250						
A40/S	40	40	13	0.250				22	27	3
A40/S/H		40	14	0.250				22	27	
A40/D		40	13	0.250						
A40/D/H		40	14	0.250				30	36	
A50/S	50	32.5	12	0.250	20.5	14	0.313			3
A50/S/H		32.5	13	0.250	20.5	15		22	29	
A50/D		32.5	12	0.250	20.5	14		30	36	
A50/D/H		32.5	13	0.250	20.5	15		30	36	
A60/S	60	35.5	12	0.250	27.5	15	0.375	30	36	3
A60/S/H		35.5	13	0.250	27.5	16				
A60/D		35.5	12	0.250	27.5	15				
A60/D/H		35.5	13	0.250	27.5	16				
A70/S	70	38	13	0.250	35	17	0.375	30	36	3
A70/S/H		38	14	0.250	35	18				
A70/D		38	13	0.250	35	17				
A70/D/H		38	14	0.250	35	18				
A78/S	78	39	13	0.250	42	18	0.375	30	36	3
A78/S/H		39	15	0.250	42	20				
A78/D		39	13	0.250	42	18				
A78/D/H		39	15	0.250	42	20				

POLE, BASE PLATE AND ARM CONNECTION																		
 Pole ID Px-PoleNo S-Singlearm D-DoubleArm L-Luminaire Pl/S	Upright				Base Plate					Arm-Upright Connection								
	$\begin{aligned} & \text { UA } \\ & (f t) \end{aligned}$	$\begin{aligned} & \text { UD } \\ & \text { (in) } \end{aligned}$	(in)	$\underset{(f t)}{U G}$	$\begin{aligned} & \text { Noot } \\ & \text { Bolts } \end{aligned}$	$\begin{aligned} & B A \\ & (\text { in }) \end{aligned}$	$\begin{aligned} & \text { BB } \\ & \text { (in) } \end{aligned}$	$\underset{\substack{B C \\ \text { (in) }}}{ }$	$\begin{aligned} & \text { (in) } \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & \text { HT } \\ & \text { (in) } \end{aligned}$	$\underset{\substack{\text { FJ/SJ) } \\(i n)}}{ }$	$\begin{array}{\|c} \hline \begin{array}{c} \text { (in) } \\ (1 / S L \end{array} \end{array}$	$\begin{gathered} F N / S N \\ (\text { in) } \end{gathered}$	$\begin{gathered} \text { FO/SO } \\ \text { (in) } \end{gathered}$	$\begin{array}{\|c} F P / S P \\ (i n) \end{array}$	$\underset{(i n)}{F R / S R}$	$\begin{array}{\|c} \hline F S / S S \\ \text { (in) } \end{array}$	$\begin{gathered} F T / S T \\ (\text { in }) \end{gathered}$
P1/S	25	16	0.375		6	30	2.5	1.75	40	22	25	0.75	0.438	14	1.25	2	8.5	0.438
P1/S/L	39			37.5														
$\frac{P 1 / D}{}$	25 39									30	36			23		2.75	12.5	
P2/S	25	18	0.375		6	34	2.5	2	40			0.75	0.438		1.25	2	8.5	0.438
P2/S/L	39			37.5						22	27			15		2	8.5	
Pe2/D	25									30	36			23		2.75	12.5	
P2/D/L	39			37.5														
P3/S/L	39	20	0.375	37.5	6	36	2.5	2	40	22	29	0.75	0.438	16	1.25	2	8.5	0.438
P3/D	25																	
P3/D/L	39			37.5						30	36			23		2.75	12.5	
P4/S	25	22	0.375		6	38	2.5	2	40	30	36	0.75	0.438		1.25	2.5	12.5	0.438
P4/S/L	39			37.5														
P4/D	25													23				
P4/D/L	39			37.5														
P5/S	25	24	0.375		6	40	2.5	2	40	30	36	0.75	0.5	18	1.25	2.5	12.5	0.5
P5/S/L	39			37.5														
$\frac{P 5 / D}{}$	25			37.5										23				
P6/S	25	24	0.5		6	42	2.5	2.25	45	30	36	0.75	0.625		1.5	2.5	12	0.625
P6/S/L	39			37.5										18				
P6/D	25													23				
P6/D/L	39			37.5														
P7/S	25	26	0.5		${ }^{6}$	44	2.5	2.25	45	30	36	0.75	0.625	19	1.5	2.5	12	0.625
P7/S/L	39 25			37.5														
$\frac{P 7 / D}{}$	25			37.5										23				

NOTE

1. Work this Index with Index 649-031.

DRILLED SHAFT										
Drilled Shaft ID	DA (ft)	$D B$ (ft)	RA	RB	RC	RD (in)	RE	R (in)		
$D S / 12 / 4.0$	12	4.0	11	14	8	12				
$D S / 12 / 4.5$	12	4.5	11	16	8	12				
$D S / 14 / 4.5$	14	4.5	11	16	10	8				
$D S / 14 / 5.0$	14	5.0	11	18	10	8				
$D S / 164.5$	16	4.5	11	16	10	8				
$D S / 16 / 5.0$	16	5.0	11	18	10	8				
$D S / 18 / 5.0$	18	5.0	11	18	10	8				
$D S / 20 / 5.0$	20	5.0	11	18	10	6	10	9		

LUMINAIRE AND CONNECTION											
$\underset{(f t)}{\angle A}$	$\begin{aligned} & \angle B \\ & (f t) \end{aligned}$	$\underset{(i n)}{L C}$	$\underset{(i n)}{L D}$	LE	$\begin{aligned} & L F \\ & (f t) \end{aligned}$	$\underset{(i n)}{L G}$	Lin (in)	$\underset{\text { (in) }}{ }$	$\underset{(i n)}{L K}$	$\begin{gathered} \mathrm{LL} \\ \text { (deg) } \end{gathered}$	$\underset{(f t)}{u G}$
40	10	3	0.125	0.5	8	0.5	0.75	0.25	0.25	0	37.5

GENERAL NOTES

1. Shop Drawings: This Index is considered fully detailed, only submit shop drawings
for minor modifications not detailed in the Plans.

H. Perform all welding in accordance with Specification 460-6.4
H. Perform all welding in accordance with
I. Hot Dip Galvanize after fabrication.
2. Coatings:
A. All Nuts, Bolts, Washers and Threaded Bars/Studs: ASTM F2329
B. All other steel items ASTM A123
3. $\frac{\text { Construction: }}{\text { A. Foundat }}$

Foundation: Specification 455 Drilled Shaft, except that payment is
B. Inctudad in the cost of
C. Place structural grout pad with drain between top of foundation and bottom of
baseplate in accordance with Specification $649-7$.
D. Attach Sign Panels and Signals centered on the elevation of the Mast Arm
E. Wire Access holes are $1 \frac{1}{2}$ "or less in diameter.

H. Handhole Cover: ASTM A1011 Grade 50, 55, 60 or 65
I. Aluminum Pole Caps and Nut Covers: ASTM B26 (319-F)
J. Stainless Steel Screws: AISI Type 316
K. Concrete. Class
K. Concrete: Class IV (Drilled Shaft) for all environmental classifications.
L. Reinforcing Steel: Specification 415
5. Fabrication:
A. Pole and Mast Arm Taper: Change diameter at a rate of 0.14 inches per foot.
B. Upright splices are not allowed. Transverse welds are only permitted at the base.
C. First and Second arm camber angle $=2^{\circ}$
D. Provide bolt hole diameters as follows:
a. Borts (except Anchor Bolts): Bolt diameter plus $1 / 16^{\prime \prime}$, prior to galvanizing.
E. Face handhole perpendicular from arm on single arm poles, perpendicular
from first arm of double arm poles facing away from traffic or see special
F. Seam weld on bottom side of arm. Seam weld under Arm 1 side of pole.
G. Provide a'l' or 'C' hook at the top of the pole for signal wiring support
(See Sheet 6).
.
Pedestria Sita and Sign locations, Signal Head attachment, sign attachment,
4. $\frac{\text { Materials: }}{\text { A Poles }}$

Less than $3 / 6^{\prime \prime}$: ASTM A1011 Grade 50, 55, 60 or 65
breater than or equal to $3 / 6$ ": ASTM A572 Grade $50,55,60$ or 65
c. ASTM A595 Grade A (55 ksi yield) or Grade B (60 ksi yield)
C. Weld Matal: EATMX AJ
D. Bolts, Nuts and Washers
a. High Strength Bolts: ASTM F3125, Grade A325, Type

Washers: ASTM F436 Type 1
a. Anchor Bolts: ASTM F1554 Grade 55
.. Nuts: ASTM A563 Grade A Heavy-Hex (5 per anchor bolt
F. Threaded Bars/Studs: ASTM A36 or ASTM A30

ELEVATION AND NOTES

NOTES:

1. Luminaire type and luminaire length may be found in the Lighting Plans.
2. Align Luminaire Arm with Single Mast Arm or First Arm of Double Mast
Arm unless indicated otherwise in the plans.
3. The fabricator may substitute a $1 / 1 / 2$ thick bent plate with the same
flange width, height, and length as the MC 10×33.6 Channel section
4. 'LL' measure counter clockwise from First Mast Arm.

Luminaire elevation \qquad $\underline{\underline{Z}}$

$\bar{\Longrightarrow}$ SECTION $\mathrm{H}-\mathrm{H}$ \qquad

LAST	D.	DESCRIPTION:
REVISION	$\hat{⿹}$	
$11 / 01 / 17$		

FDOT $\}$
LUMINAIRE ARM AND CONNECTION DETAILS

SECTION I-I \qquad

NOTES:

1. Luminaire type and luminaire length may be found in the Lighting Plans.
2. Align Luminaire Arm with Single Mast Arm or First Arm of Double Mast
Arm unless indicated otherwise in the plans.
3. The fabricator may substitute a $1 / 1 / 2$ thick bent plate with the same
flange width, height, and length as the MC 10×33.6 Channel section
4. 'LL' measure counter clockwise from First Mast Arm.

Luminaire elevation \qquad
$\underline{\underline{Z}}$

$\overline{=}$ SECTION $\mathrm{H}-\mathrm{H}$ \qquad

\qquad

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	D DESCRIPTION:

FDOT
LUMINAIRE ARM AND CONNECTION DETAILS

2. Type $B \& C$ attachments with one hanger shall have Wind beams for signs wider than $31 /{ }^{\prime}$. The be
3. Type $B \& C$ attachments for signs 4^{\prime} and wider Type $B \& C$ attachments for signs 4^{4} and wider
shall have 2 hangers. Signs 7 and wider shall have
wind beams that extend to within $6{ }^{\prime \prime}$ of the sign edge.
4. Type D attachments shall be for signs $31 / 2$ wide or less.
5. Sign panels shall meet the requirements of Index $700-020$
6. Refer to section 633 of the Standard Specifications
7. All bolts, nuts, and washers shall be passivated
stainless.
typee 316 stel, AlSI 300 series, commercial grade
$1 / 4$ Stainless steel round head boits with nuts and lock washers. Bolts shall be spaced

Catenary Wire
Aluminum Zee $1.75 \times 1.75 \times 1.08$
— wire Rope Clamp
SIGN MOUNTING DETAIL

\downarrow
typICAL SPAN WIRE INSTALLATION

ADJUSTABLE HANGER ADJUSTABLE HANGER
FOR SIGN MOUNTING

> DETAIL OF OPPOSING SIGNS SPAN WIRE MOUNTED
tWO POINT ATTACHMENT

GENERAL NOTES:

1. Lowering device to be shipped ready for pole attachment to include 100 ft . of composite power and signal cable
prewired to lowering device at the factory.
2. The lowering device manufacturer shall supply both a portable lowering tool with a manual hand crank and a half-inch
chuck variable-speed reversible industrial-duty electric drill that matches the winch's manufacturer-recommended chuck variable-speed reversibe industrial-duty electric drivinat matches the wuired.
revolutions per minute. One lowering tool per every 10 lowering devices is required
3. The lowering device manufacturer shall provide an on-site installation inspection and operator instruction and
certification. This ensures the product is assembled correctly and that all necessary persons are trained in the certireation. onis ensures the product is assembled correctly atd that all necessary persons are trained in the
proper, safe operation of the syster. Berore erecting the first pole et he contractor must contact the lowering device
supplier and schedule a manufacturer's representative to be on-site. supplier and schedule a manufacturer's representative to be on-site.
4. Design camera mounting arm and connection to tenon according to FDOT Structures Manual (current edition).

CAMERA LOWERING DEVICE DETAIL
5. Camera to be mounted to camera junction box and stabilizing weight via $1 \frac{1}{2}$ " Standard NPT Pipe Thread.
6. Use air terminal extension when the pole top junction box is wider than top of pole.
7. The stainless steel device lowering cable shall be installed inside the pole within a $1 \frac{1}{4}$ "diameter PVC conduit.
8. All communication and power cables must be neatly bundled and secured.
9. Use a Camera Lowering Device listed on the Approved Product List (APL).
10. See Index 641-020 for concrete pole details and Index 649-020 for steel pole details.

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		DESCRIPTION:	FDOT	FY 2018-19 STANDARD PLANS	CAMERA MOUNTING DETAILS	$\begin{gathered} \text { INDEX } \\ 659-020 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 2 \end{aligned}$

GENERAL NOTES:

1. Verify the pole type, the dimensions of the pole at the point of installation of the camera mount, and angle with respe
roadway before manufacturing camera mount assembly.
2. Design camera mounting arm and connection to the pole according to
FDOT Structures Manual (current edition).

No Structures naid ferrat
No field welding shall be permitted.
. Mounting bracket arm shall be level after installation
5. The contractor shall submit shop drawings for the proposed fixed mounting arm, signed and sealed by a Professional Enineer
registered in the State of Florida, to the Engineer for review and registere
approval.
6. See Index 641-020 for concrete pole details and Index 649-020 for

Galvanized pipe connections and conduit entry points shall be sealed in
accordance with Section 630 of the standard Specification

CAMERA MOUNTING WITH FIXED BRACKET

aLTERNATIVE 1

Drill A Hole Through The Curb At The Point Which The Required Saw-Cut Depth Is Obtained Just Prior To Cutting The Top Inside Edge of The Curb. Slide A Section of
Flexible Conduit At Least bill $^{\prime \prime}$ Into The Hole From The Back Side of The Curb But Not Within ${ }^{\text {u }}$ of The Top of The Hole. The Conduit Shall Fit Snue within The Drilled
Hole. Fill The Top of The Hole with Loop Sealant To Th Level Of The Curb Surface. A e. Fill The Top of The Hole with Loop Sealant To The Level of The Curb Sur
A Nonmetallic Material Should Be Used To Prevent Excessive Loop Sealant From Nonmetallic Material Shoulat.
Entering The Flexible Conduit.

ALTERNATIVE 2

Drill A Hole $1_{2} /{ }^{\prime \prime}$ To $1^{\prime \prime}$ Larger In Diameter Than The Rigid Conduit To Be Used Through The Roadway Asphalt (Or Concrete) Surface And Base At An
Appropriate Angle To Interce Predetermined Length Of Rigid Conduit In The Hole And Drive The Conduit Into The Trench or Hole. Install A Molded Bushing (Nonmetallic) On The

Roadway End of The Rigid. Conduit. The Ton Of The Rigid Conduit Shall | Be Approximately $2^{\prime \prime}$ Bielow Tow The Roadway Surface. Fill The Hole With |
| :--- | Loop Sealant To The Level of The Roadway Surface. A Nonmetallic

Entering The Rigid Conduit.

[^0]Cut A Slot In The Edge of The Roadway of Sufficient Size And Depth To Snugly
Place The End Of The Flexible conduit. The End Of The Conduit Shall Be At Least
 he Departure Angle of The Conduit From The Roadway Shall Be 30° To 45°.

NOTE
Other
alternatives may be approved by the State Traffic Operations Engineer.

GENERAL NOTES

1. If the loop lead-in is 75' or less from the edge of the loop detector to Controller cabinet, continue the twisted pair to the cabinet. If the 10
lead-in is greater than $75{ }^{\prime}$ continue the twisted pair to the specified pullbox,
cabinet.
2. The width of all saw cuts shall be sufficient to allow unforced placement of except across expansion joints, shall be cut. $3^{\prime \prime}$ stand depth with a maximum of $4^{\prime \prime}$.
3. On resurfacing or new roadway construction projects, the loop wires and placement of the final asphalt wearing course. The loop wires and lead-if cables shall be placed in a saw cut in the structural course. The depth
the cables below the top of the final surface shall comply with note 2 .
4. A nonmetallic hold down material shall be used to secure loop wires and lead-ins to the bottom of saw-cuts. Hold down material shall be placed
approximately 124 intervals around loops and 24^{4} intervals on lead-ins.
5. The minimum distance between the twisted pairs of loop lead-in wire is $6^{\prime \prime}$
from the loop to $12^{\prime \prime}$ from the pavement edge or curb.
6. Splice Connections in pull boxes with UL listed, watertight, insulated enclosures. Place one enclosure over the end of each conduct
a third enclosure over the exposed end of the shielded cable.
7. As an alternate, a larger diameter enclosure that will accommodate both the
splices of the conductors and the exposed end of the shielded cable may be used
8. The maximum area of asphalt to be disturbed shall be $6^{\prime \prime} \times 6^{\prime \prime}$. This area
shall be restored as directed by the Engineer.

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	䢒	DESCRIPTION:	FDOTY	$\begin{gathered} \text { FY 2018-19 } \\ \text { STANDARD PLANS } \end{gathered}$	VEHICLE LOOP INS TALLATION DETAILS	$\begin{gathered} \text { INDEX } \\ 660-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 2 \end{aligned}$

metal pole
CONCRETE POLE pole mounted cabinet

Liquidtight flexible conduit is approved for use from the electrical
disconnect to the cabinet when both are installed on the same pole. If holes for cabinet mounting require relocation,
original holes shall be filled in with concrete or
covered with a noncorrosive cover plate.

Notes:
ERONT VIEW

1. The number, size and orientation of conduit sweep will vary according to site condition or locations. Two spare 2"
PVC conduits shall be provided in all bases. The spares shall exit in the direction of the center rear of the cabinet
base int a pulbox and caped with a weathertight fittina If obstructions prevent the spare conduit from exiting to base, into a pullbox and capped with a wathertight fitting. If obstructions prevent the spare conduit from exiting to
the rear, or the rear of the cabinet is located on the R/W line, a side exit of the spare conduits will have to be approved by the project engineer. All spare conduit sweeps shall be capped with a weatherproof fitting.
2. Meet all grounding rquirements of the Standard Specifications 620.
of the Standard Specifications 67
NEW CONTROLLER CABINET

front view

otes

$$
\square
$$

Notes.
controller cabinets to be retrofitted shall meet
quirements of the Standard Specifications 678 .
2. The signalized intersection controller cabinet retrofit instal/Iation procedures are located at:
http/:/Www.fotot.gov Irafficicoloc Library Doc Library.shtm
for Generator Power for Signalized Intersection
existing controller cabinet

PEDESTAL MOUNTED

CABINET BACKPLANE DETAIL

| $\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$ | \|r|cer | $\begin{gathered} \text { FY 2018-19 } \\ \text { FDOT } \\ \text { STANDARD PLANS } \end{gathered}$ | TRAFFIC MONITORING S ITE | $\begin{gathered} \text { INDEX } \\ 695-001 \end{gathered}$ | $\begin{aligned} & \text { SHEET } \\ & 3 \text { of } 7 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

NOTES
.

3. Twist loop leads at the rate of 8 to 16 twists per foot. Loops that are within 150° of the cabinet, extend the twisted pair 100 w wre directly to the cabinet. For distances over 150 . \#14 IMSA $50-2$ shielded lead
must be spliced to the loop wire twisted pair at the first pull box to which the loop wire is pulled.
4. Marking will consist of two rounds of contrasting colored tape, one color for the lane number and the second color
for the lead loop location in the lane. The first band closest to the cabinet will represent the lane number, one for the lead looplocation in the lane. The first band closest to the cabinet will represent the lane number, on
round of tape will be for lane 1 and two rounds will be lane 2, etc. The lead loop in lane one would have one round of tape and a second round of a contrasting colored tape for the lead loop in the lane. The trailing loo
5. See Index 635-001 for pull box and apron details.
6. All splices will be performed using splice kits designed for direct burial. Splice kits will include screw on wir
connectors and a housing with sufficient sealant to fully encapsulate the spliced connections. Taped splices are not permitted.
7. Use a chalk line or string and paint to layout the position of the sensor and lead-in cable slots. Ensure saw cuts
do not deviate more than 0.5 inches from the chalk line. Use a single blade or ganged blade saw wide enoun do not deviate more than 0.5 inches from the chalk line. Use a single blade or ganged blade saw wide enough to
cut the axle sensor slot at full width in a single pass. Cutting two slots and chipping out roadway material between cut the axp sensor
them is not allowed
8. All sensor slots and any cuts in the roadway will be thoroughly blown out to ensure there is no dust or debris prior
to installation of sensors or leads. 9. Install Exit Windows at least 2' apart.

CURB \& GUTTER ROADWAYS

\qquad
\qquad DETAIL 'B'

EXIT WINDOW DETAIL ' A ' $=$

END VIEW
(Axle Sensor Slot
DETAIL 'C'

[^0]: NOTE:
 Other alternatives may be approved by the State Traffic Operations Engineer

