

NOTES

traffic railings or parapets:
If there is a Traffic Railing or Parapet on the wall, align Wall Joints with V-Grooves, and Wall Expansion Joints
with Barrier Open Joints.
FOUNDATION: Prepare the soil below the footing in accordance with the requirements for spread footings in Specification Section 455.

* Shear Key is required only when specified in the Plans.

REINFORCING STEEL BENDING DIAGRAMS

BARS G1

KEYWAY \& WALL JOINT DETAIL (TOP VIEW)

GENERAL NOTES

 C-I-P Gravity Walls constructed as extensions of reinforced concrete retaining walls, except walls of proprietar reinforced concrete retaining wall.2. Concrete for Gravity Wall shall be Class NS per Section 347. Concrete for Scheme 3 Junction Slab and Traffic Railing shall be Class II
the plans.
3. Reinforcing steel shall meet the requirements of Specification Section 931 (Grade 40 or 60). Smooth or Deformed Welded Wire Reinforcement (WWR) may be substituted on an equal area basis. Do not increase bar wire spacing for Grade
or WWR.
4. When required, for ad junct guiderail, see Index 515-070 or 515-080 as appropriate. For adjunct Type B fence see Index 550-002.
Joint Seal: Organic Felt bond breaker in accordance with
Specification Section 400 or Type D-5 geotextile fabric in Specification Section 400 or Type D-5 geotextile fabric
accordance with Specification Section 985. Mop all contact surfaces of concrete and Organic Felt or geotextile fabric with cut-back asphalt. Stop Organic Felt or geotextile fabric $6^{\prime \prime}$ below top of wall.
5. Provide a co
. Prall heights 3 ft . and higher. Wrap drainage conshed rock drain for Type D-3 geotextile fabric in accordance with Specification, Section
 at 10 ft . max. spacing (when Drainage Layer is required). Locate outermost edge of Drain Pipe a minimum of $2^{\prime}-0^{\prime \prime}$ from wall joints.
6. Cost of reinforcing steel, face texture, finish, joint seal,
drain pipes, drainage layer, galvanized mesh and geotextile drain pipes, drainage abric to be included in the Contract unit price for Concrete Class NS, Gravity Wall. Cost of concrete for Junction Slab in Scheme 3, to be included in Contract Unit Price for Concrete Traffic Railing Barrier With Junction Slab. Adjunct railings or fences to be paid for separately.

EYEBOLT AND CHAIN FOR LOCKING GRATES TO INLETS

Note: Cost of pipe, fittings and sandbagging to be included in the contract unit price for inlets.
 Key

SECTION

Note: See Slab Designs Index 425-010 TYPE 7

2' Dia. (1-Piece Cover)
3' Dia. (2-Piece Cover)

Brick Ad justment or Grade Ring Permitted
(Min. $0^{\prime \prime}$ Max. $12^{\prime \prime}$)

MANHOLE TOPS

NOTES (TOPS)

1. Manhole top Type 7 slabs shall be of Class II concrete. Concrete as specified in ASTM C478 may be used for precast units; see General
Note No. 3.
2. Manhole top Type 7 slabs may be of cast-in-place or precast construction. The optional key is for precast tops and in lieu of dowels. Frame and slab openings are to be omitted when top is used over a junction box.
3. Manhole top type 8 may be of cast-in-place or precast concrete construction or brick construction. For concrete construction, the concrete and steel reinforcement shall be the same as the supporting wall unit. An eccentric cone may be used.
4. Manhole tops shall be secured to structures by optional construction joints as shown on Sheet 3.
5. Frames can be adjusted a maximum $12^{\prime \prime}$ height with brick or precast ASTM C478 grade rings.
6. Substitution of manhole top Type 8 for manhole top Type 7 is allowed provided that minimum dimensions shown above are not reduced.
7. Substitution of Manhole top Type 7 for Type 8 is allowed if the minimum thickness (h) above pipe opening cannot be maintained with
manhole top Type 8.

DESIGN NOTES

1. Manhole top Type 8 should be specified in the plans when depths shown above can be maintained.

FILTER FABRIC WRAP ON GROUTED PIPE TO STRUCTURE JOINT

NOTE: Sump bottom appropriate for all manhole and inlet types. Sumps are to be constructed in inlet and manholes connected to French Drains unless excluded in the plans. At other locations, sump is to be constructed only where called for in
the plans. Weep holes to be constructed in sump bottom only where called for in the plans. Weep holes to be constructed in sump bottom only where called for in
the plans. Cost of sump bottom and weep hole to be included in the contract unit price for inlet or manhole. SUMP BOTTOM

for all structures unless excluded by special detail ALL PIPE TYPES
DRAINAGE STRUCTURE INVERT

INSET A

TEMPORARY DRAINS FOR SUBGRADE AND BASE
LAST
REVSION
$11 / 01 / 17$
DESCRIPTION:

FDOT	FY 2018-19
STANDARD PLANS	

Index	sheet
$425-001$	2 of 5

EXAMPLE TABLE OF EQUIVALENT STEEL AREA

Example table of equivalent steel area								
SChedule	GRADE 60 REINFORCING BAR		equivalent grade 40 reinforcing bar		EQUIVALENT 65 KSI SMOOTH WELDED WIRE REINFORCEMENT		EQUIVALENT 70 KSI DEFORMED WELDED WIRE REINFORCEMENT	
	Bar Size \& Spacing	$\begin{gathered} \hline \text { Steel } \\ \text { Area } \\ \left(i i^{2} / f t\right) \end{gathered}$	Bar Size \& Spacing	$\begin{array}{\|c\|} \hline \text { Min. Steel } \\ \text { Area } \\ \text { (in²/ft) } \\ \hline \end{array}$	Style Designation	$\begin{gathered} \hline \text { Min. Steel } \\ \text { Area } \\ \left(i n^{2} / f t\right) \\ \hline \end{gathered}$	Style Designation	$\begin{array}{\|c\|} \hline \text { Min. Steel } \\ \text { Area } \\ \left(i n^{2} / f t\right) \\ \hline \end{array}$
A	$\begin{aligned} & \text { \#3 @ } 6^{1 / 2} /^{\prime \prime} \text { Ctrs. } \\ & \# 4 @ 12^{\prime \prime} \text { Ctrs. } \end{aligned}$	0.20	\#3 @ 41/2" Ctrs. \#4 @ 8" Ctrs. \#5 @ 12" Ctrs.	0.30	$3^{\prime \prime} \times 3^{\prime \prime}-W 4.6 \times W 4.6$ 4"x4"-W6.2xW6.2 6"x6"-W9.2xW9.2	0.1846	$\begin{aligned} & 3^{\prime \prime} \times 3^{\prime \prime}-D 4.3 \times D 4.3 \\ & 4^{\prime \prime} \times 4^{\prime \prime}-D 5.7 \times D 5.7 \\ & 6^{\prime \prime} \times 6^{\prime \prime}-D 8.6 \times D 8.6 \end{aligned}$	0.1714
B	$\begin{aligned} & \text { \#3 @ 51/2" Ctrs. } \\ & \text { \#4 @ } 10^{\prime \prime} \text { Ctrs. } \end{aligned}$	0.24	\#3 @ $3^{11 / 2^{\prime \prime}}$ Ctrs. \#4 @ 61/2" Ctrs. \#5 @ 10" Ctrs.	0.36	$3^{\prime \prime} \times 3^{\prime \prime}-W 5.5 \times W 5.5$ $4^{\prime \prime} \times 4^{\prime \prime}-$ W $7.4 \times$ W7. 4 6"x $6^{\prime \prime}-$ W $11.1 \times$ W 11.1	0.2215	$\begin{aligned} & 3^{\prime \prime} \times 3^{\prime \prime}-D 5.1 \times D 5.1 \\ & 4^{\prime \prime} \times 4^{\prime \prime}-D 6.9 \times D 6.9 \end{aligned}$ $6^{\prime \prime \times 6 "-D 10.3 \times D 10.3 ~}$	0.2057
Special 1	$\begin{aligned} & \text { \#3 @ } 5^{\prime \prime} \text { Ctrs.. } \\ & \text { \#4 @ } 9^{\prime \prime} \text { Ctrs. } \end{aligned}$	0.267	$\begin{aligned} & \text { \#3 @ 3" Ctrs. } \\ & \text { \#4@ 6" Ctrs. } \\ & \text { \#5 @ 9" ctrs. } \end{aligned}$	0.40	$\begin{gathered} 3^{\prime \prime} \times 3^{\prime \prime}-W 6.2 \times W 6.2 \\ 4^{\prime \prime} \times 4^{\prime \prime}-W 8.2 \times W 8.2 \\ 6^{\prime \prime} \times 6^{\prime \prime}-W 12.3 \times W 12.3 \end{gathered}$	0.2465	$\begin{gathered} 3^{\prime \prime} \times 3^{\prime \prime}-D 5.7 \times D 5.7 \\ 4^{\prime \prime} \times 4^{\prime \prime}-D 7.6 \times D 7.6 \\ 6^{\prime \prime} \times 6^{\prime \prime}-D 11.4 \times D 11.4 \end{gathered}$	0.2289
c	$\begin{aligned} & \text { \#3 @ 31/2" Ctrs. } \\ & \text { \#4@ } 6^{1 / 2 / n^{\prime \prime}} \text { Ctrs. } \\ & \text { \#5 @ 10" ctrs. } \end{aligned}$	0.37	\#4@4"Ctrs. \#5 @ 61/2" Ctrs. \#6 @ 91/2" Ctrs.	0.555	$3^{\prime \prime} \times 3^{\prime \prime}-W 8.5 \times W 8.5$ $4^{\prime \prime} \times 4^{\prime \prime}-W_{11.4 \times W} 11.4$ $6^{\prime \prime} \times 6^{\prime \prime}-$ W17. $1 \times$ W17. 1	0.3415	$\begin{gathered} 3^{\prime \prime} \times 3^{\prime \prime}-D 7.9 \times D 7.9 \\ 4^{\prime \prime} \times 4^{\prime \prime}-110.6 \times D 10.6 \\ 6^{\prime \prime} \times 6^{\prime \prime}-D 15.9 \times D 15.9 \end{gathered}$	0.3171
D	\#4 @ 41/2" Ctrs. \#5 @ 7" Ctrs. \#6 @ 10" Ctrs.	0.53	\#4@3"Ctrs. \#5 @ 41/2"Ctrs. \#6 @ 611/2" Ctrs.	0.795	$3^{\prime \prime} \times 3^{\prime \prime}-W 12.2 \times W 12.2$ $4^{\prime \prime} \times 4^{\prime \prime}-W 16.3 \times$ W 16.3 $6^{\prime \prime} \times 6^{\prime \prime}-W 24.5 \times W 24.5$	0.4892	$3^{\prime \prime} \times 3^{\prime \prime}-$ D11.4xD11.4 $4^{4 \prime} \times 4^{\prime \prime}-D 15.1 \times D 15.1$ $6^{\prime \prime} \times 6^{\prime \prime}-D 22.7 \times D 22.7$	0.4543
E	$\begin{aligned} & \text { \#4 @ 3" Ctrs. } \\ & \text { \#5 @ 5" Ctrs. } \\ & \text { \#6 @ 7" Ctrs. } \end{aligned}$	0.73	\#5 @ $3^{11 / 2 " C t r s . ~}$ \#6 @ 41⁄2" Ctrs. \#7 @ 6½" Ctrs	1.095	$3^{\prime \prime} \times 3^{\prime \prime}$ W16.8×W 16.8 $4^{4 \times 44^{\prime \prime}-\text { W22.5 WW } 22.5}$ $6^{\prime \prime} \times 6^{\prime \prime}-$ W $33.7 \times$ W 33.7	0.6738	$3^{3 \prime} \times 3^{\prime \prime-D 15.6 \times D 15.6}$ $4^{4 \times 4} \times 4^{4}-D 20.9 \times D 20.9$ $6^{\prime \prime} \times 6^{\prime \prime}-$ D31.3xD31.3	0.6257
F	\#5 @ $3^{11 / 2}$ Ctrs. \#6 @ 5" Ctrs. \#7 @ 7" Ctrs.	1.06	\#6 @ 3" ctrs. \#7 @ 412" Ctrs. \#8 @ 6" Ctrs.	1.59	$\begin{aligned} & 3^{\prime \prime} \times 3^{\prime \prime}-W 24.5 \times W 24.5 \\ & 4^{\prime \prime} \times 4^{\prime \prime}-W 32.6 \times W 32.6 \\ & 6^{\prime \prime} \times 6^{\prime \prime}-W 48.9 \times W 48.9 \end{aligned}$	0.9785	$\begin{aligned} & 3^{\prime \prime} \times 3^{\prime \prime}-D 22.7 \times D 22.7 \\ & 4^{\prime \prime} \times 4^{\prime \prime}-D 30.3 \times D 30.3 \\ & 6^{\prime \prime} \times 6^{\prime \prime}-D 45.4 \times D 45.4 \end{aligned}$	0.9086
Special 2		1.24	$\begin{aligned} & \text { \#7 @ 4" Ctrs. } \\ & \text { \#8 @ 5" Ctrs. } \end{aligned}$	1.86	3"×3"-W28.6xW28.6 $4^{\prime \prime} \times 4^{\prime \prime}-W 38.2 \times W 38.2$ $6^{\prime *} \times 6^{\prime \prime}-W 57.2 \times W 57.2$	1.1446	$\begin{aligned} & 3^{\prime \prime} \times 3^{\prime \prime}-D 26.6 \times D 26.6 \\ & 4^{\prime \prime} \times 4^{\prime \prime}-D 35.4 \times D 35.4 \\ & 6^{\prime \prime} \times 6^{\prime \prime}-D 53.1 \times D 53.1 \end{aligned}$	1.0629
G	$\begin{aligned} & \# 6 \text { @ 31/2" Ctrs. } \\ & \# 7 \text { @ } 5^{\prime \prime} \text { Ctrs. } \end{aligned}$	1.46	$\begin{aligned} & \text { \#7 @ } 3^{\prime \prime} \text { Ctrs. } \\ & \text { \#8 @ } 4^{\prime \prime} \text { ctrs. } \end{aligned}$	2.19	$3^{\prime \prime} \times 3^{\prime \prime}$-W $33.7 \times$ W 33.7 $4^{4 \times 44^{\prime \prime}-W 44.9 \times W 44.9}$	1.3477	$\begin{aligned} & 3^{\prime \prime} \times 3^{\prime \prime}-D 31.3 \times D 31.3 \\ & 4^{\prime \prime} \times 4^{\prime \prime}-D 41.7 \times D 41.7 \end{aligned}$	1.2514

GENERAL NOTES

1. For square or rectangular precast drainage structures, using either deformed or smooth WWR meeting the requirements of Specification Section 931, WWR shall be continuous around the box and lapped in accordance with Option 1 or 3 as shown in the Wall Reinforcing Splice Details.
2. Horizontal steel in the walls of rectangular structures shall be lap spliced in accordance with Option 1,2 or 3 as shown in the Wall Reinforcing Splice Details,
3. Welding of splices and laps is permitted. The requirements and restrictions placed on welding in AASHTO M259 shall apply.
4. Rebar straight end embedment of peripheral reinforcement may be used in lieu of ACI standard hooks for top and bottom slabs except when hooks are specifically called for in the plans or standard drawings.
5. Concrete as specified in ASTM C478, (4000 psi) may be used in lieu of Class II concrete in precast items manufactured in plant which meet the requirements in accordance with Specifcation Section 449.
6. Precast opening for pipe shall be the pipe $O D$ plus $\sigma^{\prime \prime}\left(\pm 2^{\prime \prime}\right.$ tolerance). Mortar used to seal the pipe into the opening will be of such a mix that shrinkage will not cause leakage into or
mortar construction to seal openings less than $21 / /^{\prime \prime}$ wide.
7. For pay item purposes, the height used to determin a drainage structure is greater than 10 feet stiall be computed using . the elevation of the top of the manhole lid,
the
C. the outside top elevation of a junction box less the flow line elevation of the lowest pipe or to top of sump floor.

NOTES FOR PRECAST OPTIONS AND

EQUIVALENT REINFORCEMENT SUBSTITUTION

1. Details for optional precast inlet construction up to depths of 15^{\prime} are shown on the inlet indexes.
2. When precast units are used in conjunction with Alt. "B" Structure Bottoms, Index 425-010, the interior di
dimensions
3. Concrete which meets the requirements of ASTM C478 or Class IV must be used for precast structures constructed with $6^{\prime \prime}$ wall or slab thickness.
4. Reinforcement can be either deformed bar reinforcement or welded wire reinforcement. Bar reinforcement other than 60 ksi may be used, however only two grades are recoogized, Grade 40
and Grade 60 . Smooth welded wire reinforcement, will be recognized as having a design strength of 65 ksi and deformed welded wire reinforcement will be recognized as having a design strength
of 70 ksi. The area of reinforcement required may be adjusted in accordance with the Equivalent Steel Area Table provided For bars and spacings not given, the steel area required can be determined by the following equations:

Grade 40 Steel Area $=A_{s} 40=\frac{60}{40} \times A_{s} 60$
Smooth Welded Wire Reinforcement Steel Area $=A_{S} 65=\frac{60}{65} \times A_{S} 60$
Deformed Welded Wire Reinforcement Steel Area $=A_{s} 70=\frac{60}{70} \times A_{s} 60$
When a reduced area of reinforcement is provided, any maximum bar spacing shown must also be reduced as determined by the following equations, unless otherwise shown
Max. Grade 40 Bar Spacing $=$ Grade 60 Bar Spacing
Max. Smooth Welded Wire Spacing $=$ Grade 60 Bar Spacing $\times 0.86$
When an increased area of reinforcing is provided, then the maximum bar spacing may be increased by the squared ratio of increased steel area, but not to exceed $12^{\prime \prime}$:
Max. Bar Spacing Provided \leq Max. Bar Spacing Required $\times\left(\frac{\text { Steel Area Provided }}{\text { Min. Steel Area Required }}\right)^{2}$ In no case will reinforcement with wires smaller than W3.1 or D4.O, or spacings greater than
$8^{\prime \prime}$ be permitted. Bar reinforcement shall show the minimum yield designation grade mark or $8^{\prime \prime}$ be permitted. Bar reinforcement shall show the minimum yield designation grade mark or
 maximum spacing of $12^{\prime \prime}$ or three (3) times the wall thickness, with a maximum spacing
of $18^{\prime \prime}$ for vertical bars and $12^{\prime \prime}$ for horizontal bars. Wires smaller than W3.1 or D4.O are permitted in the walls of ASTM C 478 round structure bottoms and round risers.
5. Fiber-reinforced concrete may be substituted for conventional steel reinforcement in accordance fiver State Drainage Engineer.

DESIGNER NOTE: Use only when round structures are not practical,
engineer of record approval required.

PICTORIAL VIEW

NOTE: 1. Submit Shop Drawings of corner openings for approval by the Engineer of Record
2. h_{2} may be less than $1^{\prime}-0^{\prime \prime}$ when a minimum $1^{\prime}-0^{\prime \prime}$ deep segment, $8^{\prime \prime}$ slab or curb inlet is provided above the corner opening.
3. For inlet segments at finish grade elevation substitute a \#8 Bar for the top corner bar when $1^{\prime}-0^{\prime \prime} \leq h_{2}<2^{\prime}-0$

RECTANGULAR SEGMENT WITH PIPE OPENING AT CORNER

PLAN VIEW FOR SKEWS $\leq 45^{\circ}$ (Not Centered)

PLAN VIEW FOR SKEWS > 45° (Not Centered)

ROUnd Structure bottoms (alternate a) \& ROUnd RISERS- TABLE 1 Wall Thickness ($t_{1} \& t_{2}$) and Vertical \& Horizontal Areas of Reinforcement (A_{s})									
Type	Structure/Riser Diameter (ft)	Cast-In-Place Items Class II Concrete			Precast Items				
						s II Concr	crete	ASTM	C478
		$\begin{gathered} t_{1} \\ \text { Riser } \\ \text { (in.) } \end{gathered}$		$\begin{gathered} A_{s} \\ \left(i n{ }^{2} / 2 f t .\right) \end{gathered}$	t_{1} Riser (in.)	$\begin{gathered} t_{2} \\ \text { Bottom } \\ \text { (in.) } \end{gathered}$	$\begin{gathered} A_{s} \\ \left(i n .^{2} / f t .\right) \end{gathered}$	t_{1} or t_{2} (in.)	$\begin{aligned} & \hline A_{2} * * * \\ & \left(i n .^{2} / f t .\right) \end{aligned}$
P	$3^{\prime \prime}$-6"	6	8	0.20	6	8	0.20	4**	0.105
P	$4^{\prime}-0^{\prime \prime}$	6	8	0.20	6	8	0.20	5**	0.120
J	$5^{\prime}-0^{\prime \prime}$	-	8	0.20	-	8	0.20	$6^{* *}$	0.150
J	$6^{\prime}-0^{\prime \prime}$	-	8	0.20	-	8	0.20	6	0.180
J	$7^{\prime}-0^{\prime \prime}$	-	8	0.20	-	8	0.20	7	0.210
J	$8^{\prime}-0^{\prime \prime}$	-	8	0.20	-	8	0.20	8	0.240
J	$10^{\prime}-0^{\prime \prime}$	-	10	0.40\#\#	-	10	0.40\#\#	10	0.300
J	$12^{1}-0^{\prime \prime}$	-	10	0.40\#\#	-	12	0.40\#\#	12	0.360

TABLE 1 NOTES:
each face, $12^{\prime \prime}$ max, bar spacing. **Modified minimum wall thickness.
$A_{2}=0.40$ sq. in. for riser section height equal or less than $2^{\prime}-0^{\prime \prime}(2$ hoop min.) $A_{2}=0.60$ sa. in. for riser section height more than $2^{\prime}-0^{\prime \prime}$ up to $4^{\prime}-0^{\prime \prime}(3)$ hoop min. Areas of reinforcing for precast items are based on Grade 60 reinforcing Area of vertical reinforcing may be reduced in accordance with ASTM C478.

SQUARE \& RECTANGULAR STRUCTURES (ALTERNATE B) - TABLE 2				
Type	Wall Length (ft)	Max. Depth (ft)	Wall Thickness (ts)	
			$\begin{aligned} & \text { (in.) } \\ & \text { (in. } \end{aligned}$	Precast (in.)
P	$\leq 3^{\prime}-6^{\prime \prime}$	40	6 Riser 8 Bottom	6
J	$4^{\prime}-0^{\prime \prime}$	40	8	6
J	$5^{\prime}-0^{\prime \prime}$	22	-	6
J	$6^{\prime}-0^{\prime \prime}$	15	-	6
J	$5^{\prime}-0^{\prime \prime}$ to $9^{\prime}-0^{\prime \prime}$	40	8	8
J	$10^{\prime}-0^{\prime \prime}$	26	8	8
J	$10^{\prime}-0^{\prime \prime}$ to $12^{\prime \prime}-0^{\prime \prime}$	40	10	9
J	$16^{\prime}-0^{\prime \prime}$	35	-	9
J	$16^{\prime}-0^{\prime \prime}$	40	10	10
J	$20^{\prime}-0^{\prime \prime}$	25	-	9
J	$20^{\prime}-0^{\prime \prime}$	30	10	10

TABLE 2 NOTES:
See Table 8 for Reinforcing Schedule.

1. Standard structure bottoms $4^{4}-0^{\prime \prime}$ diameter and smaller (Alt. A) and $3^{\prime \prime}-6^{\prime \prime}$ square (Alt. B) are designated Type P. Larger standard structure bottoms are designated Type J. Risers are permitted for all structures. Round risers are designated Type A, square risers are designated Type B.
2. Walls of circular structures (Alt. A) constructed in place may be of brick or reinforced concrete. Precast and rectangular structures (Alt. B) shall be constructed of reinforced concrete only. 3. Wall thickness and reinforcement are for either reinforced cast-in-place or precast concrete units except that precast
circular units may be furnished with walls in accordance with ASTM C478 (see modified wall thicknesses in Table 1).
3. Top and bottom slab thickness and reinforcement are for precast and cast-in-place construction. All concrete shall be of Class II concrete, except use Class IV concrete when shown in the Plans, for special applications of structures located in extremely aggressive environments. Concrete as specified in ASTM C478 (4000 psi) may be used in lieu of Class II concrete for precast items manufactured in accordance with Specifications Section 449
4. All reinforcement shown is Grade 60 steel, deformed bar. Equivalent area Grade 40 steel or equivalent area smooth or deformed welded wire reinforcement in accordance with Specification Section 931 may be substituted according to Index 425-001, unless otherwise noted.
5. Alt. A or Alt. B structure bottoms may be used in conjunction with curb inlet tops Types 1, 2, 3, 4, 5, 6, 9, and 10, and any manhole or junction box unless otherwise shown in the plans or other standard drawings. Alt. B structure bottoms may b standard drawings.
6. Rectangular structures may be rotated as directed by the Engineer in order to facilitate connections between the structure walls and storm sewer pipes.
7. Except when ACI hooks are specifically required, reinforcement in top and bottom slab shall be straight embedment.
8. All reinforcement must have $2^{\prime \prime}$ minimum cover except for 3^{\prime} - $6^{\prime \prime}$ diameter precast circular units manufactured under ASTM C478, keyed construction otherwise shown. Additional bars used to restrain hole formers for precast structures with grouted pipe connections,may be left flush with the hole surface. Cut or bend reinforcement at pipe openings to maintain cover. Exposed ends of reinforcing at precast pipe openings and groued joints must be removed of below conc structures shall be lapped a minimum of 30 bar diameters or by standard hooks at corners.
9. The corner fillets shown are necessary for rectangular structures used with circular risers and inlet throats and when used on skew with rectangular risers, inlets and inlet throats. Fillets will be required in the top slab of the Alt. A structure bottoms when used with the Alt. B risers. Each fillet shall be reinforced with two \#5 bars.
10. Inlet walls, throats, risers or manhole tops shall be secured to structures as shown on Index 425-001 Optional Construction Joints.
11. Structures with depths over 14' below the mean high water table are to be checked for flotation by the designer of the drainage project
12. Units larger than specified standards may be substituted at the contractor's option when these units will not cause or increase the severity of utility conflicts. Such larger units shall be furnished at no additional cost to the Department
Larger Alt. A units cannot replace Alt. B units without approval of the Engineer. This note applies to this Index only.
13. For manhole and junction box tops, for frames and covers, and, for supplementary details and notes see Index 425-001.
14. Type J structure bottoms must have a minimum $6^{\prime}-0^{\prime \prime}$ wall height when possible, for maintenance access.

TABLE 3-MINIMUM STRUCTURE SIZES FOR SINGLE PIPE CONNECTION PER SIDE				
	RECTANGULAR Side Dimension (L)		ROUND	
			Diameter (D)	
	Single Pipe Per Side	$\begin{array}{\|c\|} \hline \text { Note } \\ \text { Number } \end{array}$	$\begin{array}{\|c\|} \hline \text { Single Pipete } \\ \text { or } \\ \theta=180^{\circ} \\ \hline \end{array}$	$\begin{aligned} & \text { 2to } 4 \\ & \text { Pipes } \\ & \theta=90^{\circ} \end{aligned}$
$18^{\prime \prime}$	$3^{\prime}-66^{\prime \prime}$		$3^{\prime \prime}-6^{\prime \prime}$	$4^{\prime \prime}-0^{\prime \prime}$
$24^{\prime \prime}$	$3^{\prime}-6^{\prime \prime}$		$3^{\prime \prime}-6^{\prime \prime}$	$5^{\prime}-0^{\prime \prime}$
$30^{\prime \prime}$	$3^{\prime \prime} 6^{\prime \prime} / 4^{\prime}-0^{\prime \prime}$	2	$4^{4}-0^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$
$36^{\prime \prime}$	$4^{\prime \prime}-0^{\prime \prime} / 5^{\prime \prime}-0^{\prime \prime}$	3	$5^{\prime}-0^{\prime \prime}$	$7^{\prime}-0^{\prime \prime}$
$42^{\prime \prime}$	$5^{\prime}-0^{\prime \prime}$		$6^{\prime}-0^{\prime \prime}$	$7^{\prime}-0^{\prime \prime}$
$48^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$		$6^{\prime}-0^{\prime \prime}$	$8^{\prime}-0^{\prime \prime}$
$54^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$		$7^{1}-0^{\prime \prime}$	$10^{\prime}-0^{\prime \prime}$
$60^{\prime \prime}$	$7{ }^{\prime}-0^{\prime \prime}$		$7^{\prime \prime}-0^{\prime \prime}$	$10^{\prime \prime}-0^{\prime \prime}$
$66^{\prime \prime}$	$7^{\prime \prime}-0^{\prime \prime} / 8^{\prime \prime}-0^{\prime \prime}$	4	$8^{\prime}-0^{\prime \prime}$	$12^{2}-0^{\prime \prime}$
72"	$8^{\prime}-0^{\prime \prime}$		$8^{\prime}-0^{\prime \prime}$	$12^{2}-0^{\prime \prime}$
$78^{\prime \prime}$	$9{ }^{9}-0^{\prime \prime}$		$10^{\circ}-0^{\prime \prime}$	$12^{\prime \prime}-0^{\prime \prime}$
$84^{\prime \prime}$	$9^{\prime}-0^{\prime \prime}$		$12^{2}-0^{\prime \prime}$	N/A

TABLE 3 NOTES:

1. For Round Strutche
. For Round Structures sizes with variable angles between pipes and variable pipe sizes, refer to the FDOT Storm
Drain Handbook.
2. For $3^{\prime \prime}$ - $6^{\prime \prime}$ Precast Square Structure Bottoms, $30^{\prime \prime}$ Pipes with similar invert elevations are not permitted in adjacent walls. Use $4^{4}-0^{\prime \prime}$ Side Dimensions when $30^{\prime \prime}$ pipe openings are required on adjacent walls and
difference in f low lines is less than $3^{\prime}-0^{\prime \prime}$
3. For 4'-0" Precast Square Structure Bottoms, 36" Pipe with similar invert elevations are not permitted in adjacent walls. Use $5^{\prime}-0^{\prime \prime}$ Side Dimensions when $36^{\prime \prime}$ pipe openings are required on adjacent walls and the
is less than $3^{1}-0$.
4. For $7^{\prime}-0^{\prime \prime}$ Precast Square Structure Bottoms, $66^{\prime \prime}$ Pipes with similar invert elevations are not permitted in adjacent walls. Use $8^{\prime \prime}-0^{\prime \prime}$ Side Dimensions when $66^{\prime \prime}$ pipe openings are required on adjacent walls and t.
difference in flow lines is less than $44^{\prime}-0^{\prime \prime}$.

TABLE 4-MINIMUM SIZES FOR MULTIPLE PARALLEL PIPE CONNECTIONS FOR RECTANGULAR STRUCTURE BOTTOMS				
$\begin{aligned} & \text { PIPE } \\ & \text { SIZE } \end{aligned}$	$\begin{gathered} \text { PIPE } \\ \text { SPACING } \\ \text { (S) } \end{gathered}$	MINIMUM WALL LENGTH (L) FOR NUMBER OF PARALLEL PIPES		
		2	3	4
$18^{\prime \prime}$	$2^{\prime}-10^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$8^{3}-6^{\prime \prime}$	$11^{\prime}-0^{\prime \prime}$
$24^{\prime \prime}$	$3^{\prime \prime}-5^{\prime \prime}$	$6^{\prime}-6{ }^{\prime \prime}$	$10^{\prime}-0^{\prime \prime}$	$13^{\prime}-6^{\prime \prime}$
$30^{\prime \prime}$	$4^{\prime}-3^{\prime \prime}$	$8{ }^{\prime \prime}-0^{\prime \prime}$	$12^{\prime \prime} 6^{\prime \prime}$	$16^{\prime}-6^{\prime \prime}$
$36^{\prime \prime}$	$5^{\prime}-1{ }^{\prime}$	$9^{\prime \prime}-6^{\prime \prime}$	$14^{4}-6^{\prime \prime}$	$19^{\prime}-6^{\prime \prime}$
$42^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$11^{\prime}-0^{\prime \prime}$	$17^{\prime}-0^{\prime \prime}$	
$48^{\prime \prime}$	$6^{\prime}-9{ }^{\prime \prime}$	$12^{2}-6^{\prime \prime}$	19^{-010}	-
$54^{\prime \prime}$	$7^{\prime \prime}-8^{\prime \prime}$	14^{-010}		-
$60^{\prime \prime}$	$8^{\prime \prime}-6^{\prime \prime}$	$15^{-0} 0^{\prime \prime}$	-	-
$66^{\prime \prime}$	$9^{\prime}-0^{\prime \prime}$	$16^{\prime}-6^{\prime \prime}$	-	-
$72^{\prime \prime}$	$10^{\prime}-0^{\prime \prime}$	$18^{\prime \prime} 0^{\prime \prime}$	-	-
$78^{\prime \prime}$	$10^{\prime}-9^{\prime \prime}$	$19^{\prime}-0^{\prime \prime}$	-	-
$84^{\prime \prime}$	$11^{\prime}-8^{\prime \prime}$	$20^{\prime}-6^{\prime \prime}$	-	

TABLE 4 NOTES:
Minimum wall lengths based on precast structures, using
concrete pipe with maximum skew angles per Table 5.
Wall lengths exceeding $20^{\prime}-0^{\prime \prime}$ require special designs.

TABLE 5-MAXIMUM PIPE SKEW FOR PRECAST ROUND OPENINGS													
	WALLTHICKNESS	PIPE SIZE											
		$18^{\prime \prime}$	24"	$30^{\prime \prime}$	$36^{\prime \prime}$	42"	$48^{\prime \prime}$	$54^{\prime \prime}$	$60^{\prime \prime}$		$72^{\prime \prime}$	$8^{\prime \prime}$	84
	$8^{\prime \prime}$	19°	17°	16°	16°	15°	14°	14°	13°	13°	13°	12°	12°
	$6^{\prime \prime}$		20°	18°	17°	17°	16°	15°	15°	14°	14°	13°	13°

These values are based on $2^{\prime \prime}$ clearance for precast structures.
Larger skews are possible for Cast-In-Place Structures
elliptical pipe openings when approved by the Engineer.

MAXIMUM PIPE SKEW FOR PRECAST ROUND OPENINGS PLAN VIEW

multiple parallel pipe connections detail PLAN VIEW

PRECAST ROUND STRUCTURES WITH multiple pipe connections

Structure sizes for pipe connections

LAST		
REVISION		
$11 / 01 / 17$	苞	DESCRIPTION:

$F Y$ 2018-19
FDOTANDARD PLANS
INDEX

INDEX SHEET

| STANDARD PLANS | $425-010$ | 3 of 5 |
| :--- | :--- | :--- | :--- |

SLAB DESIGNS - SQUARE AND RECTANGULAR STRUCTURES (TABLE 6)
(all slabs 8" thick except as noted - reinforcing parallel to short way and long way)
SLAB DESIGNS - ROUND

SLAB AND WALL DESIGN table NOTES

1. Size is the inside dimensions) of a structure.
2. Slab reinforcement is appropriate for top, intermediate, and
bottom slabs. bottom slabs.
3. Bottom Slabs for precast $3^{\prime}-6^{\prime \prime} \times 3^{\prime}-6^{\prime \prime}$ rectangular structures at 15^{\prime} depth or less, may be $6^{\prime \prime}$ thick.
4. Slab depth is measured from finished grade to top of slab.
5. Wall depth is measured to the top of the bottom slab for boxes and to the top of the intermediate slab for risers.
6. Wall height is the distance between top of lower slab to bottom of upper slab. Maximum wall height is 12 ' for wall
lengths exceeding 5^{\prime}, or 10^{\prime} for wall lengths exceeding 12'.

7. Wall lengths exceeding $6^{\prime}-0^{\prime \prime}$ require two layers of reinforcing
(See Table 8) with $2^{\prime \prime}$ of cover from the horizontal bars to the inside and outside faces for each layer.
8. Wall lengths exceeding the dimensions or depths shown in Table 8, or $12^{\prime}-0^{\prime \prime}$ diameter require a special design.
9. Wall thickness and reinforcing for rectangular structures is based on the longer wall length.
10. Reinforcing schedules with larger areas of steel may be substituted for schedules with smaller bar or wire spacing, A6. See Index 425-001 for allowable bar spacing adjustments when larger areas of reinforcing are substituted.

-

Wall designs - Rectangular structures (table 8)

VERTICAL REINFORCING			HORIZONTAL REINFORCING			
$\begin{gathered} \hline \text { WALL } \\ \text { DEPTH } \\ \hline \end{gathered}$	SCHEDULE		$\begin{gathered} \hline \text { WALL } \\ \text { DEPTH } \\ \hline \end{gathered}$	SCHED	EDULE	
SIZE: $3^{\prime}-6{ }^{\prime} \&$ RISERS						
$\geq 1.17^{\prime}-40^{\prime}$	A12		$\geq 1.17^{\prime}<10^{\prime}$	B10		$6^{\prime \prime} / 8^{\prime \prime}$
			$10^{\prime}<18^{\prime}$	B5.5		$6^{\prime \prime} 18^{\prime \prime}$
			$18^{\prime}<29^{\prime}$	C6.5		$6^{\prime \prime} / 8^{\prime \prime}$
			29'-40'	C3.5		$6^{\prime \prime} / 8^{\prime \prime}$
SIZE: $4^{\prime}-0^{\prime \prime}$						
$\geq 1.17^{\prime}-40^{\prime}$	A12		$\geq 1.17^{\prime}<6^{\prime}$	B10		$6^{\prime \prime} / 8^{\prime \prime}$
			$6^{\prime}<10^{\prime}$	B5.5		$6^{\prime \prime} / 8^{\prime \prime}$
			$10^{\prime}<20^{\prime}$	C6.5		$6^{\prime \prime} 18^{\prime \prime}$
			$20^{\circ}<28^{\prime}$	C3.5		$6^{\prime \prime} 18^{\prime \prime}$
			28' - 40^{\prime}	D4.5		$6^{\prime \prime} / 8^{\prime \prime}$
SIZE: 5'-0"						
$\geq 1.17^{\prime}-40^{\prime}$	A12		$\geq 1.17^{\prime}<5^{\prime}$	B5.5		$6^{\prime \prime} / 8^{\prime \prime}$
			$5^{\prime}<9^{\prime}$	C6.5		$6^{\prime \prime} / 8^{\prime \prime}$
			$9^{\prime}<15^{\prime}$	C3.5		$6^{\prime \prime} 88^{\prime \prime}$
			$15^{\prime}<22^{\prime}$	D4.5		$6^{\prime \prime} 18^{\prime \prime}$
			22'-40'	E3		$8^{\prime \prime}$
SIZE: $6^{\prime}-0^{\prime \prime}$						
$\geq 1.17^{\prime}<26^{\prime}$	A12		$\geq 1.17^{\prime}<9^{\prime}$	C3.5		$6^{\prime \prime} / 8^{\prime \prime}$
			$9^{\prime}<15^{\prime}$	D4.5		$6^{\prime \prime} / 8^{\prime \prime}$
			$15^{\prime}<26^{\prime}$	E3		$8^{\prime \prime}$
	Inside Outside			Inside Outside		
$26^{\prime}-40^{\prime}$	A12	A12	$26^{\prime}-40^{\prime}$	D7	D7	$8^{\prime \prime}$
SIZE: $7^{\prime}-0^{\prime \prime}$						
Inside Outside				Inside Outside		
$\geq 1.17^{\prime}<25^{\prime}$	A12	A12	$\geq 1.17^{\prime}<7^{\prime}$	B10	B10	$8^{\prime \prime}$
$26^{\prime}-40^{\prime}$	B10	B10	$7^{\prime}<10^{\prime}$	B5.5	B5.5	$8^{\prime \prime}$
			$10^{\prime}<20^{\prime}$	C6.5	C6.5	$8^{\prime \prime}$
			$20^{\prime}<30^{\prime}$	D7	D7	$8^{\prime \prime}$
			$30^{\prime}-40^{\prime}$	E5	E5	$8^{\prime \prime}$
SIZE: $8^{\prime}-0^{\prime \prime}$						
Inside Outside				Inside Outside		
$\geq 1.17^{\prime}<20^{\prime}$	A12	A12	$\geq 1.17^{\prime}<6^{\prime}$	B5.5	B5.5	$8^{\prime \prime}$
$20^{\prime}-40^{\prime}$	C6.5	C6.5	$6^{\prime}<13^{\prime}$	C6.5	C6.5	$8^{\prime \prime}$
			$13^{\prime}<22^{\prime}$	D7	D7	$8^{\prime \prime}$
			$22^{\prime}<31^{\prime}$	E5	E5	$8^{\prime \prime}$
			31'-40'	F5	F5	$8^{\prime \prime}$
SIZE: $9^{\prime}-0^{\prime \prime}$						
Inside Outside				Inside Outside		
$\geq 1.17^{\prime}<12^{\prime}$	A12	A12	$\geq 1.17^{\prime}<8^{\prime}$	C6.5	C6.5	$8^{\prime \prime}$
$12^{\prime}<28^{\prime}$	C6. 5	C6.5	$8^{\prime}<15^{\prime}$	D7	D7	$8^{\prime \prime}$
$28^{\prime}-40^{\prime}$	D7	D7	$15^{\prime}<23^{\prime}$	E5	E5	$8^{\prime \prime}$
			$23^{\prime}-40^{\prime}$	F5	F5	$8^{\prime \prime}$
SIZE: $10^{\prime}-0^{\prime \prime}$						
	Inside Outside			Inside Outside		
$\geq 1.17^{\prime}<10^{\prime}$	B10	B10	$\geq 1.17^{\prime}<10^{\prime}$	D7	D7	$8^{\prime \prime}$
$10^{\prime}<21^{\prime}$	C6.5	C6.5	$10^{\prime}<17^{\prime}$	E5	E5	$8^{\prime \prime}$
$21^{\prime}<26^{\prime}$	D7	D7	$17^{\prime}<26^{\prime}$	F5	F5	$8^{\prime \prime}$
$26^{\prime}-40^{\prime}$	C6.5	C6.5	$26^{\prime}-40^{\prime}$	F5	F5	$10^{\prime \prime}$

VERTICAL REINFORCING			HORIZONTAL REINFORCING			
$\begin{gathered} \hline \text { WALL } \\ D E P T H \\ \hline \end{gathered}$	SCHEDULE		$\begin{gathered} \hline \text { WALL } \\ \text { DEPTH } \end{gathered}$	SCH	DULE	
SIZE: 10'-0"1 (Precast Only)						
	Inside Outside			Inside	Outside	
$26^{\prime}-40^{\prime}$	D7	D7	$26^{\prime}-40^{\prime}$	F5	F5	$9^{\prime \prime}$
SIZE: $12{ }^{\prime}-0^{\prime \prime}$						
	Inside Out side		- Inside 0 Outside			
$\geq 1.17^{\prime}<14^{\prime}$	B10	B10	$\geq 1.17^{\prime}<10^{\prime}$	C6.5	C6.5	10^{11}
$14^{\prime}<25^{\prime}$	C6.5	C6.5	$10^{\prime}<17^{\prime}$	D7	D7	$10^{\prime \prime}$
$25^{\prime}-40^{\prime}$	D7	D7	$17^{\prime}<24^{\prime}$	E5	E5	$10^{\prime \prime}$
			24'-40'	F5	F5	$10^{\prime \prime}$
SIZE: $12^{\prime}-0^{\prime \prime}$ (Precast Only)						
	Inside Out side			Inside Outside		
$\geq 1.17^{\prime}<12^{\prime}$	B10	B10	$\geq 1.17^{\prime}<10^{\prime}$	D7	D7	$9{ }^{\prime \prime}$
$12^{\prime}<24^{\prime}$	C6.5	C6.5	$10^{\prime}<17^{\prime}$	D4.5	D4.5	$9^{\prime \prime}$
$24^{\prime}-40^{\prime}$	D7	D7	$17^{\prime}<23^{\prime}$	E5	E5	$9^{\prime \prime}$
			$23^{\prime}<32^{\prime}$	F5	F5	$9{ }^{\prime \prime}$
			$32^{\prime}-40^{\prime}$	65	65	$9^{\prime \prime}$
SIZE: $16^{\prime}-0^{\prime \prime}$						
Inside Outside			Inside Outside			
$\geq 1.17^{\prime}<11^{\prime}$	C6.5	C6.5	$\geq 1.17^{\prime}<13^{\prime}$	D7	D7	$10^{\prime \prime}$
$11^{\prime}<20^{\prime}$	D7	D7	$13^{\prime}<20^{\prime}$	E5	E5	$10^{\prime \prime}$
$20^{\prime}<28^{\prime}$	E5	E5	$20^{\prime}<28^{\prime}$	F5	F5	$10^{\prime \prime}$
$28^{\prime}-40^{\prime}$	F5	F5	28'-40'	65	65	$10^{\prime \prime}$
SIZE: 16'-0" (Precast Only)						
Inside Outside				Inside Out side		
$\geq 1.17^{\prime}<10^{\prime}$	C6.5	C6.5	$\geq 1.17^{\prime}<9^{\prime}$	D7	D7	$9^{\prime \prime}$
$10^{\prime}<18^{\prime}$	D7	D7	$9^{\prime}<13^{\prime}$	D4.5	D4.5	$9{ }^{\prime \prime}$
$18^{\prime}<25^{\prime}$	E5	E5	$13^{\prime}<19^{\prime}$	E5	E5	$9^{\prime \prime}$
25' - 35'	F5	F5	$19^{\prime}<27^{\prime}$	F5	F5	$9^{\prime \prime}$
			27' - 35'	65	65	$9^{\prime \prime}$
SIZE: $20^{\prime}-0^{\prime \prime}$						
	Inside Outside			Inside Outside		
$\geq 1.17^{\prime}<10^{\prime}$	C6.5	C6.5	$\geq 1.17^{\prime}<8^{\prime}$	D7	D7	$10^{\prime \prime}$
$10^{\prime}<17^{\prime}$	D7	D7	$8^{\prime}<12^{\prime}$	E5	E5	$10^{\prime \prime}$
$17^{\prime}-30^{\prime}$	E5	E5	$12^{\prime}<20^{\prime}$	F5	F5	$10^{\prime \prime}$
			20' - 30^{\prime}	65	65	$10^{\prime \prime}$
SIZE: $20^{\prime}-0^{\prime \prime \prime}$ (Precast Only)						
	Inside Outside			Inside Outside		
$\geq 1.17^{\prime}<8^{\prime}$	C6.5	C6.5	$\geq 1.17^{\prime}<8^{\prime}$	D4.5	D4.5	$9^{\prime \prime}$
$8^{\prime}<13^{\prime}$	D7	D7	$8^{\prime}<12^{\prime}$	E5	E5	$9^{\prime \prime}$
13' - 25^{\prime}	E5	E5	$12^{\prime}<19^{\prime}$	F5	F5	$9^{\prime \prime}$
			19'-25'	65	65	$9^{\prime \prime}$

REINFORCING SCHEDULE				
SCHEDULE	GRADE 60 BARS OR 65 KSI \& 70 KSI WELDED WIRE REINFORCING			
	$\begin{gathered} \text { GRADE } 60 \\ \text { AREA } \\ \text { (in. } / \text { /ft.) } \end{gathered}$	MAXIMUM SPACING		
		$\begin{gathered} \text { GR } 60 \\ \text { BARS } \\ \text { (in.) } \end{gathered}$	WWR EQUIV. AREA*	
			$\begin{gathered} 65 \text { KSI } \\ \text { (in.) } \end{gathered}$	$\begin{gathered} 70 \text { KSI } \\ \text { (in.) } \end{gathered}$
A12	0.20	12	8	8
A6	0.20	6	5	4/22
B10	0.24	10	8	71/2
B5.5	0.24	51/2	5	4
C6.5	0.37	$61 / 2$	6	5
C3.5	0.37	$31 / 2$	3	$21 / 2$
D7	0.53	7	6	5
D4.5	0.53	41/2	4	31/2
E5	0.73	5	4	4
E3	0.73	3	3	3
F5	1.06	5	4	4
F3.5	1.06	31/2	3	3
65	1.45	5	4	4
6.3.5	1.45	31/2	3	3
H4	1.75	4	3	3

*Equivalent Area Welded Wire Reinforcing may be substituted in accordance with Index 425-001

WALL REINFORCING SPLICE DETAILS

PLAN (INLET TYPE 2 SYMMETRICAL ABOUT q)

SECTION BB (INLET TYPE 2 SYMMETRICAL ABOUT \&)

DIMENSIONAL SECTION
\#6 Bars Unless
\#6 Bars @ 9" ctrs.

PLAN (INLET TYPE 4 SYMMETRICAL ABOUT \&)

SECTION BB (INLET TYPE 4 SYMMETRICAL ABOUT q)

INLETS TYPES 3 AND 4

REINFORCING SECTION

DIMENSION \& REINFORCING HALF SECTION
TYPES A \& E CURB (HALF SECTION AA) (TYPE E GUTTER SHOWN)

TRANSVERSE SECTIONS FOR INLETS TYPES 1, 2, 3 \& 4

INLETS TYPES 2 AND 4
 SLAB REINFORCING

GENERAL NOTES

1. The finished grade and slope of the inlet tops are to conform with the finished cross slope and grade of the
proposed sidewalk and/or border.
2. When inlets are to be constructed on a curve, refer to the plans to determine the radius and, where necessary, modify the inlet details accordingly. Bend steel when necessary
3. All steel in inlet top shall have $1 \frac{1}{4}$ " minimum cover unless otherwise shown. Inlet tops shall be either cast-in-place or precast concrete.
4. For precast units the rear wall and apron may be precast as a separate piece from the top slab.
Provide a minimum of $7 \sim \# 4$ dowels in accordan with Index 425-001 "OPtIonal CONSTRUCTION JoInts".
5. For supplemental details see Index 425-00
6. Only round concrete support post will be acceptable.
7. These inlets are designed for use with standard curb
and gutter Types E and Type F. Locate inlet outside of pedestrian crosswalks.
8. For structure bottoms see Index 425-010
9. Inlet to be paid for under the contract unit price for inlets (Curb) (Type_), Each
LAST
REVISION
11/01/17

1/01/17
FDOTY $\begin{gathered}\text { FY 2018-19 } \\ \text { STANDARD PLANS }\end{gathered}$
INDEX
$425-020$

SHEET

SECTION DD (End View Of Inlet)

SECTION FF

SECTION HH
(Type 5 Inlet Only)

CROSS REFRENCES:
For General Notes See Sheet
For Location Of Sections DD
Thru HH See Sheet 1. \qquad
PRECAST DETAILS
Thru HH See Sheet 1

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		$\begin{gathered} \text { FY 2018-19 } \\ \text { FDOT } \\ \text { STANDARD PLANS } \end{gathered}$	$\mathbb{C U R B}$ INLET TOPS TYPES 5 AND 6	$\begin{array}{\|l\|l\|} \text { INDEX } \\ 425-021 \end{array}$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 5 \end{aligned}$

ALTERNATE REINFORCING STEEL DETAILS FOR WELDED WIRE REINFORCEMENT (WWR)

WELDED WIRE REINFORCEMENT PIECE NO. 1

PLACEMENT SCHEMATIC FOR WELDED
Wire reinforcement piece no. 1

WELDED WIRE REINFORCEMENT
PIECE NO. 2
Lacement schematic for welded WIRE REINFORCEMENT PIECE NO. 2
conventional reinforcing steel bending diagrams

BILL OF REINFORCING STEEL					
MARK	SIZE	TYPE 5 INLET		TYPE 6 INLET	
		No.	LEnGth	No.	LENGTH
A (Precast)	4	25	$3^{\prime}-1{ }^{\prime \prime}$	38	$3^{\prime}-1{ }^{\prime \prime}$
A (C-I-P)	4	25	$2^{1}-1 /{ }^{1 / 1}$	38	$2^{1}-1 /{ }^{1 / 2}$
B	4	6	$10^{\prime}-3^{\prime \prime}$	6	${ }^{15^{\prime}-99^{\prime \prime}}$
c	4	25	11" to $1^{\prime \prime}-11^{\prime \prime}$	38	11" to $1^{\prime \prime}-11^{\prime \prime}$
D	4	4	$10^{\prime}-3^{\prime \prime}$	4	15'-9"
E	4	16	$4^{4}-111^{1 / 2}$	30	$4^{4}-111 / 2^{\prime \prime}$
F	4	3	$6^{\prime}-0^{\prime \prime}$	6	$6^{\prime}-0^{\prime \prime}$
H	4	4	$4^{\prime \prime}-6^{\prime \prime}$	4	$4^{\prime}-6^{\prime \prime}$
J	4	4	$3^{\prime}-0^{\prime \prime}$	4	$3^{\prime}-0^{\prime \prime}$
K (Fillet)	4	2	$2^{\prime \prime}-3^{\prime \prime}$	2	$2^{\prime}-3^{\prime \prime}$
L (Precast)	4	1	$1^{\prime}-4{ }^{\prime \prime}$	0	---
L (C-I-P)	4	10	$1^{\prime}-4{ }^{\prime \prime}$	9	$1^{1}-4^{\prime \prime}$
s	4	7	$3^{\prime}-2{ }^{\prime \prime}$	7	$3^{\prime}-2^{\prime \prime}$

Reinforcing steel notes:
BAR 4A

1. All bar dimensions in the bending
diagrams are out to out.
2. Bars 4 A and $4 E$ may be combined into a single bar.
3. Welded Wire
Welded Wire Reinforcement consists of
Smooth or Deformed wire meeting the requirements of Specification Section requir
4.

WELDED WIRE REINFORCEMENT
PIECE NO. 3
LAST
REVISION

11/01/17

PLACEMENT SCHEMATIC FOR WELDED WIRE REINFORCEMENT PIECE NO. 3

TOP VIEW

LONGITUDINAL SECTION

\#4 Bars Continuous

- \#4 Bar ${ }^{\# 4}$ Bars, $6^{\prime \prime}$ cc, Top \& Bottom
 \#5 Bars, With Hooks. $6^{\text {6 }} \mathrm{cc}$, Bottom

B

\#4 Bars, $12^{\prime \prime} \mathrm{cc}$ Or 4x4-W4.0 \times Wen
Welded Wire Reinforcement $40^{\prime \prime} \times 20^{\prime \prime}$
Top \& Bottom

TOP VIEW
\#5 Bar Top \&
Adjustable Curb Box

FRAME AND GRATE

TOP VIEW

EFFICIENCY CURVE

GRATE DETAIL

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	\|rin	$\begin{array}{cc} \text { FDY 2018-19 } \\ \text { STANDARD PLANS } \end{array}$	$\mathbb{C U R B}$ INLET TOP TYPE 9	$\begin{gathered} \text { INDEX } \\ 425-024 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 1 \end{aligned}$

SECTION

Approximate Debris Free Capacity
(0.02 Pavement Cross Slope)

DETAIL A
AIL

DETAIL B

GRATE DETAIL

$\begin{gathered} \text { FY 2018-19 } \\ \text { FDOTANDARD PLANS } \end{gathered}$	$\mathbb{C U R B}$ INLE T TOP TYPE 10	$\begin{gathered} \text { Index } \\ 425-025 \end{gathered}$	SHEET 1 of 1

Edge of Pavement -
LOW SIDE SUPERELEVATION
 low side superelevation
PAVEMENT WARP FOR SHOULDERS INANSItion
SUPERELEVATION

INLET SECTION AT BARRIERS

Note: Alt. B Structure Bottom Only. See Index 425-010 INLET WITH STRUCTURE BOTTOM

SECTION A-A (WITHOUT GRATE) Pipe Opening Shown)

SECTION B-B (Pipe Opening Not Shown

GENERAL NOTES:

1. Where called for in the Plans, use this inlet in conjunction with Shoulder Barrier per Index 521-001 or a Wall Coping with Barrier and Junction Slab per Index 521-610. Use of the inlet adjacent to other Concrete Barrier or Traffic Railing types requires approval of the Drainage Engineer. The
inlet is suitable for bicycle and occasional pedestrian traffic, with roller bar installation (see INSET B), but should not be placed in a designated pedestrian travel way.
2. Inlets located in embankments constructed with earth anchored retaining wall shall be designed with minimum depths to reduce adverse impact on the anchorage system. Runs of pipe parallel to and
near anchored wall shall be avoided wherever practical. Special coordination must be exercised during the design and construction of storm water systems within anchored wall systems.
3. Inlet bottoms and/or tops may be either precast or cast-in-place. Whether cast as a single unit or as multiple segments, and whether precast or cast-in-place, the upper $2^{\prime}-3^{\prime \prime}$ of the inlet shall be reinforced in accordance with sections $C C, D D$ and $E E$.
4. All exposed edges and corners shall be $3 / 4$ " chamfer or tooled to $1 / 4^{\prime \prime}$ radius.
5. When Alternate G grate is specified in the plans, the grate is to be hot-dip galvanized after fabrication. Field installation of the filler bar called for in Inset B will not be permitted, thereby requiring tolerance adjustment during fabrication and/or casting, or, matching grate to structure prior to gavanizng.
6. All reinforcing is Grade 60 bars. See Index 425-001 for equivalent area of welded wire fabric
7. All dimensions are for both precast and cast-in-place inlets unless otherwise noted
8. For supplemental details see Indexes 425-001 and 425-010
9. Inlets to be paid for under the contract unit for Inlets (Concrete Barrier), Ea

Center of Box Sta./Off set Location

TABLE 1: HORIZONTAL

 WALL REINFORCING SCHEDULE| $\begin{aligned} & \text { WALL } \\ & \text { DEPTH } \end{aligned}$ | schedule | $\begin{gathered} \text { AREA } \\ \text { (in.2/ft.) } \end{gathered}$ | MAX. SPACING | |
| :---: | :---: | :---: | :---: | :---: |
| | | | BARS | WWF |
| O'-5' | A12 | 0.20 | 12" | $8^{\prime \prime}$ |
| 5'-10' | A6 | 0.20 | $6^{\prime \prime}$ | $5^{\prime \prime}$ |
| 10'-15' | A4 | 0.20 | $4{ }^{4 \prime}$ | $3^{\prime \prime}$ |
| 10'-15' | B5.5 | 0.24 | 51/2 | |

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 12 / 07 / 17 \end{gathered}$	気DESCRIPTION:	$\begin{gathered} \text { FY 2018-19 } \\ \text { FDOTSAND } \end{gathered}$	SHOULDER BARRIER INLET

$\bar{C} \quad \bar{I}$
\sqrt{B}

SECTION C-C
BARRIER OVER INLET STRUCTURE (THROAT FULLY TRANSITIONED)

GENERAL NOTES

1. Where called for in the Plans, use this
 Construct Barrier sements shown herstrin in Barcordarce sements shown
hequirements
of Index $521-01$, including connections to adjacent barrier segments using the
Doweled Joint.
Doweled Joint.
2. Reinforcing shown is grade 60 steel
bars. For the equivalent area of welded wire reinforcement for the inlet, see Index $425-001$. Reinforcing
salil have 2^{4} minimum cover unless
otherwise show shal have 2hinimum cover unless
otherwise shown. Trim or bend bars to
provide $11 / /^{\prime \prime}$ clearance around pipe provide $11 /{ }^{\prime \prime}$ clearance around pipe
openings. The cost for additional openings. The cost for additional
reinforcing in the barrier is included in
the cost of the concrete barrier. For Bar Bending Details of Bars $5 \mathrm{~V} 2 \&$
5U4, see Index $5221-01$. For all others,
see Sheet $2 \& 3$.
3. All barrier is Class II or IV concrete
per Index $521-001$.
4. Apply a $3 / 4 /{ }^{\prime \prime}$ chamfer or $1 / 4$ radius to all
exposed concrete edges.
exposed concrete edges.
5. For pipe connections to inlet structure
bottoms, the recommended maximum pipe sizes are $18^{\prime \prime}$ Iongitudinal and $30^{\prime \prime}$

6. Grates may be fabricated with
reticuline bars or with either $1 / /^{\prime \prime}$ welded or $3 /^{\prime \prime}$. electroforged cross
bars and bearing bars as detailed on bars and
Sheet 3.
7. When Alternate G grate is specified in galvanzed after farbrication, in
accordance with Specification $962-9$.
8. For pay Item purposes, the depth of
the barrier inlet shall be computed the barrier inlet shall be computed
using the center of box grate elevation mings either the flow line elevatavon of
the lowest pipe flow line or the top of the lowest pipe flow line
the sump floor elevation.
9. All dimensions are for both precast and crast indace
10. For inlets placed in areas of bicycle
traft ic, provide the extended crossbar or bar stublde the extended crossb
or
or
11. Inlets to be paid for under the Contract unit price for Inlets, Barrier
Rigid, Curb and Gutter, Each.
12. Concrete Barrier to be paid for under the contract unit price for Shoulder
Concrete Barrier, Rigid-Curb \& Gutter,
LF

BARRIER SECTIONS

TOP SLAB REINFORCING DIAGRAM

SECTION AA
alt. A STRUCTURE BOTTOM FOR INLET TYPE S

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		$\begin{gathered} \text { FY 2018-19 } \\ \text { FDOTY } \\ \text { STANDARD PLANS } \end{gathered}$	GUTTER INLET TYPE S	$\begin{gathered} \text { INDEX } \\ 425-040 \end{gathered}$	$\begin{gathered} \text { SHEET } \\ 3 \text { of } 3 \end{gathered}$

NOTE: Alt. B Structure Bottom Only. See Index 425-010 for structure bottom details and hole reinforcement INLET ${ }^{\text {(For Pipes } 30^{\prime \prime} \text { Did. And Larger) }}$ WITH STRUCTURE BOTTOM
RECOMMENDED MAXIMUM PIPE SIZES Inlet Inside Width \qquad Pipe Size $\frac{2^{\prime}-11^{\prime \prime} \text { or } 3^{\prime \prime}-3^{\prime \prime}}{4^{\prime \prime}-0^{\prime \prime} \text { or } 3^{\prime}-10^{\prime \prime}}$ \qquad $24^{4 \prime}$

Note: Recommended sizes are for concrete pipe. Sizes for other types of pipe must be verified for fit
in accordance with In accordance with Index 425-001. For larger
pipe see bottom detail above and Index 425-010.

OPTIONAL BAR SPACING

TWO REQUIRED PER INLET
$5^{\prime \prime}$ Steel Grate: Main Bars $5^{\prime \prime} x^{1 / 4} 4^{\prime \prime}$
Intermediate Bars $1 \frac{1}{2} 2^{\prime 1} 1_{1}$
Reticuline Bars $11 / 4^{\prime \prime} \times 3 / 6^{\prime \prime}$

GENERAL NOTES

1. This inlet is suitable for village swales, ditches, or other areas subject to heavy whee loads, minimum debris. This inlet may be placed in areas subject to occasional pedestrian
traffic such as landscaped areas and pavement areas where pedestrians can walk around
2. When alternate " G " grate is specified in plans, the grate is to be hot dip galvanized after fabrication.
3. All reinforcing is Grade 60 bars with $2^{\prime \prime}$ min. cover unless otherwise noted. See Index 425-001 for equivalent area of welded wire fabric. Cut or bend bars out of way of pipe to clear pipe $1 \frac{1}{2}{ }^{\prime \prime}$.
4. All exposed edges and corners shall be $3 / 4 / 1$ chamfer or tooled to $1 / /^{\prime \prime}$ radius.
5. All dimensions are for both precast and cast-in-place inlets unless otherwise noted.
6. For supplementary details see Index 425-001.
7. Inlet to be paid for under the contract unit price for Inlets (Gutter Type V), EA hORIZONTAL WALL REINFORCING

CAST-IN-PLACE INLET SHOWN WITHOUT GRATE; PRECAST INLET SIMILAR) Sta./Offset Location

B

TOP SLAB REINFORCING DIAGRAM

SECTION AA
ALT. A STRUCTURE BOTTOM FOR INLET TYPE V

TOP SLAB REINFORCING DIAGRAM

TOP SLAB REINFORCING SCHEDULE

SCHEDULE	GRADE 60 (BAR) OR 65 KSI \& 70 KSI (WIRE FABRIC) In.2/ft.
A	0.20
B	0.24
C	0.37
D	0.53
E	0.73
F	1.06
G	1.45

TOP SLAB WITH CENTERED OPENING		
$\begin{gathered} \text { SLAB } \\ \text { DEPTH } \end{gathered}$	$\begin{gathered} \text { SLAB } \\ \text { THICKNESS } \end{gathered}$	REINFORCING (2 WAYS) SCHEDULE
SIZE: $4^{4}-0^{\prime \prime}$		
$\geq 0.5^{\prime}-40^{\prime}$	91/2/	c
SIZE: $5^{\prime}-0^{\prime \prime}$		
$\geq 0.5^{\prime}<30^{\prime}$	91/2"	c
$30^{\prime}-40^{\prime}$	91/2"	D
SIZE: $6^{\prime}-0^{\prime \prime}$		
$0.5^{\prime}<8^{\prime}$	9 $1 /{ }^{1 /}$	B
$8^{\prime}<18^{\prime}$	$91 / 2^{\prime \prime}$	c
$18^{\prime}<30^{\prime}$	91/2"	D
$30^{\prime}<37{ }^{\prime}$	91/2"	E
$37{ }^{\prime}-40^{\prime}$	91/2"	6
SIZE: $8^{\prime}-0^{\prime \prime}$		
$\geq 0.5^{\prime}<9^{\prime}$	$11^{1 / 2}{ }^{\prime \prime}$	C
$9<15^{\prime}$	111/2"	D
$15^{\prime}<23^{\prime}$	111/2"	E
$23^{\prime}<33^{\prime}$	111/2"	E
$33^{\prime}-40^{\prime}$	$11^{1 / 2}{ }^{\prime \prime}$	6

SECTION AA

SECTION BB

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		$\begin{gathered} \text { FY 2018-19 } \\ \text { FDOTANDARD PLANS } \end{gathered}$	DITCH BOTTOM INLET TYPE A	$\begin{gathered} \text { INDEX } \\ 425-050 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 2 \end{aligned}$

GENERAL NOTES

$\stackrel{\mid}{B}$

SECTION AA
single slot

PLAN

Inlet Box (Line Type Indicates Existing Box To Facintate Depiction of Partial Construction on Existing Inlets.

* On new boxes the traversable top may be cast as a monolithic unit or cast in segments, and the location of this line may be lower to facilitate handling and placement; however, the slot depth is to remain at 9 inches. See Index 425-001 for top to wall connection. For converting to traversable tops on existing inlets remove concrete to this line and expose the existing reinforcement. Reshape or splice in reinforcement to penetrate the rim and returns of the grat
seat, and bend the reinforcement into the slot shelf to extend into the abutting throat pavement.

TRAVERSABLE TOPS FOR INLETS TYPE B AND
FOR CONVERSIONS OF EXISTING INLETS TYPE B AND TYPE X

1. The general purpose of the inlet top designs are:
a. For ditches, medians or other areas subject to heavy wheel loads. This inlet may be placed in areas subject to occasional pedestrian traffic such as landscaped reas and pavement areas where pedestrians can walk around the inlet. Inlet not
b. Provide full grate and horizontal slot designs for new construction
c. Provide full grate and horizontal slot designs for replacing the vertical slot tops on existing Inlets Type B and Type x that are in locations subject to occasional pedestrian traffic.
All reinforcing is Grade 60 bars with $2^{\prime \prime}$ min. cover unless otherwise noted. See Index 425-001 for equivalent area of welded wire fabric. Bars to be cut or bent for min. $1 \frac{1 / 2}{2}$ cearance around pipe
2. All exposed edges and corners shall be $3 / 4^{\prime \prime}$ chamfer or tooled to $1 / 4^{\prime \prime}$ radius.
3. When Alternate G grates are specified in the plans, the grates are to be hot-dip galvanized after fabrication
4. Cost for constructing traversable tops on new inlet boxes shall be included in the Contract unit price for Inlets (DT BOT) (Type B), EA., and shall include the cost for
surrounding concrete inlet pavement. Existing Inlets Type B and Inlets Type X that are converted to traversable inlet tops shall be paid for under the contract unit price for Inlets (DT BOT) (Type B) (Partial), EA. Unit price and payment shall be full compensation or inlet conversion and shall include the removal and disposal of any existing concrete inlet pavement; the removal and stockpiling or disposal of sufficient material from the
existing inlet box to facilitate construction of the required inlet top; construction of the existing inlet box to facilitate construction of the required inlet top; construction of the
required inlet conversion; backfill construction; construction of concrete inlet pavement; reusing, supplementing, transferring or replacing grates as required by plans or as directed by the Engineer; any required earthwork for ditch restoration within 30^{\prime} of the inlet; and, restoration of disturbed turf.
5. Ditch pavement shall be paid for, separate from the inlet and concrete inlet pavement, by pavement types and units as called for in the plans.
6. Sod will be paid for under the contract unit price for Performance Turf, SY
7. For supplementary details see Index 425-001.
8. All dimensions are for both precast and cast-in-place inlets unless otherwise noted.

DESIGN NOTES

1. The type of top (single or double slots) depends on the approach ditch configuration and the hydraulic requirements of the site. The designer will stipulate in the plans the type of top to be constructed at each individual inlet location.
2. On existing inlets, conversion grates shall be constructed at the original grate elevations unless other elevations are called for in the plans. When plans call for the indet top to be constructed to support storm water detention, details for ditch modifications and underdrains shall be shown in the plans.

MAINTENANCE NOTES

Traversable inlet tops that are constructed by maintenance contract or by maintenance forces may reuse the existing grates that are determined by the Maintenance Engineer to be functionally sound, and their reuse is so directed by the Maintenance Engineer. Existing grates approved for reuse and new grates may be mixed, matched or replaced as directed by the Maintenance Engineer.

SECTION BB

TOP SLAB REINFORCING DIAGRAM
TOP SLAB WITH CENTERED OPENING

CENTERED OPENING		
$\begin{gathered} \text { SLAB } \\ \text { DEPTH } \end{gathered}$	$\begin{gathered} \text { SLAB } \\ \text { THICKNESS } \end{gathered}$	REINFORCING (2 WAYS) SCHEDULE
SIZE: $6^{\prime}-0^{\prime \prime}$		
$0.5^{\prime}<8^{\prime}$	91/2"	B
$8^{\prime}<18^{\prime \prime}$	91/2"	c
$18^{\prime}<30^{\prime}$	$91 / 2^{\prime \prime}$	D
$30^{\prime}<37^{\prime}$	91/2"	E
37'-40'	91/2"	G
SIZE: $8^{\prime}-0^{\prime \prime}$		
$\geq 0.5^{\prime}<9^{\prime}$	111/2"	c
$9^{\prime}<15^{\prime}$	111/2"	D
$15^{\prime}<23^{\prime}$	111/2"	E
23' $<33^{\prime}$	111/2"	E
33'-40'	111/2"	6

PLAN

SECTION
horizontal wall reinforcing SCHEDULES (TABLE 1)

WALLDEPTH	schedule	$\begin{gathered} \text { AREA } \\ \left(i n_{2}^{2} / f t .\right) \end{gathered}$	MAX. SPACING	
			bARS	WWF
${ }^{\prime}$ '-15'	A12	0.20	12"	$8^{\prime \prime}$

TYPE C
Recommended Maximum Pipe Size:
$2^{\prime \prime}-0^{\prime \prime}$ Wall $-18^{\prime \prime}$ Pipe
$2^{\prime}-0^{\prime \prime}$ Wall $-18^{\prime \prime}$ "ipe
$3^{\prime-1 "} 1^{\prime \prime}$ Wall $-24^{\prime \prime}$ Pipe $\left(18^{\prime \prime}\right.$ where an $18^{\prime \prime}$ pipe enters a $2^{\prime}-0^{\prime \prime}$ wall)

SECTION
HORIZONTAL WALL REINFORCING SCHEDULES (TABLE 2)

WALL DEPTH	SCHEDULE	$\begin{gathered} \text { AREA } \\ (\text { in. } / 2 / f t .) \end{gathered}$	MAX. SPACING	
			BARS	WWF
$0^{\prime}-6{ }^{\prime}$	A12	0.20	$12^{\prime \prime}$	$8^{\prime \prime}$
$6^{\prime}-10^{\prime}$	${ }^{\text {A6 }}$	0.20	$6^{\prime \prime}$	$5{ }^{\prime \prime}$
10'-13'	A4	0.20	$4{ }^{\prime \prime}$	$3 "$
10'-15'	B5.5	0.24	$51 / 2^{\prime \prime}$	$5^{\prime \prime}$

TYPE D
Recommended Maximum Pipe Size:
3'-1" Wall - $24^{\prime \prime}$ Pipe
$4^{\prime \prime} 1^{\prime \prime}$ Wall - 36" Pipe

SECTION
HORIZONTAL WALL REINFORCING SCHEDULES (TABLE 3)

WALL DEPTH	SCHEDULE	AREA (in.2/ft.)	MAX. SPACING	
			WWF	
$0^{\prime}-5^{\prime}$	$A 12$	0.20	$12^{\prime \prime}$	$8^{\prime \prime}$
$0^{\prime}-7.5^{\prime}$	$A 6$	0.20	$6^{\prime \prime}$	$5^{\prime \prime}$
$7.5^{\prime}-10^{\prime}$	$B 5.5$	0.24	$5^{\prime \prime} z^{\prime \prime}$	$5^{\prime \prime \prime}$
$10^{\prime}-15^{\prime}$	$C 6.5$	0.37	$6^{\prime \prime} z^{\prime \prime}$	$6^{\prime \prime}$

TYPE E
Recommended Maximum Pipe Size:
$3^{\prime}-0^{\prime \prime}$ Wall - 24" Pipe
$4^{4}-6^{\prime \prime}$ Wall $-36^{\prime \prime}$ Pipe

HORIZONTAL WALL REINFORCING
SCHEDULES (TABLE 4)

WALL DEPTH	schedule	$\begin{gathered} \text { AREA } \\ \text { (in.2/ft.) } \end{gathered}$	MAX. SPACING	
			BARS	WWF
$0^{\prime}-5^{\prime}$	B5.5	0.24	5\%/2"	$5^{\prime \prime}$
$5^{\prime}-7^{\prime \prime}$	C6.5	0.37	61/2"	$6^{\prime \prime}$
$7^{\prime}-15^{\prime}$	D4.5	0.53	41/2"	$4^{\prime \prime}$

TYPE H (2 \& 3-GRATE INLET) Recommended Maximum Pipe Size.
$1-24^{\prime \prime}$ Pipe
Or $2-24^{\prime \prime}$ Pipe ($5=3^{\prime}-5^{\prime \prime}$)

horizontal wall reinforcing SCHEDULES (TABLE 5)

WALLDEPTH	SCHEDULE	$\begin{gathered} \text { AREA } \\ \text { (in./ff.) } \end{gathered}$	MAX. SPACING	
			BARS	WWF
$0^{\prime}-5^{\prime}$	C3.5	0.37	$31 / 20$	$3^{\prime \prime}$
$5^{\prime}-10^{\prime}$	D4.5	0.53	$4^{1 / 2}{ }^{\prime \prime}$	$4^{\prime \prime}$

TYPE H (4-GRATE INLET)
Recommended Maximum Pipe Size:
GENERAL NOTES
$8^{\prime}-9^{\prime \prime}$ wall - 1-78" Pipe
See Sheet 3 of 7 .
or $2-30^{\prime \prime}$ Pipe ($5=4^{\prime}-3^{\prime \prime}$)

PLAN VIEW

PLAN

$\angle 5 \times 31 / 2 \times 5 / 16-\frac{C}{D}$ SECTION DD
STEEL GRATE
$5^{\prime \prime}$ Steel Decking, Weight 630 Lbs. Main Bars $5^{\prime \prime} \times y^{1 / 4}$
Intermediate Bars $1^{1 / 12^{\prime \prime}} \times 1 / 4^{\prime \prime}$, Reticuline Bars $1 \frac{114}{} \times 3 / 16^{\prime \prime}$

SECTION BB

TYPE G

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	\|	$\begin{gathered} \text { FY 2018-19 } \\ \text { FDOTANDARD PLANS } \end{gathered}$	DITCH BOTTOM INLET TYPES \mathbb{F} AND G	$\begin{gathered} \text { INDEX } \\ 425-053 \end{gathered}$	SHEET 2 of 2

INLET LENGTHS (L) LESS THAN OR EQUAL TO 9' (SINGLE LAYER WALL REINFORCING)

FDOTY	FY 2018-19 STANDARD PLANS	DITCH BOTTOM INLETT TYPE K	$\begin{gathered} \text { INDEX } \\ 425-055 \end{gathered}$	SHEET 1 of 2

PLAN

SLAB REINFORCEMENT

SLAB SECTION

SECTION BB

1. For additional details see Index 425-052.
2. Inlet to be paid for under the contract unit price for Inlets (Ditch Bottom Type C Moafirea), EA Handrail to be paid for under the contract unit price for Pipe Handrail, (Material), LF.

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		FDOTY	$\begin{gathered} \text { FY 2018-19 } \\ \text { STANDARD PLANS } \end{gathered}$	BACK OF SIDEWALK DRAINAGE

PLAN

Notes:

Pipe Size (in)	C	Concrete Class I (CY)	Sand-Cement Riprap (CY)
15	$4^{\prime}-9^{\prime \prime}$	2.3	1.1
18	$5^{\prime}-3^{\prime \prime}$	2.6	1.3
24	$6^{\prime}-3^{\prime \prime}$	3.3	1.8

2. Grading back of sidewalk varies and shall be done as directed by the Engineer.
3. Grading back of sidewalk varies and shall be done as directed by the Engin for estimate and payment
4. Concrete quantities shown are for maximum wall heights, and shall be basis for
5. Riprap quantities shown are for estimate purposes only. Cost of riprap to be included in cost of the endwall.
6. Endwalls to be paid for under the contract unit price for Concrete Class I (Endwalls), CY. Handrail to be paid for under the contract unit price for Pipe Handrail, (Material), LF

| $\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$ | \|r|cer | $\begin{gathered} \text { FY 2018-19 } \\ \text { FDOT } \\ \text { STANDARD PLANS } \end{gathered}$ | BACK OF SIDEWALK | $\begin{gathered} \text { INDEX } \\ 425-060 \end{gathered}$ | $\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 3 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |

YARD DRAIN ITEM INCLUDES:

1. $15^{\prime \prime} \times 15^{\prime \prime} \times 12^{\prime \prime}$ Concrete or PVC Tee 4' long.
2. Grate diameter $=14-1 / 4$

Thickness $=2-1 / 2^{\prime \prime}$
Light Duty Cast Iron, see Specification Section 962.
3. $12^{\prime \prime}$ pipe as necessary
4. 0.04 Cubic yards concrete for slab.

Notes:

1. Yard drains to be located outside the R/W. Drainage area should not exceed 750 SF (grate flow 0.1 Cfs).
2. Yard drains may be constructed at the option of the property owner as shown on the plans.
3. Cost of plugs and collars to be included in the cost for $15^{\prime \prime}$ pipe. For collar and plug details see Index 430-001
4. Yard drains to be paid for under the contract unit price for Yard Drains, EA.

SHALLOW DITCHES
Notes:

Note
Miter to slope.

1. To be constructed at locations as directed by the Engineer.
2. Either cast iron pipe or PVC rigid conduit, U.L. listed for direct sunlight exposure, Schedule 40, may be used.
for under the contract unit price for either Cast Iron Soil Pipe (Standard) (4")
LF or PVC Pipe For Back of Sidewalk Drainage (4), LF.

ENDWALL

SECTION AA

FLUME W/O SIDEWALK INLET (CLOSED FLUME) TYPE II SIngle barrel flume depicted

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		$\begin{gathered} \text { FY 2018-19 } \\ \text { FDOTXD } \end{gathered}$	$\mathbb{C L O S E D} \mathbb{F L U M E ~ I N L E T}$	index 425-061	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 3 \end{aligned}$

INTERMEDIATE-WALL REINFORCING

QUADRUPLE BARREL FLUME

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		$\begin{gathered} \text { FY 2018-19 } \\ \text { FDGT } \\ \text { STANDARD PLANS } \end{gathered}$	$\mathbb{C L O S E D} \mathrm{FL}$ UME INLET	index $425-061$	SHEET 3 of 3

DIMENSIONS				
Skimmer Height as Specified in the Plans	Inches Bolt Hpacing			
D				
12	$33 / 16$	3	28	3
14	$33 / 16$	3	28	4
16	$33 / 16$	3	28	5
18	$33 / 16$	3	28	6
20	$43 / 16$	4	31	6
22	$43 / 16$	4	31	7
24	$43 / 16$	4	31	8
26	$43 / 16$	4	31	9
28	$43 / 16$	4	31	10
30	$53 / 16$	5	31	10
32	$53 / 16$	5	31	11
34	$53 / 16$	5	31	12
36	$63 / 16$	6	31	12
38	$63 / 16$	6	31	13
40	$63 / 16$	6	31	14

1/4" Thick × $11 / 2$ " Wide
FLAT BAR

FRONT PANEL

NOTES:

1. These details are for construction field expediency to resolve utityty conflicts that cannot be remedied by relocation For
conflicts determined during design, use the construction shop drawings for structure details.
2. Concrete used in conflict structures shall be as specified in
ASTM C478. 4000 psi may be used in lieu of Class I concrete
3. Maximum opening for pipe shall be the pill 00 prix used to seal the pipe into the opening will be of such mix that used to seal the pipe into the opening will be of such mix that
shrinkage will not cause leakage into or out of the structure.
4. If the conflict structure is round or there are multiple inlet or
5. If
6. If during construction or the plans design process it is determined
that a potable water supply line must pass though a storm drain that a potable water supply line must pass though a storm drain
structure, it must be in compliance with Chapter 62-55.314 (3) F.A.C. and shown on the design or construction plans and submitted
to the FIorida Department of Environmental Protection (FDEP) to the Florida Department of Environmental Protection (FDEP)
Administrator For Drinking Water in the respective FDEP District Administrator For Drinking Water in the respective FDEP Distric
for review and comment. This index and rule citation provide accepted methods for addressing conflicts when and where they cannot be reasonably avoided. To be submitted along with the
plans shall be a justification describing inordinate cost and the impracticality of avoidance. If identified, properly justified, and accomplished in accordance with this index, approval is
granted. Upon request, the Utility Agency Owner (UAO) must granted. Upon request, the Utility Agency Owner (UAD) must
provide support data on the cost of relocation or ad justment to the FDO for submittal to the FDEP S. See the following web site
tor District FDEP Drinking Water Contacts: for District FDEP Drinking Water Contacts. "Organization" on the menu to the right.

DESIGNER'S NOTES:

"Sumped" conflict manholes shall not be used unless the system is the sump is completley blocked

SECTION LONGITUDINAL TO CARRIER PIPE

$$
=\text { UTILITY CONFLICT CONDITION I } \bar{\square}
$$

$$
=\begin{gathered}
\text { UTILITY CONFLICT CONDITION } I I= \\
\text { (Presure Or Fluid Carrier Installations) }
\end{gathered}
$$

- SECTION B-B

UTILITY CONFLICT PIPES THRU STORM DRAIN STRUCTURES
LAST
REVISION
$11 / 01 / 17$

Od

11/01/17

FDOT\} $\begin{gathered}\text { FY 2018-19 } \\ \text { STANDARD PLANS }\end{gathered}$

UTILITY CONFLICTS THRU DRAINAGE STRUCTURES

LONGITUDINAL SECTION

PLAN

SECTION BB

SAFETY MODIFICATION FOR INLETS IN BOX CULVERTS

| $\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$ | \|c|c|c | DESCRIPTION: | | $\begin{gathered} \text { FY 2018-19 } \\ \text { STANDARD PLANS } \end{gathered}$ | S AFE TY MODIFICATIONS FOR INLET IN BOX CULVERTS | $\begin{array}{c\|} \hline \text { INDEX } \\ 425-090 \end{array}$ | $\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 1 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

SCHEDULE OF BELL REINFORCEMENT

$\begin{aligned} & \text { Nominal } \\ & \text { Pipe } \\ & \text { Diameter } \end{aligned}$	$\begin{aligned} & \hline \text { Design } \\ & \text { Bell } \end{aligned}$ Reinforcement	Maximum Reinforcement Under Tolerance
	in ${ }^{2}$ per foot	in^{2} per foot
$15^{\prime \prime}$	0.07	0.010
$18^{\prime \prime}$	0.07	0.010
$24^{\prime \prime}$	0.09	0.010
$30^{\prime \prime}$	0.12	0.010
$36^{\prime \prime}$	0.14	0.010
$42^{\prime \prime}$	0.16	0.010
$48^{\prime \prime}$	0.19	0.011
$54^{\prime \prime}$	0.21	0.012
$60^{\prime \prime}$	0.23	0.0135
$66^{\prime \prime}$	0.26	0.015
$72^{\prime \prime}$	0.28	0.0165
$78^{\prime \prime}$	0.30	0.018
$84^{\prime \prime}$	0.33	0.0195
$90^{\prime \prime}$	0.35	0.021
$96^{\prime \prime}$	0.37	0.0225
$102^{\prime \prime}$	0.40	0.024
$108^{\prime \prime}$	0.42	0.0255

$12^{\prime \prime}$ For Pipes $14^{\prime \prime} \times 23^{\prime \prime}$ Through $19^{\prime \prime} \times 30^{\prime \prime}$
$24^{\prime \prime}$ For Pipes $24^{\prime \prime} \times 38^{\prime \prime}$ And Larger

CONCRETE JACKET

Filter Fabric Jacket Required PREFORMED PLASTIC JOINT (BEFORE PULL-UP)

within 1.75 L is defined as bell reinforcement.
ROUND RUBBER GASKET SHOWN
DETAIL OF BELL \& SPIGOT CONCRETE PIPE JOINT USING ROUND OR PROFILE RUBBER GASKET

Class ns Concrete
Any wire Mesh Arrangement which Provides 0.126 Square Inches of Steel Area Per Linear Foot Both Ways May Be Used; Provided The
Wires Are Spaced A Minimum of $2^{\prime \prime}$ Wires Are Spaced A Minimum of $2^{\prime \prime}$
And/Or A Maximum of $6^{\prime \prime}$ On Centers

Filter Fabric Jacket Required PROFILE RUBBER GASKET (BEFORE PULL-UP)

Cost of concrete jacket or filter fabric jacket to be ELLIPTICAL CONCRETE PIPE JOINTS

ISOMETRIC VIEW Cost of filter fabric jacket to be included in cost of pipe culverts. FOR ALL PIPE TYPES - CONCRETE PIPE SHOWN FILTER FABRIC JACKET

ELLIPTICAL PIPE SHOWN PIPE SECTIONS

ROUND PIPE

Note: For reinforcement see elliptical pipe concrete jacket. (All Pipe Sizes) BELL AND SPIGOT TONGUE \& GROOVE DISSIMILAR JOINTS

Collar of Class NS Concrete (May Be Formed By Any Method Approved By The Engineer) Proposed \qquad $-$
Remove Portion of Existing Endwall Les Existing Endwall Les
Than 1' Below Grade
 Set In Adhesive Set In Adhesive
Bonded Material
 - Existing Endwall

- Spigot End To Be Placed In Existing Endwall Regardless Of Direction of Flow

SECTION AA

LONGITUDINAL SECTION

Note: Cost for removal and disposal of portions of top and toe of existing endwall Note. cost of concrete, reinforcing steel and construction of collar to be included in the contract unit price for pipe culvert.

CONCRETE COLLAR FOR EXTENSION OF EXISTING PIPE CULVERTS OF PIPE AND CONCRETE PIPES WITH DISSIMILAR JOINTS
Note: PVC pipe, Schedule 40, to be paid for under the contrat
CONCRETE GUTTER AND DRAINS AT RETAINING WALLS

> Is Larger Value of Eith $L=10 \times H$ (No Maximum) $L=10 \times D$ itch offset (Mz

METHOD FOR SETTING LIMITS OF VARIABLE
I IMITS OF
front slopes at drainage structures

RAILROAD COMPANY	CLEARANCE BELOW BOTTOM OF RAIL (FEET) ${ }^{(2)}$	STRENGTH
		$\begin{aligned} & \text { ASTM (C76) } \\ & \text { CLASS } \end{aligned}$
Alabama \& Gulf Coast Railway (Rail America)	5.5	IV
AN Railway \& Bay Line Railroad (Genesee \& Wyoming)	5.5 / $4.5^{(1)}$	v
CSX Transportation	5.5	v
First Coast Railroad (Genesee \& Wyoming)	$5.5 / 4.5^{(1)}$	v
Florida Midland, Central, and Northern Railroads (Pinsly Railroad)	5.5	v
Florida East Coast (FEC) Railway Company	5.5	IV
Florida West Coast Railroad Company	5.5	v
Georgia \& Florida Railway, Inc.	5.5	v
Norfolk Southern (NS) Railway Corporation	5.5 / $4.5^{(1)}$	v
Port of Palm Beach District Railroad	5.5	IV
Seminole Gulf Railway (LP)	6.0	v
South Central Florida Express	6.0	v
Talleyrand Terminal Railroad (Genesee \& Wyoming)	5.5 / $4.5{ }^{\text {(1) }}$	v
South Florida Regional Transportation Authority (Tri-County Commuter Rail)	5.5	v

(2) - Clearance is for casing pipe. All subgrade carrier pipelines and wirelines will be installed within a casing pipe which will extend from Right-of-Way

METHOD FOR DETERMINING THE LENGTH OF SPECIAL PIPE REQUIRED UNDER RAILROADS

INLETS, MANHOLES OR JUNCTION BOXES on integral precast concrete riser for concrete pipe

END VIEW

SECTION AA

DIMENSIONAL DETAILS

SIDE VIEW ANL PIPE SIZES
REINFORCING DET SECTION
REINFORCING DETAIL

WITH BAFFLES

ALL PIPE SIZES
ALL PIPE SIZES
SIDE VIEW AND BACKWALL SECTION REINFORCING DETAIL

DIMENSIONS AND QUANTITIES FOR ONE U-ENDWALL						
Pipe Size		L	H	w	$\begin{aligned} & \text { Class I I } \\ & \text { Conc. } \\ & \text { Cu. Yd. } \end{aligned}$	Reinf. SteelLbs.
D	$\begin{gathered} \text { Area } \\ \text { Sq. Ft. } \end{gathered}$					
$15^{\prime \prime}$	1.23	$3^{\prime \prime}-3^{\prime \prime}$	$1^{1}-7{ }^{1 / 2}$	$3^{\prime \prime} 7^{\prime \prime}$	0.89	39
$18^{\prime \prime}$	1.77	$3^{\prime \prime}-9^{\prime \prime}$	$1^{\prime}-101^{\prime \prime}$	$3^{\prime \prime}-10^{\prime \prime}$	1.05	43
$24^{\prime \prime}$	3.14	$4^{\prime \prime}-9^{\prime \prime}$	$2^{1}-4^{1} / 2^{\prime \prime}$	4'-4"	1.40	55
$30^{\prime \prime}$	4.91	5'-9"	$2^{\prime}-10{ }^{\prime \prime} /^{\prime \prime}$	$4^{\prime}-10^{\prime \prime}$	1.88	64

WITHOUT BAFFLES

ENDWALLS FOR 1:2 SLOPES

PLAN
DIMENSIONAL DETAILS

general notes

1. Baffles to be constructed only when called for in plans.
2. When steel grating is required on endwall see Sheet 3 of 3 for details.
3. All reinforcing No. 4 bars with $2^{\prime \prime}$ clearance except as noted
4. All angles, channels and bars shall be ASTM A242/A242M, A572/A572M or A588/A588M Grade 50 steel. When designated Alternate G in the plans galvanize in accordance with Section 975 and 425-3.2 of the Standard Specifications.
5. Channel section C 3×6 may be substituted for C 4×5.4 channel.
. Precasting of this endwall will be permitted. Precast units shall conform to the dimensions shown or in accordance with approved shop State Drainage Engineer. Use Idex 425001 for bering trouting State Drainage Engineer. Use Index 425-001 for opening and grouting

Concrete shall be Class I, except ASTM C48 (4000 psi) concrete may be substituted for precast items manufactured in plants meeting the requirements of Section 449 of the Specifications.
. Sodding shall be in accordance with Index 524-001, and paid for under the contract unit price for Performance Turf, Sy
. Endwall to be paid for under the contract unit price for U-Endwall, Each. Payment shall include cost of concrete, reinforcing steel, and Quantities shown are for estimating purposes only.

Bars V BENDING DIAGRAM

Field Bend

24" AND 30" PIPE
1:3 SLOPES

24" AND 30" PIPE
1:4 SLOPES

SIDE VIEWS AND BACKWALL SECTIONS REINFORCING DETAILS

ENDWALLS WITH AND WITHOUT BAFFLES FOR 1:3, 1:4 AND 1:6 SLOPES

LAST REVISION 11/01/17		FDOT	$\begin{gathered} \text { FY 2018-19 } \\ \text { STANDARD PLANS } \end{gathered}$

U-TYPE CONCRETE ENDW ALLS BAFFLES \& GRATE OPTTIONAL 15" TO 30" PIPE

430-011
2 of 3

PERSPECTIVE

GENERAL NOTES

1. U-type concrete endwall energy dissipators are intended for use outside the clear zone
2. Chamfer all exposed edges $3 / 4$ ".
3. Concrete shall be Class I, except ASTM C478 (4000 psi) concrete may be substituted for precast items manufactured in plants meeting the requirements of Section 449 of the Specifications.
4. Reinforcing steel shall have $2^{\prime \prime}$ min. cover
5. Endwall to be paid for under the contract unit price for Class I Concrete (Endwalls), CY and Reinforcing Steel (Roadway), LB. Riprap to be paid for under the contract unit price fo
Riprap (Sand-Cement)(Roadway), Cr. Cost of plastic filter fabric to be included in the contract unit price for riprap.
6. Fencing, when called for in the plans, to be paid for under the contract unit price for Fencing Type B, LF. See Index 550-002 for details of Type B fencing.

Pipe Size		$\begin{gathered} Q \\ (\text { Max) } \\ \text { (cfs) } \end{gathered}$	Dimensions																Concrete Class I (Cy)	Reinf. Steel (Ib)	Sand-Cement Riprap (Nom.) (CY)
			Feet - Inches											Inches							
			w	H	L	a	b	c	d	e	f	g	m	n	p	s	t	k			
30	4.91	59	9-0	6-3	10-8	4-7	6-1	3-4	1-4	1-2	2-6	3-0	1-11	6	$61 / 2$	7	7	3	6.72	736	10.6
36	7.07	85	10-5	7-3	12-4	5-3	7-1	3-10	1-7	1-3	3-0	3-6	2-3	7	71/2	8	8	3	10.34	1.072	13.6
42	9.62	115	11-10	8-0	14-0	6-0	8-0	4-5	1-9	1-6	3-0	3-11	2-6	8	81/2	9	8	4	14.82	1,429	17.5
48	12.57	151	13-3	9-0	15-8	6-9	8-11	4-11	2-0	1-7	3-0	4-5	2-10	9	91/2	10	8	4	20.36	2,000	22.1
54	15.90	191	14-8	9-9	17-4	7-4	10-0	5-5	2-2	1-10	3-0	4-11	3-0	10	101/2	10	8	4	27.19	2,659	27.2
60	13.63	236	16-1	10-9	19-0	8-0	11-0	5-11	2-5	1-11	3-0	5-4	3-4	11	111/2	11	8	6	34.49	3,552	32.5
66	23.76	285	17-3	11-6	20-6	8-8	11-10	6-5	2-7	2-1	3-0	5-9	3-7	12	121/2	12	8	6	42.82	4,472	38.3
72	28.27	339	18-6	12-3	22-0	9-3	12-9	6-11	2-9	2-3	3-0	6-2	3-9	12	121/2	12	8	6	50.68	5.426	44.5

DIMENSIONS AND QUANTITIES																							See General Note No. 5. See Sheet 5 For 3" Slab Quantities
	D	x	A	B	c	E	F	G	${ }^{+}$	M				N	5\%/2" CONCRETE SLAB (CY) 1				SODDING (SY)				
										Single	Double	Triple	Quad.		Single	Double	Triple	Quad.	Single	Double	Triple	Quad.	
										Pipe	Pipe	Pipe	Pipe		Pipe	Values shown for estimating pipe quantities and are for information only.							
$\begin{gathered} 1: 2 \\ \text { Slope } \end{gathered}$	$15^{\prime \prime}$	$2^{\prime \prime} 7^{\prime \prime}$	1.92'	$2.18{ }^{\prime}$	4.10^{\prime}	2.06^{\prime}	5^{\prime}	1.22'	$2.9{ }^{\prime}$	4.63'	7.21^{1}	9.79^{\prime}	${ }^{12.37^{\prime}}$	${ }^{1.19}$	0.38	0.58	0.77	0.96	21	24	27	30	
	$18^{\prime \prime}$	$2^{\prime}-10^{\prime \prime}$	$1.97{ }^{\prime}$	$2.74{ }^{\text {+ }}$	4.71^{1}	$2.56{ }^{\prime}$	6^{\prime}	1.41^{\prime}	3.4'	4.92'	7.75'	10.58'	13.42'	1.21 ${ }^{\prime}$	0.44	0.65	0.87	1.09	22	25	28	31	
	$24^{\prime \prime}$	$3^{\prime \prime-5 \prime \prime}$	2.06	$3.85{ }^{\prime}$	5.91'	3.56'	$7{ }^{7}$	$1.73{ }^{\prime}$	3.4'	5.50'	${ }^{8.92}$	${ }^{12.353^{\prime}}$	${ }^{15.755^{\prime}}$	${ }^{1.25}$	0.54	0.83	1.12	1.42	24	28	32	35	
	$30^{\prime \prime}$	$4^{\prime \prime}-3^{\prime \prime}$	$2.15{ }^{\prime}$	$4.95{ }^{\prime}$	7.10'	$4.56{ }^{\prime}$	8^{\prime}	2.00^{\prime}	3.4'	$6.08{ }^{\prime}$	10.33'	$14.58{ }^{\prime}$	18.83'	${ }^{1.29^{\prime}}$	0.66	1.09	1.50	1.91	26	31	35	40	
	$36^{\prime \prime}$	5'-1"	$2.25{ }^{\prime}$	$6.08{ }^{\prime}$	8.33'	$5.56{ }^{\prime}$	$9{ }^{\prime}$	$2.24{ }^{4}$	3.4'	6.67^{\prime}	${ }^{11.75}$	16.83^{\prime}	21.92'	1.33'	0.81	1.38	1.95	2.51	28	34	39	45	
	$42^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$2.34{ }^{\prime}$	$7.21{ }^{\prime}$	${ }^{9.55}$	$6.56{ }^{\prime}$	10^{\prime}	2.45^{\prime}	3.4'	7.25^{\prime}	13.25'	19.25'	25.25'	1.38 ${ }^{\prime}$	0.97	1.70	2.45	3.19	30	37	43	50	
	$48^{\prime \prime}$	6'-9 ${ }^{\prime \prime}$	2.43^{\prime}	$8.33{ }^{\text { }}$	10.76'	$7.56{ }^{\prime}$	11'	2.65	$3.4{ }^{\prime}$	7.83'	$14.58{ }^{\prime}$	21.33'	28.08'	${ }^{1.42^{\prime}}$	1.13	2.04	2.93	3.84	32	39	47	54	
	$54^{\prime \prime}$	$7{ }^{7}-8^{\prime \prime}$	2.52^{\prime}	9.44'	11.96'	$8.56{ }^{\prime}$	12^{\prime}	$2.83{ }^{\prime}$	3.4'	8.42'	16.08^{\prime}	23.75'	31.42'	1.46^{\prime}	1.31	2.44	3.58	4.72	34	42	51	59	
$\begin{gathered} 1: 4 \\ \text { Slope } \end{gathered}$	$60^{\prime \prime}$	$8^{\prime}-6^{\prime \prime}$	2.62^{\prime}	$10.56{ }^{\prime}$	13.18'	$9.56{ }^{\prime}$	14^{1}	3.00^{\prime}	4.4'	9.00^{\prime}	17.50'	26.00'	34.50'	1.50^{\prime}	1.51	2.89	4.28	5.68	36	45	55	64	
	$66^{\prime \prime}$	$9^{\prime}-2^{\prime \prime}$	$2.71{ }^{\prime}$	11.68^{\prime}	14.39^{\prime}	10.56	15'	$3.18{ }^{\prime}$	$4.4{ }^{\prime}$	9.58	18.75'	27.92'	37.08'	1.54'	1.68	3.25	4.84	6.43	38	48	58	68	
	72"	$10^{-}-0^{\prime \prime}$	2.80^{\prime}	12.80^{\prime}	15.60'	11.56^{\prime}	16^{\prime}	3.30'	4.4	10.16	20.16'	30.16'	40.16'	1.58	1.89	3.74	5.59	7.45	40	51	62	73	$\begin{array}{ccl} B & E & \text { Dimensions permitted to allow } \\ \triangle 6.42^{\prime} & \triangle 6.25^{\prime} & \begin{array}{l} \text { Dime } \\ \text { use of 8' standard pipe lengths. } \end{array} \end{array}$
	$15^{\prime \prime}$	${ }^{\text {2 }}$-7"	2.27^{\prime}	${ }^{4.09^{\prime}}$	$6.36{ }^{\prime}$	4.03^{\prime}	8^{\prime}	1.22'	4.0^{\prime}	4.63'	7.21^{1}	9.79'	${ }^{12.37^{\prime}}$	${ }^{1.19}$	0.57	0.87	1.15	1.44	23	26	29	32	
	18"10	$2^{\prime \prime} 10^{\prime \prime}$	$2.36{ }^{\prime}$	${ }^{5.122^{\prime}}$	$7.48{ }^{\prime}$	5.03'	$9^{9} 1{ }^{1}$	${ }^{1.477^{\prime}}$	4.0^{\prime}	${ }^{4.92} 5$	${ }^{7.75}$	${ }^{10.588^{\prime}}$	13.42'	${ }^{1.21^{\prime}}$	0.66	0.99	1.31	1.65	25	28	31	35	
	$24^{\prime \prime}$	$3^{\prime \prime}-5^{\prime \prime}$	2.53^{\prime}	$7.18{ }^{1} \triangle$	9.71^{1}	$7.03^{\prime} \Delta$	${ }^{11^{\prime}}$	1.73'	4.0^{\prime}	5.50^{\prime}	8.92'	12.33'	15.75'	${ }^{1.25}$	0.85	1.30	1.75	2.20	28	32	36	40	
	$30^{\prime \prime}$	$4^{4} 5^{\prime \prime} 3^{\prime \prime}{ }^{\prime \prime}$	2.70^{\prime}	9.25'	${ }^{11.99^{\prime}}$	9.03'	${ }^{13^{\prime \prime}}$	${ }^{2.00^{\prime}}$	4.0 ${ }^{\prime}$	$6.08{ }^{\prime}$	${ }^{10.333^{\prime}}$	${ }^{14.588^{\prime}}$	18.83'	${ }^{1.29^{\prime}}$	1.10	1.74	2.39	3.05	31	36	41	46	
	$\frac{36^{\prime \prime}}{42^{\prime \prime}}$		${ }^{2.877^{\prime}} 3$	${ }^{11.31^{\prime}}{ }^{\circ}$	$\frac{14.18{ }^{\prime}}{16.42^{\prime}}$	${ }^{11.03^{\prime}}{ }^{\circ}$	${ }^{15^{\prime}}$	2.24' 2.45^{\prime} 1	4.0 4.0^{\prime} 4	$\frac{6.67}{} \frac{.25}{}$	$\frac{11.755^{\prime}}{13.255^{\prime}}$	$\frac{16.833^{\prime}}{19.255^{\prime}}$	$\frac{21.922^{\prime}}{25.255^{\prime}}$	1.33^{\prime} 1.38^{\prime} 1.15	1.32 1.58 185	2.21 2.76	3.08 3.91	3.96 5 5.09	34 38	40	46	52	$\diamond 10.40^{\prime} \diamond 10.10^{\prime} \begin{aligned} & \text { Dimensions permitted to allow } \\ & \text { use of } 12^{\prime} \text { standard pipe lengths. } \end{aligned}$
	$48^{4 \prime}$		3.05 3.22^{\prime}	${ }^{13.37}{ }^{15}{ }^{\prime}$	${ }^{16.42^{\prime}}$	13.03 ${ }^{15.03^{\prime}}$	19^{\prime}	2.45'	4.0 4.0	$7.83{ }^{\text {7 }}$	${ }^{13.25}{ }^{14.58}$	${ }^{16.25}$	25.25 ${ }^{\text {28.08 }}$	${ }^{1.388^{\prime}}$	1.58 1.85	2.76 3.30	3.91 4.73	5.09 6.17	38	48	51	58 63	
	$54^{\prime \prime}$	$7^{\prime}-8^{\prime \prime}$	${ }^{3.39}$	17.49'	${ }^{10.888^{\prime}}$	17.03'	21^{\prime}	${ }^{2.833^{\prime}}$	4.0^{\prime}	${ }^{8.42^{\prime}}$	${ }^{16.088^{\prime}}$	${ }^{23.755^{\prime}}$	${ }^{31.42^{\prime}}$	${ }_{1} 1.46^{\prime}$	2.14	3.95	5.77	7.58	44	52	61	69	
	$60^{\prime \prime}$	$8^{\prime}-6^{\prime \prime}$	$3.56{ }^{\prime}$	19.55'	23.11'	19.03'	23^{\prime}	3.00^{\prime}	4.0^{\prime}	9.00^{\prime}	17.50^{\prime}	26.00'	34.50'	${ }^{1.50^{\prime}}$	2.45	4.66	6.87	9.07	47	56	66	75	$\Delta \diamond$ Concrete slab shall be deepened to form bridge across crown of pipe. See section below.
	66"	$9^{\prime}-2^{\prime \prime}$	$3.73{ }^{\prime}$	21.62'	25.35^{\prime}	21.03'	25^{\prime}	$3.18{ }^{\prime}$	4.0^{\prime}	9.58	18.75'	27.92'	37.08'	1.54'	2.88	5.54	8.18	10.84	49	59	69	80	
	$72^{\prime \prime}$	$10^{\prime \prime}-0^{\prime \prime}$	3.91^{\prime}	23.68'	27.59'	23.03'	27^{\prime}	3.30^{\prime}	4.0^{\prime}	10.16^{\prime}	20.16'	30.16'	40.16'	1.58'	3.54	6.61	9.87	13.13	52	63	74	85	

TOP-VIEW MULTIPLE PIPE

$$
\text { NOTE: See sheet } 6 \text { for details and notes. }
$$

Single and multiple round concrete pipe

- Paid For As

SECTION

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		$\begin{gathered} \text { FY 2018-19 } \\ \text { FDOTX } \\ \text { STANDARD PLANS } \end{gathered}$	$\mathbb{C R O S S ~ D R A I N ~ M I T E R E D ~ E N D ~ S E C T I O N ~}$

DIMENSIONS AND QUANTITIES																							■ See General Note No. 5. See Sheet 5 For 3" Slab Quantities - Values shown for estimating pipe quantities and are for information only
	D	x	A	B	c	E	F	G	${ }^{+1}$	M				N	51/" CONCRETE SLAB (CY) 】				SODDING (SY)				
										$\begin{aligned} & \text { Single } \\ & \text { Pipe } \end{aligned}$	Double Pipe	$\begin{gathered} \text { Triple } \\ \text { Pipe } \end{gathered}$	$\begin{aligned} & \text { Quad. } \\ & \text { Pipe } \end{aligned}$		$\begin{aligned} & \text { Single } \\ & \text { Pipe } \end{aligned}$	Double Pipe	$\begin{gathered} \text { Triple } \\ \text { Pipe } \end{gathered}$	$\begin{aligned} & \begin{array}{l} \text { Quad. } \\ \text { Pipe } \end{array} \end{aligned}$	Single Pipe	$\begin{gathered} \text { Double } \\ \text { Pipe } \end{gathered}$	$\begin{aligned} & \hline \text { Triple } \\ & \text { Pipe } \end{aligned}$	$\begin{aligned} & \text { Quad. } \\ & \text { Pipe } \end{aligned}$	
$\begin{gathered} 1: 2 \\ \text { Slope } \end{gathered}$	15"	$2^{1}-7^{\prime \prime}$	$2.5{ }^{\prime}$	$1.68{ }^{\prime}$	$4.18{ }^{\prime}$	1.5	5.0^{\prime}	1.23	$3.5{ }^{\prime}$	$4.33{ }^{\prime}$	6.92'	9.50^{\prime}	${ }^{12.08}{ }^{\prime}$	$1.04{ }^{\prime}$	0.35	0.54	0.74	0.94	21	24	27	29	
	$18^{\prime \prime}$	$2^{\prime \prime}-10^{\prime \prime}$	$2.5{ }^{\prime}$	$2.24{ }^{\prime}$	$4.74{ }^{\text {+ }}$	2.0°	6.0^{\prime}	1.41^{\prime}	$4{ }^{4}$	${ }^{4.58}$	7.42^{\prime}	10.25	${ }^{13.08}{ }^{\prime}$	$1.04{ }^{\prime}$	0.38	0.62	0.87	1.12	22	25	28	31	
	24"	$3^{3}-5^{\prime \prime}$	$2.5{ }^{\prime}$	3.35'	$5.85{ }^{\prime}$	3.0°	7.0'	1.73'	4^{4}	$5.08{ }^{\prime}$	8.50^{\prime}	11.92'	15.33'	1.04	0.47	0.76	1.05	1.34	23	27	31	35	
	$30^{\prime \prime}$	$4^{4}-3^{\prime \prime}$	2.5	4.47^{\prime}	$6.97{ }^{\prime}$	$4.0{ }^{\circ}$	8.0^{\prime}	2.00^{\prime}	4^{4}	$5.58{ }^{\prime}$	$9.83{ }^{\prime}$	14.08^{\prime}	18.33^{\prime}	1.04'	0.57	0.96	1.37	1.77	25	30	35	39	
	36"	5'-1"	2.5	5.59 '	8.09^{\prime}	5.0°	$9.0{ }^{\prime}$	$2.24{ }^{\prime}$	$4{ }^{4}$	$6.08{ }^{\prime}$	11.17^{\prime}	16.25^{\prime}	21.33'	1.04'	0.67	1.19	1.72	2.26	27	33	38	44	
	$42^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	2.5	$6.71{ }^{\prime}$	9.21 ${ }^{10}$	6.0°	$10.0{ }^{\prime}$	2.45^{\prime}	4^{\prime}	6.58 ${ }^{\prime}$	12.58^{\prime}	18.58'	24.58^{\prime}	$1.04{ }^{\prime}$	0.78	1.48	2.17	2.87	29	36	42	49	
	$48^{\prime \prime}$	$6^{\prime}-9^{\prime \prime}$	2.5	7.83'	10.33'	7.0^{\prime}	11.0^{\prime}	2.65	4	$7.08{ }^{\prime}$	13.83'	20.58^{\prime}	27.33^{\prime}	$1.04{ }^{\prime}$	0.89	1.71	2.54	3.36	31	38	46	53	
	$54^{\prime \prime}$	$7^{7}-8^{\prime \prime}$	2.5	$8.94{ }^{\text { }}$	11.44	8.0^{\prime}	$12.0{ }^{\prime}$	$2.83{ }^{\prime}$	4	$7.58{ }^{\prime}$	15.25^{\prime}	22.92^{\prime}	30.58^{\prime}	$1.04{ }^{\prime}$	1.02	2.06	3.10	4.14	33	41	50	58	
	$60^{\prime \prime}$	$8^{\prime}-6^{\prime \prime}$	2.5	10.06^{\prime}	12.56	9.0'	13.0 ${ }^{\prime}$	3.00^{\prime}	4	8.08'	16.58^{\prime}	25.08^{\prime}	33.58^{\prime}	1.04	1.14	2.38	3.63	4.89	34	44	53	63	
$\begin{gathered} 1: 4 \\ \text { Slope } \end{gathered}$	15"	${ }^{2}-77^{\prime \prime}$	2.5 '	3.09^{\prime}	5.59'	3.0°	7.0'	${ }^{1.23}$	4^{4}	4.33'	6.92	9.50^{\prime}	${ }^{12.088^{\prime}}$	$1.04{ }^{\prime}$	0.44	0.68	0.91	1.15	22	25	28	31	
	$18^{\prime \prime}$	$2^{\prime}-10^{\prime \prime}$	$2.5{ }^{\prime}$	4.12	6.62^{\prime}	4.0°	8.0^{\prime}	1.41^{\prime}	4^{\prime}	$4.58{ }^{\prime}$	7.42^{\prime}	10.25	13.08^{\prime}	$1.04{ }^{\text {' }}$	0.49	0.77	1.03	1.31	24	27	30	33	
	$24^{\prime \prime}$	$3^{\prime \prime} 5^{\prime \prime}$	$2.5{ }^{\prime}$	$6.18{ }^{\prime}$	8.68'	6.0°	$10.0{ }^{\prime}$	1.73'	$4{ }^{4}$	$5.08{ }^{\prime}$	8.50^{\prime}	11.92'	15.33'	$1.04{ }^{\prime}$	0.65	1.09	1.38	1.77	27	30	34	38	
	$30^{\prime \prime}$	$4^{4}-3^{\prime \prime}$	$2.5{ }^{\prime}$	8.25'	10.75'	8.0°	12.0^{\prime}	2.00^{\prime}	4^{4}	$5.58{ }^{\prime}$	9.83'	14.08^{\prime}	18.33^{\prime}	1.04'	0.81	1.34	1.90	2.44	29	34	39	44	
	$36^{\prime \prime}$	5'-1"	$2.5{ }^{\prime}$	10.31^{1}	$12.81{ }^{1}$	10.0^{\prime}	14.0^{\prime}	$2.24{ }^{\prime}$	4^{\prime}	$6.08{ }^{\prime}$	11.17 ${ }^{\text { }}$	16.25^{\prime}	21.33'	$1.04{ }^{\prime}$	0.97	1.68	2.41	3.14	32	38	44	49	
	$42^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$2.5{ }^{\prime}$	${ }^{12.377^{\prime}}$	14.87^{\prime}	12.0^{\prime}	$16.0{ }^{\prime}$	$2.45{ }^{\prime}$	4^{\prime}	6.58'	12.58'	18.58'	24.58'	$1.04{ }^{\prime}$	1.13	2.08	3.06	4.02	35	42	48	55	
	$48^{\prime \prime}$	$6^{\prime}-99^{\prime \prime}$	$2.5{ }^{\prime}$	14.43^{\prime}	${ }^{16.93}{ }^{\prime}$	14.0^{\prime}	18.0^{\prime}	$2.65{ }^{\prime}$	4^{4}	$7.08{ }^{\prime}$	13.83'	20.58'	27.33'	$1.04{ }^{\prime}$	1.29	2.49	3.69	4.88	38	46	53	60	
	$\frac{544^{\prime \prime}}{60}$	$\frac{7^{\prime \prime}-8^{\prime \prime}}{8^{-6} 6^{\prime \prime}}$	$\frac{2.51}{2 .}$	16.49'	${ }^{18.99}$	$\frac{16.0}{}{ }^{\prime}$	$\frac{20.0}{}{ }^{\prime 2} 0^{\prime}$	$\frac{2.83{ }^{\prime}}{3.00^{\prime}}$	4^{\prime}	$7.58{ }^{\prime}$ 8.88^{\prime}	$\frac{15.25}{}$	$\frac{22.92}{}{ }^{25}$	30.58^{\prime} 33.58^{\prime}	$\frac{1.04}{}{ }^{1.04^{\prime}}$	1.48 1.66	2.98 3.49	4.47 5.31	5.98 7.13	41	49 53	58	66	
	$60^{\prime \prime}$	$8^{\prime}-6^{\prime \prime}$	$2.5{ }^{\prime}$	18.55'	21.05'	18.0^{\prime}	$22.0{ }^{\circ}$	3.00^{\prime}	4	$8.08{ }^{\prime}$	16.58^{\prime}	$25.08{ }^{\prime}$	33.58'	$1.04{ }^{\prime}$	1.66	3.49	5.31	7.13	44	53	63	72	

TOP VIEW-MULTIPLE PIPE

NOTE: See Sheet 6 For Details And Notes.
single and multiple round corrugated metal pipe

$\begin{gathered} \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	\|ce	$\begin{gathered} \text { FDOT } \\ \text { FY 2018-19 } \\ \text { STANDARD PLANS } \end{gathered}$	$\mathbb{C R O S S ~ D R A I N ~ M I T E R E D ~ E N D ~ S E C T I O N ~}$

top VIew-Multiple pipe

(1) See General Note 3

See Sheet 5 For 3" Slab Quantitie

- Values shown for estimating pipe quantities and are for information only.

Single and multiple elliptical Concrete pipe

QUANTITIES FOR $3^{\prime \prime}$ THICK CONCRETE SLABS（CY）

	D	ROUND－CONCRETE			
		$\begin{gathered} \text { Single } \\ \text { Pipe } \end{gathered}$	$\begin{aligned} & \text { Double } \\ & \text { Pipe } \end{aligned}$	$\begin{aligned} & \text { Triple } \\ & \text { Pipe } \end{aligned}$	$\begin{aligned} & \text { Quad. } \\ & \text { Pipe } \end{aligned}$
$\begin{gathered} 1: 2 \\ \text { Slope } \end{gathered}$	$15^{\prime \prime}$	0.27	0.41	0.54	0.67
	$18^{\prime \prime}$	0.31	0.45	0.60	0.75
	$24^{\prime \prime}$	0.39	0.59	0.79	1.00
	$30^{\prime \prime}$	0.46	0.76	1.04	1.32
	$36^{\prime \prime}$	0.55	0.94	1.33	1.71
	$42^{\prime \prime}$	0.66	1.15	1.66	2.15
	$48^{\prime \prime}$	0.76	1.37	1.96	2.57
	$54^{\prime \prime}$	0.87	1.62	2.38	3.14
	$60^{\prime \prime}$	0.99	1.90	2.81	3.73
	$66^{\prime \prime}$	1.11	2.15	3.21	4.27
	$72^{\prime \prime}$	1.24	2.46	3.68	4.90
$\begin{gathered} 1: 4 \\ \text { Slope } \end{gathered}$	$15^{\prime \prime}$	0.40	0.61	0.80	1.00
	$18^{\prime \prime}$	0.47	0.69	0.91	1.14
	24＂	0.60	0.90	1.21	1.52
	$30^{\prime \prime}$	0.76	1.19	1.63	2.07
	$36^{\prime \prime}$	0.89	1.48	2.05	2.63
	$42^{\prime \prime}$	1.05	1.82	2.57	3.34
	$48^{\prime \prime}$	1.21	2.15	3.07	4.00
	$54^{\prime \prime}$	1.39	2.55	3.72	4.88
	$60^{\prime \prime}$	1.59	3.02	4.44	5.86
	$66^{\prime \prime}$	1.91	3.66	5.40	7.15
	$72^{\prime \prime}$	2.12	4.18	6.24	8.30

	D	ROUND－CMP			
		$\begin{gathered} \hline \text { Single } \\ \text { Pipe } \\ \hline \end{gathered}$	$\begin{gathered} \text { Double } \\ \text { Pipe } \end{gathered}$	$\begin{gathered} \hline \text { Triple } \\ \text { Pipe } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Quad. } \\ \text { Pipe } \\ \hline \end{gathered}$
$\begin{gathered} 1: 2 \\ \text { Slope } \end{gathered}$	$15^{\prime \prime}$	0.24	0.37	0.51	0.64
	$18^{\prime \prime}$	0.26	0.43	0.61	0.78
	$24^{\prime \prime}$	0.32	0.52	0.72	0.91
	$30^{\prime \prime}$	0.38	0.64	0.91	1.18
	$36^{\prime \prime}$	0.44	0.78	1.13	1.48
	$42^{\prime \prime}$	0.51	0.96	1.41	1.87
	$48^{\prime \prime}$	0.57	1.09	1.63	2.15
	$54^{\prime \prime}$	0.65	1.32	1.99	2.66
	$60^{\prime \prime}$	0.71	1.49	2.28	3.07
$\begin{gathered} 1: 4 \\ \text { Slope } \end{gathered}$	$15^{\prime \prime}$	0.31	0.47	0.63	0.79
	$18^{\prime \prime}$	0.34	0.53	0.71	0.90
	$24^{\prime \prime}$	0.44	0.69	0.92	1.18
	$30^{\prime \prime}$	0.53	0.88	1.25	1.60
	$36^{\prime \prime}$	0.62	1.07	1.53	2.00
	$42^{\prime \prime}$	0.71	1.30	1.92	2.52
	$48^{\prime \prime}$	0.80	1.54	2.29	3.02
	$54^{\prime \prime}$	0.91	1.83	2.74	3.67
	$60^{\prime \prime}$	1.02	2.15	3.27	4.39

	$\begin{aligned} & \text { I⿸厂⿱二⿺卜丿口 } \\ & 0 \end{aligned}$	号	CMP－ARCH			
			Single Pipe	Double	Triple Pipe	$\begin{aligned} & \text { Quad. } \\ & \text { Pipe } \end{aligned}$
$\begin{gathered} \text { 1:2 } \\ \text { Slope } \end{gathered}$	17＂	$13^{\prime \prime}$	0.33	0.49	0.65	0.81
	$21^{\prime \prime}$	$15^{\prime \prime}$	0.33	0.50	0.67	0.83
	$28^{\prime \prime}$	$20^{\prime \prime}$	0.37	0.56	0.76	0.95
	$35^{\prime \prime}$	$24^{\prime \prime}$	0.40	0.62	0.84	1.07
	$42^{\prime \prime}$	$29^{\prime \prime}$	0.43	0.70	0.98	1.25
	$49^{\prime \prime}$	$33^{\prime \prime}$	0.49	0.82	1.15	1.48
	$57^{\prime \prime}$	$38^{\prime \prime}$	0.55	0.95	1.35	1.75
	64^{4}	$43^{\prime \prime}$	0.62	1.10	1.57	2.05
	$71^{\prime \prime}$	$47^{\prime \prime}$	0.69	1.24	1.80	2.35
$\begin{gathered} 1: 4 \\ \text { Slope } \end{gathered}$						
	$17^{\prime \prime}$	$13^{\prime \prime}$	0.38	0.56	0.74	0.92 0.95 1.10
	$21^{\prime \prime}$	$15^{\prime \prime}$	0.39	0.59	0.80	0.95
	$28^{\prime \prime}$	$20^{\prime \prime}$	0.43	0.64	0.88	1.10
	$35^{\prime \prime}$	$24^{\prime \prime}$	0.49	0.77	1.05	1.33
	$42^{\prime \prime}$	$29^{\prime \prime}$	0.57	0.92	1.27	1.62
	$49^{\prime \prime}$	$33^{\prime \prime}$	0.65	1.08	1.50	1.93
	$57^{\prime \prime}$	$38^{\prime \prime}$	0.76	1.30	1.83	2.37
	$64^{\prime \prime}$	$43^{\prime \prime}$	0.87	1.55	2.18	2.83
	$71^{\prime \prime}$	$47^{\prime \prime}$	0.95	1.68	2.43	3.17

	$\stackrel{\square}{2}$	$\begin{aligned} & \text { No } \\ & 0.0 \end{aligned}$	ELLIPTICAL－CONCRETE			
			$\begin{gathered} \text { Single } \\ \text { Pipe } \end{gathered}$	$\begin{gathered} \hline \begin{array}{c} \text { Double } \\ \text { Pipe } \end{array} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Triple } \\ & \text { Pipe } \end{aligned}$	$\begin{aligned} & \hline \text { Quad. } \\ & \text { Pipe } \end{aligned}$
$\begin{gathered} 1: 2 \\ \text { Slope } \end{gathered}$	$12^{\prime \prime}$	$18^{\prime \prime}$	0.19	0.33	0.45	0.57
	$14^{\prime \prime}$	$23^{\prime \prime}$	0.25	0.40	0.55	0.69
	19＂	$30^{\prime \prime}$	0.34	0.55	0.75	0.95
	$24^{\prime \prime}$	$38^{\prime \prime}$	0.43	0.71	1.00	1.28
	$29^{\prime \prime}$	$45^{\prime \prime}$	0.52	0.90	1.27	1.65
	$34^{\prime \prime}$	$53^{\prime \prime}$	0.62	1.11	1.60	2.09
	$38^{\prime \prime}$	$60^{\prime \prime}$	0.70	1.29	1.87	2.46
	$43^{\prime \prime}$	$68^{\prime \prime}$	0.81	1.54	2.26	2.99
	$48^{\prime \prime}$	$76^{\prime \prime}$	0.93	1.79	2.66	3.53
	$53^{\prime \prime}$	$83^{\prime \prime}$	1.04	2.04	3.03	4.02
	$58^{\prime \prime}$	91＂	1.17	2.33	3.49	4.66
$\begin{gathered} 1: 4 \\ \text { Slope } \end{gathered}$	12＂	$18^{\prime \prime}$	0.30	0.45	0.61	0.76
	$14^{\prime \prime}$	$23^{\prime \prime}$	0.36	0.56	0.76	0.95
	19＂	$30^{\prime \prime}$	0.51	0.79	1.08	1.36
	$24^{\prime \prime}$	$38^{\prime \prime}$	0.68	1.10	1.53	1.96
	$29^{\prime \prime}$	$45^{\prime \prime}$	0.86	1.45	2.04	2.63
	$34^{\prime \prime}$	$53^{\prime \prime}$	1.02	1.81	2.60	3.39
	$38^{\prime \prime}$	$60^{\prime \prime}$	1.18	2.14	3.10	4.05
	$43^{\prime \prime}$	$68^{\prime \prime}$	1.38	2.58	3.79	4.99
	$48^{\prime \prime}$	$76^{\prime \prime}$	1.59	3.05	4.51	5.97
	$53^{\prime \prime}$	$83^{\prime \prime}$	1.80	3.50	5.19	6.88
	$58^{\prime \prime}$	$91^{\prime \prime}$	2.04	4.04	6.05	8.05

general notes

1. Unless otherwise designated in the plans, concrete pipe mitered end sections may be used with any type of cross drain pipe; corrugated steel pipe
 used with any type of cross drain pipe except steel pipe. When bituminous coated metal pipe is specified for cross drain pipe, construct the mitered end sections with like pipe or concrete pipe. When the mitered end section pipe is dissimilar to the cross drain pipe, construct a concrete jacket in
accordance with Index 430-001.
2. Use either corrugated metal or concrete mitered end sections for corrugated polyethylene pipe (HDPE), polyvinyl-chloride pipe (PVC) and polypropylene pipe (PPP). When used in conjunction with corrugated mitered end sections, make connection using either a formed metal band specifically designated to join HDPE or PVC pipe, with metal pipe or other coupler approved by the State Drainage Engineer. When used in conjunction with a concrete mitered and sections. copcrete jacket constructed in accordace with Inex 430001.
3. Class NS concrete cast-in-place reinforced slabs are required for all sizes of cross drain pipes. Unless $3^{\prime \prime}$ thickness called for in plans, construct slabs at $51 / 2{ }^{\prime \prime}$ thick.
4. Select lengths of concrete pipe that avoid excessive connections in the assembly of the mitered end section
5. Repair corrugated metal pipe galvanizing that is damaged during beveling and perforating.
6. Prior to placing concrete slab apply a bituminous coating to any portion of corrugated metal pipe in direct contact with concrete. Extend the coating $12^{\prime \prime}$ beyond the concrete slab.
When existing multiple cross drain pipes are spaced other than the dimensions shown in this Index, have nonparallel axes, or non-uniform sections, either construct the mitered end sections separately as single pipe or collectively as multiple pipe end sections as directed by the Engineer.

DESIGN NOTES

. Mitered end sections for pipe sizes $15^{\prime \prime}, 18^{\prime \prime}$ and $24^{\prime \prime}$ round or equivalent pipe arch or elliptical pipe are permitted within the clear zone. When the slope intersection permits, the mitered end section may be located with the culvert opening as close as 8 beyond the outside edge of the shoulder.
. Include slope and ditch transitions when the normal roadway slope must be flattened to place end section outside clear zone. See Slope and Ditch Transitions detail.

$4 \times$ Bolt Dia. Varies $\quad 4 \times$ Bolt Dia.
Tongue ${ }_{\text {Length } L} L$ (See Detail Right) See Detail Right) - Pipe Shel
(Varies)

bars, bots, nuts and washers are to be galvanized steel
Bolt diameters shall be $3 /^{\prime \prime}$ for $15^{\prime \prime}$ to $36^{\prime \prime}$ pipe and $58^{\prime \prime}$ for $42^{\prime \prime}$ to $72^{\prime \prime}$ pipe.
Two connectors required per joint, located 60° right and left of bottom center of pipe.
Bolt holes in pipe shell are to be drilled.
CONCRETE PIPE CONNECTOR

Achors required for CMP only
Anchor, washer and nuts to be galvanized steel
Bend anchor where required to center in concrete slab. Damaged surfaces to be repaired after bending. Anchors are to be spaced a distance equal to four (4) corrugations. Place the anchors in the outside crest of corrugation Flat washers to be placed on inside wall of pipe.

Holes in the mitered end pipe are to be drilled or punched; burning not permitted.

ANCHOR DETAIL

SPECIAL DETAILS AND NOTES

| LAST REVISION $11 / 01 / 17$ | \|c|c | DESCRIPTION: | FDOTY | FY 2018-19
 STANDARD PLANS | CROSS DRAIN MITERED END SECTION | $\begin{gathered} \text { INDEX } \\ 430-021 \end{gathered}$ | SHEET
 6 of 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

DIMENSIONS \& QUANTITIES																							
D	x	A	B	c	E	F	G	${ }^{+}$	M				N	grate sizes		Concrete (Cy)				SOdDING (SY)			
									Single Pipe	Double Pipe	Triple Pipe	$\begin{array}{\|l} \hline \text { Quad } \\ \text { Pipe } \\ \hline \end{array}$		Standard Weight Pipe	Extra Strong Pipe	Single Pipe	Double Pipe	$\begin{array}{\|c} \hline \text { Triple } \\ \text { Pipe } \end{array}$	$\begin{gathered} \hline \text { Quad } \\ \text { Pipe } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Single } \\ \text { Pipe } \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \begin{array}{c} \text { Double } \\ \text { Pipe } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { Triple } \\ \text { Pipe } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { Quad } \\ & \text { Pipe } \\ & \hline \end{aligned}$
$15^{\prime \prime}$	$2^{1}-7{ }^{\prime \prime}$	2.27^{\prime}	4.09^{\prime}	6.36'	4.03'	${ }^{\prime}$	1.22^{\prime}	4.0^{\prime}	4.63'	7.21^{1}	$9.79{ }^{\prime}$	${ }^{12.33^{\prime}}$	$1.19{ }^{\prime}$			0.76	1.16	1.54	1.94	8	10	11	12
$18^{\prime \prime}$	$2^{\prime}-10^{\prime \prime}$	2.36	5.12'	7.48'	5.03'	$9{ }^{\prime}$	1.41^{\prime}	$4.0{ }^{\prime}$	4.92^{\prime}	$7.75{ }^{\prime}$	10.58'	13.42'	1.21'			0.85	1.28	1.71	2.17	9	10	12	13
$24^{\prime \prime}$	$3^{\prime \prime-5 "}$	2.53'	$7.18{ }^{\prime} \triangle$	9.71^{1}	$7.03^{\prime} \triangle$	11^{\prime}	$1.73{ }^{\text {b }}$	$4.0{ }^{\prime}$	5.50^{\prime}	8.92'	12.33'	15.75'	1.25'			1.02	1.58	2.15	2.75	10	12	13	15
$30^{\prime \prime}$	$4^{-3 \prime}{ }^{\prime \prime}$	2.70^{\prime}	9.25'	11.95'	9.03^{\prime}	13^{\prime}	2.00^{\prime}	4.0^{\prime}	$6.08{ }^{\prime}$	10.33'	14.58'	18.83'	1.29^{\prime}	21/2"	$3^{\prime \prime}$	1.23	1.98	2.74	3.50	12	14	15	17
$36^{\prime \prime}$	$5^{\prime \prime-1 "}$	2.87^{\prime}	$11.31{ }^{\circ} \diamond$	14.18^{\prime}	$11.03^{\wedge} \stackrel{ }{\text { 1 }}$	15'	2.24	$4.0{ }^{\prime}$	6.67^{\prime}	$11.75{ }^{\prime}$	16.83'	21.92'	1.33'	21/2"	$3^{\prime \prime}$	1.40	2.38	3.33	4.24	13	15	17	20
$42^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	3.05'	13.37'	16.42'	13.03'	17^{\prime}	2.45^{\prime}	4.0^{\prime}	7.25'	13.25'	19.25'	25.25'	1.38'	21/2"	$31 / 2^{\prime \prime}$	1.60	2.83	4.04	5.26	14	17	19	22
$48^{\prime \prime}$	6'-9 ${ }^{\prime \prime}$	3.22^{\prime}	15.43'	18.65'	15.03^{\prime}	19^{\prime}	2.65^{\prime}	$4.0{ }^{\prime}$	7.83'	14.58^{\prime}	21.33'	28.08'	1.42'	$21 /{ }^{\prime \prime}$	$31 / /^{\prime \prime}$	1.81	3.26	4.70	6.14	15	18	21	24
$54^{\prime \prime}$	$7^{\prime}-8^{\prime \prime}$	3.39'	17.49	20.88'	17.03'	21^{\prime}	$2.83^{\prime \prime}$	4.0^{\prime}	8.42'	$16.08{ }^{\prime}$	23.75'	31.42'	$1.46{ }^{\prime}$	$3^{\prime \prime}$	$4^{\prime \prime}$	2.03	3.78	5.54	7.28	17	20	23	27
$60^{\prime \prime}$	$8^{-6} 6^{\prime \prime}$	3.56'	19.55'	23.11^{1}	19.03'	23'	3.00^{\prime}	4.0^{\prime}	9.00^{\prime}	17.50^{\prime}	26.00'	34.50'	1.50^{\prime}	$3^{\prime \prime}$	$4^{\prime \prime}$	2.28	4.36	6.43	8.50	18	22	25	29

$\begin{array}{ccc}\triangle 6.42^{\prime} & \Delta 6.25^{\prime} & \text { Dimensions permitted to allow use of } 8^{\prime} \text { standard pipe lengths. } \\ \diamond 10.40^{\prime} & \diamond 10.10^{\prime} & \text { Dimensions permitted to allow use of } 12^{\prime} \text { standard pipe lengths. }\end{array}$

TOP VIEW-SINGLE PIPE

TOP VIEW-MULTIPLE PIPE

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	\|

FDOT\} $\begin{gathered}\text { FY 2018-19 } \\ \text { STANDARD PLANS }\end{gathered}$

single and multiple round concrete pipe

DIMENSIONS \＆QUANTITIES

DIMENSIONS \＆QUANTITIES																								
1974 AASHTO		x	A	B	c	E	F	G	${ }^{+}$－	M				N	GRATE SIZES		CONCRETE（CY）				SODDING（SY）			
Span	Rise									$\begin{aligned} & \text { Single } \\ & \text { Pipe } \end{aligned}$	$\begin{aligned} & \text { Double } \\ & \text { Pipe } \end{aligned}$	$\begin{aligned} & \text { Triple } \\ & \text { Pipe } \end{aligned}$	$\begin{aligned} & \text { Quad. } \\ & \text { Pipe } \end{aligned}$		Standard Weight Pipe	$\begin{array}{\|c\|} \hline \text { Extra } \\ \text { Strong Pipe } \end{array}$	$\begin{gathered} \text { Single } \\ \text { Pipe } \end{gathered}$	$\begin{array}{\|c} \text { Double } \\ \text { Pipe } \end{array}$	$\begin{aligned} & \text { Triple } \\ & \text { Pipe } \end{aligned}$	$\begin{aligned} & \text { Quad. } \\ & \text { Pipe } \end{aligned}$	$\begin{aligned} & \text { Single } \\ & \text { Pipe } \end{aligned}$	$\begin{aligned} & \text { Double } \\ & \text { Pipe } \end{aligned}$	$\begin{gathered} \text { Triple } \\ \text { Pipe } \end{gathered}$	$\begin{aligned} & \text { Quad. } \\ & \text { Pipe } \end{aligned}$
17＂	$13^{\prime \prime}$	$2^{\prime \prime}-6^{\prime \prime}$	$2.5{ }^{\prime}$	2.41^{\prime}	4.91^{\prime}	2.33^{\prime}	$7{ }^{\prime}$	1．39＇	$4.7{ }^{\prime}$	4.50^{\prime}	7.00^{\prime}	9.50^{\prime}	${ }^{12.00^{\prime}}$	$1.04{ }^{\prime}$			0.62	0.95	1.27	1.60	8	9	10	11
21＂	$15^{\prime \prime}$	$2^{\prime}-10^{\prime \prime}$	$2.5{ }^{\prime}$	3.09^{\prime}	5.59^{\prime}	3.00^{\prime}	8	$1.76{ }^{\prime}$	5.0^{\prime}	4．83＇	7.67^{\prime}	10.50^{\prime}	13．33＇	1．04			0.69	1.06	1.44	1.77	8	9	11	12
$28^{\prime \prime}$	$20^{\prime \prime}$	$3^{\prime \prime}-5^{\prime \prime}$	2.5	$4.81{ }^{1}$	$7.31{ }^{1}$	4.67^{\prime}	9^{\prime}	2．22＇	$4.3{ }^{\text {＇}}$	5.42^{\prime}	8．83＇	12.25^{\prime}	15.67^{\prime}	$1.04{ }^{\text {＋}}$			0.81	1.26	1.73	2.19	9	11	12	14
$35^{\prime \prime}$	$24^{\prime \prime}$	$4^{4}-0^{\prime \prime}$	2.5	$6.18{ }^{\prime}$	8．68＇	6.00^{\prime}	11^{1}	$2.55{ }^{\prime}$	5.0^{\prime}	6.00^{\prime}	10.00^{\prime}	14.00^{\prime}	18.00^{\prime}	$1.04{ }^{\prime}$	21／2＂	$3{ }^{\prime \prime}$	0.94	1.51	2.09	2.66	10	12	14	15
$42^{\prime \prime}$	$29^{\prime \prime}$	$4^{\prime \prime}-9^{\prime \prime}$	$2.5{ }^{\prime}$	7.90^{\prime}	10.40^{\prime}	7.67^{\prime}	12^{\prime}	$2.97{ }^{\prime}$	$4.3{ }^{\text { }}$	$6.58{ }^{\prime}$	11.33^{\prime}	$16.08{ }^{\prime}$	20．83＇	$1.04{ }^{\text {＋}}$	21／2＂	31／2＂	1.06	1.76	2.46	3.16	11	13	15	17
$49^{\prime \prime}$	$33^{\prime \prime}$	5＇－6＂	2.5	9.28	11.78^{\prime}	$9.00{ }^{\prime}$	${ }^{14}$	$3.34{ }^{\prime}$	5.0^{\prime}	7.17^{\prime}	12.67^{\prime}	18.17^{\prime}	23.67^{\prime}	$1.04{ }^{+}$	21／3 ${ }^{1 /}$	$31 / 2^{\prime \prime}$	1.19	2.02	2.84	3.68	12	14	17	19
57＂	$38^{\prime \prime}$	6＇－4＂	$2.5{ }^{\prime}$	11.00^{\prime}	13．50＇	10.67^{\prime}	16^{\prime}	$3.65{ }^{\prime}$	5．3＇	7．83＇	14.17^{\prime}	20.50^{\prime}	26．83＇	$1.04{ }^{\text {＋}}$	$3^{\prime \prime}$	$4^{\prime \prime}$	1.35	2.35	3.35	4.36	13	16	19	22
$64^{\prime \prime}$	$43^{\prime \prime}$	7＇－1＂	$2.5{ }^{\prime}$	12.71^{1}	15.21^{1}	12.33^{\prime}	${ }^{17}$	3.89^{\prime}	$4.7{ }^{\prime}$	8.42^{\prime}	15．50＇	$22.58{ }^{\prime}$	29.67^{\prime}	$1.04{ }^{\prime}$	$3^{\prime \prime}$	$4{ }^{\prime \prime}$	1.50	2.70	3.86	5.03	14	17	20	24
$71^{\prime \prime}$	$47^{\prime \prime}$	$7^{\prime \prime}-10^{\prime \prime}$	2.5	14．09＇	16．59＇	13．67＇	19^{\prime}	4．14＇	5．3＇	9.00^{\prime}	16．83＇	24.67^{\prime}	32.50°	$1.04{ }^{\prime}$	$3^{\prime \prime}$	$4{ }^{\prime \prime}$	1.62	2.94	4.27	5.59	15	18	22	25

－Values shown for estimating pipe quantities a
information only．
 SECTION

LAST	员	DESCRIPTION：
REVISION		
$11 / 01 / 17$	$\hat{⿹ 勹 厶}$	

| FY 2018－19 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STANDARD PLANS |

NOTE：See Sheets 6 and 7 for details and general notes．
SINGLE AND MULTIPLE CORRUGATED METAL PIPE－ARCH

DIMENSIONS \& QUANTITIES																									- Values shown for estimating pipe quantities and are for information only
$\begin{gathered} \text { Rise } \\ R \end{gathered}$	Spans	x	A	B	c	E	F	G	H.	M				N	GRATE SIZES		CONCRETE (CY)				SODDING (SY)				
										$\begin{aligned} & \text { Single } \\ & \text { Pipe } \end{aligned}$	Double Pipe	Triple Pipe	Quad. Pipe		$\left\lvert\, \begin{gathered} \text { Standard } \\ \text { Weight Pipe } \end{gathered}\right.$	Extra Strong Pipe	Single Pipe	Double Pipe	Triple Pipe	$\begin{aligned} & \text { Quad. } \\ & \text { Pipe } \end{aligned}$	$\begin{aligned} & \text { Single } \\ & \text { Pipe } \end{aligned}$	$\begin{gathered} \text { Double } \\ \text { Pipe } \end{gathered}$	Triple Pipe	$\begin{aligned} & \text { Quad. } \\ & \text { Pipe } \end{aligned}$	
$12^{\prime \prime}$	$18^{\prime \prime}$	$2^{\prime \prime}-10^{\prime \prime}$	$2.36{ }^{\prime}$	$3.06{ }^{\prime}$	5.42'	3.03^{\prime}	5	1.50^{\prime}	$2.0{ }^{\prime}$	4.92'	7.75'	10.58'	13.42'	1.21 ${ }^{\prime}$			0.68	1.04	1.41	1.77	8	9	11	12	
$14^{\prime \prime}$	$23^{\prime \prime}$	$3^{\prime \prime}-4^{\prime \prime}$	$2.44{ }^{\prime}$	$3.75{ }^{\prime}$	6.19^{\prime}	3.70^{\prime}	6^{\prime}	1.90^{\prime}	$2.3{ }^{\prime}$	$5.38{ }^{\prime}$	8.71^{\prime}	12.04	15^{1538}	1.23'			0.76	1.19	1.63	2.05	9	10	12	13	
19"	$30^{\prime \prime}$	$4^{4}-0^{\prime \prime}$	2.62^{\prime}	$5.47{ }^{\prime}$	8.09'	5.36	8^{\prime}	2.37^{\prime}	$2.6{ }^{\prime}$	$6.04{ }^{\text {' }}$	10.04	14.04	18.04'	1.27 ${ }^{\prime}$	21/2"	$3^{\prime \prime}$	0.95	1.52	2.09	2.65	10	12	13	15	
$24^{\prime \prime}$	38^{11}	5'-0'1	$2.79{ }^{\prime}$	7.18 ${ }^{\prime}$	9.97'	7.03'	10^{\prime}	$2.85{ }^{\prime}$	$3.0{ }^{\prime}$	$6.79{ }^{\prime}$	11.79^{\prime}	16.79'	21.79'	1.31^{\prime}	21/2"	$3^{\prime \prime}$	1.18	1.95	2.74	3.53	11	13	15	18	
29"	$45^{\prime \prime}$	5'-11"	3.05'	8.90'	11.95'	8.70'	12^{\prime}	3.19^{\prime}	$3.3{ }^{\prime}$	7.50'	13.42'	$19.33{ }^{\prime}$	25.25'	1.38'	$21 / 2^{\prime \prime}$	$31 / 2^{\prime \prime}$	1.41	2.42	3.44	4.45	12	15	18	20	
$34^{\prime \prime}$	$53^{\prime \prime}$	$7^{\prime}-0^{\prime \prime}$	3.22'	10.62'	13.84'	10.36'	13^{\prime}	3.57^{\prime}	2.6	8.25'	15.25'	$22.25{ }^{\prime}$	29.25'	1.42'	3"	$31 / 2^{\prime \prime}$	1.63	2.92	4.22	5.52	13	17	20	23	
$38^{\prime \prime}$	$60^{\prime \prime}$	$7^{\prime \prime}-10^{\prime \prime}$	3.39^{\prime}	11.99'	15.38'	11.70^{\prime}	15'	$3.95{ }^{\prime}$	3.3'	8.92'	16.75^{\prime}	24.58'	32.42'	1.46^{\prime}	$3^{\prime \prime}$	$4^{\prime \prime}$	1.83	3.36	4.89	6.41	14	18	21	25	
$43^{\prime \prime}$	$68^{\prime \prime}$	$8{ }^{\text {8'-1 } 11^{\prime \prime}}$	3.56'	13.71^{1}	17.27'	13.36'	17^{\prime}	4.28'	$3.6{ }^{\prime}$	$9.67{ }^{\prime}$	18.58	27.50'	36.42'	1.50^{\prime}	$3^{\prime \prime}$	$4^{\prime \prime}$	2.09	3.95	5.80	7.65	16	20	23	27	
$48^{\prime \prime}$	$76^{\prime \prime}$	$9^{\prime \prime-11^{\prime \prime}}$	3.73'	15.43'	19.16'	15.03^{\prime}	19^{\prime}	4.59^{\prime}	$4.0{ }^{\prime}$	10.42^{\prime}	20.33^{\prime}	30.25^{\prime}	40.17'	1.54'	$3^{\prime \prime}$	HSS $5^{\prime \prime} \times \times^{5 / 66^{\prime \prime}}$	2.37	4.54	6.73	8.92	17	21	26	30	
$53^{\prime \prime}$	$83^{\prime \prime}$	$10^{\prime \prime} 8^{\prime \prime}$	3.91^{\prime}	17.15'	21.06'	16.70^{\prime}	20^{\prime}	4.77^{\prime}	$3.3{ }^{\prime}$	$11.08{ }^{\prime}$	21.75'	32.42^{\prime}	43.08^{\prime}	$1.58{ }^{\prime}$	$3^{\prime \prime}$	HSS $5^{\prime \prime} x^{5} / 16^{\prime \prime}$	2.61	5.09	7.56	10.03	18	23	27	32	
$58^{\prime \prime}$	91"	11'-8"	$4.08{ }^{\prime}$	18.87'	22.95'	18.36'	22^{\prime}	5.01	3.6	$11.83{ }^{\prime}$	23.50^{\prime}	35.17^{\prime}	46.83'	1.63'	$3^{1 / 21}$	HSS $5^{\prime \prime} \times{ }^{3} / 8^{\prime \prime}$	2.91	5.77	8.64	11.50	19	24	29	35	

Note: $5 / /^{\prime \prime} \times 3^{\prime \prime}$ bolts are standard for all grate fasteners, except when the contractor elects to use the slotted upper holes for the intermediate fasteners on multiple

Grate Size (Std. \& X-Stg.)	Bolt Length
21/2"	51/211
$3^{\prime \prime}$	$6^{\prime \prime}$
$31 / 2^{11}$	61/21
$4{ }^{\prime \prime}$	$7{ }^{\prime \prime}$

** To be used only when grates are called for in the plans.
*** 1974 AASHTO Pipe Arch Sizes.

BOTTOM VIEW

for all sizes of single and multiple drain pipe FASTENER UNIT

Notes:
Anchors required for CMP only.
Anchor, washer and nuts to be galvanized steel.
Bend anchor where required to center in concrete sla
Anchors
Place the anchors in the outside crest of co four (4) corrugations.
Flat washer to be placed on inside wall of pipe.
Holes in the mitered end pipe are to be drilled or punched; burning not permitted.
ANCHOR DETAIL

TOP VIEW

CONCRETE PIPE CONNECTOR DETAIL

All bars, bolts, nuts and washers are to be galvanized steel.
Bolt diameters shall be $3 / 8^{\prime \prime}$ for $15^{\prime \prime}$ to $36^{\prime \prime}$ pipe and $5 / 8^{\prime \prime}$ for $42^{\prime \prime}$ to $60^{\prime \prime}$ pipe
Two connectors required per joint, located 60° right and left of bottom center of pipe. Bolt holes in pipe shell are to be drilled.

LE
GRATE DETAIL
See General Notes, Sheet 7 .

DETAILS FOR CONCRETE \& CORRUGATED METAL PIPE

PLAN
DITCH TRANSITION

Modified Slope When Minimum Cover
or Less Occurs Both On Existing And Proposed Installations 1:12 or Steeper

PERMISSIbLE PAVEMENT MODIFICATION

GENERAL NOTES

1. Unless otherwise designated in the plans, concrete pipe mitered end sections may be used with any type of side drain pipe; corrugated steel pipe mitered end sections may be used with any type of side drain pipe except aluminum pipe; and, corrugated steel
corrugated aluminum mitered end sections may be used with any type of side drain pipe except steel pipe. When bituminous corrugated aluminum mitered end sections may be used with any type of side drain pipe except steel pipe. When bituminous
coated metal pipe is specified for side drain pipe, construct the mitered end sections with like pipe or concrete pipe. When the mitered end section pipe is dissimilar to the side drain pipe, construct a concrete jacket in accordance with Index 430-001,
2. Use either corrugated metal or concrete mitered end sections for corrugated polyethylene pipe (HDPE), polyvinyl-chloride pipe (PVC) and polypropylene pipe (PPP). When used in conjunction with corrugated mitered end sections, make connection
using either a formed metal band specifically designated to join HDPE or PVC pipe, with metal pipe or other coupler approved by the State Drainage Engineer. When used in conjunction with a concrete mitered end sections, concrete jacket constructed in accordance with Index 430-001.
3. Select lengths of concrete pipe that avoid excessive connections in the assembly of the mitered end section.
4. Repair corrugated metal pipe galvanizing that is damaged during beveling and perforating.
5. Prior to placing concrete slab apply a bituminous coating to any portion of corrugated metal pipe in direct contact with concrete Extend the coating 12" beyond the concrete slab.
6. When existing multiple side drain pipes are spaced other than the dimensions shown in this Index, have nonparallel axes, or mon-uniform sections, either construct the mitered end sections separately as single pipe or collectively as multiple pipe end sections as directed by the Engineer
7. Class NS concrete cast-in-place reinforced slabs are required for all sizes of side drain pipes.
8. Install grates on all round pipes $30^{\prime \prime}$ or greater, pipe-arches $35^{\prime \prime} \times 24^{\prime \prime}$ or greater, and elliptical pipe $19^{\prime \prime} \times 30^{\prime \prime}$ or greater, unless excluded in the Plans. Install grates on smaller size pipes only when called for in the Plans. Omit the lower grate on the downstream end of mitered end sections along divided highways.
9. Use Schedule 80 pipe for the lower grate on all traffic approach ends and Schedule 40 pipe for all remaining grates. Fabricate the grates from ASTM A53, Grade B, black steel pipe and hot dip galvanize after fabrication in accordance with ASTM A123 for all corrosive environments.

DESIGN NOTES

1. Do not use grates until the debris transport potential has been evaluated by the drainage engineer and appropriate adjustments made. Ditch grades in excess of 3% or pipe with less than 1.5 of cover and grades in excess of 1% will require such an evaluation (General Note 10)
2. The design engineer must determine and designate in the plans which alternate types of mitered end section will not be permitted. Restrict use based on corrosive or structural requirements.
3. Contact the District Drainage Engineer for possible alternate treatment of side drain mitered end sections where a minimum spacing of 30^{\prime} will not result between the toe points of the mitered end sections.
4. Provide ditch transitions on all grades in excess of 3%.

TOP VIEW
endwall dimensions (ExClusive of multiple pipe spacing)

FRONT VIEW
$\underset{\text { Pipe (Typ) }}{\substack{\text { Q Outside } \\ \text { Pipe }}} \stackrel{\text { \& Interior }}{\text { Pipe (Typ) }}$

TOP VIEW
NORMAL PIPE

LEGEND

a Pipe Skew
${ }^{5}$ Center To Center Pipe Spacing
x Centerline To Centerline Dimension At Face of Headwall
PIPE AND SPACING FOR MULTIPLE PIPE ENDWALL POSITIONS FOR SINGLE AND MULTIPLE

END VIEW

Position is set by the intersection of the front lope and Point A where this intersection falls utside the clear zone
2. Where the front slope and Point A intersects inside the clear zone, the endwall is positioned so the Station/Offset Location is at the clear zone limit. The front slope is transitioned to the
endwall as shown in Index 430-001.

STANDARD

LOCATION CONTROL

GENERAL NOTES

1. Endwall dimensions, locations and positions are for round and elliptical concrete pipe and for round and pipe-arch corrugated metal pipe. Round concrete pipe show
2. Front slope and ditch transitions shall be in accordance with Index 430-001.
3. Endwalls may be cast in place or precast concrete. Reinforcing steel shall be Grades 40 or 60 . Additional einforcement necessary for handling precast units shall be determined by the Contractor or the supplier. Cost of reinforcement shall be included in the contract unit price for Concrete, (Endwalls).

All exposed corners and eages of concrete are to be chamfered $3 / 4$
5. Concrete shall be Class I, except ASTM C478 (4000 psi) concrete may be substituted for precast items manufacture
in plants meeting the requirements of Section 449 of the in plants mee
Specifications
6. On outfall ditches with side slopes flatter than $1: 1 \frac{1}{2}$ provide 20^{\prime} transitions from the endwall to the flatter side slopes, right of way permitting
7. For sodding around endwalls see Index 524-00
8. Payment for concrete quantities for endwalls skewed to th ipe shall be made on the following basis
0° to 5°
0°
${ }^{16^{\circ}}$
9. Pipe length plan quantities shall be based on the pipe end locations shown in the standard location control end view, length
plans.
10. Payment for pipe in pipe culverts shall be based on pla quantities, ad justed for endwall locations subsequently established by the Engineer

1. Endwalts to be paid for under the contract unit price for Class I Concrete (Endwalls), C

DATA AND ESTIMATED QUANTITIES FOR ONE ENDWALL

CORRUGATED METAL PIPE ARCH																																
Span	Rise	$\begin{aligned} & \text { Opening Area } \\ & \text { (SF) } \end{aligned}$				Dimensions											Class I Concrete (CY)													Span	Rise	Approx Equiv. Round Pipe
						Number of Single Double					Pipe And	And Skew	w Angl	e of Pip	Pipe																	
		Number Of Pipes									A	B	c	E	F	G	s	x				Triple				Quadruple						
		1	2	3	4	0°	15°	30°	45°	0°								0°	15°	30°	45°	0°	15°	30°	45°	0°	15°	30°	45°			
17"	$13^{\prime \prime}$	1.1	2.2	3.3	4.4	1'-9"	$1^{\prime}-2^{\prime \prime}$	$3^{\prime \prime} 10^{\prime \prime}$	$1^{\prime}-10^{\prime \prime}$	$1^{\prime}-2^{\prime \prime}$	$0^{\prime \prime}-4^{\prime \prime}$	$2^{\prime \prime}-6^{\prime \prime}$	$2^{\prime}-6^{\prime \prime}$	$2^{2}-7^{\prime \prime}$	$2^{\prime}-11^{\prime \prime}$	$3^{3}-6^{\prime \prime}$	1.16	1.47	1.48	1.52	1.60	1.78	1.80	1.88	2.04	2.09	2.12	2.23	2.48	17"	$13^{\prime \prime}$	$15^{\prime \prime}$
21"	15"	1.6	3.2	4.8	6.4	$1^{\prime \prime-11^{\prime \prime}}$	$1^{\prime}-2^{\prime \prime}$	$4^{\prime}-3^{\prime \prime}$	$1^{\prime}-10^{\prime \prime}$	$1^{\prime}-2^{\prime \prime}$	$0^{\prime}-9^{\prime \prime}$	$2^{\prime}-10^{\prime \prime}$	$2^{\prime \prime}-10^{\prime \prime}$	$2^{\prime}-11^{\prime \prime}$	$3^{\prime \prime}-3^{\prime \prime}$	$4^{4}-0^{\prime \prime}$	1.33	1.69	1.70	1.75	1.84	2.04	2.06	2.15	2.33	2.40	2.44	2.57	2.84	$21^{\prime \prime}$	$15^{\prime \prime}$	$18^{\prime \prime}$
$28^{\prime \prime}$	20"	2.8	5.6	8.4	11.2	$2^{\prime \prime} 4^{\prime \prime}$	$1^{\prime}-3^{\prime \prime}$	$5^{\prime}-2^{\prime \prime}$	$1^{\prime}-11^{\prime \prime}$	$1^{1}-3^{\prime \prime}$	$1^{\prime}-8^{\prime \prime}$	3'-5"	3'5"	$3^{\prime \prime}-6^{\prime \prime}$	$3^{\prime \prime-11^{\prime \prime}}$	$4^{\prime \prime}-10^{\prime \prime}$	1.78	2.31	2.33	2.39	2.53	2.83	2.87	2.99	3.26	3.36	3.42	3.60	4.01	$28^{\prime \prime}$	$20^{\prime \prime}$	$24^{\prime \prime}$
35"	$24^{\prime \prime}$	4.3	8.6	12.9	17.2	$2^{\prime}-8^{\prime \prime}$	$1^{\prime}-4^{\prime \prime}$	$5^{\prime}-11^{1 / 2} 2^{\prime \prime}$	2'-0"	$1^{\prime}-4^{\prime \prime}$	$2^{1}-5^{1 / 2}$	$4^{\prime}-0^{\prime \prime}$	4^{-010}	$4^{\prime \prime}-2^{\prime \prime}$	$4^{-7}{ }^{\prime \prime}$	5'-8"	2.34	3.03	3.05	3.14	3.32	3.72	3.77	3.93	4.29	4.40	4.47	4.72	5.25	$35^{\prime \prime}$	$24^{\prime \prime}$	$30^{\prime \prime}$
$42^{\prime \prime}$	29"	5.9	11.8	17.7	23.6	$3^{\prime \prime}-1^{\prime \prime}$	$1^{1}-5^{\prime \prime}$	$6^{\prime}-10^{1 / 2}{ }^{\prime \prime}$	$2^{\prime \prime} 1^{\prime \prime}$	$1^{\prime}-5^{\prime \prime}$	$3^{-}-4^{1 / 2}{ }^{\prime \prime}$	4'-9"	4'9"	$4^{\prime}-11^{\prime \prime}$	5'-6"	$6^{\prime}-9^{\prime \prime}$	3.13	4.06	4.09	4.20	4.45	4.99	5.06	5.28	5.76	5.93	6.03	6.36	7.09	$42^{\prime \prime}$	$29^{\prime \prime}$	$36^{\prime \prime}$
$49^{\prime \prime}$	$33^{\prime \prime}$	8.4	16.8	25.2	33.6	3'-5"	$1^{1}-6^{\prime \prime}$	$7^{\prime}-8^{\prime \prime}$	$2^{\prime}-2^{\prime \prime}$	$1^{1}-6^{\prime \prime}$	$4^{\prime \prime}-2^{\prime \prime}$	5'-6"	5'-6"	$5^{\prime}-8^{\prime \prime}$	$6^{\prime}-4^{\prime \prime}$	$7^{\prime \prime}-9^{\prime \prime}$	3.83	5.00	5.04	5.18	5.48	6.16	6.24	6.52	7.12	7.32	7.44	7.86	8.76	$49^{\prime \prime}$	$33^{\prime \prime}$	$42^{\prime \prime}$
57"	$38^{\prime \prime}$	10.6	21.2	31.8	42.4	$3^{\prime \prime}-10^{\prime \prime}$	$1^{1}-7^{\prime \prime}$	$8^{8}-7^{1 / 2 / 1}$	$2^{\prime}-3^{\prime \prime}$	1^{1}-7"	$5^{\prime}-1 / 1 / 2^{\prime \prime}$	6'-4"	$6^{\prime}-4{ }^{\prime \prime}$	$6^{\prime}-7{ }^{\prime \prime}$	$7^{\prime \prime}-4^{\prime \prime}$	$8^{\prime}-11^{\prime \prime}$	4.87	6.31	6.36	6.53	6.91	7.74	7.84	8.18	8.93	9.18	9.33	9.85	10.96	57"	$38^{\prime \prime}$	$48^{\prime \prime}$
64"	$43^{\prime \prime}$	13.2	26.4	39.6	52.8	$4^{\prime \prime}-3^{\prime \prime}$	$1^{1}-8^{\prime \prime}$	$9^{\prime} 1-6^{1 / 2}{ }^{\prime \prime}$	$2^{\prime \prime} 4^{\prime \prime}$	$1^{1}-8^{\prime \prime}$	$6^{\prime}-0 \frac{1 / 2}{}{ }^{\prime \prime}$	$7^{\prime}-1^{\prime \prime}$	7^{1-111}	$7{ }^{7}-4^{\prime \prime}$	$8^{\prime}-2^{\prime \prime}$	$10^{\prime \prime}-0^{\prime \prime}$	5.88	7.64	7.70	7.91	8.37	9.40	9.52	9.94	10.86	11.15	11.33	11.97	13.33	$64^{\prime \prime}$	$43^{\prime \prime}$	$54^{\prime \prime}$
71"	47"	16.9	33.8	50.7	67.6	$4^{\prime}-7^{\prime \prime}$	$1^{\prime \prime}-10^{\prime \prime}$	$10^{\prime}-4^{\prime \prime}$	$2^{\prime \prime}-6^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$6^{\prime}-10^{\prime \prime}$	$7^{\prime \prime}-10^{\prime \prime}$	$7^{\prime \prime}-10^{\prime \prime}$	$8^{\prime}-1^{\prime \prime}$	$9^{\prime}-1^{\prime \prime}$	11'-1"	7.80	10.15	10.23	10.51	11.12	12.49	12.65	13.22	14.43	14.85	15.10	15.94	17.77	$71^{\prime \prime}$	$47^{\prime \prime}$	$60^{\prime \prime}$

CONCRETE ELLIPTICAL PIPE																																
Rise	Span	Opening Area (SF)				Dimensions											Class I Concrete (CY)													Rise	Span	Approx. Equiv. Round Pipe
						Single ${ }^{\text {a }}$ Number of							w Angl	e of P																		
		Number Of Pipes									A	B	c	E	F	G	5	x				Triple				Quadruple						
		1	2	3	4	0°	15°	30°	45°	0°								0°	15°	30°	45°	0°	15°	30°	45°	0°	15°	30°	45°			
12"	$18^{\prime \prime}$	1.3	2.6	3.9	5.2	$1^{1}-8^{\prime \prime}$	$1^{\prime}-2^{\prime \prime}$	$3^{\prime \prime}-9^{\prime \prime}$	$1^{\prime}-10^{\prime \prime}$	$1^{\prime}-2^{\prime \prime}$	$0^{\prime \prime} 3^{\prime \prime}$	$2^{\prime}-10^{\prime \prime}$	$2^{\prime}-10^{\prime \prime}$	$2^{\prime \prime} 11^{\prime \prime}$	$3^{\prime \prime}-3^{\prime \prime}$	$4^{4}-0^{\prime \prime}$	1.09	1.45	1.46	1.51	1.60	1.80	1.82	1.91	2.09	2.16	2.20	2.33	2.60	12"	$18^{\prime \prime}$	$15^{\prime \prime}$
$14^{\prime \prime}$	$23^{\prime \prime}$	1.8	3.6	5.4	7.2	$1^{\prime \prime}-10^{\prime \prime}$	$1^{1}-3^{\prime \prime}$	$4^{4}-2^{1 / 2 / 1}$	$1^{\prime}-11^{\prime \prime}$	$1^{\prime}-3^{\prime \prime}$	81/2"	$3^{\prime \prime}-5^{\prime \prime}$	$3^{\prime \prime}-5^{\prime \prime}$	3^{-1}-6"	$3^{\prime \prime-11^{\prime \prime}}$	$4^{4}-10^{\prime \prime}$	1.36	1.82	1.84	1.89	2.01	2.29	2.32	2.43	2.68	2.75	2.80	2.97	3.33	$14^{\prime \prime}$	$23^{\prime \prime}$	$18^{\prime \prime}$
$19^{\prime \prime}$	$30^{\prime \prime}$	3.3	6.6	9.9	13.2	$2^{\prime}-3^{\prime \prime}$	$1^{\prime}-4^{\prime \prime}$	$5^{1}-1 /{ }^{1 / 1 /}$	$2^{\prime}-0^{\prime \prime}$	$1^{\prime}-4^{\prime \prime}$	$1^{1}-71 / 2^{\prime \prime}$	$4^{\prime}-2^{\prime \prime}$	$4^{\prime \prime}-2^{\prime \prime}$	$4^{\prime \prime} 4^{\prime \prime}$	$4^{\prime \prime}-10^{\prime \prime}$	5'-11"	1.89	2.55	2.57	2.65	2.82	3.22	3.27	3.43	3.77	3.88	3.95	4.19	4.70	19"	$30^{\prime \prime}$	$24^{\prime \prime}$
$24^{\prime \prime}$	$38^{\prime \prime}$	5.1	10.2	15.3	20.4	$2^{\prime}-8^{\prime \prime}$	$1^{1}-5{ }^{\prime \prime}$	6^{\prime}-3"	$2^{\prime}-1^{\prime \prime}$	$1^{\prime}-5^{\prime \prime}$	$2^{\prime \prime}-9^{\prime \prime}$	$5^{\prime}-2^{\prime \prime}$	5'-2'	$5^{\prime \prime} 4^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	7'-4"	2.64	3.55	3.58	3.69	3.93	4.48	4.54	4.77	5.24	5.39	5.49	5.82	6.53	$24^{\prime \prime}$	$38^{\prime \prime}$	$30^{\prime \prime}$
$29^{\prime \prime}$	$45^{\prime \prime}$	7.4	14.8	22.2	29.6	$3^{\prime \prime}-1^{\prime \prime}$	$1^{1}-6^{\prime \prime}$	$7^{\prime \prime}-0^{\prime \prime}$	$2^{\prime}-2^{\prime \prime}$	$1^{1}-6^{\prime \prime}$	$3^{\prime \prime}-6{ }^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$6^{\prime}-0^{\prime \prime}$	$6^{\prime}-3^{\prime \prime}$	$6^{\prime}-11^{\prime \prime}$	$8^{\prime}-6^{\prime \prime}$	3.32	4.48	4.52	4.66	4.96	5.64	5.72	6.00	6.60	6.80	6.92	7.34	8.24	$29^{\prime \prime}$	$45^{\prime \prime}$	$36^{\prime \prime}$
$34^{\prime \prime}$	$53^{\prime \prime}$	10.2	20.4	30.6	40.8	$3^{\prime \prime}-6^{\prime \prime}$	1'-7"	$7^{1}-111^{1 / 1}$	$2^{\prime}-3^{\prime \prime}$	$1^{1}-7{ }^{\prime \prime}$	$4^{1}-5^{1 / 2}$	$7^{1-1 / 1}$	$7^{\prime}-1{ }^{\prime \prime}$	$7^{\prime \prime} 4^{\prime \prime}$	$8^{\prime}-2^{\prime \prime}$	$10^{\prime}-0^{\prime \prime}$	4.24	5.76	5.81	6.00	6.39	7.29	7.40	7.76	8.55	8.81	8.97	9.52	10.70	34"	$53^{\prime \prime}$	$42^{\prime \prime}$
$38^{\prime \prime}$	$60^{\prime \prime}$	12.9	25.8	38.7	51.6	$3^{\prime \prime}-10^{\prime \prime}$	$1^{1}-8^{\prime \prime}$	$8^{\prime \prime}$-9"	$2^{\prime \prime} 4^{\prime \prime}$	$1^{1}-88^{\prime \prime}$	5'-3"	$7^{\prime \prime}-11^{\prime \prime}$	$7^{\prime \prime-11^{\prime \prime}}$	$8^{\prime}-2^{\prime \prime}$	$9^{\prime}-2^{\prime \prime}$	$11^{\prime}-2^{\prime \prime}$	5.22	7.16	7.23	7.46	7.96	9.10	9.24	9.70	10.71	11.05	11.25	11.95	13.46	$38^{\prime \prime}$	$60^{\prime \prime}$	$48^{\prime \prime}$
$43^{\prime \prime}$	$68^{\prime \prime}$	16.6	33.2	49.8	66.4	$4^{\prime \prime}-3^{\prime \prime}$	$1^{\prime}-10^{\prime \prime}$	$9^{1}-8^{1 / 2}{ }^{\prime \prime}$	$2^{\prime \prime} 6^{\prime \prime}$	$1^{\prime \prime}-10^{\prime \prime}$	$6^{\prime}-21 / 2^{\prime \prime}$	$8^{\prime}-10^{\prime \prime}$	$8^{\prime}-10^{\prime \prime}$	$9^{\prime}-2^{\prime \prime}$	$10^{\prime}-2^{\prime \prime}$	$12^{-1} 6^{\prime \prime}$	6.63	9.01	9.09	9.38	10.00	11.39	11.56	12.13	13.36	13.77	14.02	14.88	16.73	$43^{\prime \prime}$	$68^{\prime \prime}$	$54^{\prime \prime}$
$48^{\prime \prime}$	$76^{\prime \prime}$	20.5	41.0	61.5	82.0	$4^{\prime}-8{ }^{\prime \prime}$	$2^{\prime \prime} 1^{\prime \prime}$	$10^{\prime}-8^{\prime \prime}$	$2^{\prime \prime} 9^{\prime \prime}$	$2^{\prime \prime}-0^{\prime \prime}$	$7{ }^{7}-2^{\prime \prime}$	$9^{\prime \prime}$-9"	9'-9"	$10^{\prime}-1^{\prime \prime}$	$11^{\prime \prime} 3^{\prime \prime}$	$13^{\prime}-9{ }^{\prime \prime}$	8.66	11.74	11.85	12.22	13.02	14.82	15.04	15.77	17.37	17.91	18.23	19.34	21.74	$48^{\prime \prime}$	$76^{\prime \prime}$	$60^{\prime \prime}$
53"	83"	24.8	49.6	74.4	99.2	$5^{\prime}-1^{\prime \prime}$	$2^{\prime \prime}-6^{\prime \prime}$	11'-7"	$3^{\prime \prime}-2^{\prime \prime}$	$2^{\prime \prime}-6^{\prime \prime}$	$8^{\prime}-1^{\prime \prime}$	$10^{\prime}-7{ }^{\prime \prime}$	$10^{\prime}-7^{\prime \prime}$	$10^{\prime}-11^{\prime \prime}$	$12^{\prime}-3^{\prime \prime}$	$15^{\prime}-0^{\prime \prime}$	12.50	16.98	16.98	17.67	18.83	21.47	21.78	22.86	25.18	25.97	26.44	28.06	31.55	53"	83"	$66^{\prime \prime}$
$58^{\prime \prime}$	91"	29.5	59.0	88.5	118.0	$5^{\prime}-6^{\prime \prime}$	$2^{\prime}-10^{\prime \prime}$	$12^{\prime}-6{ }^{1 / 2^{\prime \prime}}$	$3^{\prime \prime}-6^{\prime \prime}$	$2^{\prime \prime}-10^{\prime \prime}$	$9^{\prime}-0^{1 / 2 / 1}$	$11^{1}-4^{\prime \prime}$	$11^{\prime \prime} 4^{\prime \prime}$	11'-9"	$13^{\prime}-1{ }^{\prime \prime}$	$16^{\prime}-0^{\prime \prime}$	16.46	22.26	22.46	23.16	24.66	28.05	28.46	29.85	32.85	33.85	34.46	36.55	41.05	$58^{\prime \prime}$	$91^{\prime \prime}$	$72^{\prime \prime}$

SECTION BB

OPTIONAL ENTRANCE for concrete pipe

TYPICAL SECTION THRU ENDWALL

BILL OF REINFORCING STEEL						BENDING DIAGRAM			
MARK	SIIE	NO. REQD.	LENGTH	location	BENDING	$\stackrel{7}{ }+1$			
A	\#4	41	$4^{\prime \prime}-2^{\prime \prime}$	Footing	Straight	\longrightarrow			
B_{1}	\#4	9	$40^{\prime}-2^{\prime \prime}$	Footing \& Wall	Straight	BARC			
B_{2}	\#4	4	12'-6"	Wall	Straight				
$\frac{B_{3}}{B_{4}}$	\#4	4	$\frac{13^{\prime}-9^{\prime \prime}}{6^{\prime \prime}-0^{\prime \prime}}$	Wall	Straight	BAR C			
B_{5}	\#4	2	$2^{\prime \prime}-2^{\prime \prime}$	Wall	Straight	ESTIMATED QUANTITIES			
B_{6}	\#4	8	$15^{\prime}-0^{\prime \prime}$	Wall	Field Bend	ITEM	UNIT	RCP	CMP
,	\#4	29	$9^{\prime \prime} 4^{\prime \prime} 4^{\prime \prime}$	Footing \& Wall	Bend	Class II Concrete	Cu. Yd.	13.7	13.8
D	\#4	20	${ }^{7} 16^{\prime \prime}$	Footing \& Wall Footing \& Wall	Straight	Reinforcing Steel	Lb.	824	824

LAST REVISION 11/01/17		$\begin{gathered} \text { FY 2018-19 } \\ \text { FDTANDARD PLANS } \end{gathered}$	STRAIGHT CONCRETE ENDWALLS SINGLE AND $\mathbb{D O U U B L E} 60^{\prime \prime}$ PIPE

optional entrance
for concrete pipe

LAST REVISION 11/01/17	\|	$\begin{gathered} \text { FY 2018-19 } \\ \text { FDANDARD PLANS } \end{gathered}$	STRAIGHTT CONCRETE ENDWALLS S INGLE AND DOUBLE 66" PIPE	$\begin{gathered} \text { INDEX } \\ 430-032 \end{gathered}$	SHEET 2 of 2

PLAN
concrete endwall with u-type wings for pipe culverts

CONCRETE ENDWALL WITH 45° WINGS FOR PIPE CULVERTS

TABLE OF DIMENSIONS AND ESTIMATED QUANTITIES
PIPE CULVERT ENDWALLS WITH U-TYPE WINGS

dimensions							QUANTITIES IN ONE ENDWALL						
Opening		Wall			Footing		Concrete, Class I, Total (CY)						$\begin{aligned} & \text { Steel } \\ & \text { Tie Bars } \end{aligned}$
	Area						RCP		CMP		CIP		
D	(ft)	G	H	к	F	J	Inlet	Outlet	Inlet	Outlet	Inlet	Outlet	
12"	0.8	$3^{\prime \prime-88^{\prime \prime}}$	$2^{\prime}-0^{\prime \prime}$	$1^{\prime}-0^{\prime \prime}$	$1^{\prime}-3^{\prime \prime}$	2'-2"	0.48	0.55	0.49	0.57	0.49	0.57	none
$15^{\prime \prime}$	1.2	$3^{\prime}-11^{\prime \prime}$	$2^{\prime}-3^{\prime \prime}$	1'-5"	$1^{\prime \prime}-3^{\prime \prime}$	$2^{\prime}-7^{\prime \prime}$	0.59	0.67	0.62	0.70	0.61	0.70	none
$18^{\prime \prime}$	1.8	$4^{\prime \prime}-2^{\prime \prime}$	$2^{\prime \prime}-6^{\prime \prime}$	$1^{1}-9^{\prime \prime}$	$1^{\prime \prime}-3^{\prime \prime}$	$2^{\prime \prime}-11^{\prime \prime}$	0.70	0.79	0.74	0.82	0.74	0.82	none
$24^{\prime \prime}$	3.1	$4^{\prime}-8^{\prime \prime}$	$3^{\prime}-0^{\prime \prime}$	$2^{\prime}-6^{\prime \prime}$	$1^{\prime \prime-66^{\prime \prime}}$	$3^{-1}-8^{\prime \prime}$	1.01	1.11	1.06	1.16	1.06	1.16	2-\#6 Bars $\times 2^{\prime}-0^{\prime \prime}$
$30^{\prime \prime}$	4.9	5'-2'	$3^{\prime \prime}-6^{\prime \prime}$	$3^{\prime \prime}-3^{\prime \prime}$	$1^{1}-6^{\prime \prime}$	$4^{\prime \prime}-5^{\prime \prime}$	1.33	1.44	1.41	1.51	1.40	1.51	2 -\#6 Bars $\times 2^{\prime}-0^{\prime \prime}$
$36^{\prime \prime}$	7.1	5'-8'	$4^{\prime}-0^{\prime \prime}$	$4^{\prime}-0^{\prime \prime}$	$1^{\prime \prime}-9^{\prime \prime}$	5'-2"	1.73	1.85	1.84	1.96	1.82	1.94	2-\#6 Bars $\times 2^{\prime}-6^{\prime \prime}$
$42^{\prime \prime}$	9.6	$6^{\prime}-2^{\prime \prime}$	$4^{\prime}-6^{\prime \prime}$	4'-9"	$2^{\prime \prime}-0^{\prime \prime}$	5'-11"	2.19	2.32	2.32	2.45			2 -\#6 Bars $\times 2^{\prime \prime} 6^{\prime \prime}$
$48^{\prime \prime}$	12.6	$6^{\prime}-8^{\prime \prime}$	5'-0'1	5'-6"	$2^{\prime}-0^{\prime \prime}$	$6^{\prime \prime}$-8"	2.64	2.78	2.81	2.95			2 -\#6 Bars $\times 3^{\prime}-0^{\prime \prime}$

TABLE OF DIMENSIONS AND ESTIMATED QUANTITIES
PIPE CULVERT ENDWALLS WITH 45° WINGS

dimensions							quantities in one endwall			
Opening		Wall				Footing	Concrete, Class I			Steel Tie Bars
D	Area	H	G	\llcorner	M	F		(CY)		
D	(ft)	н	G	L	M	F	RCP	CMP	CIP	
15"	1.2	2'-3"	3^{\prime}-7"	$1^{\prime}-0^{\prime \prime}$	$1^{\prime}-3^{\prime \prime}$	$1^{\prime}-3^{\prime \prime}$	0.56	0.59	0.59	none
$18^{\prime \prime}$	1.8	$2^{\prime \prime} 6^{\prime \prime}$	$3^{\prime \prime}-10^{\prime \prime}$	$1^{\prime}-2^{\prime \prime}$	$1^{\prime \prime-7{ }^{\prime \prime}}$	$1^{\prime \prime}-3^{\prime \prime}$	0.74	0.77	0.77	none
24"	3.1	$3^{\prime \prime}-0^{\prime \prime}$	$4^{\prime \prime}$	1'-5"	$2^{\prime}-1^{\prime \prime}$	1'-4	1.01	1.06	1.0	$2-\# 6$ Bars $\times 2^{\prime}-0^{\prime \prime}$
$30^{\prime \prime}$	4.9	$3^{\prime}-6^{\prime \prime}$	$4^{\prime}-10^{\prime \prime}$	$1^{\prime}-9^{\prime \prime}$	$2^{\prime \prime-5^{\prime \prime}}$	$1^{\prime}-6^{\prime \prime}$	1.32	1.40	1.39	$2-\# 6$ Bars $\times 22^{\prime}-0^{\prime \prime}$
$36^{\prime \prime}$	7.1	$4^{\prime}-0^{\prime \prime}$	$5^{\prime \prime}-4^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	$2^{\prime}-11^{\prime \prime}$	$1^{1}-8{ }^{\prime \prime}$	1.72	1.83	1.82	2 -\#6 Bars $\times 22^{\prime}-6^{\prime \prime}$
$42^{\prime \prime}$	9.6	$4^{\prime}-6^{\prime \prime}$	$5^{\prime}-10^{\prime \prime}$	$2^{\prime}-3^{\prime \prime}$	$3^{\prime \prime}-6^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	2.34	2.47		2 -\#6 Bars × $2^{\prime}-6^{\prime \prime}$
$48^{\prime \prime}$	12.6	$5^{\prime}-0^{\prime \prime}$	$6^{\prime}-4^{\prime \prime}$	$2^{\prime \prime}-6^{\prime \prime}$	$4^{\prime \prime}-0^{\prime \prime}$	$2^{\prime}-0^{\prime \prime}$	2.74	2.90		$2-\# 6$ Bars $\times 2{ }^{\prime}-6^{\prime \prime}$

gENERAL NOTES

1. Winged concrete endwalls are intended for use outside the clear zone.
2. Chamfer all exposed edges $3 / 4$.
3. Concrete shall be Class I, except ASTM C478 (4000 psi) Concrete may be substiruted for in items manufactured in plants meeting the
requirements of Section 449 of the Specifications.
4. Endwall to be paid for under the contract unit price for Class I Concrete.
5. Sodding to be in accordance with Index 524-001, and paid for under the
contract unit price for Performance Turf. SY.

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$	\|	$\begin{gathered} \text { FY 2018-19 } \\ \text { FDOT } \\ \text { STANDARD PLANS } \end{gathered}$	WINGED CONCRETE ENDW ALIS SINGLE ROUND PIPE	$\begin{gathered} \text { INDEX } \\ 430-040 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 1 \end{aligned}$

GENERAL NOTES

grate seat detail

1. For use criteria see "Steel Grating Use Criteria" Index 430-011.
2. Grates shall be ASTM A242, A572 or A588, Grade 50 steel, and galvanized in accordance with Section 975 and $425-3.2$ of the Standard Specifications.
3. Channel section C3 $\times 6.0$ may be substituted for the $C 4 \times 5.4$ channel
4. All steel reinforcing bars are \#4 with $2^{\prime \prime}$ cover except as noted. Spacings shown are center to center. Laps to be $1^{\prime}-5^{\prime \prime \prime}$ minimum. Welded wire fabric (two cages max.) with an equivalent cross section area (0.20 sq. in.) may be substituted for bar reinforcement
5. Drill $11 / 4 / 4$ holes $8^{\prime \prime}$ deep with a rotary drill in existing endwall for dowel bars. Holes shall be thoroughly cleaned prior to installing Adhesive-Bonded Dowels.
6. Endwall to be paid for under the contract unit price for Class I Concrete (Endwalls), CY and Reinforcing Steel (Roadway), LB. Cost of Adhesive-Bonded Dowels to be included in the contract unit price for reinforcing steel. Cost of grates to be paid for under the contract unit price for Endwall Grate, LB. plan quantity. Cost of galvanized bolts and nuts to be included in the contract unit price for the grate.
7. Sod slopes 5' each side and above endwall. Sodding to be paid for under the contract unit price for Performance Turf, SY

DIMENSIONS AND QUANTITIES PER GRATE										
Slope	Pipe	Channels @ 5.4 Lbs./LF			Bars @ $3.4 \mathrm{lbs} / \mathrm{LF}$ (2 ea.$)$			Angles @ 3.2 Lbs./LF		$\begin{gathered} \text { (2)Total } \\ \text { Weight-Lbs } \end{gathered}$
	Size	Quantity	F	Lbs.	L	M-4"	Lbs.	P	Lbs.	
1:6	15"	10		139	$11^{\prime \prime}-3^{\prime \prime}$	$3^{\prime \prime}-3^{\prime \prime}$	99	$9^{9}-4^{\prime \prime}$	60	298
	$18^{\prime \prime}$	12	$2^{\prime}-97 / z^{\prime \prime}$	183	$13^{\prime \prime}-3^{\prime \prime}$	$3^{\prime \prime}-6^{\prime \prime}$	114	$11^{\prime \prime} 4^{\prime \prime}$	73	370
	$24^{\prime \prime}$	15	$3^{\prime}-37 / 8^{\prime \prime}$	269	$16^{\prime}-3^{\prime \prime}$	$4^{\prime \prime}-0^{\prime \prime}$	138	$14^{\prime \prime} 4^{\prime \prime}$	92	499
	$30^{\prime \prime}$	18	$3^{\prime \prime}-97 / 8^{\prime \prime}$	372	$19^{\prime \prime}-3^{\prime \prime}$	$4^{4}-6^{\prime \prime}$	162	$17^{\prime \prime}-4^{\prime \prime}$	111	645
1:4	15"	6	$2^{1}-67 / 8^{\prime \prime}$	83	$7^{\prime \prime}$-3"	$3^{\prime \prime}-3^{\prime \prime}$	71	$5^{\prime \prime}-4^{\prime \prime}$	34	188
	$18^{\prime \prime}$	7	$2^{\prime}-97 / /^{\prime \prime}$	107	$8^{8}-3^{\prime \prime}$	$3^{\prime}-6$	80	$6^{\prime}-4^{\prime \prime}$	41	228
	$24^{\prime \prime}$	9	$3^{\prime}-378_{8}^{\prime \prime}$	161	$10^{\prime}-3^{\prime \prime}$	$4^{4}-0^{\prime \prime}$	97	$8^{\prime \prime}-4^{\prime \prime}$	53	311
	$30^{\prime \prime}$	11	$3^{\prime}-97 / 8^{\prime \prime}$	227	12'-3"	$4^{4}-6^{\prime \prime}$	114	$10^{\prime \prime} 4^{\prime \prime}$	66	407

DIMENSIONS AND QUANTITIES PER U-ENDWALL								
$\begin{aligned} & \text { Pipe } \\ & \text { Size } \end{aligned}$	G	M	D	R	P		Reinforcing Steel-Lbs.	$\begin{aligned} & \text { Sod } \\ & \text { Sy } \end{aligned}$
$15^{\prime \prime}$	$2^{1}-8^{1 / 2}$	$3^{\prime \prime-7{ }^{\prime \prime}}$	$2^{\prime}-2^{\prime \prime}$	$13^{\prime}-0^{\prime \prime}$	$9^{\prime \prime} 4^{\prime \prime}$	2.12	167	23
$18^{\prime \prime}$	$2^{\prime}-111^{1 / 1}$	$3^{\prime \prime}-10^{\prime \prime}$	$2^{\prime \prime}-5^{\prime \prime}$	$14^{-6} 6^{\prime \prime}$	11'-4"	2.53	173	25
$24^{\prime \prime}$	$3^{1}-5 / /^{\prime \prime}$	$4^{\prime \prime}-4^{\prime \prime}$	$2^{\prime \prime-11^{\prime \prime}}$	$17^{-1} 6^{\text { }}$	$14^{\prime \prime} 4^{\prime \prime}$	3.48	238	29
$30^{\prime \prime}$	$3^{-1}-11^{1 / 2}$	$4^{\prime \prime}-10^{\prime \prime}$	$3^{\prime \prime} 5^{\prime \prime}$	20'-6"	$17^{\prime \prime}-4^{\prime \prime}$	4.57	315	32
$15^{\prime \prime}$	$2^{1}-81 / /^{\prime \prime}$	$3^{\prime \prime}-7{ }^{\prime \prime}$	$2^{\prime \prime}-2^{\prime \prime}$	$8^{\prime}-8^{\prime \prime}$	$5^{\prime \prime} 4^{\prime \prime}$	1.44	120	19
$18^{\prime \prime}$	$2^{\prime}-111^{1 / 1 /}$	$3^{\prime \prime}-10^{\prime \prime}$	$2^{\prime \prime-5^{\prime \prime}}$	9'-8'8	$6^{\prime}-4^{\prime \prime}$	1.72	130	20
$24^{\prime \prime}$	$3^{\prime}-5 / /^{\prime \prime}$	$4^{\prime}-4^{\prime \prime}$	$2^{\prime \prime-11^{\prime \prime}}$	$11^{1-8^{\prime \prime}}$	$8^{\prime \prime}-4^{\prime \prime}$	2.36	167	22
$30^{\prime \prime}$	$33^{\prime \prime}-11^{1 / 2}{ }^{\prime \prime}$	$4^{\prime \prime}-10^{\prime \prime}$	$3^{\prime \prime}-5^{\prime \prime}$	$13^{-1} 8^{\text {a }}$	$10^{\prime}-4^{\prime \prime}$	3.09	225	25

see sheet 2 for typical locations
TYPE I (NON-REMOVABLE GRATE)

GENERAL NOTES

1. Trench drain is intended for use in gutters and driveways as shown on the typical locations on Sheet 2. Type I is intended for use in Type E, F and drop curbing, and adjacent to traffic separators and standard barrier walls. The width of the channel grate for Type I Trench Drain shall be $13 / 4$ " throughout varying the depth of the channel neck. Type II may also be used in those locations if an independent laboratory certifies that the grating used has an open area equal to at least 0.27 square feet per linear foot. Type II is primarily intended for use in valley gutter across driveway openings and drop curbing; Type I may also be used in those locations. The width of the channel grate for Type II Trench
Drain shall be the same as the width of the channel. The linear slope or gradient for Type II may be manufactured by varying the depth of the Drain shall be the same as the width of the channel. The linear slope or gradient for Type II may
channel. Trench Drain shall not be placed in pedestrian paths unless ADA compliant grates are used.
2. Unless shown in the plans, outlet pipes and preformed channel inverts shall be sloped 0.6% or steeper toward the outlet regardless of the surface slope.
3. Trench drain may be stubbed directly into drainage structures, or outlet pipes may be used to connect trench drain to drainage structures.
4. A cleanout port compatible with the manufactured system shall be provided for Type I drains at the upstream end and at intervals not to exceed 50 feet. The cleanout port shall provide an opening $6^{\prime \prime}$ to $10^{\prime \prime}$ wide (transverse to the trench drain length) and $18^{\prime \prime}$ to $24^{\prime \prime}$ long. Where cleanouts are placed adjacent to raised curb or separator, the curb or separator shall be formed around the cleanout. The cleanout shall have a removable load resistant cover or grate.
5. Trench excavation must allow for a minimum of $6^{\prime \prime}$ of concrete to be placed under and alongside the trench drain channel system. Concrete backfill shall meet the requirements of Section 347 of the Standard Specifications. At the end of all units (Type I or $I I$), the concrete backfill shall extend $6^{\prime \prime}$ minimum past the end of the drain opening
6. Transverse bars for Type I Trench Drain shall be spaced $4^{\prime \prime}$ to $6^{\prime \prime}$ on center
7. Whenever the work disturbs existing conditions or work already completed, restore the same to its original condition in every detail. All such repair and replacement shall meet the approval of the Engineer.

DESCRIPTION:

within type e curb

WITHIN TYPE F CURB

ADJACENT TO TRAFFIC SEPARATOR

within valley gutter

WITHIN DROP CURB TYPICAL LOCATIONS FOR TYPE II

WITHIN DROP CURB
round pipe alternate shown, but preformed polyethylene alternate acceptable
TYPICAL LOCATIONS FOR TYPE I

LAST REVIIION $12 / 06 / 17$		$\begin{gathered} \text { FD } \overline{\text { FT }} \text { 2018-19 } \\ \text { STANDARD PLANS } \end{gathered}$	$T \mathbb{R} \mathbb{N} C H \mathbb{D R A I N}$	$\begin{gathered} \text { INDEX } \\ 436-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 2 \text { of } 2 \end{aligned}$

GENERAL NOTES

1. The underdrain pipe shall be either $4^{\prime \prime}$ smooth or $5^{\prime \prime}$ corrugated tubing unless otherwise shown in the plans. The size to be furnished will be based on the nominal internal diameter of a pipe with a smooth interior wall. Except when prohibited by the plans, the special provisions or this standard, pipe with a corrugated interior wall may be provided based on the following size equivalency
$4^{\prime \prime}$ smooth interior equivalent to $5^{\prime \prime}$ corrugated interior
$5^{\prime \prime}$ smooth interior equivalent to $6^{\prime \prime}$ corrugated interior
$6^{\prime \prime}$ smooth interior equivalent to $8^{\prime \prime}$ corrugated interior
$8^{\prime \prime}$ smooth interior equivalent to $10^{\prime \prime}$ corrugated interio
2. Fine aggregate shall be quartz sand meeting the requirements of Sections 902-4 of the Standard Specifications.
3. Coarse aggregate shall be gravel or stone meeting the requirements of Sections 901-2 or 901-3. The gradation shall meet Section 901, Grades 4, 467,5,56 or 57 stone unless otherwise shown restricted in the plans.
4. Underdrain Type I, II, III and V shall be in accordance with Section 440.
5. Filter fabric shall be Type D-3 (See Specifications Section 985). The internal filter fabric of Type V underdrain shall have a permittivity of $0.7 / \mathrm{sec}$. and an AOS of \#40 sieve,
6. When Type I is used, a filter fabric sock meeting Section 948 is required.
7. See Index 120-002 for the standard location of Type I, II, and III underdrain. The location of Type underdrain and nonstandard locations of Type I, II, and III underdrain will be as detailed in the plans.
8. All filter fabric joints shall overlap a minimum of 1^{\prime}. The internal filter fabric of Type V underdrain shall overlap into the coarse aggregate or the fine aggregate a minimum of 1^{\prime}.
9. Underdrain outlet pipes shall be nonperforated and all bends shall be made using $1 / 8$ (45 deg.) elbows. 90 deg. bends shall be constructed with two $1 / 8$ elbows separated by at least 1 ' of straight pipe. Outlet pipes stubbed into inlets or other drainage structures shall be not less than $6^{\prime \prime}$ above the structure flow line. shtew in Index 466 -001 for Edgedrain outlets.
10. Pay Item shall be based on the size of the smooth interior products. The contract unit price for Underdrain, LF, shall include the cost of pipe, fittings, aggregate, sock, filter fabric, underdrain cleanouts, and concrete aprons.

The contract unit price for Underdrain Outlet Pipe, LF, shall be full compensation for trench excavation, pipe and fittings, concrete aprons, hardware cloth for concrete aprons, stubbing into drainage structures,

The contract unit price for Underdrain Inspection Box, EA. shall be for the number completed and accepted. create chemical clogging, the use of an inert material and/or elimination of the filter fabric may be 4. the coarse aggregate or fine aggregate including those described in general notes 2 and 3 . Design note 3 applies for reactive conditions.
5. Type V underdrain is intended for use in detention basins and other locations which require a filtration system. The standard fine aggregac
requirements of Chapter 62-25 FAC
6. The designer should detail in the plans, the location of (a) Type V underdrain, (b) nonstandard locations of Type I, II, and III underdrain, (c) underdrain inspection boxes, (d) cleanouts for Type V underdrain, and (e) underdrain outlet pipes.
7. The designer should specify the flow line elevations at the beginning, bends, junctions and ends of underdrain pipes and outlet pipes.
8. The designer should evaluate whether an external filter fabric envelope is required around underdrain Types I and III. When required, fabric shall be specified in the plans.

DESIGN NOTES

1. The type of underdrain should be selected to meet design water removal rate and soil conditions. Caution prescribed in the use of these typical sections since special designs may be required to satisfy project conditions.
2. Type I underdrain is intended for minimum water removal conditions.

Type II underdrain is intended for moderate water removal conditions. Where reactive conditions ma essary.

LONGITUDINAL SECTION

GENERAL NOTES

1. Pipe shall be any of the optional types permitted in Section 443 of the Specifications unless otherwise restricted in the plans. Dissimilar types of pipe will not be permitted in a continuous run of pipe.
2. Concrete pipe shall be placed with the slots positioned on sides.
3. Alignment joints are standard (gaskets not required). Recorrugation of metal pipe ends not required
4. The contractor may submit other methods of providing slots having equal or greater area of opening, for approval by the Engineer
5. Filter fabric shall be Type D-3 meeting the requirements of Section 985. All filter fabric joints shall lap a minimum of one (1) foot
6. The standard cross section shall be constructed unless other section(s) described or detailed in the plans.
7. For supplemental details see Index 430-001
8. The contractor shall take the necessary precautions to prevent contamination of the trench with sand, silt and foreign materials.
9. French drains shall be paid for under the contract unit price for French Drains, LF. The unit price shall include the cost of pipe, pipe plugs, pipe fittings, coarse aggregate and
filter fabric in place, and the cost for trench excavation, backfill and compaction. The unit price shall also include the cost for disposal of surplus excavated materials and cost for restoration of pavement removed or damaged by french drain construction, but shall not include payments for items paid for elsewhere.

DESIGN NOTES

1. Pipe invert should be at or above the water table whenever possible.
2. French drains with minor dimensional changes or otherwise different from the standard ross-section shall be either described or detailed in the plans. French drains with significantly different cross-sections shall be detailed in the plans.

FRENCH DRAIN SYSTEM

SLOTTED PIPE OPTIONS

24" STEEL WELL GRATE
Heavy duty "bee hive" grate
Openings: 1-1/2" maximum
Total Opening: 1.7 sq ft minimum
For $24^{\prime \prime}$ well, outer diameter $=29^{\prime \prime}$
Steel well grate to be installed over $24^{\prime \prime}$ deep well.
Steel grate to be hot dipped galvanized after
fabrication, see Specification Section 962.

TOP SLAB PLAN

SECTION A-A
structure with no outflow

special manhole structure

DETAIL WITH OUTFALL

DESIGN NOTES

1. Depth of Casing Varies, $60^{\circ} \mathrm{min}$.
2. Depth of Open Hole, $10^{\prime}-20$
3. Actual Size of The Inflow And Outflow Chambers will Be Determined By The Size of The Pipes (Refer To Table 3 of Index $425-010$). The
Width Of The Box Shall Be Constant Based On The Largest Pipe. The Width of The Box Shall Be Constant Based On The Largest Pipe. The
Length Is To Be Adjusted Based On Size and Orientation of The Pipes.

Index	Sheet
444-T01	1 of 1

GENERAL NOTES FOR

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 17 \end{gathered}$		$\begin{array}{cc} F Y \text { 2018-19 } \\ \text { FDOT } \\ \text { STANDARD PLANS } \end{array}$	CONCRETE PAVEMENT SUBDRAINAGE	$\begin{gathered} \text { INDEX } \\ 446-001 \end{gathered}$	$\begin{aligned} & \text { SHEET } \\ & 1 \text { of } 4 \end{aligned}$

NOTES FOR DRAINCRETE
PAVEMENT SUBDRAINAGE

1. The edqedrain sections for DRAINCRETE SUBDRAINAGE are applicable to pavement construction identified as RIGID PAVEMENT on Index 120-001
2. The contractor shall confine the construction of draincrete edgedrain to an area in which the entire operation can be carried out in five (5) work days, unless another construction period is called
the plans, with sufficient time allowed for the draincrete to set before placement of pavement.

METHOD OF PAYMENT

NEW CONSTRUCTION:

1. The contract unit price for Edgedrain (Draincrete) LF shall be full compensation for trench excavation, disposal of excess material, filter fabric, draincrete edgedrain pipe and fittings and draincrete
Payment for outlet pipe shall be in accordance with General Note 9 , Sheet 1 of 4 .

FOR REHABILITATION:

1. The contract unit price for Edgedrain (Draincrete) LF, shall be full compensation for removal of existing shoulder pavement, trench excavation, disposal of excess materials, filter fabric, draincrete edgedrain pipe and fittings, and draincrete, necessary for edgedrain construction.
Payment for outlet pipe shall be in accordance with General Note 9, Sheet 1 of 4.
Shoulder pavement shall be paid for under the contract unit price for Type SP, Asphaltic Concrete. Shoulder joint seal shall be paid for under the contract unit price for Pavement Joint, LF

FDOTY	FY 2018-19 STANDARD PLANS	CONCRETE PAVEMENT SUBDRAINAGE	$\begin{gathered} \text { INDEX } \\ 446-001 \end{gathered}$	

CONCRETE TRAVEL LANES, SHOULDERS, AND AUXILIARY PAVEMENT

ASPHALT SHOULDERS

NOTES FOR DRAINCRETE PAVEMENT SUBDRAINAGE

1. The edgedrain sections for DRAINCRETE SUBDRAINAGE are applicable to pavement construction identified as RIGID PAVEMENT on Index 120-001.
2. The contractor shall confine the construction of draincrete edgedrain to an area in which the entire operation can be carried out in five (5) work days, unless another construction period is called for in the plans, with sufficient time allowed for the draincrete to set before placement of pavement.

METHOD OF PAYMENT

NEW CONSTRUCTION:

1. The contract unit price for Edgedrain (Draincrete) LF shall be full compensation for trench excavation, disposal of excess material, filter fabric, draincrete edgedrain pipe and fittings and draincrete.
Payment for outlet pipe shall be in accordance with General Note 9, Sheet 1 of 4
2. Type B-12.5 shall be paid for under the contract unit price for Optional Base.
3. Shoulder pavement shall be paid for under the contract unit price for Type SP, Asphaltic Concrete.

ASPHALT BASE SUBDRAINAGE

BAR BENDING DIAGRAMS

STIRRUP DIMENSIONS ($T=10^{\prime \prime}$)									
\varnothing	BAR MARK	R1	R2	R3	R4	R5	R6	R7	R8
30°	51	11/4/1"	93/41	$1^{\prime}-61 / 2^{\prime \prime}$	21/2"	$5^{\prime \prime}$	43/411	5/2/1'	41/411
	S2	$1^{\prime}-1 /{ }^{1 / \prime \prime}$	93/4"	$1^{1}-8 \frac{3}{4} /{ }^{\prime \prime}$	21/2"	4/2"	51/2"	53/4	41/4"
	53	111/4"	$8^{\prime \prime}$	$1^{\prime}-6^{\prime \prime}$	1/1/4	$5^{\prime \prime}$	41/2/1	41/2"	$5^{\prime \prime}$
	54	11/1/4	4/4/7	$1^{\prime}-1 \frac{3}{4} /{ }^{\prime \prime}$	13/4"	$5^{\prime \prime}$	33/4	21/2"	$61 /{ }^{1 / 1}$
45°	S1	11/1/2"	$8^{\prime \prime}$	$1^{1}-4^{\prime \prime}$	$4^{\prime \prime}$	5/211	61/2"	$8^{\prime \prime}$	$4^{\prime \prime}$
	S2	$1^{\prime}-1 \frac{3}{4 / 4}$	$8^{\prime \prime}$	$1^{1}-53 / 4$	$4^{\prime \prime}$	4/2"	71/2"	$8^{\prime \prime}$	$4^{\prime \prime}$
	53	111/2"	$63 / 41$	$1^{\prime}-4^{\prime \prime}$	21/4"	5/2"	63/41	$63 / 41$	51/2"
	54	11/1/2"	31/2"	${ }^{1}$ '-0"	$3^{\prime \prime}$	51/2"	$5^{\prime \prime}$	31/2"	$7{ }^{\prime \prime}$
60°	S1	1'-0"	$6^{\prime \prime}$	1'-03/4	51/4"	$6^{\prime \prime}$	71/4 ${ }^{1 /}$	101/4/1	$3^{\prime \prime}$
	S2	$1^{\prime}-2^{\prime \prime}$	$6^{\prime \prime}$	$1^{\prime}-2^{3 / 1 / 4}$	51/4"	43/4"	83/4"	101/2"	3"
	53	$1^{1}-0^{\prime \prime}$	43/4"	$1^{\prime}-1 /{ }^{1 / \prime \prime}$	3/4"	$6^{\prime \prime}$	$8^{\prime \prime}$	83/4"	51/4"
	54	$1^{1}-0^{\prime \prime}$	21/2"	$10^{\prime \prime}$	4/2"	$6^{\prime \prime}$	$53 / 41$	$4^{\prime \prime}$	71/21

STIRRUP DIMENSIONS ($T=12^{\prime \prime}$)									
\varnothing	BAR MARK	R1	R2	R3	R4	R5	R6	R7	R8
30°	S1	11/2/1"	$10^{\prime \prime}$	$1^{\prime}-6{ }^{\prime \prime}$	3/2"	$7{ }^{\prime \prime}$	43/4"	53/4"	$6^{\prime \prime}$
	S2	$1^{\prime}-13 / 4$	10"	$1^{1}-8 / 1 /{ }^{11}$	$31 / 2^{\prime \prime}$	6/211	51/4"	53/4"	$6^{\prime \prime}$
	53	111/2"	8//4"	$1^{1}-53 / 411$	$2^{\prime \prime}$	$7{ }^{\prime \prime}$	43/4"	4/2/2	71/4"
	54	11/2"	$4^{\prime \prime}$	$1^{1}-1 \frac{1 / 4}{}$	21/4"	$7{ }^{\prime \prime}$	33/4"	21/2"	81/4"
45°	S1	$1^{\prime}-0^{\prime \prime}$	81/2"	$1^{1}-3 / 1 / 4^{\prime \prime}$	51/4"	71/21	61/4"	81/2"	51/4"
	S2	$1^{\prime}-2^{1 / 1 /}$	81/2"	$1^{1}-5 / 2^{\prime \prime}$	51/4"	61/21	71/4"	81/2"	51/4"
	53	$1^{\prime}-0^{\prime \prime}$	$7{ }^{\prime \prime}$	$1^{\prime}-4{ }^{\prime \prime}$	$3^{\prime \prime}$	71/21	$63 / 41$	$7{ }^{\prime \prime}$	71/41
	54	$1^{\prime}-0^{\prime \prime}$	$31 / 2{ }^{1 \prime}$	113/4"	33/4 ${ }^{\prime \prime}$	$71 /{ }^{\prime \prime}$	$5^{\prime \prime}$	3/2"	$9^{\prime \prime}$
60°	51	$1^{\prime}-0{ }^{1 / 2 / 1}$	6/1/4	113/4"	$7{ }^{\prime \prime}$	$8^{\prime \prime}$	$6^{3 / 4} 1{ }^{11}$	103/4/	$4^{\prime \prime}$
	S2	$1^{\prime}-2^{3 / 4}$	6/4"	1'-2"	$7{ }^{\prime \prime}$	$63 / 41$	$8^{\prime \prime}$	103/4	$4{ }^{\prime \prime}$
	53	${ }^{1}-01 /{ }^{1 / 1}$	$5^{\prime \prime}$	$1^{1}-1 / 2^{\prime \prime \prime}$	$4{ }^{\prime \prime}$	$8^{\prime \prime}$	$8^{\prime \prime}$	$9^{\prime \prime}$	$7{ }^{\prime \prime}$
	54	$1^{1}-01 /{ }^{1 / 1}$	$2^{1 / 21}$	9/2"	$51 / 21$	$8^{\prime \prime}$	$51 / 21$	41/4"	91/4"

1-PIECE
BARS S1 \& S2

BARS S3 \& S4

2-PIECE

\section*{| SHEET PILE DIMENSIONS | | |
| :---: | :---: | :---: |
| T (in.) | 10 | 12 |
| Y (in.) | $3^{33 / 16}$ | $4^{3 / 16}$ |
| Z (in.) | 3 | 4 |}

(TYPE "B1" PILE SHOWN, TYPE "B2" PILE OPPOSITE HAND)
NOTES:

1. This drawing includes details for precast concrete corner piles for $10^{\prime \prime}$
2. and $12^{\prime \prime}$ thick sheet pile systems. The details apply equally to both thicknesses.

The bar configurations shown in Sections $A-A$ and $B-B$ shall be used for
\varnothing angles between 15° and 75°. For \varnothing angles not shown, the reinforcing bar
\varnothing angles between 15° and 75°. For \varnothing angles not shown, the reinforcing bar
dimensions may be interpolated or extrapolated from the stirrup dimensions shown.
3. All bar dimensions are out-to-out.
4. Bars A are $\# 8$ and Bars 5 are $\# 4$.
5. Values for Stirrup Dimensions are shown for anal $10,45 \& 60$ only
6. At the Contractor's option Bars S may be fabricated as a 2 piece bar with
7. If Type "B1" or "B2" pile is used as a Starter Pile show tongue on both sides of pile
from Dim. X down. Show dimensions for Bars S2, S3 \& S4 in shop drawings.
8. If tongue must be on the opposite side from that shown all dimensions and Bars A

S2, S3 and S4 will be the same but opposite hand
9. For Dimensions L, X and Angle Ø, see Sheet Pile Data Table in Structures Plans.

TYPE "B1" AND "B2" - VARIABLE aNGLE CORNER PILE

| $\begin{aligned} & \text { LAST } \\ & \text { REVISION } \\ & 11 / 01 / 16 \end{aligned}$ | \|r|chen \mid DESCRIPTION: |
| :---: | :---: |

FDOT\} FY 2018-19
PRECAST CONCRETE SHEET PILE WALL (CONVENTIONAL)

555-400 3 of 4

BAR BENDIN									
STIRRUP DIMENSIONS ($T=10^{\prime \prime}$)									
\varnothing	BAR MARK	R1	R2	R3	R4	R5	R6	${ }^{\text {R7 }}$	R8
30°	S1	11/4/1	93/4"	$1^{\prime}-61 / 2^{\prime \prime}$	21/2"	$5^{\prime \prime}$	$43 / 1{ }^{\prime \prime}$	51/2"	41/4"
	S2	$1^{1}-1 /{ }^{1 / 1 /}$	93/4"	$1^{\prime}-8 \frac{3}{4 \prime \prime}$	21/2"	4/21	51/2"	53/4"	41/4"
	53	111/4"	$8^{\prime \prime}$	$1^{\prime}-6^{\prime \prime}$	11/4"	$5^{\prime \prime}$	41/2"	41/2"	$5^{\prime \prime}$
	54	11/4/4	41/4"	$1^{1}-13 / 41$	13/4"	$5^{\prime \prime}$	33/1"	$21 /{ }^{\prime \prime}$	61/4"
45°	51	111/2"	$8^{\prime \prime}$	1'-4"	$4^{\prime \prime}$	51/211	61/21	$8^{\prime \prime}$	$4{ }^{\prime \prime}$
	52	$1^{\prime}-1 / 3 / /^{\prime \prime}$	$8^{\prime \prime}$	1'-53/4	$4^{\prime \prime}$	4/2"	71/21	$8^{\prime \prime}$	$4{ }^{\prime \prime}$
	S3	11/1/2'	$63 / 41$	$1^{\prime}-4^{\prime \prime}$	21/4"	$5 / 2^{\prime \prime}$	63/4	63/4"	51/2"
	54	111/2"	31/2"	$1^{1}-0^{\prime \prime}$	$3^{\prime \prime}$	5/211	$5{ }^{\prime \prime}$	3/2"	$7{ }^{\prime \prime}$
60°	S1	$1^{\prime}-0^{\prime \prime}$	$6^{\prime \prime}$	1'-03/4'	51/4"	$6^{\prime \prime}$	71/4'	101/4"	$3{ }^{\prime \prime}$
	52	$1^{\prime}-2^{\prime \prime}$	$6^{\prime \prime}$	$1^{1}-23 / /^{\prime \prime}$	51/4"	$4^{3} / 4^{\prime \prime}$	$83 / 4$	101/2"	$3^{\prime \prime}$
	53	$1^{1}-0^{\prime \prime}$	43/4"	$1^{\prime}-1 /{ }^{1 / \prime \prime}$	31/4"	$6^{\prime \prime}$	$8^{\prime \prime}$	83/4"	51/4"
	54	$1^{1}-0^{\prime \prime}$	21/2"	10"	4/2"	$6^{\prime \prime}$	53/4	$4^{\prime \prime}$	71/2"

STIRRUP DIMENSIONS ($T=12^{\prime \prime}$)									
\varnothing	bar mark	R1	R2	R3	R4	R5	R6	R7	R8
30°	S1	111/2"	10"	1'-6" $^{\prime \prime}$	31/2"	$7{ }^{\prime \prime}$	43/4	53/4"	$6^{\prime \prime}$
	52	$1^{\prime}-1 / 3 / /^{\prime \prime}$	$10^{\prime \prime}$	$1^{1}-8 / 1 /{ }^{1 \prime}$	3/2"	61/2"	51/4 ${ }^{11}$	53/4"	$6^{\prime \prime}$
	S3	111/2"	81/4"	$1^{\prime}-53 / 4$	$2^{\prime \prime}$	$7{ }^{\prime \prime}$	43/4	4/2/2'	71/4 ${ }^{10}$
	54	111/2"	$4^{\prime \prime}$	$1^{1}-1 /{ }^{1 / 1}$	21/4"	$7{ }^{\prime \prime}$	33/4	$22^{1 / 1}$	81/4"
45°	S1	$1^{\prime}-0^{\prime \prime}$	$81 /{ }^{1 / 1}$	$1^{1}-3 / 1 /{ }^{11}$	51/7"	71/21	61/41	81/2"	5/4"
	S2	${ }^{1}-2{ }^{1 / 1 / 1}$	$81 /{ }^{1 / 1}$	$1^{\prime}-5 /{ }^{1 / 1}$	51/4"	61/2"	71/4	$81 / 2^{\prime \prime}$	5//411
	53	$1^{\prime}-0^{\prime \prime}$	$7{ }^{\prime \prime}$	$1^{\prime}-4^{\prime \prime}$	$3^{\prime \prime}$	71/2/1	$63 / 411$	$7{ }^{7}$	71/4 ${ }^{10}$
	54	$1^{\prime}-0^{\prime \prime}$	$31 / 2^{\prime \prime}$	113/4"	33/4"	71/211	$5^{\prime \prime}$	$31 / 2^{11}$	$9^{\prime \prime}$
60°	S1	$1^{\prime}-0{ }^{1 / 2 / \prime}$	61/4"	113/4"	$7{ }^{7}$	$8^{\prime \prime}$	$6^{3 / 41}$	103/4"	$4^{\prime \prime}$
	S2	$1^{\prime}-2^{3 / 4}{ }^{\prime \prime}$	61/4"	$1^{\prime \prime}-2^{\prime \prime}$	$7{ }^{7 \prime}$	$63 / 411$	$8^{\prime \prime}$	$10^{3 / 4}{ }^{1 /}$	$4^{\prime \prime}$
	53	$1^{1}-0 \frac{1}{2} /{ }^{\prime \prime}$	$5^{\prime \prime}$	$1^{\prime}-1 /{ }^{1 / 1 \prime}$	$4^{\prime \prime}$	$8^{\prime \prime}$	$8^{\prime \prime}$	$9^{\prime \prime}$	$7{ }^{\prime \prime}$
	54	$1^{-1} 00^{1 / 2}$	$21 / 2^{\prime \prime}$	91/2"	51/21	$8^{\prime \prime}$	51/2"	4/4/4	91/4"

\section*{| SHEET PILE DIMENSIONS | | |
| :---: | :---: | :---: |
| T (in.) | 10 | 12 |
| Y (in.) | $3^{3} / 16$ | $4^{3 / 16}$ |
| z (in.) | 3 | 4 |}

(TYPE "B1" PILE SHOWN, TYPE "B2" PILE OPPOSITE HAND)

NOTES:

1. This drawing includes details for precast concrete corner piles for $10^{\prime \prime}$
and $12^{\prime \prime}$ thick sheet pile systems. The details apply equally to both thicknesses.
2. The bar configurations shown in Sections A-A and B-B shall be used for
dimensions may be interpolated or extrapolated from the stirrup dimensions shown.
3. All bar dimensions are out-to-out.
4. Bars A are GRP \#8 and Bars 5 are GFRP \#4.
5. Valus
6. Values for Stirrup Dimensions are shown for \varnothing equal to $30^{\circ}, 45^{\circ} \& 60^{\circ}$ only.
7. Bars S are fabricated as a 2 piece stirrup with a minimum

Bars S are fabricated as a 2 piece stirrup with a minimum lap length of 8
as shown in Bar Bending Diagrams, or a single closed bar (hoopl when approved by the Engineer.
7. If Type "B1" or "B2" pile is used as a Starter Pile show tongue on both sides of pile 8. If tongue must be on the opposite side from that shown all dimensions and
8. If tongue must be on the opposite side from that 5 Sh
9. For Dimensions L, X and Angle Ø, see Sheet Pile Data Table in Structures Plans.

TYPE "B1" AND "B2" - VARIABLE ANGLE CORNER PILE

$\begin{gathered} \hline \text { LAST } \\ \text { REVISION } \\ 11 / 01 / 16 \end{gathered}$	\mid \|	$\begin{array}{cc} \text { FDOT 2018-19 } \\ \text { STANDARD PLANS } \end{array}$	PRECAST CONCRETE SHEET PILE WALL (CFRP/GFRP \& HSSS/GFRP)

